A FULLY DISCRETE LOW-REGULARITY INTEGRATOR FOR THE
1D PERIODIC CUBIC NONLINEAR SCHRODINGER EQUATION

BUYANG LI AND YIFEI WU

ABSTRACT. A fully discrete and fully explicit low-regularity integrator is constructed for
the one-dimensional periodic cubic nonlinear Schrédinger equation. The method can be
implemented by using fast Fourier transform with O(N In V) operations at every time level,
and is proved to have an L?-norm error bound of O(r+/In(1/7) + N~') for H' initial data,
without requiring any CFL condition, where 7 and N denote the temporal stepsize and the
degree of freedoms in the spatial discretisation, respectively.

1. Introduction

This article concerns the numerical solution of the cubic nonlinear Schrédinger (NLS)
equation

{i@tu(t,m) + Opeu(t,z) = Nu(t, ) *u(t,z) for x € T and t € (0,T], 1)

u(0, ) = u®(z) for x € T,

on the one-dimensional torus T = (—, 7) with a nonsmooth initial value u® € H'(T), where
A= —1 and 1 are referred to as the focusing and defocusing cases, respectively. It is known
that problem is globally well-posed in H*(T) for s > 0; see [2].

The construction of numerical methods for the NLS equation and related dispersive
equations with nonsmooth initial data has attracted much attention recently since the pio-
neering work of Ostermann & Schratz [17], who introduced a low-regularity exponential-type
integrator that could have first-order convergence in H7(T?) for initial data «® € HY*(T9)
and v > %, where d denotes the dimension of space. Before their work, the traditional
regularity assumption for the NLS equation for a time-stepping method to have first-order
convergence in HY(T%) is u® € H"*2(T9) for v > 0 (losing two derivatives). This includes
the Strang splitting methods [6/14], the Lie splitting method [10], and classical exponential
integrators [8] (also see the discussion in |17, p. 733]). The finite difference methods [19,21]
generally require more regularity of the initial data (one temporal derivative on the solution
generally requires the initial data to have two spatial derivatives to satisfy certain compati-
bility conditions).

The idea of Ostermann & Schratz [17] is to use twisted variable to reduce the con-
sistency error in an exponential-type integrator, and to use harmonic analysis techniques
to approximate the exponential integral. More recently, Wu & Yao [22] applied different
harmonic analysis techniques to construct a time-stepping method for the one-dimensional
NLS equation with first-order convergence in HY(T) for initial data u® € HY(T) and vy > 3
(without losing any derivative). Ostermann, Rousset & Schratz furthermore weakened the
regularity assumption of initial data to u® € H'(T) in [15] and u° € H*(T) with s € (0,1]
in [16] by using estimates in the discrete Bourgain spaces. For v’ € H'(T) these methods
were proved to have L2 norm error bounds of O(T%) and O(T%_e), respectively, for the one-
dimensional NLS equation. A general framework of low-regularity integrators for nonlinear
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parabolic, dispersive and hyperbolic equations was introduced in [7], where the condition
for the numerical solution of the NLS equation to have first-order convergence in L?(T) is
u € Hi(T).

Besides the NLS equation, the techniques of twisted variable and harmonic analysis
techniques were also used in the construction of low-regularity integrators for other dispersive
equations; see [9|18}20,23,24] and the references therein.

As far as we know, the analysis of all the low-regularity integrators for the NLS equation
are limited to semidiscretisation in time (the error from spatial discretisation is unknown for
nonsmooth initial data), and the regularity condition for the time-stepping method to have
first-order convergence is v’ € HY(T) for v > %. We are only aware of a fully discrete
Lawson-type exponential integrator for the Korteweg—de Vries equation [18], with first-order
convergence in L%(T) in both time and space under a CFL condition 7 = O(h) for solutions
in C([0,T]; H3(T)).

The objective of this article is to construct a fully discrete and fully explicit lower-
regularity integrator that has first-order convergence (up to a logarithmic factor) in both
time and space for H' initial data. The temporal low-regularity integrator is constructed
using twisted variables and with different harmonic analysis techniques in approximating
the low- and high-frequency parts of the functions in the exponential integral. The spatial
discretisation is integrated in the temporal low-regularity integrator by repeatedly using fre-
quency truncation and Fast Fourier transform (FFT) techniques in every nonlinear operation
(i.e., computing the product of two functions). By using a (4N + 1)-point FFT for every
product of two (2N +1)-term Fourier series in the numerical scheme and then truncating the
obtained (4N + 1)-term product series to (2N + 1)-term again, we avoid generating trigono-
metric interpolation errors from using FFT. As a result, the spatial discretisation error of
our method is purely due to frequency truncation and therefore can be analysed together
with the temporal discretisation error in the frequency domain by using harmonic analysis
techniques.

The rest of this article is organised as follows. The fully discrete low-regularity integrator
and the main theorem on the convergence rates of the method are presented in section
Some technical tools of harmonic analysis are presented in section [3] which are used in section
in the construction of the numerical method and analysis of the consistency error. The
error bound of proposed fully discrete low-regularity integrator is proved in section [5| by
utilizing the consistency error bounds obtained in section 4] and the stability of the method,
as well as the H'-regularity of fully discrete numerical solution. The latter is proved to be
bounded uniformly with respect to the temporal stepsize and the number of Fourier terms
in the spatial discretisation. Numerical results are presented in section [6] to support the
theoretical analysis in this article.

2. The numerical method and main theoretical result

It is known that the solution of the NLS equation satisfies the following two conservation
laws (see e.g., [4]):

(1) Mass conservation:

1 1
27T/T|u(t,x)]2da:: %/Tluo(x)\Q dx for t > 0. (2.1)

(2) Momentum conservation:

1

u(t,x)0zu(t, ) de = o / u’ 9,u° dxr  for t > 0. (2.2)
TJT

These two conserved quantities will be approximated based on the initial data and utilized

in the construction of the numerical method.
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We denote by Iy and II.o the zero-mode and nonzero-mode operators, respectively,
defined by

1 -
Hof:%/Tf(m)d:n and TLi(f) = > ™ f. (2.3)

kEZ,k#£0
Then the conserved mass and momentum are denoted by
1 1 — —
M = / |u®(x)]? dz = Ho(|u’[?) and P = — / u00,u0 dz = Ty (u®0,u0),  (2.4)
21 T 27 T

respectively.
For any positive integer N, we denote by Ioy the (4N + 1)-point trigonometric interpo-
lation operator, which can be obtained through the discrete Fourier transform (see [5,[25])

2N 2N
N _ - 1 »
Lyf(e)= 3 " fi with fi= g > e f(wn) (2.5)
k=—2N n=—2N
where
2mn
xn:4N+1 for n=—-2N,--- ,2N.

