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ABSTRACT
The exclusive lasso (also known as elitist lasso) regularizer has
become popular recently due to its superior performance on intra-
group feature selection. Its complex nature poses difficulties for the
computation of high-dimensional machine learning models involv-
ing such a regularizer. In this paper,wepropose ahighly efficient dual
Newton method based proximal point algorithm (PPDNA) for solv-
ing large-scale exclusive lasso models. As important ingredients, we
systematically study the proximal mapping of the weighted exclu-
sive lasso regularizer and the corresponding generalized Jacobian.
These results also make popular first-order algorithms for solving
exclusive lassomodelsmorepractical. Extensivenumerical results are
presented to demonstrate the superior performance of the PPDNA
against other popular numerical algorithms for solving the exclusive
lasso problems.
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1. Introduction

For a given feature matrix A = [a1, a2, . . . , an] ∈ Rm×n, we are interested in the machine
learning models of the form:

min
x∈Rn

{
f (x) := h(Ax)− 〈c, x〉 + λp(x)} , (1)

where c ∈ Rn is a given vector, h : Rm→ R is a convex twice continuously differentiable
function, p : Rn→ (−∞,+∞], a closed and proper convex function, is a regularizer
which usually enforces feature selection to prevent overfitting, and λ > 0 is a hyper-
parameter which controls the trade-off between the loss function and the regularizer.

Many regularizers have been proposed to enforce sparsity with desirable structure in
the predictors learned by machine learning models. For example, the lasso model [25]
can induce sparsity in the predictors but without structured patterns, and the group lasso
model [29] can induce inter-group level sparsity. In some applications, intra-group level

CONTACT Defeng Sun defeng.sun@polyu.edu.hk Department of Applied Mathematics, The Hong Kong
Polytechnic University, Hung Hom, Hong Kong
†The first two authors contribute equally.
In memory of Oleg Burdakov

© 2023 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/10556788.2023.2253356&domain=pdf&date_stamp=2024-10-18
mailto:defeng.sun@polyu.edu.hk


490 M. LIN ET AL.

sparsity is desirable, whichmeans that not only features from different groups, but also fea-
tures in a seemingly cohesive group are competing to survive. One application comes from
performing portfolio selections both across and within sectors in order to diversify the risk
across different sectors. To achieve this intra-group sparsity, the exclusive lasso regularizer
was proposed in [32] (also named as elitist lasso [12]), originally for multi-task learning.
Since then, it has also beenwidely used in other applications such as image processing [30],
sparse feature clustering [26] and nuclear magnetic resonance (NMR) spectroscopy [3].
Let w ∈ R

n++ be a weight vector and G := {g1, . . . , gl} be an index partition of the fea-
tures such that

⋃l
j=1 gj = {1, 2, . . . , n} and gj

⋂
gk = ∅ for any j �= k. The corresponding

weighted exclusive lasso regularizer is defined as

�G,w(x) :=
l∑

j=1
‖wgj ◦ xgj‖21, ∀ x ∈ R

n, (2)

where ‘◦’ denotes the Hadamard product, and xgj denotes the sub-vector extracted from x
based on the index set gj. Naturally, when solving exclusive lassomodels, we can expect that
each xgj has nonzero coordinates undermild conditions, whichmeans that every group has
representatives.

Existing algorithms for solving exclusive lasso models, such as the iterative least
squares algorithm (ILSA) [11,26], the coordinate descent (CD) method [3], are very time-
consuming to obtain a solution with moderate accuracy, even for problems with medium
sizes. In addition, popular first-order algorithms, such as the accelerated proximal gradi-
ent method (APG) [30], FISTA [1] and the alternating direction method of multipliers
(ADMM) [4,7], have not been widely used to solve exclusive lasso models. The main rea-
sonmay lie in the fact that the proximalmapping of the exclusive lasso regularizer, which is
the key ingredient for the efficient implementation of the algorithmsmentioned above, has
not been systematically studied yet. Yoon and Hwang provided a procedure for computing
the proximal mapping of �G,w(·) in [28] but unfortunately it is mathematically incor-
rect. Kowalski mentioned the proximal mapping in [12], but the derivation contains some
errors, and this result is not known to most researchers in the optimization and machine
learning communities. In this paper, we systematically study the exclusive lasso regular-
izer, and provide an O(n log n) routine to compute the proximal mapping of the general
weighted exclusive lasso regularizer (2). Such anO(n log n) procedure is important for the
practical efficiency ofmany algorithmic frameworks, such as APG andADMM, for solving
exclusive lasso models. However, as we shall see in the numerical experiments, even with
the O(n log n) procedure to compute the proximal mapping, first-order algorithms, such
as APG and ADMM, are not efficient enough. To overcome this computational challenge,
we design a highly efficient second-order type algorithm, the dual Newton method based
proximal point algorithm (PPDNA), to solve exclusive lasso models. As a key ingredient
of the PPDNA, we carefully derive the generalized Jacobian of the proximal mapping of
the weighted exclusive lasso regularizer. We also analyse the underlying structures of the
generalized Jacobian to facilitate its efficient computation within the semismooth Newton
method. Numerical results demonstrate the superior performance of the PPDNA against
ADMM, APG, CD, and ILSA for solving exclusive lasso models.
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We summarize our main contributions in this paper as follows.

(1) We develop a highly efficient dual Newton method based proximal point algorithm
to solve the exclusive lasso model. We prove that the error bound condition holds for
commonly used exclusive lassomodels, which guarantees the superlinear convergence
of the preconditioned proximal point algorithm.

(2) As key ingredients of the PPDNA, we systematically study the proximal mapping of
the weighted exclusive lasso regularizer, and the corresponding generalized Jacobian.
These results are also critical in computing the key projection step of various first-
order algorithms for solving exclusive lasso models.

(3) We demonstrate numerically that the PPDNA is highly efficient and robust when
comparing to the state-of-the-art algorithms for solving exclusive lasso models. Fur-
thermore, we apply the exclusive lasso model in some real application problems
including the index exchange-traded fund, and image and text classifications.

The rest of the paper is organized as follows. In Section 2, we design a preconditioned
proximal point algorithm for solving exclusive lasso models. As important ingredients, in
Section 3, we systematically study the weighted exclusive lasso regularizer, through provid-
ing anO(n log n)procedure to compute the proximalmapping and its generalized Jacobian.
Based on these results, we develop a dual Newton method for solving the subproblems of
the preconditioned proximal point algorithm in Section 4. Numerical experiments on vari-
ous synthetic data are presented in Section 5, which demonstrate the superior performance
of the PPDNA against the state-of-the-art algorithms for solving the exclusive lasso mod-
els. More interesting experiments on real applications of the exclusive lasso model are also
presented. In the end, we conclude the paper in Section 6.

