Subject Description Form | Subject Code | AMA567 | |--|--| | Subject Title | Quantum Computing for Data Science | | Credit Value | 3 | | Level | 5 | | Pre-requisite/
Co-requisite/
Exclusion | Nil | | Objectives | To provide a comprehensive introduction to quantum information and quantum computation. To present fundamental concepts and principles of quantum physics, quantum information and quantum computation. To present several well-known quantum algorithms. To provide a starting point for students who are interested in pursuing research in the emerging and fast-developing field of quantum computing. | | Intended Learning
Outcomes | Upon completion of the subject, students will be able to: (a) master the basics of quantum mechanics, (b) understand the basic concepts of quantum information and the basic principles of quantum computing, (c) familiarise with several standard quantum algorithms and apply them to develop more new quantum algorithms. | | Subject Synopsis/
Indicative Syllabus | Quantum Mechanics: Dirac's bra-ket notation, pure states, density matrices, Pauli matrices, quantum measurements, projective measurements, POVM measurements, composite quantum systems, quantum evolution, partial trace, quantum entanglement Quantum Information: Qubits, quantum noise, quantum operations, quantum channel, decoherence, master equations, Shannon entropy, von Neumann entropy, quantum teleportation, super-dense coding | | | Quantum Algorithms: Quantum gates, quantum circuits, controlled operations, universal quantum gates, quantum Fourier transform, phase estimation, amplitude amplifications, Grover's search algorithm, Deutsch-Jozsa algorithm, Shor's quantum factoring algorithm. | | Teaching/Learning
Methodology | The subject will mainly be delivered through lectures and tutorials. The theoretical background of quantum information and their applications to quantum computational algorithms are both emphasized. | | Assessment Methods
in Alignment with
Intended Learning
Outcomes | Specific assessment methods/tasks | • | | | Intended subject learning outcomes to be assessed (Please tick as appropriate) | | | | |--|--|---------|----------|----------|--|---------|--|--| | | | | a | b | c | | | | | | 1. Assignments | 20% | ✓ | ✓ | ✓ | | | | | | 2. Project | 20% | ✓ | ✓ | √ | | | | | | 3. Midterm test | 20% | ✓ | ✓ | ✓ | | | | | | 4. Examination | 40% | ✓ | ✓ | | | | | | | Total | 100% | | | • | | | | | | Explanation of the appropriateness of the assessment methods in assessing the intended learning outcomes: | | | | | | | | | | Assignments: help students review basic mathematics, grasp the important concepts and results in quantum information theory. | | | | | | | | | | Project: train students' ability to organize learned algorithms for real problems | | | | | | | | | | Midterm test: a part of continuous assessment for the theoretical part covered in the subject. | | | | | | | | | | Examination: an overall examination of the theory and algorithms studied in the whole semester. | | | | | | | | | Student Study Effort | Class contact: | | | | | | | | | Required | • Le | Lecture | | | 26 Hrs. | | | | | | ■ Tutorial | | 13 Hrs | | | 13 Hrs. | | | | | Other student study effort: | | | | | | | | | | ■ Assignments/Projects | | | 58 Hrs. | | | | | | | ■ Self-study | | | 30 Hrs. | | | | | | | Total student study effort | | | 127 Hrs. | | | | | | Reading List and | <u>Textbook</u> : | | | | | | | | | References | Michael A. Nielsen and Isaac L. Chuang, Quantum Computation and Quantum Computation, Cambridge University Press, 2010. | | | | | | | | | | References: | | | | | | | | | | 1. Mikio Nakahara and Tetsuo Ohmi, Quantum Computing: Froom Linear Algebra to Physical Realizations, CRC Press, 2008 | | | | | | | | - 2. Scott Aaronson, *Quantum Computing Since Democritus*, Cambridge University Press, 2013. - 3. Mark M. Wilde, *Quantum Information Theory*, Cambridge University Press, 2017. - 4. Alexander S. Holevo, *Quantum Systems, Channels, Information: A mathematical Introduction*, Walter de Gruyter GmbH, 2012. - 5. 張永德,量子信息物理基礎,科學出版社,2005. | 1 | | |---|--| |