If the Fourier coefficient f, of the function f satisfies that f = 0 for |k| > 2N, then Ion f = f
and therefore fi = fi in the formula (2.5). In this case, both

2N

flan)= > e*fi, n=-2N,.. 2N, (2.6)
k=—2N
and
1 2N
¢ —ikx

" k=-2N,--- 2N 2.7
fk 4N+1n_Z2Ne f(fl?n) ) ) y ( )

can be computed with cost O(N In N) by using the fast Fourier transform (FFT); see [5)].
Let Sy be the subspace of functions f € L2(T) such that f, = 0 for |k| > N. If w,v € Sy

and their Fourier coefficients wy, and 0, k = —2N,--- ,2N, are stored in the computer (with

Wy, = 0 = 0 for N < |k| < 2N), then the values w(z,) and v(zy), n = —2N,...,2N, can

—

be computed exactly by using (2.6) and FFT. Since (wv), = 0 for |k| > 2N, it follows that
wv = Ioy(ww). If we denote by Fi[v] the kth Fourier coefficient of the function v, then

2N
Fir|wv] = Z e Rz )v(zy,), k= —2N,...,2N,
n=—2N

which can also be computed exactly by using FFT. Therefore, if we denote by Il : L*(T) —
L?(T) the projection operator defined by

fr for |k| <N,

Frllly f] =
My f] {0 for |k| > N,

then the cost of computing the Fourier coefficients of IIy(wv) € Sy from the Fourier coeffi-
cients of w,v € Sy is O(NInN).

For any positive integer L, let t,, = n7,n =0,1,..., L, be a partition of the time interval
[0, T'] with stepsize 7 = T/ L. The fully discrete low-regularity integrator for the NLS equation

. 0 be constructed 1n this paper 1s: For given u € Sy compute u € ON Dby

{1 tob tructed in thi is: For gi "NES te u i} € Sy b
uZ';,l:\IJ(u:L’N) for n=0,1...,L -1, (2.8)

with US,N =TIyIhnul € SN, ‘
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where
U(f) 1= TP AMNHOD) ¢y (1 o 2NTMNYIT f — A7 TTy [T (| f|2) ]
+ A0, MIN [(e7%% ) - 0 TN (1679 £12)] — M™% 0, T [ f - 0, TN (| £12)]
A

-3 [a;ZHN((ef’iTang) eiragnN(]a)) _ eiTB%a;QHN (fHN(fQ)ﬂ

_ %e”agf);lHN {fbf( e~y [(eiTan%a;lf)2:| Iy [(8;1]“)2] )}

— AT ™29 My (0, f TN (f2))
+ 2iArTlo f €750, My (0, f f) — idT(Tof)2e ™%, f  for fe Sy,  (29)
and
My = H0(|u27N]2) and Py =1l (u%NaxugN) (2.10)
are the approximate mass and momentum, respectively. By using (2.5) with FFT, the initial
value ugy N = 1nI> ~u can be obtained with cost O(NIn N). Then, at every time level, the
method only requires computing several functions in the following forms:
o eiT(72MN*2PN851+83)f, eiiTagf and a;lf for some given function f € Sy,
e IIn(fg) for some given functions f,g € Sy,
where
—2MpNiT £ _
File(-2My-2Pyo; 402) g _ e fo for k=0,
eiT(*QMN72PN(ik)_17k2)fk for k # 0.
0 for k=0,

F +iTd2 ¢ _ FiTk? ¢ d afl _ .
R =TT S and 0,0 (k)" f for k#0.

Hence, the computational cost is O(N In N) at every time level.
The main theoretical result of this paper is the following theorem.

Theorem 2.1. If u’ € HY(T) then there exist positive constants 79, Ny and C such that
for T < 19 and N > Ny the numerical solution given by (2.8)—(2.9) has the following error

bound:
max u(tn, ) —u} nllz2 < C(7/In(1/7) + N7, (2.11)
_n_
where the constants 1o, No and C depend only on T and ||u®|| 1.

The rest of this paper is devoted to the construction of the method ([2.8)—(2.9) and the
proof of Theorem

Remark 2.2. The analysis in this article can be easily extended to proving higher-order
convergence of the spatial discretisation method when the initial data is smoother. Namely,
for u® € H*(T) with s > 1, the error bound of of the proposed method should become

D < —S
1I§nna§XLHu(tn’ ) —ul yllpz < C(7+N7%). (2.12)

The proof of this result (with smoother initial data) is easier than the proof of Theorem [2.1
and therefore omitted. The convergence results in (2.11)) and (2.12) are illustrated by the

numerical experiments in section [6] for s = 1 and s = 2, respectively.

3. Notation and technical tools

In this section we introduce the basic notation and technical lemmas to be used in
analysing the error of the numerical method to be constructed.



3.1. Notation

The inner product and norm on L?(T) are denoted by
(1.9) = [ @@ de and |fl2 = /5. respectively.

The norm on the Sobolev space H*(T), s € R, is denoted by
2 ~
][5 =27 > (1 + K2 fil.

kEZ

For a function f : [0,7] x T — C we denote by || f||zr(0,7;m+) its space-time Sobolev norm,

defined by
T 1
( / ||f<t>|rpsdt)p for p € [1,00),
0

ess sup | f(t)llgs  for p=oo.
te[0,7

Il oo, ms) =

The Fourier coefficients of a function f on T are denoted by F[f] or simply f, defined
by

. 1 .
fo=— / e R f(x)dx for k € Z.
2T T
The Fourier inversion formula is given by
fl)=> e fi.
keZ
The Fourier coefficients are known to have the following properties:

1f172 = 27 Z }fk‘Q (Plancherel identity);
keZ

Frlfg) = Z frk10r;  (Convolution).
k1€Z

For any function o : Z — C such that |o(k)| < Cy(1 + |k|)™ for some constants C, and
m > 0, we denote by o(i~1,) : H*(T) — H* ™ (T) the operator defined by

o(i70:)f =Y (k) fre’™™.
kEZ
For abbreviation, we denote

(k)= (1+k%)2 and J* = (i"'0,)",
which imply that
|15 = 171172 and Tofy = (1)° fi
Moreover, we denote by 9,1 : H*(T) — H**1(T), s € R, the operator such that

(ik) " fy,  when k # 0,

(3.1)
0, when k = 0.

Fuloz 1] = {
We denote by A < B or B 2 A the statement A < CB for some constant C' > 0. The
value of C' may depend on 7" and ||u°||;;1, and may be different at different occurrences, but
is always independent of 7, N and n. The notation A ~ B means that A < B < A.
We denote by O(Y) any quantity X such that X <Y. For any function o : Z™+! — C
and w € H'(T) we denote by Ty, (c;w) the class of functions f € L?(T) such that

s Yo lolkkr e k)| g - g, | Y f € Ta(osw). (3-2)
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If F= f t)dt for some function f(t) € T,,(o;v(t)), then we simply denote
to
F e Tm(o;0(t))dt. (3.3)
t1

3.2. Two technical lemmas

We will use the following version of the Kato—Ponce inequalities, which was originally
proved in |12] and subsequently improved to cover the endpoint case in [3}/13].

Lemma 3.1 (The Kato—Ponce inequalities).
(i) If s> % and f,g € H*(T) then
1 gllms S N llas Nl e
(i) If s> 0,81 > 3, f € H**1(T) and g € H*(T), then
1fglles S Nl grevan llgllars-

In addition to Lemma we also need the following results, which are consequences of
the Kato—Ponce inequalities.