Notation and preliminaries : We use Rn to denote the space of n-dimensional vectors
and R

n+ (resp., Rn++) to denote the space of vectors in Rn with nonnegative (resp., posi-
tive) elements. We let Sn be the space of all n× n real symmetric matrices. For any z ∈ R,
sign(z) denotes the sign function of z, that is sign(z) = 1 if z>0; sign(z) = 0 if z = 0;
sign(z) = −1 if z<0. Define z+ := max{z, 0}, z− := min{z, 0}.We use ‘Diag(x)’ to denote
the diagonal matrix whose diagonal is given by the vector x, and use ‘Diag(X1, . . . ,Xn)’ to
denote the block diagonal matrix whose ith diagonal block is the matrix Xi, i = 1, . . . , n.
Let M : Rn→ Rn be any self-adjoint positive semidefinite linear operator. We define
〈x, x′〉M := 〈x,Mx′〉, and ‖x‖M := √〈x, x〉M for all x, x′ ∈ Rn. For a given subset C of
Rn, we denote the weighted distance of x ∈ Rn to C as distM(x, C) := infx′∈C ‖x− x′‖M.
The largest eigenvalue ofM is denoted as λmax(M).

Let q : Rn→ (−∞,∞] be a closed and proper convex function. The conjugate function
of q is defined as q∗(z) := supx∈Rn{〈x, z〉 − q(x)}. TheMoreau envelope of q at x is defined
by

Eq(x) := min
y∈Rn

{
q(y)+ 1

2
‖y− x‖2

}
,

and the corresponding proximal mapping Proxq(x) is defined as the unique optimal solu-
tion of the above problem. It is known that for any x ∈ Rn, ∇Eq(x) = x− Proxq(x), and
Proxq(·) is Lipschitz continuous with modulus 1 [19,22].
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In order to study the weighted exclusive lasso regularizer�G,w(·) defined in (2), we use
the following notations. For j = 1 · · · , l, we define the linear mapping Pj : Rn→ R

|gj| as
Pjx = xgj for all x ∈ Rn, and P = [P1; · · · ;Pl]. Let nj =

∑j
k=1 |gk| and n0 = 0. Denote

x(j) as the sub-vector extracted from x based on the index set {nj−1 + 1, nj−1 + 2, . . . , nj}
for j = 1, . . . , l. According to these notations, we have

�G,w(x) =
l∑

j=1
‖(Pw)(j) ◦ (Px)(j)‖21, ∀ x ∈ R

n. (3)

2. A preconditioned proximal point algorithm for exclusive lassomodels

We focus on the machine learning model (1) with the weighted exclusive lasso regularizer
defined in (2), which is also called the weighted exclusive lasso model. Denote the optimal
solution set of the problem (1) as �. Throughout this paper, we assume that the solution
set� is nonempty and compact. For many popular machine learningmodels involving the
exclusive lasso regularizers, this assumption is satisfied automatically, as discussed in [33,
Section 2.1].

As we have mentioned in Section 1, existing algorithms [3,11,26] face difficulties even
for solving medium-scale exclusive lasso models to a moderate accuracy. To overcome this
challenge, in this paper, we aim to design a highly efficient preconditioned proximal point
algorithm (PPA) to solve the convex composite programming problem (1). We further
prove that for exclusive lasso models, a certain error bound condition holds, which guar-
antees that the preconditioned PPA for solving the weighted exclusive lasso models has an
asymptotic superlinear convergence rate.

2.1. A preconditioned PPA algorithmic framework

For any starting point x0 ∈ Rn, the preconditioned PPA generates a sequence {xk} ⊆ Rn

by the following approximate rule for solving (1):

xk+1 ≈ Pk(xk) := argmin
x∈Rn

⎧⎨⎩ fk(x) := h(Ax)− 〈c, x〉 + λp(x)
+ 1
2σk
‖x− xk‖2 + τ

2σk
‖Ax− Axk‖2

⎫⎬⎭ , (4)

where {σk} is a sequence of nondecreasing positive real numbers (σk ↑ σ∞ ≤ ∞), τ > 0
is a given parameter.

Comparing to the classical proximal point algorithm, the addition of the second prox-
imal term τ

2σk
‖Ax− Axk‖2 is critical for us to obtain the dual of (4) as a smooth uncon-

strained problem. We equivalently rewrite the minimization problem (4) as a constrained
optimization problem:

min
x∈Rn,y∈Rm

{
h(y)− 〈c, x〉 + λp(x)+ 1

2σk
‖x− xk‖2 + τ

2σk
‖y− Axk‖2 | Ax− y = 0

}
.

(5)
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By introducing the Lagrangian multiplier u ∈ Rm, the associated Lagrangian function is

l(x, y; u) := h(y)− 〈c, x〉 + λp(x)+ 1
2σk
‖x− xk‖2 + τ

2σk
‖y− Axk‖2 + 〈u,Ax− y〉

= h(y)+ τ

2σk

∥∥∥y− Axk − σk
τ
u
∥∥∥2 + τ

2σk
‖Axk‖2 − τ

2σk

∥∥∥Axk + σk
τ
u
∥∥∥2 + λp(x)

+ 1
2σk
‖x− xk − σkc+ σkATu‖2 + 1

σk
‖xk‖2 − 1

2σk
‖xk + σkc− σkATu‖2.

Therefore, the dual problem of (4), i.e. maxuminx,y l(x, y; u), takes the form of

max
u∈Rm

{
ψk(u) := − τ

2σk

∥∥∥Axk + σk
τ
u
∥∥∥2 + τ

σk
Eσkh/τ

(
Axk + σk

τ
u
)
+ τ

2σk
‖Axk‖2

− 1
2σk
‖xk + σkc− σkATu‖2 + 1

σk
Eσkλp(x

k + σkc− σkATu)+ 1
2σk
‖xk‖2

}
. (6)

Moreover, the Karush–Kuhn–Tucker(KKT) conditions associated with (5) and (6) are⎧⎪⎨⎪⎩
x = Proxσkλp(x

k + σkc− σkATu),
0 = ∇h(y)+ τ(y− Axk)/σk − u,
Ax− y = 0.

(7)

Due to the continuous differentiability of the Moreau envelope, the objective function in
the optimization problem (6) is continuously differentiable. The Lipschitz continuity of
the proximal mapping further inspires us to design a highly efficient nonsmooth New-
ton algorithm to solve the problem (6). The details are discussed in Section 4. As long as
we obtain a solution ūk+1 to the problem (6), according to the first equation in the KKT
system (7), the update of x in the preconditioned PPA iteration (4) can be given as

x̄k+1 = Proxσkλp(x
k + σkc− σkATūk+1).

We give the full description of the preconditioned PPA for solving the general machine
learning model (1) in Algorithm 1. Note that the subproblem of the preconditioned PPA is
allowed to be solved approximately. To ensure the convergence of the preconditioned PPA,
we use the implementable stopping criteria (A) and (B) based on the duality gap of (4)
and (6).

As for the parameters in the above algorithm, in practice, one can set τ = 1/λmax(AAT),
εk = δk = 0.5/1.06k and σk = 3�k/2�. The following theorem states the global convergence
and the asymptotic superlinear convergence rate of the preconditioned PPA for solving (1).

Theorem 2.1: Let {(xk, uk)} be the sequence generated by Algorithm 1.

