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Abstract. A fully discrete and fully explicit low-regularity integrator is constructed for
the one-dimensional periodic cubic nonlinear Schrödinger equation. The method can be
implemented by using fast Fourier transform with O(N lnN) operations at every time level,

and is proved to have an L2-norm error bound of O(τ
√

ln(1/τ) +N−1) for H1 initial data,
without requiring any CFL condition, where τ and N denote the temporal stepsize and the
degree of freedoms in the spatial discretisation, respectively.

1. Introduction

This article concerns the numerical solution of the cubic nonlinear Schrödinger (NLS)
equation {

i∂tu(t, x) + ∂xxu(t, x) = λ|u(t, x)|2u(t, x) for x ∈ T and t ∈ (0, T ],

u(0, x) = u0(x) for x ∈ T,
(1.1)

on the one-dimensional torus T = (−π, π) with a nonsmooth initial value u0 ∈ H1(T), where
λ = −1 and 1 are referred to as the focusing and defocusing cases, respectively. It is known
that problem (1.1) is globally well-posed in Hs(T) for s ≥ 0; see [2].

The construction of numerical methods for the NLS equation and related dispersive
equations with nonsmooth initial data has attracted much attention recently since the pio-
neering work of Ostermann & Schratz [17], who introduced a low-regularity exponential-type
integrator that could have first-order convergence in Hγ(Td) for initial data u0 ∈ Hγ+1(Td)
and γ > d

2 , where d denotes the dimension of space. Before their work, the traditional
regularity assumption for the NLS equation for a time-stepping method to have first-order
convergence in Hγ(Td) is u0 ∈ Hγ+2(Td) for γ ≥ 0 (losing two derivatives). This includes
the Strang splitting methods [6, 14], the Lie splitting method [10], and classical exponential
integrators [8] (also see the discussion in [17, p. 733]). The finite difference methods [19,21]
generally require more regularity of the initial data (one temporal derivative on the solution
generally requires the initial data to have two spatial derivatives to satisfy certain compati-
bility conditions).

The idea of Ostermann & Schratz [17] is to use twisted variable to reduce the con-
sistency error in an exponential-type integrator, and to use harmonic analysis techniques
to approximate the exponential integral. More recently, Wu & Yao [22] applied different
harmonic analysis techniques to construct a time-stepping method for the one-dimensional
NLS equation with first-order convergence in Hγ(T) for initial data u0 ∈ Hγ(T) and γ > 3

2
(without losing any derivative). Ostermann, Rousset & Schratz furthermore weakened the
regularity assumption of initial data to u0 ∈ H1(T) in [15] and u0 ∈ Hs(T) with s ∈ (0, 1]
in [16] by using estimates in the discrete Bourgain spaces. For u0 ∈ H1(T) these methods

were proved to have L2-norm error bounds of O(τ
5
6 ) and O(τ

7
8
−ε), respectively, for the one-

dimensional NLS equation. A general framework of low-regularity integrators for nonlinear
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parabolic, dispersive and hyperbolic equations was introduced in [7], where the condition
for the numerical solution of the NLS equation to have first-order convergence in L2(T) is

u0 ∈ H
5
4 (T).

Besides the NLS equation, the techniques of twisted variable and harmonic analysis
techniques were also used in the construction of low-regularity integrators for other dispersive
equations; see [9, 18,20,23,24] and the references therein.

As far as we know, the analysis of all the low-regularity integrators for the NLS equation
are limited to semidiscretisation in time (the error from spatial discretisation is unknown for
nonsmooth initial data), and the regularity condition for the time-stepping method to have
first-order convergence is u0 ∈ Hγ(T) for γ ≥ 5

4 . We are only aware of a fully discrete
Lawson-type exponential integrator for the Korteweg–de Vries equation [18], with first-order
convergence in L2(T) in both time and space under a CFL condition τ = O(h) for solutions
in C([0, T ];H3(T)).

The objective of this article is to construct a fully discrete and fully explicit lower-
regularity integrator that has first-order convergence (up to a logarithmic factor) in both
time and space for H1 initial data. The temporal low-regularity integrator is constructed
using twisted variables and with different harmonic analysis techniques in approximating
the low- and high-frequency parts of the functions in the exponential integral. The spatial
discretisation is integrated in the temporal low-regularity integrator by repeatedly using fre-
quency truncation and Fast Fourier transform (FFT) techniques in every nonlinear operation
(i.e., computing the product of two functions). By using a (4N + 1)-point FFT for every
product of two (2N+1)-term Fourier series in the numerical scheme and then truncating the
obtained (4N + 1)-term product series to (2N + 1)-term again, we avoid generating trigono-
metric interpolation errors from using FFT. As a result, the spatial discretisation error of
our method is purely due to frequency truncation and therefore can be analysed together
with the temporal discretisation error in the frequency domain by using harmonic analysis
techniques.

The rest of this article is organised as follows. The fully discrete low-regularity integrator
and the main theorem on the convergence rates of the method are presented in section 2.
Some technical tools of harmonic analysis are presented in section 3, which are used in section
4 in the construction of the numerical method and analysis of the consistency error. The
error bound of proposed fully discrete low-regularity integrator is proved in section 5 by
utilizing the consistency error bounds obtained in section 4 and the stability of the method,
as well as the H1-regularity of fully discrete numerical solution. The latter is proved to be
bounded uniformly with respect to the temporal stepsize and the number of Fourier terms
in the spatial discretisation. Numerical results are presented in section 6 to support the
theoretical analysis in this article.

2. The numerical method and main theoretical result

It is known that the solution of the NLS equation satisfies the following two conservation
laws (see e.g., [4]):

(1) Mass conservation:

1

2π

∫
T
|u(t, x)|2 dx =

1

2π

∫
T
|u0(x)|2 dx for t > 0. (2.1)

(2) Momentum conservation:

1

2π

∫
T
u(t, x)∂xū(t, x) dx =

1

2π

∫
T
u0 ∂xū

0 dx for t > 0. (2.2)

These two conserved quantities will be approximated based on the initial data and utilized
in the construction of the numerical method.
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We denote by Π0 and Π 6=0 the zero-mode and nonzero-mode operators, respectively,
defined by

Π0f =
1

2π

∫
T
f(x) dx and Π6=0(f) =

∑
k∈Z,k 6=0

eikxf̂k. (2.3)

Then the conserved mass and momentum are denoted by

M =
1

2π

∫
T
|u0(x)|2 dx = Π0(|u0|2) and P =

1

2π

∫
T
u0∂xu0 dx = Π0

(
u0∂xu0

)
, (2.4)

respectively.
For any positive integer N , we denote by I2N the (4N + 1)-point trigonometric interpo-

lation operator, which can be obtained through the discrete Fourier transform (see [5, 25])

I2Nf(x) =
2N∑

k=−2N
eikxf̃k with f̃k =

1

4N + 1

2N∑
n=−2N

e−ikxnf(xn) (2.5)

where

xn =
2πn

4N + 1
for n = −2N, · · · , 2N.

If the Fourier coefficient f̂k of the function f satisfies that f̂k = 0 for |k| > 2N , then I2Nf = f

and therefore f̃k = f̂k in the formula (2.5). In this case, both

f(xn) =
2N∑

k=−2N
eikxn f̂k, n = −2N, · · · , 2N, (2.6)

and

f̂k =
1

4N + 1

2N∑
n=−2N

e−ikxnf(xn) k = −2N, · · · , 2N, (2.7)

can be computed with cost O(N lnN) by using the fast Fourier transform (FFT); see [5].

Let SN be the subspace of functions f ∈ L2(T) such that f̂k = 0 for |k| > N . If w, v ∈ SN
and their Fourier coefficients ŵk and v̂k, k = −2N, · · · , 2N , are stored in the computer (with
ŵk = v̂k = 0 for N < |k| ≤ 2N), then the values w(xn) and v(xn), n = −2N, . . . , 2N , can

be computed exactly by using (2.6) and FFT. Since (̂wv)k = 0 for |k| > 2N , it follows that
wv = I2N (wv). If we denote by Fk[v] the kth Fourier coefficient of the function v, then

Fk[wv] =

2N∑
n=−2N

e−ikxnw(xn)v(xn), k = −2N, . . . , 2N,

which can also be computed exactly by using FFT. Therefore, if we denote by ΠN : L2(T)→
L2(T) the projection operator defined by

Fk[ΠNf ] =

{
f̂k for |k| ≤ N,
0 for |k| > N,

then the cost of computing the Fourier coefficients of ΠN (wv) ∈ SN from the Fourier coeffi-
cients of w, v ∈ SN is O(N lnN).