Lemma 3.2.
(i) If s> % and f,g € H*(T) then
1T T s S W sl gl s
(ii) If f,g € HY(T) then
1T f 92 S min { | fllz2llgllars gllzz £ -
Proof. (i) The desired inequality is equivalent to || J*~Y(Jf g)|lz2 < |Iflasllgllzs. By the
duality between L?(T) and itself, it suffices to prove
(7 HTf 9):h) S s llgllmsllhll 2 ¥ h e LA(T),
which is equivalent to
S ST B R fadrotie N llgl 1A e

k kit+ko=k
Since the term corresponding to k = 0 satisfies

S k) fradraho = Y (k1) fi (—K1) 3Gk ho

k1+ko=0 k1
14 1 2
SR 2 fr)kezllizl[((—F1) 29—k ) ki ezlliz | hol

<ALy gl WAl

1
S flmsllgllas=lhllzz when s > o,

we only need to prove the following result:
SoST k k fGra i S 0F e gl e 1 e
kA0 k14-ka=k

To this end, we decompose the left-hand side of the inequality above into two parts, i.e.,

> k[~ r| fry G o

k#0 k1+ko=k

e . (3.4)
SY D R R e el + > > 1R Rl e ko k-
k#0 k1+ko=k k#0 ki+ko=k

|k1|<10|K| [k1]|>101k]
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The first term on the right-hand side of (3.4) can be estimated by using Plancherel’s
identity and Lemma [3.1] as follows:

Yoo TR lae el S > R e

k;éD k1+ko=k k;éO k1+ko=k
e [<101k <1014

<(I°(f9), )
SIFall g llnllze S WA 1gl s 1 e
where f, § and h are functions with Fourier coefficients | fy|, |gx| and |hy|, respectively. Since

I ezs ~ I fllss Ngllas ~ lglas  and  |[B]z2 ~ |[k]|z2,
it follows that
ST 1R Rl e lgwo Pl S 1F 1 e llgllers 1] 2

k#0 k1+ko=k
|k1]<10|k|

In the second term on the right-hand side of (3.4), we have |ki| ~ |ko| > |k|. For s > 1
we have

([~ k] = [k 75 (k1% k| < [R5 [ka[** ~ K] k] Ko

and therefore

Do > KPR g lhkl S0 D R Rk fr ks ]

k;ﬁo k1+ko=k k;ﬁo k1+ko=k
|k1|>10]k| |k1]>10|k|
S FulI* T I glIk|
k#0
Smax Bl F 75301 S 1

k=0

I F 75 1R orezlie | (P Dosrez i
S F o2 172 12 1B 2
Il Nl 1A 2

This completes the proof of (i).
(ii) Similarly as (i), it suffices to prove

> KT Rl e ko S min(| £l 2llgll e 1 f i lgllz2) 1Rl 2 VB € L(T).
k¢0k1+k2=k‘

In view of the proof of (i), we can assume fk >0, g > 0and hy, > 0 without loss of generality
(otherwise we can replace f, g and h by f, g and h, respectively, in the estimates below).

Then
ST kT Rl fry Gro b
k#0 k1+ko=k
_ s 3 _ soa 3 3.5
S>> T el e dehe + D D R Rl fr s P (3:5)
k0 by tha=k k0 by o=k
[k [<10] k| k1 [>10[ |

The first term on the right-hand side of (3.5)) can be estimated by using Plancherel’s identity
and Lemma [3.7k

ST T e kb S Fridralu

k‘;éo k1+ko=k k?ﬁﬂ k1+ko=k
e [< 10 e |<TO[K
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k£0
SIFef g ogrezlliell (rrozrezllz
S\ Fgll e llnll 22
Smin([|fllz2llgllzees [ fllze< gl z2) 2]l 2
Smin((Lfll 2 llgll s (1 L lgllz2) A1 -

In the second term on the right-hand side of we have |k1| ~ |k2| > k. On the one hand,

we have

Z Z ’krl‘kl‘fklgkgilkSZZ’k‘il‘kQ‘fk—kggkzhk

k#0 ki+ko=k k#0 k2
|k1[>10]k|
1 1
~ 2 2 ~
SEONIERNO WS
ko ko k40
SIAN el gl a1l e
On the other hand, we have
D S L e 2 5 S N N 1 T VA 8oy 8
kA0 k=ky +ks kA0 ko
|k1|>10| k|
1
. 2 2 .
SOTAINETS sUeN IS il
k1 ke k40
SIA e llgllpz (Al e
This completes the proof of (ii). O

4. Construction of the method through analysing consistency error

In this section we construct the numerical method based on twisted variables and
Duhamel’s formula through analysing the consistency errors in approximating the expo-
nential integrals using harmonic analysis techniques. For readers’ convenience, we present
the derivation of the numerical method in subsection [£.1] and defer the technical estimates
to subsection (4.2l

4.1. Construction of the numerical method

As mentioned in the introduction section and the beginning of section [2| the NLS equation
(T.1) has a unique solution u € C([0,T); H(T)) satisfying the Duhamel’s formula:

mwﬂ>=aﬁ%um—4A/)“““*““W%mw+w>%un+$d& (4.1)
0

as well as the mass and momentum conservations f. The norm |[|u|lc(jo,r); (1)) 18
bounded by a constant depending on ||u®]|z1; see [2].

Let v(t) := e #%Zu(t) be the twisted variable. Then v € C([0,T]; HY(T)) satisfies
vl eqo,r1:m1 (1)) = llullc(o,m;m1 (1)) and the following conservation laws simiarly as u, i.e.,

(1) Mass conservation:

1 1
= /T ot @) de = %/T\u(t,x)y?dx ~ M for £>0. (4.2)



(2) Momentum conservation:
1

_ 1 _ _
7 T2}(15, x)0,0(t,x) doe = . /Tu(t,x)axu(t,x) dr =P for t>0. (4.3)

Applying the operator e~in+19; 0 the identity (4.1]), we obtain
_ i(tn+s5)0, (tn+s)02 2 i(tn+s)02
n - TL .
W(tsr) = v(tn) ZA/ 2] oty + 5)2e oltn+ )] ds.  (4.4)

The Fourier coefficients of both sides of (§ should be equal, i.e.,

T

O (tnr1) = O (tn) — A > IO (b + 8)bky (b + )0y (tn + 5) ds,  (4.5)

with a phase function
¢ = ¢k, ki, ko, k3) = k? + kI — k2 — k2.
Replacing 7 and s in (4.5) by s and o, respectively, we have

S
Op(tn +8) = Op(tn) —iX / > TG (4 8) oy (tn + 0) Ok, (tn + 0) do. (4.6)
0 k1+ko+ks=k

In view of (4.6 and the definition of 7y, (M;v) in (B.2), we have
v(t, +8) — v(ty / T3(1;0(ty, + 0))do. (4.7)
As a result, (4.5) can be written as

Ok(tn1) = Or(tn) —iX ) 5k1(tn)@k2(7§n)@k3(tn)/ et ds 4 Ryyp,  (4.8)
k1 +ko+ka=k 0

with

/\

= —i) / S0 (G, (b + 8) 0y (b + ) Bky (tn + 5) = Oy (En) By (E) Ok () s
0 k1+k2+k3

6/0 /0 To(Lv(ty + o)) dods,

where the last inclusion is based on the definition in (3.3)). If Ry denotes the function with
Fourier coefficients R j, then the relation above implies that (according to Lemma (i)
of the next subsection)

[Ral[ g2 S ””HLOOHl (4.9)

This term will be dropped in our numerical scheme.