(1) Suppose in Step 1, the stopping criterion (A) is satisified at each iteration. Then the
sequence {xk} is bounded and {xk} converges to some x∗ ∈ �.
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Algorithm 1 A preconditioned proximal point algorithm for (1)
1: Input: τ > 0, 0 < σ0 ≤ σ∞ ≤ ∞; summable nonnegative sequences {εk}∞k=1, {δk}∞k=1 with δk <

1, ∀k.
2: Output: an approximate optimal solution x to (1).
3: Initialization: choose x0 ∈ Rn, k = 0.
4: repeat
5: Step1. Find an approximatemaximizeruk+1 to the problem (6) such that the stopping criteria

fk(xk+1)− ψk(uk+1) ≤
ε2k
2σk

, (A)

fk(xk+1)− ψk(uk+1) ≤
δ2k
2σk
‖xk+1 − xk‖2 + τδ2k

2σk
‖Axk+1 − Axk‖2, (B)

are satisfied with
xk+1 = Proxσkλp(x

k + σkc− σkATuk+1).

6: Step 2. Update σk+1 ↑ σ∞ ≤ ∞, k← k+ 1.
7: until Stopping criterion is satisfied.

(2) Assume that there exists a constant κ > 0 such that Tf := ∂f satisfies the following error
bound condition

dist(x,�) ≤ κdist(0,Tf (x)), ∀x ∈ R
n satisfying dist(x,�) ≤

∞∑
i=0

εk + distM(x0,�),

(8)

where M := In + τATA is a positive definite operator on Rn. Suppose in Step 1, the
stopping criteria (A) and (B) are both satisified at each iteration. Then it holds for all
k ≥ 0 that

distM(xk+1,�) ≤ μkdistM(xk,�),

where μk = (1− δk)−1[δk + (1+ δk)κζ(σ 2
k + κ2ζ 2)−1/2]→ μ∞ = κζ(σ 2∞ +

κ2ζ 2)−1/2 < 1, as k→∞, with ζ := 1+ τλmax(ATA).

Proof: In order to prove the convergence result, we first need to characterize the stop-
ping criteria (A) and (B). According to the definition of Pk(xk) in (4), we have that
Pk(xk) = argmin fk(x) and 0 ∈ ∂fk(Pk(xk)). It can be seen from [23, Exercise 8.8] that
∂fk(x) = ∂f (x)+ (1/σk)M(x− xk), which means there exists v ∈ ∂f (Pk(xk)) such that

0 = v+ 1
σk

M(Pk(xk)− xk).

Then it holds that

fk(xk+1)− fk(Pk(xk))

= f (xk+1)− f (Pk(xk))+ 1
2σk
‖xk+1 − xk‖2M −

1
2σk
‖Pk(xk)− xk‖2M
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≥ 〈v, xk+1 − Pk(xk)〉 + 1
2σk
〈xk+1 + Pk(xk)− 2xk, xk+1 − Pk(xk)〉M

= 1
2σk
‖xk+1 − Pk(xk)‖2M.

By the strongly duality, we have fk(Pk(xk)) = inf fk = supψk. Thus we can see that

1
2σk
‖xk+1 − Pk(xk)‖2M ≤ fk(xk+1)− inf fk

= fk(xk+1)− supψk ≤ fk(xk+1)− ψk(uk+1).

Therefore, we can see that the stopping criterion (A) implies that

‖xk+1 − Pk(xk)‖M ≤
√
2σk

(
fk(xk+1)− ψk(uk+1)

)) ≤
√
2σk

ε2k
2σk
= εk. (9)

In addition, the stopping criterion (B) implies that

‖xk+1 − Pk(xk)‖M ≤
√
2σk

δ2k
2σk
‖xk+1 − xk‖2M = δk‖xk+1 − xk‖M. (10)

Note that the conditions (9) and (10) are the general criteria for the approximate calculation
in the preconditioned PPA. Then the conclusions of the theorem follow from the fact that
� is nonempty together with [16, Theorem 2.3 & Theorem 2.5]. �

Remark 2.1: Here,we have proved a global linear convergence rate of the (preconditioned)
PPA for solving the exclusive lasso problem (combining the results of Theorem 2.1 and
Proposition 2.3 in Section 2.2). Theoretically, this implies that the iteration complexity is
O(log(1/ε)) for obtaining an inexact solution of a given accuracy ε > 0 in terms of the
KKT residual if we solve the subproblems sufficiently accurately (i.e. δk is small enough).
More importantly, the convergence rate is asymptotically superlinear. Therefore, the PPA
is very efficient for solving the exclusive lasso problem. The numerical experiments shown
later in this paper also demonstrate the high efficiency of the PPA for solving the exclu-
sive lasso model in practice. In particular, it usually requires no more than 30 iterations to
achieve a solution with the relative KKT residual smaller than 10−6.

We note that if the PPA subproblems are solved exacty (i.e. δk = 0), Güler [9] has
proved that the iteration complexity of the PPA for solving convex optimization problems
is O( 1∑k−1

j=0 σj
) in terms of the objective function value, where k is the iteration number and

{σj} is the given non-decreasing sequence in Algorithm 1. This suggests that its iteration
complexity is at leastO(1/k) and it can be of the orderO(1/kα+1) if σj = jα for all j, where
α ≥ 0 is a given exponent. For a certain inexact variant of the PPA, the iteration complexity
of O(1/k) can also be deduced from [27, Theorem 3.1].

2.2. Error bound conditions for the weighted exclusive lassomodels

As one can see in Theorem 2.1, the desired asymptotic superlinear convergence rate of
the proposed preconditioned PPA relies on the error bound condition (8) of Tf . In this
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subsection, we establish the error bound condition of Tf for the problem (1) with the exclu-
sive lasso regularizer, that is p(x) = �G,w(x) =∑l

j=1 ‖wgj ◦ xgj‖21 in (1). We are going to
prove that the error bound condition of Tf holds for the problem (1) with a piecewise
linear-quadratic regularizer, which includes the exclusive lasso regularizer as a special case.

For the purpose of analysing the error bound condition (8), we need the proximal
residual function R : Rn→ Rn associated with (1), which is defined as

R(x) := x− Proxλp(x− AT∇h(Ax)+ c), ∀ x ∈ R
n.

Indeed, by noting the fact that

∂f (x) = AT∇h(Ax)− c+ ∂(λp)(x),
we know that the first-order optimality condition of (1) is 0 ∈ AT∇h(Ax)− c+ ∂(λp)(x),
which is equivalent to x = Proxλp(x− AT∇h(Ax)+ c). Therefore, we can see that x̄ ∈ � if
and only ifR(x̄) = 0. In the following proposition, we prove that the error bound condition
with proximal mapping based residual function holds for the problem (1) with a piecewise
linear-quadratic regularizer.

Proposition 2.2: For the problem (1), suppose that h(·) is strongly convex on any compact
convex set in Rm and p(·) is piecewise linear-quadratic. Then for any ξ ≥ inf f , there exist
constants κ , ε > 0 such that

dist(x,�) ≤ κ‖R(x)‖ forall x ∈ R
n with f (x) ≤ ξ , ‖R(x)‖ ≤ ε.