For any positive integer L, let tn = nτ , n = 0, 1, . . . , L, be a partition of the time interval
[0, T ] with stepsize τ = T/L. The fully discrete low-regularity integrator for the NLS equation
(1.1) to be constructed in this paper is: For given unτ,N ∈ SN compute un+1

τ,N ∈ SN by

un+1
τ,N = Ψ(unτ,N ) for n = 0, 1 . . . , L− 1,

with u0τ,N = ΠNI2Nu
0 ∈ SN ,

(2.8)
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where

Ψ(f) := eiτ(−2λPN∂
−1
x −2λMN+∂2x)f + (1− e−2iλτMN )Π0f − iλτΠ0

[
ΠN (|f |2)f

]
+ λ∂−1x ΠN

[
(eiτ∂

2
xf) · ∂−1x ΠN (|eiτ∂2xf |2)

]
− λeiτ∂

2
x∂−1x ΠN

[
f · ∂−1x ΠN (|f |2)

]
− λ

2

[
∂−2x ΠN

(
(e−iτ∂

2
x f̄ ) eiτ∂

2
xΠN (f2)

)
− eiτ∂

2
x∂−2x ΠN

(
f̄ ΠN (f2)

)]
− λ

2
eiτ∂

2
x∂−1x ΠN

[
∂xf̄

(
e−iτ∂

2
xΠN

[
(eiτ∂

2
x∂−1x f)2

]
−ΠN

[
(∂−1x f)2

])]
− iλτeiτ∂

2
x∂−1x ΠN

(
∂xf̄ ΠN (f2)

)
+ 2iλτΠ0f eiτ∂

2
x∂−1x ΠN

(
∂xf̄ f

)
− iλτ(Π0f)2eiτ∂

2
xΠ6=0f̄ for f ∈ SN , (2.9)

and

MN = Π0(|u0τ,N |2) and PN = Π0

(
u0τ,N∂xu

0
τ,N

)
(2.10)

are the approximate mass and momentum, respectively. By using (2.5) with FFT, the initial
value u0τ,N = ΠNI2Nu

0 can be obtained with cost O(N lnN). Then, at every time level, the
method only requires computing several functions in the following forms:

• eiτ(−2MN−2PN∂
−1
x +∂2x)f, e±iτ∂

2
xf and ∂−1x f for some given function f ∈ SN ,

• ΠN (fg) for some given functions f, g ∈ SN ,
where

Fk[eiτ(−2MN−2PN∂
−1
x +∂2x)f ] =

{
e−2MN iτ f̂0 for k = 0,

eiτ(−2MN−2PN (ik)−1−k2)f̂k for k 6= 0.

Fk[e±iτ∂
2
xf ] = e∓iτk

2
f̂k and ∂−1x f =

{
0 for k = 0,

(ik)−1f̂k for k 6= 0.

Hence, the computational cost is O(N lnN) at every time level.
The main theoretical result of this paper is the following theorem.

Theorem 2.1. If u0 ∈ H1(T) then there exist positive constants τ0, N0 and C such that
for τ ≤ τ0 and N ≥ N0 the numerical solution given by (2.8)–(2.9) has the following error
bound:

max
1≤n≤L

‖u(tn, ·)− unτ,N‖L2 ≤ C
(
τ
√

ln(1/τ) +N−1
)
, (2.11)

where the constants τ0, N0 and C depend only on T and ‖u0‖H1.

The rest of this paper is devoted to the construction of the method (2.8)–(2.9) and the
proof of Theorem 2.1.

Remark 2.2. The analysis in this article can be easily extended to proving higher-order
convergence of the spatial discretisation method when the initial data is smoother. Namely,
for u0 ∈ Hs(T) with s > 1, the error bound of of the proposed method should become

max
1≤n≤L

‖u(tn, ·)− unτ,N‖L2 ≤ C
(
τ +N−s

)
. (2.12)

The proof of this result (with smoother initial data) is easier than the proof of Theorem 2.1
and therefore omitted. The convergence results in (2.11) and (2.12) are illustrated by the
numerical experiments in section 6 for s = 1 and s = 2, respectively.

3. Notation and technical tools

In this section we introduce the basic notation and technical lemmas to be used in
analysing the error of the numerical method to be constructed.



5

3.1. Notation

The inner product and norm on L2(T) are denoted by

(f, g) =

∫
T
f(x)g(x) dx and ‖f‖L2 =

√
(f, f), respectively.

The norm on the Sobolev space Hs(T), s ∈ R, is denoted by∥∥f∥∥2
Hs = 2π

∑
k∈Z

(1 + k2)s|f̂k|2.

For a function f : [0, T ] × T → C we denote by ‖f‖Lp(0,T ;Hs) its space-time Sobolev norm,
defined by

‖f‖Lp(0,T ;Hs) =


(∫ T

0
‖f(t)‖pHsdt

) 1
p

for p ∈ [1,∞),

ess sup
t∈[0,T ]

‖f(t)‖Hs for p =∞.

The Fourier coefficients of a function f on T are denoted by Fk[f ] or simply f̂k, defined
by

f̂k =
1

2π

∫
T

e−ikxf(x) dx for k ∈ Z.

The Fourier inversion formula is given by

f(x) =
∑
k∈Z

eikxf̂k.

The Fourier coefficients are known to have the following properties:

‖f‖2L2 = 2π
∑
k∈Z

∣∣f̂k∣∣2 (Plancherel identity);

Fk[fg] =
∑
k1∈Z

f̂k−k1 ĝk1 (Convolution).

For any function σ : Z→ C such that |σ(k)| ≤ Cσ(1 + |k|)m for some constants Cσ and
m ≥ 0, we denote by σ(i−1∂x) : Hs(T)→ Hs−m(T) the operator defined by

σ(i−1∂x)f =
∑
k∈Z

σ(k)f̂ke
ikx.

For abbreviation, we denote

〈k〉 = (1 + k2)
1
2 and Js = 〈i−1∂x〉s,

which imply that ∥∥f∥∥2
Hs =

∥∥Jsf∥∥2
L2 and Ĵsfk = 〈k〉sf̂k.

Moreover, we denote by ∂−1x : Hs(T)→ Hs+1(T), s ∈ R, the operator such that

Fk[∂−1x f ] =

{
(ik)−1f̂k, when k 6= 0,

0, when k = 0.
(3.1)

We denote by A . B or B & A the statement A ≤ CB for some constant C > 0. The
value of C may depend on T and ‖u0‖H1 , and may be different at different occurrences, but
is always independent of τ , N and n. The notation A ∼ B means that A . B . A.

We denote by O(Y ) any quantity X such that X . Y . For any function σ : Zm+1 → C
and w ∈ H1(T) we denote by Tm(σ;w) the class of functions f ∈ L2(T) such that

f̂k .
∑

k1+···+km=k

|σ(k, k1, · · · , km)| |ŵk1 | · · · |ŵkm | ∀ f ∈ Tm(σ;w). (3.2)
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If F =
∫ t2
t1
f(t)dt for some function f(t) ∈ Tm(σ; v(t)), then we simply denote

F ∈
∫ t2

t1

Tm(σ; v(t))dt. (3.3)

3.2. Two technical lemmas

We will use the following version of the Kato–Ponce inequalities, which was originally
proved in [12] and subsequently improved to cover the endpoint case in [3, 13].

Lemma 3.1 (The Kato–Ponce inequalities).

(i) If s > 1
2 and f, g ∈ Hs(T) then

‖fg‖Hs . ‖f‖Hs‖g‖Hs .

(ii) If s ≥ 0, s1 >
1
2 , f ∈ H

s+s1(T) and g ∈ Hs(T), then

‖fg‖Hs . ‖f‖Hs+s1‖g‖Hs .

In addition to Lemma 3.1 we also need the following results, which are consequences of
the Kato–Ponce inequalities.

Lemma 3.2.

(i) If s > 1
2 and f, g ∈ Hs(T) then

‖J−1(Jf g)‖Hs . ‖f‖Hs‖g‖Hs .

(ii) If f, g ∈ H1(T) then

‖J−1(Jf g)‖L2 . min
{
‖f‖L2‖g‖H1 , ‖g‖L2‖f‖H1

}
.

Proof. (i) The desired inequality is equivalent to ‖Js−1(Jf g)‖L2 . ‖f‖Hs‖g‖Hs . By the
duality between L2(T) and itself, it suffices to prove

(Js−1(Jf g), h) . ‖f‖Hs‖g‖Hs‖h‖L2 ∀h ∈ L2(T),

which is equivalent to∑
k

∑
k1+k2=k

〈k〉s−1〈k1〉f̂k1 ĝk2 ĥk . ‖f‖Hs‖g‖Hs‖h‖L2 .

Since the term corresponding to k = 0 satisfies∑
k1+k2=0

〈k1〉f̂k1 ĝk2 ĥ0 =
∑
k1

〈k1〉
1
2 f̂k1〈−k1〉

1
2 ĝ−k1 ĥ0

. ‖(〈k1〉
1
2 f̂k1)k1∈Z‖l2‖(〈−k1〉

1
2 ĝ−k1)k1∈Z‖l2 |ĥ0|

. ‖f‖
H

1
2
‖g‖

H
1
2
‖h‖L1

. ‖f‖Hs‖g‖Hs‖h‖L2 when s >
1

2
,

we only need to prove the following result:∑
k 6=0

∑
k1+k2=k

|k|s−1|k1|f̂k1 ĝk2 ĥk . ‖f‖Hs‖g‖Hs‖h‖L2 .