In the following, we approximate the second term on the right-hand side of by
expressions that can be evaluated efficiently with FFT. To this end, we consider the three
cases k =0, |[k| > N and 0 # |k| < N, separately.

CaAske 1: k = 0. In this case, reduces to

.
00 (tn+1) =0o(tn) — @A Z gy (tn) Oy (tn) Oky (tn)/ eitnts) R=k5=KD) gs 4 R,
k1+ka-+ks=0 0
(4.10)
=to(tn) —iAT > IR B (1), (t) Bk, (80) + Rao + Rz
k1+ka+k3z=0
=0 (tn) — iATIIo ([e" zv(tn)‘Q it ””U(tn)) + R0 + Rap
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=0o(tn) — iAo [Tn ([ % 0(tn) 1™ %0 (t,)] + Rijo + Rop + Riygr  (4.11)

.
Rogk=—ix > Ok (tn) 0y (tn) Oy () / (eiltn o) (I —k3—k5) _ gitn(Kf—k3-H3)) gg.
ey +ko+ka=k 0

Ry = —ixr[(1 = Iy) (|0 (t,)|?) e 0 (tn) € Te™ 20 (t,) To(1sn; 0(tn)),

0 for |k| <N,

4.12
1 for |k| > N. (412)

(Isn)k = Ljgsn = {
Since ki + ko + k3 = 0, it follows that there holds k% — k% - k§ = 2koks and therefore
[ (e 0t i) s = 720(hks)
0

As aresult, the function Ro (with Fourier coefficients 7@2;.3) satisfies that Ro € 72T3(kaks; v(ty,))
in view of the definition in (3.2)). According to Lemma [4.1} (i)—(ii) of the next subsection, R
and R satisfy the following estimates:

Ra0l S 72110l 1 (4.13)
~ - 2 ; 2 —
[R50l S RSN < Tlle™ P 0(tn) | pe (1 = Tn) (Je™ % v(tn) *) |2 S TN ol foo gy (4.14)

The two terms 7@2,0 and 7@570 will be dropped in our numerical scheme.
CASE 2: |k| > N. Let R3 be the function with Fourier coefficients

,
Rg’k - _1|k|>N 2 Z ékl (tn)@kz (tn)@kg (tn)/ ez(t"+s)¢ ds.
k1+ko+ks=k 0

Then
Rz € 1Tz (1sn;v(tyn)).
Lemma (i) of the next subsection implies that

R e S TN 0 3oepyy for s € [0,1]. (4.15)

This term will be dropped in the numerical scheme.
CASE 3: 0 # |k| < N. By using the identity
(k1 + k2) + (k1 + k3) — k1
k

and symmetry between ko and k3, we can decompose the second term on the right-hand side
of (4.8) into two parts, i.e.,

U 3 ; 5 -~ ~ Tkt k i s
Dp(tner) = Oltn) — 200 Y Dy (tn)Oky (tn) Oy () / %e (tnts)0 g5  (4.16a)

1:

k1+ko+kz=k 0
) Tk,
xS Bty (ta) s (1) / B giten 99 g (4.16b)
k1+ko+k3z=k 0
+ R (4.16¢)

We furthermore truncate (4.16a)) to the frequency domain |k; + k3| < N, i.e.,

N . T k + k 7 s ~ A~ ~ -
[@16a) = ox(tn) — 200 ) (/ %e (tnts)o ds) Uty () Ok (En ) Oy (En) + Rk
kithotks=k 70
|[k1+ks3|<N

(4.17)
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with
T k14 ko R
—2in Y ( / Te“t"“”ﬁds) s ()b () Oy (£0) for 0 2 [] < N,
Rap = ki +ha+hg=k 0
’ |k1+k3|>N
0 otherwise.

The corresponding function R4 with Fourier coefficients 7%4,k satisfies that

k1 + ko
RieTTs ( 2 10¢k§N1|k1+k3|>N;U(tn)> .

By Lemma (iii) in the next subsection and symmetry between kg and k3, and we have
Rl e S TN |03y for s € [0,1]. (4.18)

Since ki + ko + k3 = k, it is straightforward to verify that ¢ = 2(k; + k2)(k1 + k3). As a
result, if k1 + k3 # 0 then

TRt i) 1 it it
i(tnts)d gg — ilnt1¢ _ Lilnd). 4.1
/0 P S 20 + ) © ) (19
If k1 + k3 = 0 then ¢ = 0 and k = ko, and therefore
T kl + k2 i(tn+s)o . kl
/0 e dS—T<k +1). (4.20)

Substituting the two relations (4.19)—(4.20) into (4.17]), we obtain
. 1 ; ; - . .
BT = onlt) =2 > g (€ = ) iy ()t (b (1)

k1+ko+ks=k
0#|k1+k3|<N

. k S ~ ~ i
—2irr Y <f+1) By ()0 (b )iy () + Rtk
k1+k3=0

Then we apply the mass and momentum conservations in (4.2)—(4.3)), which imply that

e Y (% 1) By (1) (1), () = — 2XTP (1K) B4tn) — 20X7M (1),

k1+ks3=0
Therefore,
) 1 . . . . A
EE16a) =in(tn) =X > m(eZtn+l¢ — &%) By, () Bk () Oy ()
ki+ko+ka=k ! 3
Osﬁ‘k1+k3|§N

— 2T P (ik) " Yop(tn) — 20ATM Og(tn) + Ra,

_9i k)12 .
—e 2iAT P (ik) 2ATM Uk(tn)

1 itni1 itnd\ A 7 3
TN D Ty € = ) B () () ()

Oy ks <N
+ Rajp + R (4.21)
where
o (1 — 20T P(ik) ™" — 2iATM — ¢~ 2ATPER T =207M) 5, (1Y for 0 # k| < N,
e { otherwise.