Proof: Since p is piecewise linear-quadratic, p∗ is also piecewise linear-quadratic by Rock-
afellar and Wets [23, Theorem 11.14(b)]. Thus ∂p and ∂p∗ are both polyhedral due to [23,
Proposition 10.21]. Define the solution map � : Rm ×Rn→ Rn as �(y, g) := {x ∈ Rn |
Ax = y,−g ∈ ∂p(x)}. Note that � is a polyhedral multifunction, thus it is locally upper
Lipschitz continuous at any (y, g) ∈ Rm ×Rn by Robinson [21]. Therefore the desired
conclusion holds by Zhou and So [33, Corollary 1]. �

Based on Proposition 2.2, we then prove that the error bound condition (8) holds for
the linear regression problem and the logistic regression problem with a piecewise linear-
quadratic regularizer.

Proposition 2.3: Assume that p(·) is piecewise linear-quadratic. Then the error bound con-
dition (8) holds if h(·) is strongly convex on any compact convex set in Rm. In particular, the
latter property is satisfied by the following two special cases:

(1) (linear regression) h(y) =∑m
i=1(yi − bi)2/2, for some given vector b ∈ Rm;

(2) (logistic regression) h(y) =∑m
i=1 log(1+ exp(−biyi)), for some given vector b ∈

{−1, 1}m.

Proof: Let r>0 be given. Due to the compactness of �, the set {x ∈ Rn | dist(x,�) ≤ r}
is also compact and thus ξ := max{x:dist(x,�)≤r} f (x) is finite. Due to Proposition 2.2, for
this ξ , there exist constants κ , ε > 0 such that

dist(x,�) ≤ κ‖R(x)‖ forall x ∈ R
n with f (x) ≤ ξ , ‖R(x)‖ ≤ ε. (11)
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For any x such that dist(x,�) ≤ r, if ‖R(x)‖ ≤ ε, from (11), we have dist(x,�) ≤ κ‖R(x)‖;
if ‖R(x)‖ > ε, we have dist(x,�) ≤ r = (r/ε)ε < (r/ε)‖R(x)‖. Therefore, it holds that

dist(x,�) ≤ max{κ , (r/ε)}‖R(x)‖, ∀x ∈ R
n satisfying dist(x,�) ≤ r.

Next, consider an arbitrary x ∈ Rn such that dist(x,�) ≤ r. For any y ∈ Tf (x), we have
that x = Proxλp(x+ y− AT∇h(Ax)+ c), and

‖R(x)‖ = ‖Proxλp(x+ y− AT∇h(Ax)+ c)− Proxλp(x− AT∇h(Ax)+ c)‖ ≤ ‖y‖.
Therefore, we have dist(x,�) ≤ max{κ , (r/ε)}‖y‖ for any y ∈ Tf (x). This implies that

dist(x,�) ≤ max{κ , (r/ε)}dist(0,Tf (x)).
Since x is arbitrarily chosen, the above inequality implies that the error bound condition (8)
holds. �

From Proposition 2.3 and Theorem 2.1, the preconditioned PPA, with large parameters
{σk}∞k=0, for solving the linear regression and logistic regression problems with the exclu-
sive lasso regularizer is guaranteed to have fast linear convergence rate. When solving the
weighted exclusive lasso models with the preconditioned PPA presented in Algorithm 1,
it is clear that we need an efficient way to compute the proximal mapping of the weighted
exclusive lasso regularizer.

3. The proximal mapping of the weighted exclusive lasso regularizer and its
generalized Jacobian

Wegive a systematic study of theweighted exclusive lasso regularizer. Specifically, we derive
an O(n log n) procedure to compute the proximal mapping Proxp(·) with p(·) = �G,w(·),
and characterize the corresponding generalized Jacobian. By the definition of�G,w(·), it is
important for us to study Proxρ‖w◦·‖21(a) for any a ∈ Rt , where w ∈ R

t++ is a given weight
vector and ρ > 0 is a given scalar.

3.1. AnO(t log t) procedure to compute Proxρ‖w◦·‖21(·)
The following proposition will be useful in the subsequent analysis.

Proposition 3.1: Given a ∈ Rt . For each i ∈ {1, 2, . . . , t}, we have (Proxρ‖w◦·‖21(a))i = 0 if
ai = 0; (Proxρ‖w◦·‖21(a))i ≥ 0 if ai > 0; and (Proxρ‖w◦·‖21(a))i ≤ 0 if ai < 0.

Proof: For notational simplicity, we denote

z∗ = Proxρ‖w◦·‖21(a) = argmin
z∈Rt

{
η(z) := 1

2
‖z − a‖2 + ρ‖w ◦ z‖21

}
.

First, consider the case when ai = 0. We prove by contradiction. Suppose z∗i �= 0, then we
define a new vector ẑ ∈ Rt as ẑi = −z∗i and ẑj = z∗j for j �= i. By definition, we have ẑ �= z∗

and ρ‖w ◦ ẑ‖ = ρ‖w ◦ z∗‖. Moreover, we can see that

η(ẑ)− η(z∗) = 1
2
‖ẑ − a‖2 + ρ‖w ◦ ẑ‖21 −

1
2
‖z∗ − a‖2 − ρ‖w ◦ z∗‖21
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= −2ẑiai + 2z∗i ai = 4z∗i ai = 0,

which contradicts the fact that z∗ is the uniqueminimizer of η(·). This implies that z∗i = 0.
Next we consider the case when ai > 0. Again, we prove by contradiction. Assume z∗i < 0,
then we define ẑ ∈ Rt as ẑi = −z∗i and ẑj = z∗j for j �= i. It can be see that η(ẑ)− η(z∗) =
4z∗i ai < 0, which contradicts the fact that z∗ minimizes the function η(·) and further
means that z∗i ≥ 0. The case when ai < 0 can be proved in the same manner. �

The following proposition indicates that we only need to focus on computing
Proxρ‖w◦·‖21(|a|) for any a ∈ Rt .

Proposition 3.2: For given ρ > 0 and a ∈ Rt , we have

Proxρ‖w◦·‖21(a) = sign(a) ◦ Proxρ‖w◦·‖21(|a|) = sign(a) ◦ x(|a|),

where x(·) : Rt+ → R
t+ is defined as:

x(d) := argmin
x∈R

n+

{
1
2
‖x− d‖2 + ρ‖w ◦ x‖21

}
= argmin

x∈R
n+

{
1
2
‖x− d‖2 + ρxT(wwT)x

}
.

(12)

Proof: Let sa ∈ Rt be defined as (sa)i = 1 if ai ≥ 0, and (sa)i = −1 if ai < 0. Note that

1
2
‖x− a‖2 + ρ‖w ◦ x‖21 =

1
2
‖sa ◦ x− |a|‖2 + ρ‖w ◦ x‖21

= 1
2
‖sa ◦ x− |a|‖2 + ρ‖w ◦ sa ◦ x‖21,

where the first equality holds as |a| = sa ◦ a and the second equality follows from the fact
that ‖w ◦ ·‖21 is invariant to sign changes. Therefore, we have that

Proxρ‖w◦·‖21(a) = sa ◦ Proxρ‖w◦·‖21(|a|).