To this end, we decompose the left-hand side of the inequality above into two parts, i.e.,∑
k 6=0

∑
k1+k2=k

|k|s−1|k1|f̂k1 ĝk2 ĥk

.
∑
k 6=0

∑
k1+k2=k
|k1|≤10|k|

|k|s−1|k1||f̂k1 ||ĝk2 ||ĥk|+
∑
k 6=0

∑
k1+k2=k
|k1|>10|k|

|k|s−1|k1||f̂k1 ||ĝk2 ||ĥk|.
(3.4)
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The first term on the right-hand side of (3.4) can be estimated by using Plancherel’s
identity and Lemma 3.1 as follows:∑

k 6=0

∑
k1+k2=k
|k1|≤10|k|

|k|−1+s|k1||f̂k1 ||ĝk2 ||ĥk| .
∑
k 6=0

∑
k1+k2=k
|k1|≤10|k|

|k|s|f̂k1 ||ĝk2 ||ĥk|

.(Js(f̃ g̃), h̃)

.
∥∥f̃ g̃∥∥

Hs‖h̃‖L2 . ‖f̃‖Hs‖g̃‖Hs‖h̃‖L2 ,

where f̃ , g̃ and h̃ are functions with Fourier coefficients |f̂k|, |ĝk| and |ĥk|, respectively. Since

‖f̃‖Hs ∼ ‖f‖Hs , ‖g̃‖Hs ∼ ‖g‖Hs and ‖h̃‖L2 ∼ ‖h‖L2 ,

it follows that ∑
k 6=0

∑
k1+k2=k
|k1|≤10|k|

|k|−1+s|k1||f̂k1 ||ĝk2 ||ĥk| . ‖f‖Hs‖g‖Hs‖h‖L2 .

In the second term on the right-hand side of (3.4), we have |k1| ∼ |k2| > |k|. For s > 1
2

we have

|k|s−1|k1| = |k|−s|k|2s−1|k1| ≤ |k|−s|k1|2s ∼ |k|−s|k1|s|k2|s

and therefore∑
k 6=0

∑
k1+k2=k
|k1|>10|k|

|k|s−1|k1||f̂k1 ||ĝk2 ||ĥk| .
∑
k 6=0

∑
k1+k2=k
|k1|>10|k|

|k|−s|k1|s|k2|s|f̂k1 ||ĝk2 ||ĥk|

.
∑
k 6=0

Fk[Jsf̃ Jsg̃]|k|−s|ĥk|

.max
k
|Fk[Jsf̃ Jsg̃]|

∑
k 6=0

|k|−s|ĥk|

.‖Jsf̃ Jsg̃‖L1‖(|k|−s)06=k∈Z‖l2‖(|ĥk|)0 6=k∈Z‖l2

.‖Jsf̃‖L2‖Jsg̃‖L2‖h̃‖L2

.‖f‖Hs‖g‖Hs‖h‖L2 .

This completes the proof of (i).
(ii) Similarly as (i), it suffices to prove∑
k 6=0

∑
k1+k2=k

|k|−1|k1|f̂k1 ĝk2 ĥk . min(‖f‖L2‖g‖H1 , ‖f‖H1‖g‖L2)‖h‖L2 ∀h ∈ L2(T).

In view of the proof of (i), we can assume f̂k ≥ 0, ĝk ≥ 0 and ĥk ≥ 0 without loss of generality

(otherwise we can replace f , g and h by f̃ , g̃ and h̃, respectively, in the estimates below).
Then ∑

k 6=0

∑
k1+k2=k

|k|−1|k1|f̂k1 ĝk2 ĥk

.
∑
k 6=0

∑
k1+k2=k
|k1|≤10|k|

|k|−1|k1|f̂k1 ĝk2 ĥk +
∑
k 6=0

∑
k1+k2=k
|k1|>10|k|

|k|−1|k1|f̂k1 ĝk2 ĥk.
(3.5)

The first term on the right-hand side of (3.5) can be estimated by using Plancherel’s identity
and Lemma 3.1:∑

k 6=0

∑
k1+k2=k
|k1|≤10|k|

|k|−1|k1|f̂k1 ĝk2 ĥk .
∑
k 6=0

∑
k1+k2=k
|k1|≤10|k|

f̂k1 ĝk2 ĥk
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.
∑
k 6=0

Fk[fg]ĥk

.‖(Fk[fg])06=k∈Z‖l2‖(ĥk)06=k∈Z‖l2

.
∥∥fg∥∥

L2‖h‖L2

.min(‖f‖L2‖g‖L∞ , ‖f‖L∞‖g‖L2)‖h‖L2

.min(‖f‖L2‖g‖H1 , ‖f‖H1‖g‖L2)‖h‖L2 .

In the second term on the right-hand side of (3.5) we have |k1| ∼ |k2| > k. On the one hand,
we have∑

k 6=0

∑
k1+k2=k
|k1|>10|k|

|k|−1|k1|f̂k1 ĝk2 ĥk .
∑
k 6=0

∑
k2

|k|−1|k2|f̂k−k2 ĝk2 ĥk

.

(
sup
k

∑
k2

|f̂k−k2 |2
) 1

2
(∑

k2

|k2|2|ĝk2 |2
) 1

2 ∑
k 6=0

|k|−1ĥk

.‖f‖L2‖g‖H1‖h‖L2 .

On the other hand, we have∑
k 6=0

∑
k=k1+k2
|k1|>10|k|

|k|−1|k1|f̂k1 ĝk2 ĥk .
∑
k 6=0

∑
k1

|k|−1|k1|f̂k1 ĝk−k1 ĥk

.

(∑
k1

|k1|2|f̂k1 |2
) 1

2
(

sup
k

∑
k1

|ĝk−k1 |2
) 1

2 ∑
k 6=0

|k|−1ĥk

.‖f‖H1‖g‖L2‖h‖L2 .

This completes the proof of (ii). �

4. Construction of the method through analysing consistency error

In this section we construct the numerical method based on twisted variables and
Duhamel’s formula through analysing the consistency errors in approximating the expo-
nential integrals using harmonic analysis techniques. For readers’ convenience, we present
the derivation of the numerical method in subsection 4.1 and defer the technical estimates
to subsection 4.2.

4.1. Construction of the numerical method

As mentioned in the introduction section and the beginning of section 2, the NLS equation
(1.1) has a unique solution u ∈ C([0, T ];H1(T)) satisfying the Duhamel’s formula:

u(tn+1) = eiτ∂
2
xu(tn)− iλ

∫ τ

0
ei(tn+1−(tn+s))∂2x |u(tn + s)|2u(tn + s) ds, (4.1)

as well as the mass and momentum conservations (2.1)–(2.2). The norm ‖u‖C([0,T ];H1(T)) is

bounded by a constant depending on ‖u0‖H1 ; see [2].

Let v(t) := e−it∂
2
xu(t) be the twisted variable. Then v ∈ C([0, T ];H1(T)) satisfies

‖v‖C([0,T ];H1(T)) = ‖u‖C([0,T ];H1(T)) and the following conservation laws simiarly as u, i.e.,

(1) Mass conservation:

1

2π

∫
T
|v(t, x)|2 dx =

1

2π

∫
T
|u(t, x)|2 dx = M for t > 0. (4.2)
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(2) Momentum conservation:

1

2π

∫
T
v(t, x)∂xv̄(t, x) dx =

1

2π

∫
T
u(t, x)∂xū(t, x) dx = P for t > 0. (4.3)

Applying the operator e−itn+1∂2x to the identity (4.1), we obtain

v(tn+1) = v(tn)− iλ
∫ τ

0
e−i(tn+s)∂

2
x
[
|ei(tn+s)∂2xv(tn + s)|2 ei(tn+s)∂

2
xv(tn + s)

]
ds. (4.4)

The Fourier coefficients of both sides of (4.4) should be equal, i.e.,

v̂k(tn+1) = v̂k(tn)− iλ
∫ τ

0

∑
k1+k2+k3=k

ei(tn+s)φ ˆ̄vk1(tn + s)v̂k2(tn + s)v̂k3(tn + s) ds, (4.5)

with a phase function

φ = φ(k, k1, k2, k3) = k2 + k21 − k22 − k23.

Replacing τ and s in (4.5) by s and σ, respectively, we have

v̂k(tn + s) = v̂k(tn)− iλ
∫ s

0

∑
k1+k2+k3=k

ei(tn+σ)φ ˆ̄vk1(tn + s)v̂k2(tn + σ)v̂k3(tn + σ) dσ. (4.6)

In view of (4.6) and the definition of Tm(M ; v) in (3.2), we have

v(tn + s)− v(tn) ∈
∫ s

0
T3(1; v(tn + σ))dσ. (4.7)

As a result, (4.5) can be written as

v̂k(tn+1) = v̂k(tn)− iλ
∑

k1+k2+k3=k

ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn)

∫ τ

0
ei(tn+s)φ ds+ R̂1,k, (4.8)

with

R̂1,k

= −iλ
∫ τ

0

∑
k1+k2+k3=k

ei(tn+s)φ
(
ˆ̄vk1(tn + s)v̂k2(tn + s)v̂k3(tn + s)− ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn)

)
ds

∈
∫ τ

0

∫ s

0
T5(1; v(tn + σ))dσds,

where the last inclusion is based on the definition in (3.3). If R1 denotes the function with

Fourier coefficients R̂1,k, then the relation above implies that (according to Lemma 4.1 (i)
of the next subsection) ∥∥R1

∥∥
H1 . τ

2‖v‖5L∞t H1
x
. (4.9)

This term will be dropped in our numerical scheme.
In the following, we approximate the second term on the right-hand side of (4.8) by

expressions that can be evaluated efficiently with FFT. To this end, we consider the three
cases k = 0, |k| > N and 0 6= |k| ≤ N , separately.