From this expression we see that the function R} with Fourier coefficients ’IA%Z ;. Satisfies that

R: € 72T (1;0(ty)). (4.22)
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Note that for ki + ko + k3 = k the following equalities hold:

¢(k, k1, ko, k3) = 2kky + 2k2ks, (4.23a)
2kky = k* + ki — (ko + k3)?, (4.23b)
2koks = (ko + k3)* — k3 — k3. (4.23¢)

By using these relations, we have

ei(tn+s)¢> — eitnqﬁe%skkl eZiskzlcg _ eitn¢>[e2iskk1 + <e2isk2k3 - 1) + (GZiskkl o 1)(e2isk2k3 - 1)]7

and therefore (4.16b)) can be decomposed into the following three terms:

Tky o . N
[EIGR) =ix > ( / eitnoeiokh ds)vm(tn)@m(tn)@kg(tn) (4.24-1)
ki+hothks=k 70
|ko+ks| <N

+ix Y ( / feztw(e%skﬂfs—n ds)vkl(tn)ﬁkQ(tn)@kS(tn) (4.24-2)
0

k1+ko+ks=k
|[ka+k3| <N
+ 735,1: + ﬁgk? (4.24-3)
where
N Tk . . .
R5,k — i) Z (/ ieltn¢(6215kkl o 1) (e2zsk2k3 _ 1) d8> Uk, (tn)@kQ (tn)@kg (tn)a
by thg ek V70 K
|ko+E3|<N
(4.25)
S TR itars)e g0 )2 A A
Rs 1 = i ze n ds |V, (tn) Oky (tn) Ok (t0) s (4.26)
ki+ko+ks=k 0
|k2+ks|>N

for 0 # |k| < N, and 7%5,k = ﬁ;k =0 for k = 0 and |k|] > N. Lemma of the next
subsection implies that

R e S 720l ey for s € (3,1), (4.27a)
HR5HL2 S TZWH”H%OH;- (4.27b)

Obviously,
Ri € T3 (030(tn))  with some [o(k, k1, ko, ks)| < [k| 7" k1| Lok n Ltk > -
By Lemma (iii) and symmetry, and we have that for any s € [0, 1],

R3] 57 < TN_HSHUHigOH;- (4.28)
Note that
A s 12132 2 “ R R
E2rD) = D, e (eI )Gy ()i, (1) Ok (), (4.29)
k1+ko+ks=k
|ka+ks|<N
. "k itn (. 2iskaks 2 N N
E252) =in ) G — 1) ds | gy (tn) Oy (tn) Oks (£0)
ky+kot+ks=k 70
ko#0,k3#0
|ko+k3|<N
k1 . . R . .
=\ Z Qkk p eztn¢ (6227'/62193 _ 1)Uk1 (tn)vkg (tn)vk3 (tn)
ki1+ko+ks=k 2R3
ko#0,k3£0

|k‘2+k3|§N
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. kq N ) .
— AT Z p elt"¢vk1 (tr) Oty (t) Okq (t1)
ki+ko+ks=k
k2#0,k3#0
|ko+k3| <N

ko . L )
=2 X ik enm(e”((kﬁksy 1) = 1) B (b Oy (t ) (1)
ky+hotha=k 23
k2 #0,k3#£0
lka+k3| <N

k
— AT Z kl Ztnqﬁvk (tn) Oy (tn) s (tn)

k1+ka+ks=k
|ko+k3|<N

, Loowe
+2iAT Y p =" By () oy (tn) Do ()
k1+ko=k
[k2| <N

— iAreitn® @k(tn)@o(tn)@o(tn). (4.30)

Substltutmg into , and then substituting and into
, we obtain

B (tns) — e~ 2ATP (ik) =1 =2iAT M B (tn)
1 :
+A Z TN R (eZthd) Ztn¢) gy (tn) Oy (T ) Oty (E0)
oy WY ik(iky + iks)
0#|k1+ks|<N
1 , , N
Y Z Wenm(ew(k2+k%—(k2+k3)2) — 1) By (tn) Ok () Oy (t0)
ki1+ko+ks=k !
|k2+ks|<N
ik . . 212 12 N
— )\ Z %eltn¢(elT((k2+k‘3) k2 k3) — ].) '17]4;1 (tn)'f)kg (tn)'f)kg (tn)
A S 2(ik)(ika)(iks)
k2 7#0,k37#0
|k2+ks| <N
. k A . N
ST D e b (tn) Ok () O ()
ki+ko+kz=k
|k2+ks|<N
. k1 g6 - . .
+2iNT > ?le””‘ﬁ Uky (tn ) Oy (£ ) 00 ()
ki1+ko=k
|k2| <N
— i)\Teitnd) ’f)k (tn)@o (tn)@o (tn)
+ 7@17,f + 7':’,4,k, + ﬁzk + 7%’,57;C + 7@;,C for K #0 and |k| < N. (4.31)
Then substituting (£.10) and (£.31) into the expression v(tn+1) = 3 ey Ok (tn+1)e™® yields
(tni1) =®"(v(tn); M, P) + R1 4+ Roo + Rig+ Rs + Ra+ Ri+ Rs + R, (4.32)
where
o"(f; M, P) ::ef2i,\TPa;172iAer +(1- 721')\7-M)H0f

B Z')\TH(] [HN(‘eitn82 | ) ztn82 ]
+ )\e*itnﬁ-laga;lHN [(eZtn-Haz f) ’ a;lﬂN(’eit""'lagf‘Q)}

_ )\e—itnaia:C—IHN[( itn 0, xf) 1HN(|eztn ””f| )}
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_ % |:e_itn+1392¢ 0 Iy ((e—z’tnﬂaiﬂ e T (ez’tnag f)Q)
_ ety (efitnag Iy (e“”av%f)2)]
— g [e—itnaﬁ a:c—lnN ((e—itnag 8;1:f) o103 Iy (eitn+la§ 8x_1f)2)

e itnd2 91Ty ((e—itmﬁ 0. ]) - Iy (et agc_lf)?)}
— Z.)\Te_itnag 3;1HN (e_itnag a:ﬂ.fHN (eitn(?gf)Z)
+ 2i)\TH0(f)e7itnaa2c 8;1 (efz'tna% 8xfeit"aﬂ2° f)

— iAr(Tlp f)?TLyg (e tn0% f). (4.33)
The numerical scheme can be defined by dropping the defect terms R; and R in (4.32)

and replacing the numbers M and P by their approximations My and Py defined in ([2.10)),
respectively. Namely, for given v, € Sy compute v,11 € Sy by

V" = " (v My, Py), n=0,1...,L—1; with v"=u°. (4.34)
Then, replacing v™ and v"*! by e~ itn iy and e~inr19iyn in (4.34)), we obtain the numerical

scheme f.

4.2. Technical lemmas for analysing the consistency errors

In this subsection, we present two technical lemmas, which are used in estimating the
defect terms R; and R} in the previous subsection.

Lemma 4.1. For any given v € HY(T) and s € [0,1], the following results hold.
(i) Let m > 1,N € Z*. Then, for any f € Tm(1;v) and any g € Tr(1sn;0),
1] g S Mol
gl o S N2 l0l
(ii) For any f € T3(kaoks;v) there holds
o f| S Mol
(iii) Let N € Z*, N > 10 and f € T3(o;v). If
o (k, k1, ko k)| S kI K| osui<v Ly ko) for some j € {1,2,3},
then
1f s S N5 Jol| 30

Proof. Without loss of generality, we can assume that 9x;,j = 1,---,m are positive for any
t € [0, T]. Otherwise we replace 9y, by [0,| as we did in the proof of Lemma
(i) By the definition of 7p,(o;v) in (3.2)), f € T (1;v) implies that

S ) Bk Dk ~ Tl
ki+-tkm=k
By Plancherel’s identity and Lemma (i), we obtain that
[l S 0™ [ S Dol

For g € Ton(1sn;v), we use the inequality ||g||zs < N717]|g|| g1 together with the inequality
above, which implies that ||g|[z1 < [[v]|7}j1. This yields the desired inequality for g, i.e.,

lgllzrs S N7 ol 7.
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(ii) For any f € T3(kaks;v) we have that