It follows from Proposition 3.1 that Proxρ‖w◦·‖21(|a|) = x(|a|) and x(|a|)i = 0 if ai = 0.
Thus, the conclusion holds. �

The next proposition provides an explicit formula for computing x(·) for any d ∈ R
t+.

Since x(d)i = 0 if di = 0, it is sufficient to consider that d ∈ R
t++.

Proposition 3.3: Given ρ > 0 and d ∈ R
t++. Let dw ∈ Rt be defined as dwi := di/wi, for

i = 1, . . . , t. There exists a permutationmatrix� such that�dw is sorted in a non-increasing
order. Denote d̃ = �d, w̃ = �w, and

si =
i∑

j=1
w̃jd̃j, Li =

i∑
j=1

w̃2
j , αi = si

1+ 2ρLi
, i = 1, 2, . . . , t.

Let ᾱ = max1≤i≤t αi. Then, x(d) in (12) can be computed analytically as x(d) = (d −
2ρᾱw)+.
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Proof: The KKT conditions for (12) are given by

x− d + 2ρwwTx+ μ = 0, μ ◦ x = 0, μ ≤ 0, x ≥ 0, (13)

where μ ∈ Rt is the corresponding dual multiplier. If (x∗,μ∗) satisfies the KKT condi-
tions (13), by denoting β = wTx∗, we can see that

x∗ + μ∗ = d − 2ρβw, μ∗ ◦ x∗ = 0, μ∗ ≤ 0, x∗ ≥ 0.

Therefore, (x∗,μ∗) have the representations:

x∗ = (d − 2ρβw)+, μ∗ = (d − 2ρβw)−.

Then our aim is to find the value of β . By the definition of β , we can see that

β =
t∑

i=1
wix∗i =

t∑
i=1

wi(di − 2ρβwi)
+ =

t∑
i=1

w2
i ((d

w)i − 2ρβ)+

=
t∑

i=1
w̃2
i ((�dw)i − 2ρβ)+.

Note that there must exist some index j such that (�dw)j > 2ρβ , otherwise, we have β =
0 and �dw ≤ 0 (equivalent to d ≤ 0), which contradicts the assumption that 0 �= d ≥ 0.
Since �dw is sorted in a non-increasing order, there exists an index k such that d̃1/w̃1 ≥
· · · ≥ d̃k/w̃k > 2ρβ ≥ d̃k+1/w̃k+1 ≥ · · · ≥ d̃t/w̃t . Therefore,

β =
k∑

i=1
w̃2
i ((�dw)i − 2ρβ) =

k∑
i=1

w̃id̃i − 2ρβ
k∑

i=1
w̃2
i = sk − 2ρβLk,

which means that

β = sk
1+ 2ρLk

= αk.

Next we show that β = ᾱ, which means αk ≥ αi for all i. For i< k,

αk − αi = (1+ 2ρLi)sk − (1+ 2ρLk)si
(1+ 2ρLk)(1+ 2ρLi)

=
(1+ 2ρLk)(sk − si)− 2ρsk

∑k
j=i+1 w̃2

j

(1+ 2ρLk)(1+ 2ρLi)

=
(1+ 2ρLk)

∑k
j=i+1 w̃jd̃j − 2ρ(1+ 2ρLk)β

∑k
j=i+1 w̃2

j

(1+ 2ρLk)(1+ 2ρLi)

=
∑k

j=i+1 w̃2
j (d̃j/w̃j − 2ρβ)

1+ 2ρLi
≥ 0.

We can prove that αk ≥ αi for all i> k in a similar way. Therefore, we have that β = αk =
max1≤i≤t αi = ᾱ. Finally, since the solution to (12) is unique, we have

x(a) = x∗ = (d − 2ρβw)+ = (d − 2ρᾱw)+. �
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As a side note, the computational cost of calculating x(d) given any d ∈ R
t+ isO(t log t),

where the most time-consuming step is to sort a t-dimensional vector. Thus, the compu-
tational cost of calculating Proxρ‖w◦·‖21(a) is O(t log t) due to Proposition 3.2.

Remark 3.1: The proximal mapping of ρ‖w ◦ ·‖21 is mentioned in [12, Proposition 4], but
we find that the derivation contains some errors. We use a simple example to demonstrate
the gap. Consider the proximal mapping of ‖ · ‖21 at the point [1, 0.5]T , where we need to
solve

min
x1,x2∈R

{
φ(x1, x2) := 1

2
(x1 − 1)2 + 1

2
(x2 − 0.5)2 + (|x1| + |x2|)2

}
. (14)

Equation (21) in [12] said that

|x1| = 1− 2(|x1| + |x2|), |x2| = 0.5− 2(|x1| + |x2|),
that is |x1| = 2/5, |x2| = −1/10, which contradicts the fact that |x2| should be nonnega-
tive.

Later in 2017, the authors of [28] also proposed a formula for the proximal mapping
of ‖ · ‖21, which is not correct. The problem (14) can also serve as a counterexample. The
solution obtained by the formula in [28, Equation (8)] is x1 = x2 = 0, which is not optimal
to (14) since

φ(0, 0) = 5/8 > φ(1/3, 0) = 11/24.

3.2. The generalized Jacobian of Proxρ‖w◦·‖21(·)
Note that in order to design a second-order type algorithm for solving the dual of the PPA
subproblem, it is critical for us to derive an explicit element in the generalized Jacobian of
Proxρ‖w◦·‖21(·). According to Proposition 3.2, we know that in order to obtain the general-
ized Jacobian of Proxρ‖w◦·‖21(·), we need to study the generalized Jacobian of x(·) first. For
a better illustration, we consider the quadratic programming (QP) reformulation of x(·).
For any a ∈ Rt , if we denoteQ := It + 2ρwwT ∈ St , then (12) can be equivalently written
as

x(a) = argmin
x∈Rt

{
1
2
〈x,Qx〉 − 〈x, a〉 | x ≥ 0

}
. (15)

We first consider the case when a ∈ Rt satisfies Q−1a ≥ 0. In this case, we can derive that

x(a) = Q−1a =
(
I − 2ρ

1+ 2ρwTw
wwT

)
a.