Case 1: k = 0. In this case, (4.8) reduces to

v̂0(tn+1) =v̂0(tn)− iλ
∑

k1+k2+k3=0

ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn)

∫ τ

0
ei(tn+s)(k

2
1−k22−k23) ds+ R̂1,0

(4.10)

=v̂0(tn)− iλτ
∑

k1+k2+k3=0

eitn(k
2
1−k22−k23) ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn) + R̂1,0 + R̂2,0

=v̂0(tn)− iλτΠ0

(∣∣eitn∂2xv(tn)
∣∣2eitn∂2xv(tn)

)
+ R̂1,0 + R̂2,0
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=v̂0(tn)− iλτΠ0

[
ΠN

(∣∣eitn∂2xv(tn)
∣∣2)eitn∂2xv(tn)

]
+ R̂1,0 + R̂2,0 + R̂∗2,0, (4.11)

with

R̂2,k = −iλ
∑

k1+k2+k3=k

̂̄vk1(tn)v̂k2(tn)v̂k3(tn)

∫ τ

0
(ei(tn+s)(k

2
1−k22−k23) − eitn(k

2
1−k22−k23)) ds,

R∗2 = −iλτ
[
(1−ΠN )

(∣∣eitn∂2xv(tn)
∣∣2)]eitn∂2xv(tn) ∈ τeitn∂

2
xv(tn)T2(1>N ; v(tn)),

where

(1>N )k = 1|k|>N =

{
0 for |k| ≤ N,
1 for |k| > N.

(4.12)

Since k1 + k2 + k3 = 0, it follows that there holds k21 − k22 − k23 = 2k2k3 and therefore∫ τ

0

(
ei(tn+s)(k

2
1−k22−k23) − eitn(k

2
1−k22−k23)

)
ds = τ2O(k2k3).

As a result, the functionR2 (with Fourier coefficients R̂2,k) satisfies thatR2 ∈ τ2T3(k2k3; v(tn))
in view of the definition in (3.2). According to Lemma 4.1 (i)–(ii) of the next subsection, R2

and R∗2 satisfy the following estimates:

|R̂2,0| . τ2‖v‖3L∞t H1
x
, (4.13)

|R̂∗2,0| . ‖R∗2‖L1 . τ‖eitn∂2xv(tn)‖L∞‖(1−ΠN )(|eitn∂2xv(tn)|2)‖L2 . τN−1‖v‖3L∞t H1
x
. (4.14)

The two terms R̂2,0 and R̂∗2,0 will be dropped in our numerical scheme.

Case 2: |k| > N . Let R3 be the function with Fourier coefficients

R̂3,k = −1|k|>N iλ
∑

k1+k2+k3=k

ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn)

∫ τ

0
ei(tn+s)φ ds.

Then

R3 ∈ τ T3 (1>N ; v(tn)) .

Lemma 4.1 (i) of the next subsection implies that∥∥R3

∥∥
Hs . τN

−1+s‖v‖3L∞t H1
x

for s ∈ [0, 1]. (4.15)

This term will be dropped in the numerical scheme.
Case 3: 0 6= |k| ≤ N . By using the identity

1 =
(k1 + k2) + (k1 + k3)− k1

k

and symmetry between k2 and k3, we can decompose the second term on the right-hand side
of (4.8) into two parts, i.e.,

v̂k(tn+1) = v̂k(tn)− 2iλ
∑

k1+k2+k3=k

ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn)

∫ τ

0

k1 + k2
k

ei(tn+s)φ ds (4.16a)

+ iλ
∑

k1+k2+k3=k

ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn)

∫ τ

0

k1
k

ei(tn+s)φ ds (4.16b)

+ R̂1,k. (4.16c)

We furthermore truncate (4.16a) to the frequency domain |k1 + k3| ≤ N , i.e.,

(4.16a) = v̂k(tn)− 2iλ
∑

k1+k2+k3=k
|k1+k3|≤N

(∫ τ

0

k1 + k2
k

ei(tn+s)φ ds

)
ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn) + R̂4,k,

(4.17)
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with

R̂4,k =


− 2iλ

∑
k1+k2+k3=k
|k1+k3|>N

(∫ τ

0

k1 + k2
k

ei(tn+s)φ ds

)
ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn) for 0 6= |k| ≤ N,

0 otherwise.

The corresponding function R4 with Fourier coefficients R̂4,k satisfies that

R4 ∈ τ T3
(
k1 + k2
k

106=|k|≤N1|k1+k3|>N ; v(tn)

)
.

By Lemma 4.1 (iii) in the next subsection and symmetry between k2 and k3, and we have∥∥R4

∥∥
Hs . τN

−1+s‖v‖3L∞t H1
x

for s ∈ [0, 1]. (4.18)

Since k1 + k2 + k3 = k, it is straightforward to verify that φ = 2(k1 + k2)(k1 + k3). As a
result, if k1 + k3 6= 0 then∫ τ

0

k1 + k2
k

ei(tn+s)φ ds =
1

2ik(k1 + k3)

(
eitn+1φ − eitnφ

)
; (4.19)

If k1 + k3 = 0 then φ = 0 and k = k2, and therefore∫ τ

0

k1 + k2
k

ei(tn+s)φ ds = τ
(k1
k

+ 1
)
. (4.20)

Substituting the two relations (4.19)–(4.20) into (4.17), we obtain

(4.16a) = v̂k(tn)− λ
∑

k1+k2+k3=k
06=|k1+k3|≤N

1

k(k1 + k3)

(
eitn+1φ − eitnφ

)
ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn)

− 2iλτ
∑

k1+k3=0

(k1
k

+ 1
)

ˆ̄vk1(tn)v̂k(tn)v̂k3(tn) + R̂4,k.

Then we apply the mass and momentum conservations in (4.2)–(4.3), which imply that

−2iλτ
∑

k1+k3=0

(k1
k

+ 1
)

ˆ̄vk1(tn)v̂k(tn)v̂k3(tn) =− 2iλτP (ik)−1v̂k(tn)− 2iλτM v̂k(tn).

Therefore,

(4.16a) =v̂k(tn)− λ
∑

k1+k2+k3=k
06=|k1+k3|≤N

1

k(k1 + k3)

(
eitn+1φ − eitnφ

)
ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn)

− 2iλτP (ik)−1v̂k(tn)− 2iλτM v̂k(tn) + R̂4,k

=e−2iλτP (ik)−1−2iλτM v̂k(tn)

− λ
∑

k1+k2+k3=k
06=|k1+k3|≤N

1

k(k1 + k3)

(
eitn+1φ − eitnφ

)
ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn)

+ R̂4,k + R̂∗4,k, (4.21)

where

R̂∗4,k =

{(
1− 2iλτP (ik)−1 − 2iλτM − e−2iλτP (ik)−1−2iλτM)v̂k(tn) for 0 6= |k| ≤ N,

0 otherwise.

From this expression we see that the function R∗4 with Fourier coefficients R̂∗4,k satisfies that

R∗4 ∈ τ2T1(1; v(tn)). (4.22)
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Note that for k1 + k2 + k3 = k the following equalities hold:

φ(k, k1, k2, k3) = 2kk1 + 2k2k3, (4.23a)

2kk1 = k2 + k21 − (k2 + k3)
2, (4.23b)

2k2k3 = (k2 + k3)
2 − k22 − k23. (4.23c)

By using these relations, we have

ei(tn+s)φ = eitnφe2iskk1e2isk2k3 = eitnφ[e2iskk1 + (e2isk2k3 − 1) + (e2iskk1 − 1)(e2isk2k3 − 1)],

and therefore (4.16b) can be decomposed into the following three terms:

(4.16b) =iλ
∑

k1+k2+k3=k
|k2+k3|≤N

(∫ τ

0

k1
k

eitnφe2iskk1 ds

)
ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn) (4.24-1)

+ iλ
∑

k1+k2+k3=k
|k2+k3|≤N

(∫ τ

0

k1
k

eitnφ
(
e2isk2k3 − 1

)
ds

)
ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn) (4.24-2)

+ R̂5,k + R̂∗5,k, (4.24-3)

where

R̂5,k = iλ
∑

k1+k2+k3=k
|k2+k3|≤N

(∫ τ

0

k1
k

eitnφ
(
e2iskk1 − 1

)(
e2isk2k3 − 1

)
ds

)
ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn),

(4.25)

R̂∗5,k = iλ
∑

k1+k2+k3=k
|k2+k3|>N

(∫ τ

0

k1
k

ei(tn+s)φ ds

)
ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn), (4.26)

for 0 6= |k| ≤ N , and R̂5,k = R̂∗5,k = 0 for k = 0 and |k| > N . Lemma 4.2 of the next
subsection implies that ∥∥R5

∥∥
Hs . τ

3
2 ‖v‖3L∞t H1

x
for s ∈ (12 , 1), (4.27a)∥∥R5

∥∥
L2 . τ

2
√

ln τ−1‖v‖3L∞t H1
x
. (4.27b)

Obviously,

R∗5 ∈ τT3 (σ; v(tn)) with some |σ(k, k1, k2, k3)| ≤ |k|−1|k1|106=|k|≤N1|k2+k3|>N .