Mofl S D Ok (1) [kalory (2) KOs (2)
k1+ko+k3=0

S Y (OFk (V1)
k1+k1=0

2
< / o (IV10)? de < oluellIV0l2e < ol

(iii) We only consider the case when j = 1, since the other cases can be treated in the
same way. Since the Fourier coefficients of J* f satisfies

Fel =R fe S D logen (k)™ 5 ke) O, (£)0k, (£) 0, (1)
ki+ko+ks=k
|k1+k2|>N

SN (k) R+ R (R )k, () Dk, (), (2)

ki+ko+ks=k
|k:1+k:2|>N

SNTHRLI T w0 (vdv))],
it follows from Lemma (ii) that
17 f 2 SN llwdvll 2 ol g S N7 ollzeel| ol g2lloll e S N7l

This proves the desired results in Lemma [4.1

O
Lemma 4.2. Ifv € L>(0,T; H(T)) then
[R5 2 < T2V lnT_lHUHiOO(o,T;HI)- (4.35)
Moreover, for any s € (%, 1),
3
HRSHHS ST Hv”ioo(o,T;Hl)- (4.36)
Proof. For k1 + ko + k3 = k and |ko| > |k3| we claim that the following inequality holds:
k1 i3S is —a o
?(eQ R 1) (eiskeks 1)‘ S 7k k| [ko||k3|® Vs €[0,7], Ya€[0,1).  (4.37)

In order to prove (4.37)), we consider the following two cases: |k| > |k3| and |k| < |k3].
CASE 1: |k| > |ks|. In this case, we use the following inequalities:

|e¥skht _ 1| <2 and [e**2Fs — 1] < 27|kyl|ks],
it follows that
ky
k
CASE 2: |k| < |k3|. In this case ki + kg + k3 = k and |k2| > |k3| imply
k1| < k| + [ks| + [k] < [Fal.

(ki — 1) (ishaks — 1)‘ < ATIk[ 7 [kl kol [Ks| < 7lk[ ™|k lK2|lKs

We use the following inequalities:
‘e%kkl — 1’ < 27|k||k1| and ‘e%k?’% - 1‘ < 2.

Then we obtain

%(GQiskkl o 1) (e2isk2k3 o 1) S 47_"1{:1‘2‘
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Since |k1| < |k2|, it follows that
k «
ol S el 5 Pl ()

This proves .

By using the symmetry between ke and ks in the expression of \7%51@\ in and
applying with @ = 1 in the case |k| > |k3] and « = 0 in the case |k| < |k3|, we obtain
for any k # 0,

Rl ST2 DRI Rl Ral sl [k, (8) [0, (60) |19k, (£)]

k1+ko+k3z=k
|k2|>|ks],| k> k3|

+ 7 > [ [ Oy () Oy () |05 () - (4.38)

k1+ko+k3z=k
|k2|>|ks], k| <|ks|

Without loss of generality, we may assume that vg, (£,), Ok, (t) and 9, (t,) are nonnegative.
Otherwise we replace them by their absolute values as we did in the proof of Lemma [3.2
By the duality between L?(T) and itself, it is sufficient to prove the following result to
obtain (4.35)):
(R, /)l S 7>V D02 o,z 2 ¥ f € LA(T). (4.39)
From the definition below (4.26]) we see that R59 = 0. As a result, we have
(Re, DI SY IRskl 16l S D0 Rawl il + D [Rowl Ifil. (4.40)
k#£0 |k|>7—1 0#|k|<T—1
From the expression of Rs in (4.25) we see that for |[k| > 77! there holds
Roil <72 > [kulOk, (bn) Oy (tn) Dy (1)
k1+ko+ks=k
Hence, by the Cauchy—Schwartz inequality and Plancherel’s identity, we have

S Roal 1l <230 S0 Tl ()b (b (80) 1

|k|>7—1 k kitkotks=Fk
=123 "N " |k — ko — Es| Oy (tn) Oy () Oy () |f
ko,ks k
ST (Frdrezllie l (kaon, (tn))kyezliz | Oy (tn) ) kaez lin | (Bks (£n) ) ksezlln
STl czllvll3, (4.41)

where the last inequality uses the following result:
1(Bk; (ta))koezllin S 1 (k2) ™ ezl [ ((R2) Oy (t) ezl S ol
The second term in (4.40) can be estimated by using (4.38), i.e.,
> IRskl il (4.42)

0#|k|<T—1

s > [l = [z | fi s (£ By (£ (1)

0#|k|<t—1 kitkotks=k
|k2|=ksl, k| =[ks]

+r0 Y > vl fi ks (80) O (60 Oy (£0)

075|]€|§T_1 k1+ko+ks=k
|k2|>| k3|, |k <|ks]

ST Y D R fllEa Ok, () |k — Ry = Eg| Ok, kg (£n) | s By (£0)

0£|k|<7=1 |ks|<[k| k1
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+72 3 T fullen Ok, )k — k1 — sk —y ks (tn) By (£)

0F[k|<T=1 [ka|>|k| k1
ST (Radn, (ta) ) isezllie | (Ratny b))zl D IR Al D ksl (ta)

0#|k|<r—1 k| <|K|
+ 72 (oo, () s ezlliz | (Batny (b kgezllie > 1l D ks (tn)
0#|k|<r—1 [k3|>k|
_1 A ~
S 3n >0 kT2 felll (s, (tn)) ksez e
0#|k|<t—1
o) D 1l es) ™) g illiz | ()b (b)) g 1 2
0#|k|<T—1
1,2 .
SEE) I Y kT2l (Rsbr, (tn) ) ksezllie
0#|k|<t—1

_1 n
ST 13 11k 2 )ose <1 izl (o) g <[22
ST wta) I3 vV In(m =) 2 (4.43)

Substituting (4.41)—(4.43)) into (4.40)) yields (4.39), which implies the desired result in (4.35)).
It remains to prove (4.36)). To this end, we use the following inequalities:

o2k 1] <2 and [eRRRs 1| < 57 [ky 2] Rs
which imply that
Fa

(2 1) (e — 1)\ S 72 k|~ ke lRa 2 ksl 2 Vs € [0, 7).

By substituting this into the expression of 7%5’k in (4.25)), and using Plancherel’s identity, we
obtain

3
T2

IRs

VI (191 (IV130)%) |

HHS S’ L2.

Then using the Sobolev inequality, we get that for any s € (%, 1),

[Rsll e 57 (|1915 (19150)° |,
Sr2|[1V1a]] o 1V120]]2 2. S 72 lloll3p
This completes the proof of Lemma O

5. Proof of Theorem (2.1

The proof of Theorem is divided into two parts. In subsection |5.1} we present an
error estimate for the numerical solution in H*(T) with s € (3,1), and then use this result
to prove the boundedness of the numerical solution in H'(T) uniformly with respect to 7
and N. In subsection we utilize the H'-boundedness of the numerical solution to prove
the desired error estimate in L?(T).