Therefore, x(a) is differentiable on {a ∈ Rt | Q−1a > 0}. Next we consider the case when
there exists i ∈ {1, . . . , t} such that (Q−1a)i < 0. Here, we derive the HS-Jacobian [15]
of x(·) based on the strongly convex QP (15) by applying the general results established
in [10,15]. As one can see from the KKT system (13) and the uniqueness of x(a), the dual
multiplier μ is also unique, which we denote as μ(a). Denote the active set of x(a) as

I(a) := {i ∈ {1, . . . , t} | (x(a))i = 0}. (16)



OPTIMIZATION METHODS & SOFTWARE 501

Since now we consider the case when there exists i such that (Q−1a)i < 0, we know that
μ(a) �= 0, which implies that I(a) �= ∅. Define a collection of index sets:

K(a) := { K ⊆ {1, . . . , t} | supp(μ(a)) ⊆ K ⊆ I(a)},
where supp(μ(a)) denotes the set of indices i such that μ(a)i �= 0. Note that the set K(a)
is non-empty due to the complementarity condition μ(a) ◦ x(a) = 0, μ(a) ≤ 0, x(a) ≥ 0,
and the fact that I(a) �= ∅. Since the B-subdifferential ∂Bx(a) is difficult to compute, we
define the multifunction

∂HSx(a) :=
{
P ∈ R

t×t | P = Q−1 − Q−1ITK
(
IKQ−1ITK

)−1
IKQ−1, K ∈ K(a)

}
,

as a computational replacement for ∂Bx(a), where IK is the matrix consisting of the
rows of It , indexed by K. The set ∂HSx(a) is the HS-Jacobian of x(·) at a when a ∈ {a |
∃ i s.t. (Q−1a)i < 0}. Combining the above two cases, we define the multifunction ∂̂HSx(·):
Rt ⇒ Rt×t as

∂̂HSx(a)

=

⎧⎪⎪⎨⎪⎪⎩
Q−1 if Q−1a > 0{
Q−1−Q−1ITK

(
IKQ−1ITK

)−1IKQ−1 | K∈K(a)} if ∃i s.t. (Q−1a)i<0

Q−1 ∪
{
Q−1 − Q−1ITK

(
IKQ−1ITK

)−1 IKQ−1 | K ∈ K(a)
}

otherwise

(17)

for any a ∈ Rt , which can be regarded as a generalized Jacobian of x(a).
Define the multifunction ∂HSProxρ‖w◦·‖21 : R

t ⇒ Rt×t by

∂HSProxρ‖w◦·‖21(a) =
{
Diag(θ)PDiag(θ) | θ ∈ SGN(a), P ∈ ∂̂HSx(|a|)

}
, ∀ a ∈ R

t ,
(18)

where ∂̂HSx(·) is defined in (17), and SGN : Rt ⇒ Rt is defined as

SGN(z) :=
{
u ∈ R

t : uj ∈
{ {sign(zj)} if zj �= 0

[− 1, 1] if zj = 0 , j = 1, . . . , t
}
.

The next proposition states the reason why we can treat ∂HSProxρ‖w◦·‖21(a) as the general-
ized Jacobian of Proxρ‖w◦·‖21(·) at a.

Proposition 3.4: ∂HSProxρ‖w◦·‖21(·) is a nonempty, compact valued and upper-
semicontinuous multifunction. For any a ∈ Rt , the elements in ∂HSProxρ‖w◦·‖21(a) are all
symmetric and positive semidefinite. Moreover, Proxρ‖w◦·‖21(·) is strongly semismooth with
respect to ∂HSProxρ‖w◦·‖21(·).

Proof: By the definition of ∂HSProxρ‖w◦·‖21(·), we can see that it is a nonempty and com-
pact valuedmultifunction. Fix a ∈ Rt . The symmetry of the elements in ∂HSProxρ‖w◦·‖21(a)
follows naturally by the definition in (18). In order to prove that the elements in
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∂HSProxρ‖w◦·‖21(a) are all positive semidefinite, it suffices to prove that the elements
in ∂̂HSx(a) are all positive semidefinite. The case when Q−1a > 0 is obvious from the
definition of Q. Thus we only need to consider the case when there exists i such that
(Q−1a)i < 0. For any K ∈ K(a), denote ξ ∈ Rt with ξi = 0 if i ∈ K, and ξi = 1 otherwise.
Let� = It − Diag(ξ). After some algebraic multiplications, we can see that

ITK
(
IKQ−1ITK

)−1
IK = (�Q−1�)† = �(�Q−1�)†�,

where the last equality follows from the fact that � is a 0-1 diagonal matrix. Then by Li
et al. [15, Proposition 3], we have

Q−1 − Q−1ITK
(
IKQ−1ITK

)−1
IKQ−1 = Q−1 − Q−1�(�Q−1�)†�Q−1

= (Diag(ξ)QDiag(ξ))† � 0,

which further implies that the elements in ∂HSProxρ‖w◦·‖21(a) are all positive semidefinite.
According to [15, Proposition 2] and the definition of ∂̂HSx(·) in (17), we know that for

the given a, there exists a neighbourhood U of a such that for any a′ ∈ U, ∂̂HSx(|a′|) ⊆
∂̂HSx(|a|) and

x(|a′|)− x(|a|)− P(|a′| − |a|) = 0, ∀ P ∈ ∂̂HSx(|a′|). (19)

By the definition of SGN(·), if we take the neighbourhood U to be sufficiently
small, then we have SGN(a′) ⊆ SGN(a) for any a′ ∈ U. Therefore, it holds that
∂HSProxρ‖w◦·‖21(a

′) ⊆ ∂HSProxρ‖w◦·‖21(a) for all a
′ ∈ U, which implies that ∂HSProxρ‖w◦·‖21

is upper-semicontinuous at a. Since Proxρ‖w◦·‖21(·) is piecewise linear and Lipschitz con-
tinuous, it is directionally differentiable according to [5]. Note that for all a′ ∈ U, since
SGN(a′) ⊆ SGN(a), we have Diag(θ)(a′ − a) = |a′| − |a| with any θ ∈ SGN(a′). There-
fore, from (19), it holds that for any a′ ∈ U,

θ ◦ x(|a′|)− θ ◦ x(|a|)− Diag(θ)PDiag(θ)(a′ − a)

= 0, ∀ θ ∈ SGN(a′), ∀ P ∈ ∂̂HSx(|a′|).
By Proposition 3.1, for any i, if (x(|a′|))i �= 0, then we must have a′i �= 0, which further
implies θi = sign(a′i) for each θ ∈ SGN(a′). Therefore, we know that for all a′ ∈ U,

θ ◦ x(|a′|) = sign(a′) ◦ x(|a′|),
θ ◦ x(|a|) = sign(a) ◦ x(|a|), ∀ θ ∈ SGN(a′) ⊆ SGN(a).

That is to say, when a′ ∈ U,

Proxρ‖w◦·‖21(a
′)− Proxρ‖w◦·‖21(a)−M(a′ − a) = 0, ∀M ∈ ∂HSProxρ‖w◦·‖21(a

′).

Thus Proxρ‖w◦·‖21(·) is strongly semismooth with respect to ∂HSProxρ‖w◦·‖21(·) at a. �

In practice, we always need a specific element in ∂HSProxρ‖w◦·‖21(a) at any a ∈ Rt . In the
following proposition, we provide a highly efficient way to construct one specific element
in ∂HSProxρ‖w◦·‖21(a), which is a 0-1 diagonal matrix plus a rank-one correction.
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Proposition 3.5: Given a ∈ Rt . The following properties hold.