By Lemma 4.1 (iii) and symmetry, and we have that for any s ∈ [0, 1],∥∥R∗5∥∥Hs . τN
−1+s‖v‖3L∞t H1

x
. (4.28)

Note that

(4.24-1) =
∑

k1+k2+k3=k
|k2+k3|≤N

λ

2k2
eitnφ

(
eiτ(k

2+k21−(k2+k3)2) − 1
)
ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn), (4.29)

(4.24-2) = iλ
∑

k1+k2+k3=k
k2 6=0,k3 6=0
|k2+k3|≤N

(∫ τ

0

k1
k

eitnφ
(
e2isk2k3 − 1

)
ds

)
ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn)

= λ
∑

k1+k2+k3=k
k2 6=0,k3 6=0
|k2+k3|≤N

k1
2kk2k3

eitnφ
(
e2iτk2k3 − 1

)
ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn)
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− iλτ
∑

k1+k2+k3=k
k2 6=0,k3 6=0
|k2+k3|≤N

k1
k

eitnφ ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn)

= λ
∑

k1+k2+k3=k
k2 6=0,k3 6=0
|k2+k3|≤N

k1
2kk2k3

eitnφ
(

eiτ
(
(k2+k3)2−k22−k23

)
− 1
)

ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn)

− iλτ
∑

k1+k2+k3=k
|k2+k3|≤N

k1
k

eitnφ ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn)

+ 2iλτ
∑

k1+k2=k
|k2|≤N

k1
k

eitnφ ˆ̄vk1(tn)v̂k2(tn)v̂0(tn)

− iλτeitnφ ˆ̄vk(tn)v̂0(tn)v̂0(tn). (4.30)

Substituting (4.29)–(4.30) into (4.24), and then substituting (4.21) and (4.24) into
(4.16), we obtain

v̂k(tn+1) =e−2iλτP (ik)−1−2iλτM v̂k(tn)

+ λ
∑

k1+k2+k3=k
06=|k1+k3|≤N

1

ik(ik1 + ik3)

(
eitn+1φ − eitnφ

)
ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn)

− λ
∑

k1+k2+k3=k
|k2+k3|≤N

1

2(ik)2
eitnφ

(
eiτ(k

2+k21−(k2+k3)2) − 1
)

ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn)

− λ
∑

k1+k2+k3=k
k2 6=0,k3 6=0
|k2+k3|≤N

ik1
2(ik)(ik2)(ik3)

eitnφ
(
eiτ((k2+k3)

2−k22−k23) − 1
)

ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn)

− iλτ
∑

k1+k2+k3=k
|k2+k3|≤N

k1
k

eitnφ ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn)

+ 2iλτ
∑

k1+k2=k
|k2|≤N

k1
k

eitnφ ˆ̄vk1(tn)v̂k2(tn)v̂0(tn)

− iλτeitnφ ˆ̄vk(tn)v̂0(tn)v̂0(tn)

+ R̂1,k + R̂4,k + R̂∗4,k + R̂5,k + R̂∗5,k for k 6= 0 and |k| ≤ N. (4.31)

Then substituting (4.10) and (4.31) into the expression v(tn+1) =
∑

k∈Z v̂k(tn+1)e
ikx yields

v(tn+1) =Φn(v(tn);M,P ) +R1 + R̂2,0 + R̂∗2,0 +R3 +R4 +R∗4 +R5 +R∗5, (4.32)

where

Φn(f ;M,P ) := e−2iλτP∂
−1
x −2iλτMf + (1− e−2iλτM )Π0f

− iλτΠ0

[
ΠN

(∣∣eitn∂2xf ∣∣2)eitn∂2xf]
+ λe−itn+1∂2x∂−1x ΠN

[(
eitn+1∂2xf

)
· ∂−1x ΠN

(
|eitn+1∂2xf |2

)]
− λe−itn∂

2
x∂−1x ΠN

[(
eitn∂

2
xf
)
· ∂−1x ΠN

(
|eitn∂2xf |2

)]
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− λ

2

[
e−itn+1∂2x∂−2x ΠN

((
e−itn+1∂2x f̄

)
· eiτ∂2xΠN

(
eitn∂

2
xf
)2)

− e−itn∂
2
x∂−2x ΠN

(
e−itn∂

2
x f̄ΠN

(
eitn∂

2
xf
)2)]

− λ

2

[
e−itn∂

2
x∂−1x ΠN

((
e−itn∂

2
x∂xf̄

)
· e−iτ∂2xΠN

(
eitn+1∂2x∂−1x f

)2)
− e−itn∂

2
x∂−1x ΠN

((
e−itn∂

2
x∂xf̄

)
·ΠN

(
eitn∂

2
x∂−1x f

)2)]
− iλτe−itn∂

2
x∂−1x ΠN

(
e−itn∂

2
x∂xf̄ΠN

(
eitn∂

2
xf
)2)

+ 2iλτΠ0(f)e−itn∂
2
x∂−1x

(
e−itn∂

2
x∂xf̄ eitn∂

2
xf
)

− iλτ(Π0f)2Π6=0

(
e−itn∂

2
x f̄
)
. (4.33)

The numerical scheme can be defined by dropping the defect terms Rj and R∗j in (4.32)

and replacing the numbers M and P by their approximations MN and PN defined in (2.10),
respectively. Namely, for given vn ∈ SN compute vn+1 ∈ SN by

vn+1 = Φn(vn;MN , PN ), n = 0, 1 . . . , L− 1; with v0 = u0. (4.34)

Then, replacing vn and vn+1 by e−itn∂
2
xun and e−itn+1∂2xun in (4.34), we obtain the numerical

scheme (2.8)–(2.9).

4.2. Technical lemmas for analysing the consistency errors

In this subsection, we present two technical lemmas, which are used in estimating the
defect terms Rj and R∗j in the previous subsection.

Lemma 4.1. For any given v ∈ H1(T) and s ∈ [0, 1], the following results hold.

(i) Let m ≥ 1, N ∈ Z+. Then, for any f ∈ Tm(1; v) and any g ∈ Tm(1>N ; v),∥∥f∥∥
H1 . ‖v‖mH1 ;∥∥g∥∥
Hs . N

−1+s‖v‖mH1 .

(ii) For any f ∈ T3(k2k3; v) there holds

|Π0f | . ‖v‖3H1 .

(iii) Let N ∈ Z+, N ≥ 10 and f ∈ T3(σ; v). If

|σ(k, k1, k2, k3)| . |k|−1|kj | 10 6=|k|≤N 1|k1+k2|>N , for some j ∈ {1, 2, 3},
then

‖f‖Hs . N−1+s‖v‖3H1 .

Proof. Without loss of generality, we can assume that v̂kj , j = 1, · · · ,m are positive for any
t ∈ [0, T ]. Otherwise we replace v̂kj by |v̂kj | as we did in the proof of Lemma 3.2.

(i) By the definition of Tm(σ; v) in (3.2), f ∈ Tm(1; v) implies that

|f̂k| .
∑

k1+···+km=k

v̂k1 · · · v̂km ∼ Fk[vm].

By Plancherel’s identity and Lemma 3.1 (i), we obtain that

‖f‖H1 . ‖vm‖H1 . ‖v‖mH1 .

For g ∈ Tm(1>N ; v), we use the inequality ‖g‖Hs . N−1+s‖g‖H1 together with the inequality
above, which implies that ‖g‖H1 . ‖v‖mH1 . This yields the desired inequality for g, i.e.,

‖g‖Hs . N−1+s‖v‖mH1 .
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(ii) For any f ∈ T3(k2k3; v) we have that

|Π0f | .
∑

k1+k2+k3=0

v̂k1(t) |k2|v̂k2(t) |k3|v̂k3(t)

.
∑

k1+k′1=0

v̂k1(t)Fk′1 [(|∇|v(t))2]

.
∫
T
v (|∇|v)2 dx . ‖v‖L∞‖|∇|v‖2L2 . ‖v‖3H1 .

(iii) We only consider the case when j = 1, since the other cases can be treated in the
same way. Since the Fourier coefficients of Jsf satisfies

Fk[Jsf ] = 〈k〉sf̂k .
∑

k1+k2+k3=k
|k1+k2|>N

106=|k|≤N 〈k〉−1+s〈k1〉 v̂k1(t)v̂k2(t)v̂k3(t)

.N−1+s
∑

k1+k2+k3=k
|k1+k2|>N

〈k〉−1〈k1 + k2〉〈k1〉v̂k1(t)v̂k2(t)v̂k3(t)

.N−1+sFk[J−1(vJ(vJv))],

it follows from Lemma 3.2 (ii) that

‖Jsf‖L2 .N−1+s‖vJv‖L2‖v‖H1 . N−1+s‖v‖L∞‖Jv‖L2‖v‖H1 . N−1+s‖v‖3H1 .