5.1. Boundedness of the numerical solution in H!(T)

Lemma 5.1. Let u® € HY(T), and let ul n, n=0,1,..., L, be the numerical solution given

by (2.8)—(2.9). Then there exist positive constants 7s and Ny such that for T € (0,7s] and
N > N; the following error bound holds:

1 -1
max [lu(t, ) =yl So73 £ N7 Vs € (3,0), (5.1



18

where 75 and Ny depend only on ||[u®||g1, T and s.
Proof. Let v" = e*itnaguﬁw. Then v"*1 = ®"(v"; My, Py) as shown in (4.34). By using
this identity we have
V(tps1) — 0" =0(tng1) — " (v(tn); M, P) + @™ (v(t,); M, P) — @™ (v"; My, Py)

= L" 4+ " (v(t,); M, P) — ®"(v"; M, Pn), (5.2)

where
L = v(tns1) = D" (v(tn); M, P) = R1+Rao + R + Rao + Ra+ Ri + Rs + Ri,

which is shown in (4.32). From (4.9), (4.13), (.15), (4.18), (4.27) and we see that
1£7]| e S 72 + TN Vs € [0,1). (5.3)

Note that the functional ®"(f; M, P) defined in (4.33)) can be rewritten into the following
form:

O(f; M, P) = f+ (e 2ATPOT=20M 1 4 9ixr POt 4 2iMr M) f 4 (1 — e 2NV f

— iATTIg [Ty (|eitn9% f|) et % f]

. ikx Tk +k i s A
— 2@)\ Z € k < Z /0 %e (tn+ )¢ dS) flﬂ szfk3
k

0#£|k|<N k1 +ko+ks=
|ka+k3|<N

. ikx Tk 3 s roF 7
4+ Z otk Z </ ?le tnd g2iskk ds> Sy o feg

0£|kISN  kitkatks=k 0
|k2+k3‘§]\7

. L . A s .
+ 1A Z eike Z </ ?le”"(b(e%kz% - 1) d8> Jier feo Jies -
0#£|k|<N ki+kot+ks=k 70
|k2+ks| <N
(5.4)

For example, the third line of (5.4) comes from (4.21]), which can be rewritten back into
(4.17). This is how we obtain the third line in the expression above. The other terms are

obtained similarly.
From (5.4)) we furthermore derive that

" (v(ty); M, P) — ®"(v"™; My, Pn) =v(ty,) —v" + ®F 4+ @y + OF + &) + OF, (5.5)
where
= (e 2P0 2M 4 9iAr PO 4 2iAT M + (1 — ¢ 2 TMTTg o (t,,)
— (e72ATPNO T 2ATMY ) 4 9iAr Py 4 2iAT My + (1 — e 2 TMN)ITg) o,

on = — Z-)\THOOez’tnagu(tn)‘QGitna;{.,U(tn) _ ‘eitnﬁgvnPeitnagvn)?

, Tk + ko X .
oF =—2ix Y et Ny ( / %ef@ﬁsw ds> (B (t ) Oy (£ )0k (£) — O DR TR ),
0#k|<N ki+ho+ks=k> 0
|k2+k3|<N

Tk

n o__: ikx 1 it,¢ 2iskky 2~ ~ ~ LY N (AN )

1 =i\ E e g (/0 e e ds ) (U, (tn) Oky () Ok (tn) — U, 07, 0F, )
075“6“§N k1+ko+ks=k
|k2+ks|<N

, Tk . . . R

oF =ix Y ey ( / feltnqﬁ(em‘wks ~1) ds> (Oky (tn )ik (£ ) By (£) — Tpr D1 DR ).

0£K|SN  ki+koths=k> 70
|k2+k3| <N
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Note that P, M, Py and My defined in (2.4) and (2.10)) are all bounded numbers, with
bounds depending on ||u’||z1. In particular,

1
M = bl =[5 [P = a2 o

<

~

1 _ - @
27T/T [(UO — v )u 4 u y (u — U?,N)} dx

S I = wd pllzz (el g2 + lu2 yl22)

< N, (5.6)
and
1 _
[P =Pyl =5 T(uoaxuo —ul N0 ) da
1 _ -
P (6 = 2 3)0ut® + 0 0, (w0 — w2 )| d

1 _ J—
=57 [ [ — w0300 — 20 (7 = u] )]

< ® = (105 2 + 192 ] 2)

< N7 . (5.7)
From the expression of ®] we see that its Fourier coefficients can be written as

Fi[®7] = F(M, P; k)oy(tn) — F(Mn, Pn; K)oy,
with
F(M, P; k) := e 2ATPE o =20M _ 1 4 9ix7 PRy 20 4+ 207 M + (1 — e 2A7M)1, .
By using Taylor’s expansion and mean value theorem, it is straightforward to verify that
[F(M, Py k) = F(My, Pn; k)| S 7(|P — Py | + [M — M)
As a result, we have
197 a0 SINCR)* Fr[ BT rezllie

ST(P = Py| 4+ [M — My DI|((F) 0k (t))Jkezlliz + [[((F)* (k. (tn) — O))rezlli2
ST(P = Pyl + [M = My[)[[o(tn) || s + 7llo(tn) — 0"z

STNAHUH%OO(O,T;HI) + 7llo(tn) — v a, (5.8)

where the last inequality follows from (/5.6))—(5.7)).
Since ®% is a constant, it is straightforward to show that (similarly as (5.6)))

@51 <7 (10" = vltn) 22 (e P 0(tn) [T + 650|710
,ST(HU” — U(tn)HLQ(H’U(tn)H%{s + ||v"||%{s) (this holds for s > %)
Sr(llo™ = vlta)ll g2 (o) |7 + 0" = v(ta) [ Fs)- (5.9)
Similarly, ®5 can be decomposed into several functions of the following form:

| "k + ke C
(I)g = — 2 Z elkx Z </ %el(tn+3)¢ d8> fl,k:l f2,k2f3,k’37

0£|k|<N ki+kotks=k 70
|ko+k3|<N

where f’j,k denotes the kth Fourier coefficient of the functions f;, and one of the three
functions fj,j =1,2,3, is
v"™ — wv(t,) or its conjugate;
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the other two of the three functions f;,j = 1,2, 3, are either v" or v(t,) or their conjugates.
We assume that f;,k € Z are nonnegative; otherwise we consider functions with Fourier
coefficients |f; x| as we did in the proof of Lemma (ii). Then

= ki+ka| » 2 _
[CHRISIEDD ‘|k|| Fri o Faky = Fulr (1] (fofs))].
k1+ko+ks=k
As a result, by Plancherel’s identity and Lemma (i), we have
195 rz= Sl7T (3T (frf2) s
STl fsllms llf1fell e (this requires s > %)
STl fsllas ([ folles 1f2l s
Srllv™ = v(ta) s (10" s + lo(ta)ll7re)
Sllo™ = o(ta) s (0" = v(ta) 7 + o) l7r)- (5.10)
@) and ®L can be estimated similarly, i.e.,
193 7rs + 195 1= ST0"™ = v(ta)llas (10" = v(ta) s + () l[F7e)-
Hence, combining with the estimates of (I>§L, 7=1,...,5, we have
" (v(tn); M, P) — " (v"; My, Pn)| s
< (14 Cn)0" = ot + Ol = v{ta) [ + CrNL,
which holds for any given s € (1,1). Substituting this and (5.3) into (5.2) yields that
lo(tng1) — 0" o SC(T% + 7N 4 (14 C7)[[o"™ — v(ty)| s + CTlv" — v(t) |13

By using the discrete Gronwall’s inequality with induction assumption on ||[v" —v(ty,)||gs < 1,
we obtain (for sufficiently small 7)

max, [Ju(tn) = 0" 7. S 72+ N7

This proves the desired result in Lemma [5.1 O
Lemma [5.1| implies that ||v(¢,) — v™|| g+ < 1. Then, by using the triangle inequality and
boundedness of the exact solution in H', we have
[0 [7s S Nv(tn) = 0" s + lo(En) s S 1.
This result can be furthermore improved to the H! norm, as shown in the following lemma.