(1) If Q−1a ≥ 0, we have thatQ−1 = I − 2ρ
1+2ρwTwww

T is an element in ∂HSProxρ‖w◦·‖21(a);
(2) If there exists i ∈ {1, . . . , t} such that (Q−1a)i < 0, denote

P0 := Q−1 − Q−1ITI(|a|)(II(|a|)Q
−1ITI(|a|))

−1II(|a|)Q−1,

where I(·) is defined in (16), the matrix

M0 := Diag(sign(a))P0Diag(sign(a)) (20)

is an element in the set ∂HSProxρ‖w◦·‖21(a). Moreover, if we define ξ ∈ Rt with ξi =
0 when i ∈ I(|a|) but ξi = 1 otherwise, and w̃ := (sign(a) ◦ ξ) ◦ w, then M0 defined
in (20) can be computed as

M0 = Diag(ξ)− 2ρ
1+ 2ρ(w̃Tw̃)

w̃w̃T .

Proof: (1) and the first part of (2) follow immediately from the definition of
∂HSProxρ‖w◦·‖21(·). Suppose there exists i such that (Q−1a)i < 0. Similarly to the proof in
Proposition 3.4, we have

P0 = (Diag(ξ)QDiag(ξ))†.
Denote ŵ = ξ ◦ w. Since Q = It + 2ρwwT ∈ Rt×t , it holds that

P0 = (Diag(ξ)QDiag(ξ))† = (Diag(ξ)+ 2ρŵŵT)† = Diag(ξ)− 2ρ
1+ 2ρ(ŵTŵ)

ŵŵT .

Next we show that sign(a) ◦ sign(a) ◦ ξ = ξ . First, we note that ai = 0 implies that
(x(|a|))i = 0, and hence ξi = 0. Thus if ai = 0, then sign(ai)2ξi = 0 = ξi. For the case
when ai �= 0, we clearly have sign(ai)2ξi = ξi. Similarly, we can prove that ŵTŵ = w̃Tw̃.
Now it is easy to see that

M0 = Diag(sign(a))
(
Diag(ξ)− 2ρ

1+ 2ρ(ŵTŵ)
ŵŵT

)
Diag(sign(a))

= Diag(ξ)− 2ρ
1+ 2ρ(w̃Tw̃)

w̃w̃T .

This completes the proof. �

3.3. The proximalmapping of�G,w(·) and its generalized Jacobian
Based on the equality (3) and the previous discussions, we summarize the following propo-
sition, which gives the proximal mapping of �G,w(·) and its corresponding generalized
Jacobian.
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Proposition 3.6: Given ν > 0, and p(·) = �G,w(·). The following statements hold.

(1) The proximal mapping Proxνp(·) can be computed as

Proxνp(x) = PTargmin
y∈Rn

⎧⎨⎩1
2
‖y− Px‖2 + ν

l∑
j=1
‖(Pw)(j) ◦ y(j)‖21

⎫⎬⎭
= PT

[
Proxν‖(Pw)(1)◦·‖21((Px)(1)); · · · ; Proxν‖(Pw)(l)◦·‖21((Px)(l))

]
,

where Proxν‖(Pw)(j)◦·‖21(·), for each j = 1, . . . , l, is defined in Proposition 3.2.
(2) Define the multifunction ∂HSProxνp : Rt ⇒ Rt×t as

∂HSProxνp(x)

=
{
PTDiag(M1, . . . ,Ml)P | Mj ∈ ∂HSProxν‖(Pw)(j)◦·‖21((Px)(j)), j = 1, . . . , l

}
,

where ∂HSProxν‖(Pw)(j)◦·‖21(·), for each j = 1, . . . , l, is defined in (18). Then
∂HSProxνp(·) can be regarded as the generalized Jacobian of Proxνp(·) satisfying the
following properties.
(a) ∂HSProxνp(·) is a nonempty, compact valued and upper-semicontinuousmultifunc-

tion;
(b) for any x ∈ Rn, the elements in ∂HSProxνp(x) are symmetric and positive semidef-

inite;
(c) Proxνp(·) is strongly semismooth with respect to ∂HSProxνp(·).
In addition, we can construct a specific element in ∂HSProxνp(x) according to Proposi-
tion 3.5.

4. A semismooth Newtonmethod for solving the dual of the PPA
subproblem

Note that the key challenge in executing the preconditioned PPA is whether the dual of the
subproblem can be solved efficiently. We will design a highly efficient second-order type
algorithm, which is expected to be superlinearly (or even quadratically) convergent. Before
going into detail of the algorithm design, we first present the following proposition to show
the strict concavity of the function ψk(·), which ensures that the problem (6) admits a
unique maximizer.

Proposition 4.1: Suppose h(·) is convex and twice continuously differentiable. For any ν >
0, Proxνh(z) is differentiable with

∇Proxνh(z) = (Im + ν∇2h(Proxνh(z)))−1, ∀ z ∈ R
m.

Therefore, 0 ≺ ∇Proxνh(z) � Im for any z ∈ Rm, and θ(z) := ‖z‖2/2− Eνh(z) is strictly
convex.

Proof: Define F : R2m→ Rm as F(u, v) = v− u+ ν∇h(v), for all (u, v) ∈ Rm ×Rm.
The optimality condition of minw{ 12‖w− z‖2 + νh(w)} implies that for any z ∈ Rm, there
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exists a unique w such that F(z,w) = 0, which is denoted as Proxνh(z). Let the Jaco-
bian of F with respect to u and v be denoted as JF,u and JF,v, respectively. We have that
JF,v(z,w) = Im + ν∇2h(w) is invertible. According to the implicit function theorem, we
know that there exists an open set U ⊂ Rm containing z such that there exists a unique
continuously differentiable function g : U → Rm such that g(z) = w and

F(u, g(u)) = g(u)− u+ ν∇h(g(u)) = 0, ∀u ∈ U,

∇g(u) = −[JF,v(u, g(u))]−1JF,u(u, g(u)) = (Im + ν∇2h(g(u)))−1, ∀ u ∈ U.

Combining the uniqueness of the function g(·) and the definition of Proxνh(·), we have
that Proxνh(u) = g(u) for all u ∈ U and ∇Proxνh(z) = (Im + ν∇2h(Proxνh(z)))−1. The
remaining part of the conclusion follows naturally since ∇θ(z) = Proxνh(z). �

4.1. A semismooth Newton algorithmic framework

Since ψk is strictly concave and continuously differentiable, the unique maximizer can be
computed by solving the equation

∇ψk(u) = −Proxσkh/τ (Axk +
σk

τ
u)+ AProxσkλp(x

k + σkc− σkATu) = 0. (21)

Note that ∇ψk(·) is Lipschitz continuous, but nondifferentiable. We propose a semis-
mooth Newton (SSN) method to solve (21). The concept of semismoothness can be found
in [13,17,20,24].

From now on, we consider the case when p(·) = �G,w(·). Define the multifunction
∂̂2ψk(·) : Rm ⇒ Rm×m as follows: for any u ∈ Rm,

∂̂2ψk(u) := −σk
τ
∇Proxσkh/τ (Axk +

σk

τ
u)− σkA∂HSProxσkλp(x

k + σkc− σkATu)AT ,

(22)

where ∂HSProxσkλp(·) is defined in Proposition 3.6. The following proposition states
that ∂̂2ψk(·) can be treated as the generalized Jacobian of ∇ψk(·), which follows from
Propositions 4.1 and 3.6.