This proves the desired results in Lemma 4.1.
�

Lemma 4.2. If v ∈ L∞(0, T ;H1(T)) then∥∥R5

∥∥
L2 . τ

2
√

ln τ−1‖v‖3L∞(0,T ;H1). (4.35)

Moreover, for any s ∈ (12 , 1), ∥∥R5

∥∥
Hs . τ

3
2 ‖v‖3L∞(0,T ;H1). (4.36)

Proof. For k1 + k2 + k3 = k and |k2| ≥ |k3| we claim that the following inequality holds:∣∣∣∣k1k (e2iskk1 − 1
)(

e2isk2k3 − 1
)∣∣∣∣ . τ |k|−α|k1||k2||k3|α ∀ s ∈ [0, τ ], ∀α ∈ [0, 1]. (4.37)

In order to prove (4.37), we consider the following two cases: |k| ≥ |k3| and |k| < |k3|.
Case 1: |k| ≥ |k3|. In this case, we use the following inequalities:∣∣e2iskk1 − 1

∣∣ ≤ 2 and
∣∣e2isk2k3 − 1

∣∣ ≤ 2τ |k2||k3|,

it follows that∣∣∣∣k1k (e2iskk1 − 1
)(

e2isk2k3 − 1
)∣∣∣∣ ≤ 4τ |k|−1|k1||k2||k3| . τ |k|−α|k1||k2||k3|α.

Case 2: |k| < |k3|. In this case k1 + k2 + k3 = k and |k2| ≥ |k3| imply

|k1| ≤ |k2|+ |k3|+ |k| . |k2|.

We use the following inequalities:∣∣e2iskk1 − 1
∣∣ ≤ 2τ |k||k1| and

∣∣e2isk2k3 − 1
∣∣ ≤ 2.

Then we obtain ∣∣∣∣k1k (e2iskk1 − 1
)(

e2isk2k3 − 1
)∣∣∣∣ ≤ 4τ |k1|2.
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Since |k1| . |k2|, it follows that

|k1|2 . |k1||k2| . |k1||k2|
(
|k3|
|k|

)α
.

This proves (4.37).

By using the symmetry between k2 and k3 in the expression of |R̂5,k| in (4.25) and
applying (4.37) with α = 1 in the case |k| ≥ |k3| and α = 0 in the case |k| < |k3|, we obtain
for any k 6= 0,

|R̂5,k| . τ2
∑

k1+k2+k3=k
|k2|≥|k3|,|k|≥|k3|

|k|−1|k1||k2||k3||ˆ̄vk1(tn)||v̂k2(tn)||v̂k3(tn)|

+ τ2
∑

k1+k2+k3=k
|k2|≥|k3|,|k|<|k3|

|k1||k2||ˆ̄vk1(tn)||v̂k2(tn)||v̂k3(tn)|. (4.38)

Without loss of generality, we may assume that ˆ̄vk1(tn), v̂k2(tn) and v̂k3(tn) are nonnegative.
Otherwise we replace them by their absolute values as we did in the proof of Lemma 3.2.

By the duality between L2(T) and itself, it is sufficient to prove the following result to
obtain (4.35):

|〈R5, f〉| . τ2
√

ln(τ−1)‖v‖3L∞(0,T ;H1)‖f‖L2 ∀ f ∈ L2(T). (4.39)

From the definition below (4.26) we see that R5,0 = 0. As a result, we have

|〈R5, f〉| .
∑
k 6=0

|R̂5,k| |f̂k| .
∑
|k|>τ−1

|R̂5,k| |f̂k|+
∑

0 6=|k|≤τ−1

|R̂5,k| |f̂k|. (4.40)

From the expression of R5,k in (4.25) we see that for |k| > τ−1 there holds

|R̂5,k| ≤ τ2
∑

k1+k2+k3=k

|k1|ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn).

Hence, by the Cauchy–Schwartz inequality and Plancherel’s identity, we have∑
|k|>τ−1

|R̂5,k| |f̂k| ≤τ2
∑
k

∑
k1+k2+k3=k

|k1|ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn) |f̂k|

=τ2
∑
k2,k3

∑
k

|k − k2 − k3|ˆ̄vk−k2−k3(tn)v̂k2(tn)v̂k3(tn) |f̂k|

.τ2‖(f̂k)k∈Z‖l2‖(k1 ˆ̄vk1(tn))k1∈Z‖l2‖(v̂k2(tn))k2∈Z‖l1‖(v̂k3(tn))k3∈Z‖l1

.τ2‖f‖L2‖v‖3H1 , (4.41)

where the last inequality uses the following result:

‖(v̂k2(tn))k2∈Z‖l1 . ‖(〈k2〉−1)k2∈Z‖l2‖(〈k2〉v̂k2(tn))k2∈Z‖l2 . ‖v‖H1 .

The second term in (4.40) can be estimated by using (4.38), i.e.,∑
06=|k|≤τ−1

|R̂5,k| |f̂k| (4.42)

.τ2
∑

06=|k|≤τ−1

∑
k1+k2+k3=k
|k2|≥|k3|,|k|≥|k3|

|k|−1|k1||k2||k3||f̂k|ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn)

+ τ2
∑

06=|k|≤τ−1

∑
k1+k2+k3=k
|k2|≥|k3|,|k|<|k3|

|k1||k2||f̂k|ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn)

.τ2
∑

06=|k|≤τ−1

∑
|k3|≤|k|

∑
k1

|k|−1|f̂k||k1|ˆ̄vk1(tn)|k − k1 − k3|v̂k−k1−k3(tn)|k3|v̂k3(tn)
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+ τ2
∑

0 6=|k|≤τ−1

∑
|k3|>|k|

∑
k1

|f̂k||k1|ˆ̄vk1(tn)|k − k1 − k3|v̂k−k1−k3(tn)v̂k3(tn)

.τ2‖(k1v̂k1(tn))k1∈Z‖l2‖(k2v̂k2(tn))k2∈Z‖l2
∑

06=|k|≤τ−1

|k|−1|f̂k|
∑
|k3|≤|k|

|k3|v̂k3(tn)

+ τ2‖(k1v̂k1(tn))k1∈Z‖l2‖(k2v̂k2(tn))k2∈Z‖l2
∑

06=|k|≤τ−1

|f̂k|
∑
|k3|>|k|

v̂k3(tn)

.τ2‖v(tn)‖2H1

∑
06=|k|≤τ−1

|k|−
1
2 |f̂k|‖(k3v̂k3(tn))k3∈Z‖l2

+ τ2‖v(tn)‖2H1

∑
06=|k|≤τ−1

|f̂k|‖(〈k3〉−1)|k3|>k‖l2‖(〈k3〉v̂k3(tn))|k3|>k‖l2

.τ2‖v(tn)‖2H1

∑
0 6=|k|≤τ−1

|k|−
1
2 |f̂k|‖(k3v̂k3(tn))k3∈Z‖l2

.τ2‖v(tn)‖3H1‖(|k|−
1
2 )06=|k|≤τ−1‖l2‖(f̂k)|k|≤τ−1‖l2

.τ2‖v(tn)‖3H1

√
ln(τ−1)‖f‖L2 . (4.43)

Substituting (4.41)–(4.43) into (4.40) yields (4.39), which implies the desired result in (4.35).
It remains to prove (4.36). To this end, we use the following inequalities:

|e2iskk1 − 1| ≤ 2 and |e2isk2k3 − 1| . s
1
2 ||k2|

1
2 |k3|

1
2 ,

which imply that∣∣∣∣k1k (e2iskk1 − 1
)(

e2isk2k3 − 1
)∣∣∣∣ . τ 1

2 |k|−1|k1||k2|
1
2 |k3|

1
2 ∀ s ∈ [0, τ ].

By substituting this into the expression of R̂5,k in (4.25), and using Plancherel’s identity, we
obtain ∥∥R5

∥∥
Hs . τ

3
2

∥∥∥|∇|−1+s (|∇|v̄ (|∇| 12 v)2)∥∥∥
L2
.

Then using the Sobolev inequality, we get that for any s ∈ (12 , 1),∥∥R5

∥∥
Hs .τ

3
2

∥∥∥|∇|v̄ (|∇| 12 v)2∥∥∥
L

2
3−2s

.τ
3
2

∥∥|∇|v̄∥∥
L2

∥∥|∇| 12 v∥∥2
L

2
1−s
. τ

3
2 ‖v‖3H1 .

This completes the proof of Lemma 4.2. �

5. Proof of Theorem 2.1

The proof of Theorem 2.1 is divided into two parts. In subsection 5.1, we present an
error estimate for the numerical solution in Hs(T) with s ∈ (12 , 1), and then use this result

to prove the boundedness of the numerical solution in H1(T) uniformly with respect to τ
and N . In subsection 5.2, we utilize the H1-boundedness of the numerical solution to prove
the desired error estimate in L2(T).