Lemma 5.2. Let u’ € HY(T), and let u;ﬁN, n=20,1,...,L, be the numerical solution given
by (2.8)—(2.9). Then there exists a constant 79 > 0 such that for T € (0,79] the following
estimate holds:

n <
omax [|ur vl S 1. (5.11)

Proof. Let v™ = e~ itn0; u; . By using the expression of ®" in (5.4), we immediately obtain
that
19" (0" M, Pr)l| gt < 0" + O lo™|[ g + Crllo™ || g [0 1 s (5.12)

which holds for any fixed s € (3,1). Since [[v"||g= < 1 is already proved in Lemma
substituting this into (4.34]) yields
[V g < 0"l + O 0" |, (5.13)

which implies Jmax, ||| gr < 1 after iteration in n. The desired result follows from the
n

~

relation Hv”HHl_ZTIUZ,NHHl‘ -
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5.2. Error estimation in L?(T)
From (4.9), (4.13)), (4.15), (.18), (4.27) and we conclude that
|£™|,. < C(r*VInr=L+ 7N 7). (5.14)
By choosing s = 0 in and choosing a fixed s € (3,1) in (5.9), we have
8712 + B2 ST+ 0" — v(ta) | 2

Instead of (5.10]), we need to use the following estimate for ®%:

12512 ST~ (f3T (frfe))llze S 7min(| fall o | 1 follzs sl 2l fi foll )

which is a consequence of Lemma (ii). Recall that one of the three functions f;,j = 1,2, 3,
is v™ — v(t,) or its conjugate, and the other two functions are either v™ or v(t,) (or their
conjugates). If fi is v™ —v(t,) or its conjugate, then we choose L? norm on f;; otherwise we
choose L? norm on f5f3. In either case we obtain

1R r2 STllv™ = v(t) 2 ([o(E) 17 + 0" 1F0) S Tllv™ = v(ta) |2
The two terms @} and ®F can be estimated similarly, i.e.,
[@5 N2 + 195 L2 S 7llv™ = vltn) L2
Substituting the estimates of [[®7||z2, j =1,...,5, into (5-5), we have
197 (v(tn); M, P) = @™ (0" My, Pn)|[ 2 S TN 4 7l|v" = v(ts) | 2
Then, substituting this into and using estimate , we obtain
[o(tng1) — 0" |2 < C(rVInT=t + 7N7Y) + (1 4 C7) 0" — v(t,)] 12 (5.15)
Iterating this inequality yields
max |[v(ty) — "2 < [Jo(te) — 02 + 7VInT '+ NP < 7vVInr T+ N1

1<n<L

This completes the proof of Theorem in view of |[v(t,) —v"| 2 = ||u(tn) — ul Nllz2. O

6. Numerical experiments

In this section we present numerical experiments to support the theoretical analysis
presented in Theorem We consider the NLS equation (|1.1) with A = —1 and initial

value

uO(x) _ 70 Z ‘k|—0.51—aeikx’ (6.1)

0£keZ

which satisfies that u® € H*(T) and u° ¢ H0-0L(T).

We solve the problem by the proposed method ( . . ) for « = 2 and o = 1, re-
spectively, and present the time discretisation errors ||ur n,; — Ur, ¢, Noo || 2 in Tables |1 I—I 2| for
several sufficiently large N,.f, with a reference stepsize Tyof = 2713, From the numerical re-
sults we can see that the error from spatial discretisation is negligibly small in observing the
temporal convergence rates, i.e., almost first-order convergent as 7 — 0. This is consistent
with the theoretical result proved in Theorem

We present the spatial discretisation errors |[ur, . N — Ur N llz2 for @« = 2 and o =
1 in Tables for several sufficiently small stepsize Tyof, with N = 1024. From the
numerical results we can see that the error from temporal discretisation is negligibly small
in observing the spatial convergence rates, i.e., ath-order convergence for H® initial data.
This is consistent with the result proved in Theorem and the comments in Remark
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TABLE 1. Temporal discretisation error ||tr No; — Ureer, Noot
with a = 2 in (6.1)) (for H? initial data).

‘LQ at T'=1

Nrcf = 28 Nrcf = 29 Nrcf = 210

=275 3.054E-05 3.054E-05 3.054E-05

T=26 1.519E-05 1.519E-05 1.519E-05

=277 7.539E-06 7.539E-06 7.539E-06
convergence rate O(r101) O(r101) O(r+01)

TABLE 2. Temporal discretisation error ||tr N,y — Urer,Nooellz2 at T =1

with o = 1 in (6.1)) (for H! initial data).

Nref = 28 Nref = 29 Nref = 210

=275 8.971E-05 8.973E-05 8.975E-05

=276 4.123E-05 4.126E-05 4.126E-05

=277 2.004E-05 2.005E-05 2.006E-05
convergence rate O(r1:04) O(r10%) O(r104)

TABLE 3. Spatial discretisation error ||tr,, N — Ur; Noosllz2 at T =1
with o = 2 in ([6.1]) (for H? initial data).
Tref = 278 Tref = 279 Tref = 2-10
N =16 2.514E-04 2.514E-04 2.514E-04
N =32 6.446E-05 6.446E-05 6.446E-05
N =64 1.626E-05 1.626E-05 1.626E-05
convergence rate O(N~199) O(N—199) O(N~199)
TABLE 4. Spatial discretisation error ||tr,, N — Urp Nt llz2 at T =1
with a =1 in (6.1)) (for H' initial data).
Tref = 278 Tref = 279 Tref = 2710
N =16 5.856E-03 5.856E-03 5.856E-03
N =32 2.954E-03 2.954E-03 2.954E-03
N =64 1.477TE-03 1.477TE-03 1.477E-03
convergence rate O(N—1.00) O(N—1.00) O(N~100)

7. Conclusion

We have constructed a fast fully discrete low-regularity integrator for solving the NLS
equation with nonsmooth initial data in one dimension. The method can be implemented
by using FFT with O(NN In N) operations at every time level, and is proved to have an error
bound of O(7+/In(1/7) + N~') when the initial data is in H*(T). For initial data in H*(T)
with s > 1, the numerical results show that the proposed method can have an error bound
of O(t + N7%). We expect that the techniques for constructing and analysing the spatial
discretisation method in combination with the temporal low-regularity integrator may also

be extended to other dispersive equations with nonsmooth data.
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