5.1. Boundedness of the numerical solution in H1(T)

Lemma 5.1. Let u0 ∈ H1(T), and let unτ,N , n = 0, 1, . . . , L, be the numerical solution given

by (2.8)–(2.9). Then there exist positive constants τs and Ns such that for τ ∈ (0, τs] and
N ≥ Ns the following error bound holds:

max
0≤n≤L

‖u(tn, ·)− unτ,N‖Hs .s τ
1
2 +N−1+s ∀ s ∈ (12 , 1), (5.1)



18

where τs and Ns depend only on ‖u0‖H1, T and s.

Proof. Let vn = e−itn∂
2
xunτ,N . Then vn+1 = Φn(vn;MN , PN ) as shown in (4.34). By using

this identity we have

v(tn+1)− vn+1 =v(tn+1)− Φn(v(tn);M,P ) + Φn(v(tn);M,P )− Φn(vn;MN , PN )

=: Ln + Φn(v(tn);M,P )− Φn(vn;MN , PN ), (5.2)

where

Ln = v(tn+1)− Φn(v(tn);M,P ) = R1 + R̂2,0 + R̂∗2,0 + R̂3,0 +R4 +R∗4 +R5 +R∗5,
which is shown in (4.32). From (4.9), (4.13), (4.15), (4.18), (4.27) and (4.28) we see that∥∥Ln∥∥

Hs . τ
3
2 + τN−1+s ∀ s ∈ [0, 1). (5.3)

Note that the functional Φn(f ;M,P ) defined in (4.33) can be rewritten into the following
form:

Φn(f ;M,P ) = f +
(
e−2iλτP∂

−1
x −2iλτM − 1 + 2iλτP∂−1x + 2iλτM

)
f + (1− e−2iλτM )Π0f

− iλτΠ0

[
ΠN

(∣∣eitn∂2xf ∣∣2)eitn∂2xf]
− 2iλ

∑
06=|k|≤N

eikx
( ∑
k1+k2+k3=k
|k2+k3|≤N

∫ τ

0

k1 + k2
k

ei(tn+s)φ ds

)
ˆ̄fk1 f̂k2 f̂k3

+ iλ
∑

06=|k|≤N

eikx
∑

k1+k2+k3=k
|k2+k3|≤N

(∫ τ

0

k1
k

eitnφe2iskk1 ds

)
ˆ̄fk1 f̂k2 f̂k3

+ iλ
∑

06=|k|≤N

eikx
∑

k1+k2+k3=k
|k2+k3|≤N

(∫ τ

0

k1
k

eitnφ
(
e2isk2k3 − 1

)
ds

)
ˆ̄fk1 f̂k2 f̂k3 .

(5.4)

For example, the third line of (5.4) comes from (4.21), which can be rewritten back into
(4.17). This is how we obtain the third line in the expression above. The other terms are
obtained similarly.

From (5.4) we furthermore derive that

Φn(v(tn);M,P )− Φn(vn;MN , PN ) =v(tn)− vn + Φn
1 + Φn

2 + Φn
3 + Φn

4 + Φn
5 , (5.5)

where

Φn
1 =
(
e−2iλτP∂

−1
x −2iλτM − 1 + 2iλτP∂−1x + 2iλτM + (1− e−2iλτM )Π0

)
v(tn)

−
(
e−2iλτPN∂

−1
x −2iλτMN − 1 + 2iλτPN∂

−1
x + 2iλτMN + (1− e−2iλτMN )Π0

)
vn,

Φn
2 =− iλτΠ0

(
|eitn∂2xv(tn)|2eitn∂2xv(tn)− |eitn∂2xvn|2eitn∂2xvn

)
,

Φn
3 =− 2iλ

∑
06=|k|≤N

eikx
∑

k1+k2+k3=k
|k2+k3|≤N

(∫ τ

0

k1 + k2
k

ei(tn+s)φ ds

)(
ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn)− ˆ̄vnk1 v̂

n
k2 v̂

n
k3

)
,

Φn
4 =iλ

∑
06=|k|≤N

eikx
∑

k1+k2+k3=k
|k2+k3|≤N

(∫ τ

0

k1
k

eitnφe2iskk1 ds

)(
ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn)− ˆ̄vnk1 v̂

n
k2 v̂

n
k3

)
,

Φn
5 =iλ

∑
06=|k|≤N

eikx
∑

k1+k2+k3=k
|k2+k3|≤N

(∫ τ

0

k1
k

eitnφ
(
e2isk2k3 − 1

)
ds

)(
ˆ̄vk1(tn)v̂k2(tn)v̂k3(tn)− ˆ̄vnk1 v̂

n
k2 v̂

n
k3

)
.
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Note that P , M , PN and MN defined in (2.4) and (2.10) are all bounded numbers, with
bounds depending on ‖u0‖H1 . In particular,

|M −MN | =
∣∣∣∣ 1

2π

∫
T
(|u0|2 − |u0τ,N |2) dx

∣∣∣∣
.

∣∣∣∣ 1

2π

∫
T

[
(u0 − u0τ,N )u0 + u0τ,N (u0 − u0τ,N )

]
dx

∣∣∣∣
. ‖u0 − u0τ,N‖L2(‖u0‖L2 + ‖u0τ,N‖L2)

. N−1‖u0‖2H1 (5.6)

and

|P − PN | =
∣∣∣∣ 1

2π

∫
T
(u0∂xu0 − u0τ,N∂xu0τ,N ) dx

∣∣∣∣
.

∣∣∣∣ 1

2π

∫
T

[
(u0 − u0τ,N )∂xu0 + u0τ,N∂x(u0 − u0τ,N )

]
dx

∣∣∣∣
=

∣∣∣∣ 1

2π

∫
T

[
(u0 − u0τ,N )∂xu0 − ∂xu0τ,N (u0 − u0τ,N )

]
dx

∣∣∣∣
. ‖u0 − u0τ,N‖L2(‖∂xu0‖L2 + ‖∂xu0τ,N‖L2)

. N−1‖u0‖2H1 . (5.7)

From the expression of Φn
1 we see that its Fourier coefficients can be written as

Fk[Φn
1 ] = F (M,P ; k)v̂k(tn)− F (MN , PN ; k)v̂nk ,

with

F (M,P ; k) := e−2iλτPk
−11k 6=0−2iλτM − 1 + 2iλτPk−11k 6=0 + 2iλτM + (1− e−2iλτM )1k=0.

By using Taylor’s expansion and mean value theorem, it is straightforward to verify that

|F (M,P ; k)− F (MN , PN ; k)| . τ(|P − PN |+ |M −MN |).

As a result, we have

‖Φn
1‖Hs .‖(〈k〉sFk[Φn

1 ])k∈Z‖l2
.τ(|P − PN |+ |M −MN |)‖(〈k〉sv̂k(tn))k∈Z‖l2 + ‖(〈k〉s(v̂k(tn)− v̂k))k∈Z‖l2
.τ(|P − PN |+ |M −MN |)‖v(tn)‖Hs + τ‖v(tn)− vn‖Hs

.τN−1‖v‖3L∞(0,T ;H1) + τ‖v(tn)− vn‖Hs , (5.8)

where the last inequality follows from (5.6)–(5.7).
Since Φn

2 is a constant, it is straightforward to show that (similarly as (5.6))

|Φn
2 | .τ

(
‖vn − v(tn)‖L2(‖eitn∂2xv(tn)‖2L∞ + ‖eitn∂2xvn‖2L∞)

.τ
(
‖vn − v(tn)‖L2(‖v(tn)‖2Hs + ‖vn‖2Hs) (this holds for s > 1

2)

.τ
(
‖vn − v(tn)‖L2(‖v(tn)‖2Hs + ‖vn − v(tn)‖2Hs). (5.9)

Similarly, Φn
3 can be decomposed into several functions of the following form:

Φn
3 =− 2i

∑
0 6=|k|≤N

eikx
∑

k1+k2+k3=k
|k2+k3|≤N

(∫ τ

0

k1 + k2
k

ei(tn+s)φ ds

)
f̂1,k1 f̂2,k2 f̂3,k3 ,

where f̂j,k denotes the kth Fourier coefficient of the functions fj , and one of the three
functions fj , j = 1, 2, 3, is

vn − v(tn) or its conjugate;
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the other two of the three functions fj , j = 1, 2, 3, are either vn or v(tn) or their conjugates.

We assume that f̂j,k, k ∈ Z are nonnegative; otherwise we consider functions with Fourier

coefficients |f̂j,k| as we did in the proof of Lemma 3.2 (ii). Then∣∣(Φ̂n
3

)
k

∣∣ .τ ∑
k1+k2+k3=k

|k1 + k2|
|k|

f̂1,k1 f̂2,k2 f̂3,k3 = Fk[τJ−1(f1J(f2f3))].

As a result, by Plancherel’s identity and Lemma 3.2 (i), we have

‖Φn
3‖Hs .‖τJ−1(f3J(f1f2))‖Hs

.τ‖f3‖Hs‖f1f2‖Hs (this requires s > 1
2)

.τ‖f3‖Hs‖f1‖Hs‖f2‖Hs

.τ‖vn − v(tn)‖Hs(‖vn‖2Hs + ‖v(tn)‖2Hs)

.τ‖vn − v(tn)‖Hs(‖vn − v(tn)‖2Hs + ‖v(tn)‖2Hs). (5.10)

Φn
4 and Φn

5 can be estimated similarly, i.e.,

‖Φn
4‖Hs + ‖Φn

5‖Hs .τ‖vn − v(tn)‖Hs(‖vn − v(tn)‖2Hs + ‖v(tn)‖2Hs).

Hence, combining with the estimates of Φn
j , j = 1, . . . , 5, we have

‖Φn(v(tn);M,P )− Φn(vn;MN , PN )‖Hs

≤ (1 + Cτ)‖vn − v(tn)‖Hs + Cτ‖vn − v(tn)‖3Hs + CτN−1,

which holds for any given s ∈ (12 , 1). Substituting this and (5.3) into (5.2) yields that

‖v(tn+1)− vn+1‖Hs ≤C
(
τ

3
2 + τN−1+s

)
+ (1 + Cτ)‖vn − v(tn)‖Hs + Cτ‖vn − v(tn)‖3Hs .

By using the discrete Gronwall’s inequality with induction assumption on ‖vn−v(tn)‖Hs ≤ 1,
we obtain (for sufficiently small τ)

max
0≤n≤L

∥∥v(tn)− vn
∥∥
Hs . τ

1
2 +N−1+s.

This proves the desired result in Lemma 5.1. �

Lemma 5.1 implies that ‖v(tn)− vn‖Hs . 1. Then, by using the triangle inequality and
boundedness of the exact solution in H1, we have

‖vn‖Hs . ‖v(tn)− vn‖Hs + ‖v(tn)‖Hs . 1.

This result can be furthermore improved to the H1 norm, as shown in the following lemma.

Lemma 5.2. Let u0 ∈ H1(T), and let unτ,N , n = 0, 1, . . . , L, be the numerical solution given

by (2.8)–(2.9). Then there exists a constant τ0 > 0 such that for τ ∈ (0, τ0] the following
estimate holds:

max
0≤n≤L

‖unτ,N‖H1 . 1. (5.11)

Proof. Let vn = e−itn∂
2
xunτ,N . By using the expression of Φn in (5.4), we immediately obtain

that

‖Φn(vn;MN , PN )‖H1 ≤ ‖vn‖H1 + Cτ‖vn‖H1 + Cτ‖vn‖H1‖vn‖2Hs , (5.12)

which holds for any fixed s ∈ (12 , 1). Since ‖vn‖Hs . 1 is already proved in Lemma 5.1,
substituting this into (4.34) yields

‖vn+1‖H1 ≤ ‖vn‖H1 + Cτ‖vn‖H1 , (5.13)

which implies max
0≤n≤L

‖vn‖H1 . 1 after iteration in n. The desired result follows from the

relation ‖vn‖H1 = ‖unτ,N‖H1 . �
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5.2. Error estimation in L2(T)

From (4.9), (4.13), (4.15), (4.18), (4.27) and (4.28) we conclude that∥∥Ln∥∥
L2 ≤ C

(
τ2
√

ln τ−1 + τN−1
)
. (5.14)

By choosing s = 0 in (5.8) and choosing a fixed s ∈ (12 , 1) in (5.9), we have

‖Φn
1‖L2 + ‖Φn

2‖L2 .τN−1 + τ‖vn − v(tn)‖L2 .

Instead of (5.10), we need to use the following estimate for Φn
3 :

‖Φn
3‖L2 .‖τJ−1(f3J(f1f2))‖L2 . τ min(‖f3‖H1‖f1f2‖L2 , ‖f3‖L2‖f1f2‖H1).

which is a consequence of Lemma 3.2 (ii). Recall that one of the three functions fj , j = 1, 2, 3,
is vn − v(tn) or its conjugate, and the other two functions are either vn or v(tn) (or their
conjugates). If f1 is vn− v(tn) or its conjugate, then we choose L2 norm on f1; otherwise we
choose L2 norm on f2f3. In either case we obtain

‖Φn
3‖L2 .τ‖vn − v(tn)‖L2(‖v(tn)‖2H1 + ‖vn‖2H1) . τ‖vn − v(tn)‖L2 .

The two terms Φn
4 and Φn

5 can be estimated similarly, i.e.,

‖Φn
4‖L2 + ‖Φn

5‖L2 . τ‖vn − v(tn)‖L2 .

Substituting the estimates of ‖Φn
j ‖L2 , j = 1, . . . , 5, into (5.5), we have

‖Φn(v(tn);M,P )− Φn(vn;MN , PN )‖L2 . τN−1 + τ‖vn − v(tn)‖L2 .

Then, substituting this into (5.2) and using estimate (5.14), we obtain

‖v(tn+1)− vn+1‖L2 ≤ C
(
τ2
√

ln τ−1 + τN−1
)

+ (1 + Cτ)‖vn − v(tn)‖L2 . (5.15)

Iterating this inequality yields

max
1≤n≤L

‖v(tn)− vn‖L2 . ‖v(t0)− v0‖L2 + τ
√

ln τ−1 +N−1 . τ
√

ln τ−1 +N−1.

This completes the proof of Theorem 2.1 in view of ‖v(tn)− vn‖L2 = ‖u(tn)− unτ,N‖L2 . �

6. Numerical experiments

In this section we present numerical experiments to support the theoretical analysis
presented in Theorem 2.1. We consider the NLS equation (1.1) with λ = −1 and initial
value

u0(x) =
1

10

∑
06=k∈Z

|k|−0.51−αeikx, (6.1)

which satisfies that u0 ∈ Hα(T) and u0 /∈ Hα+0.01(T).
We solve the problem by the proposed method (2.8)–(2.9) for α = 2 and α = 1, re-

spectively, and present the time discretisation errors ‖uτ,Nref
− uτref ,Nref

‖L2 in Tables 1–2 for
several sufficiently large Nref , with a reference stepsize τref = 2−13. From the numerical re-
sults we can see that the error from spatial discretisation is negligibly small in observing the
temporal convergence rates, i.e., almost first-order convergent as τ → 0. This is consistent
with the theoretical result proved in Theorem 2.1.

We present the spatial discretisation errors ‖uτref ,N − uτref ,Nref
‖L2 for α = 2 and α =

1 in Tables 3–4 for several sufficiently small stepsize τref , with Nref = 1024. From the
numerical results we can see that the error from temporal discretisation is negligibly small
in observing the spatial convergence rates, i.e., αth-order convergence for Hα initial data.
This is consistent with the result proved in Theorem 2.1 and the comments in Remark 2.2.
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Table 1. Temporal discretisation error ‖uτ,Nref
− uτref ,Nref

‖L2 at T = 1
with α = 2 in (6.1) (for H2 initial data).

Nref = 28 Nref = 29 Nref = 210

τ = 2−5 3.054E–05 3.054E–05 3.054E–05

τ = 2−6 1.519E–05 1.519E–05 1.519E–05

τ = 2−7 7.539E–06 7.539E–06 7.539E–06

convergence rate O(τ1.01) O(τ1.01) O(τ1.01)

Table 2. Temporal discretisation error ‖uτ,Nref
− uτref ,Nref

‖L2 at T = 1
with α = 1 in (6.1) (for H1 initial data).

Nref = 28 Nref = 29 Nref = 210

τ = 2−5 8.971E–05 8.973E–05 8.975E–05

τ = 2−6 4.123E–05 4.126E–05 4.126E–05

τ = 2−7 2.004E–05 2.005E–05 2.006E–05

convergence rate O(τ1.04) O(τ1.04) O(τ1.04)

Table 3. Spatial discretisation error ‖uτref ,N − uτref ,Nref
‖L2 at T = 1

with α = 2 in (6.1) (for H2 initial data).

τref = 2−8 τref = 2−9 τref = 2−10

N = 16 2.514E–04 2.514E–04 2.514E–04

N = 32 6.446E–05 6.446E–05 6.446E–05

N = 64 1.626E–05 1.626E–05 1.626E–05

convergence rate O(N−1.99) O(N−1.99) O(N−1.99)

Table 4. Spatial discretisation error ‖uτref ,N − uτref ,Nref
‖L2 at T = 1

with α = 1 in (6.1) (for H1 initial data).

τref = 2−8 τref = 2−9 τref = 2−10

N = 16 5.856E–03 5.856E–03 5.856E–03

N = 32 2.954E–03 2.954E–03 2.954E–03

N = 64 1.477E–03 1.477E–03 1.477E–03

convergence rate O(N−1.00) O(N−1.00) O(N−1.00)

7. Conclusion

We have constructed a fast fully discrete low-regularity integrator for solving the NLS
equation with nonsmooth initial data in one dimension. The method can be implemented
by using FFT with O(N lnN) operations at every time level, and is proved to have an error

bound of O(τ
√

ln(1/τ) +N−1) when the initial data is in H1(T). For initial data in Hs(T)
with s > 1, the numerical results show that the proposed method can have an error bound
of O(τ + N−s). We expect that the techniques for constructing and analysing the spatial
discretisation method in combination with the temporal low-regularity integrator may also
be extended to other dispersive equations with nonsmooth data.
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