Proposition 4.2: For the case when p(·) = �G,w(·), the multifunction ∂̂2ψk(·) defined
in (22) satisfies the following properties:

(1) ∂̂2ψk(·) is a nonempty, compact valued, upper-semicontinuous multifunction;
(2) for any u ∈ Rm, all the elements in ∂̂2ψk(u) are symmetric and negative definite;
(3) ∇ψk(·) is strongly semismooth with respect to ∂̂2ψk(·).

Now we present the SSN method for solving (6) in Algorithm 2.
In practice, one can choose the parameters in Algorithm 2 as μ = 10−4, τ̄ = 0.5, γ̄ =

0.005 and δ = 0.5. The following theorem gives the convergence result of the SSNmethod,
which can be proved by using Proposition 4.2 and the results in [31, Proposition 3.3 and
Theorem 3.4], [15, Theorem 3]. For simplicity, we omit the proof here.
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Algorithm 2 A semismooth Newton method for (6)
1: Input: μ ∈ (0, 1/2), τ̄ ∈ (0, 1], and γ̄ , δ ∈ (0, 1).
2: Output: an approximate optimal solution uk+1 to (6).
3: Initialization: choose uk,0 ∈ Rm, j = 0.
4: repeat
5: Step 1. Select an elementHj ∈ ∂̂2ψk(uk,j). Apply the direct method or the conjugate gradient

(CG) method to find an approximate solution dj ∈ Rm to

Hj(dj) ≈ −∇ψk(uk,j), (23)

such that ‖Hj(dj)+ ∇ψk(uk,j)‖ ≤ min(γ̄ , ‖∇ψ(uk,j)‖1+τ̄ ).
6: Step 2. Set αj = δmj , wheremj is the smallest nonnegative integerm for which

ψk(uk,j + δmdj) ≥ ψk(uk,j)+ μδm〈∇ψk(uk,j), dj〉.
7: Step 3. Set uk,j+1 = uk,j + αjdj, uk+1 = uk,j+1, j← j+ 1.
8: until Stopping criterion based on uk+1 is satisfied.

Theorem 4.3: Let {uk,j} be the sequence generated by Algorithm 2. Then {uk,j} converges to
the unique optimal solution ūk+1 of the problem (6), and for j sufficiently large,

‖uk,j+1 − ūk+1‖ = O(‖uk,j − ūk+1‖1+τ̄ ),

where τ̄ ∈ (0, 1] is given in the algorithm.

We should emphasize that the efficiency of computing the Newton direction in (23)
depends critically on exploiting the sparsity structure of the generalized Jacobian. The
practical implementation details are presented in the next subsection.

4.2. Practical implementation of the SSNmethod

In the SSNmethod presented in Algorithm 2, the key step is to compute the Newton direc-
tion, in other words, to solve the linear system (23). In our implementation, we fully exploit
the structured sparsity of the generalized Jacobian which results in a highly efficient way
to solve the linear system.

Denote Ã := APT . By the definition of the permutationmatrixP , Ã can be obtained by
permuting the columns in A according to P . Note that Ã only needs to be computed once
as a preprocessing step of the PPDNA algorithm since P is fully determined by the fixed
group information G. Given (x̃, ũ) ∈ Rn ×Rm and σ , τ > 0, the Newton system (23) is in
the form: (σ

τ
H + σ ÃDiag(M1, . . . ,Ml)ÃT

)
d = R, (24)

where R ∈ Rm is a given vector, H ∈ ∇Proxσh/τ (Ax̃+ σ
τ
ũ), Mj ∈ ∂HSProxσλ‖(Pw)(j)◦·‖21

((P x̂)(j)), j = 1, . . . , l, with x̂ := x̃+ σ c− σATũ. As shown in Proposition 4.1, H is sym-
metric and positive definite. We denote the Cholesky decomposition of H as H = LLT ,
where L is a nonsingular lower triangular matrix. Then we can reformulate Equation (24)
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equivalently as(σ
τ
Im + σ(L−1Ã)Diag(M1, . . . ,Ml)(L−1Ã)T

)
(LTd) = L−1R.

Note that when we consider the linear regression or the logistic regression problems, the
matrix H is in fact a diagonal matrix, which means that we can compute L and L−1 with
very low computational cost. For convenience, we write the linear system in a compact
form as (

Im + τ ÂMÂT
)
d̂ = R̂, (25)

where Â := L−1Ã ∈ Rm×n, M := Diag(M1, . . . ,Ml) ∈ Rn×n, d̂ := LTd ∈ Rm and R̂ :=
τ
σ
L−1R ∈ Rm. Since LT is an upper triangular matrix, we can recover d from d̂ with the

cost of O(m2). In the case of linear regression or the logistic regression problems, the cost
of recovering d from d̂ is actually O(m). Thus, we only need to focus on solving the linear
system (25) for d̂.

Based on the discussions in Proposition 3.5, for each j ∈ {1, . . . , l}, we can chooseMj ∈
∂HSProxσλ‖(Pw)(j)◦·‖21((P x̂)(j)) such that it has the following form:

Mj = Diag(ξj)− 2σλ
1+ 2σλ(w̃T

j w̃j)
w̃jw̃T

j ,

where ξj ∈ R
nj−nj−1 is a 0-1 vector defined as (ξj)i = 0 if i ∈ I(|(P x̂)(j)|), (ξj)i = 1 other-

wise, and w̃j = (sign((P x̂)(j)) ◦ ξj) ◦ (Pw)(j), where I(·) is defined in (16).
We know that the costs of directly computing ÂMÂT and ÂMÂTd̄ for a given vector

d̄ ∈ Rm are O(m2n) and O(mn), respectively. This is computationally expensive when m
and n are large. Next we will carefully explore the second-order sparsity of the underly-
ing Jacobian which will substantially reduce the computational cost for solving the linear
system (25).

For each j ∈ {1, . . . , l}, by taking advantage of the 0-1 structure of ξj and the definition
of w̃j, we have

Mj = Diag(ξj)

(
Diag(ξj)− 2σλ

1+ 2σλ(w̃T
j w̃j)

w̃jw̃T
j

)
Diag(ξj) = Diag(ξj)MjDiag(ξj).

Define Kj := {k | (ξj)k = 1, k = 1, . . . , nj − nj−1}, ξ := [ξ1; · · · ; ξl] ∈ Rn and K := {k |
(ξ)k = 1, k = 1, . . . , n}. It holds that

ÂMÂT = ÂDiag(ξ)Diag(M1, . . . ,Ml)Diag(ξ)ÂT = ÂKDiag(M̂1, . . . , M̂l)ÂT
K, (26)

where ÂK ∈ Rm×|K| is the matrix consisting of the columns of Â indexed by K, and for
each j ∈ {1, . . . , l}, M̂j ∈ R

|Kj|×|Kj| is defined as

M̂j = I|Kj| − cjvjvTj ,

with vj := (w̃j)Kj , cj := 2σλ
1+2σλ(w̃T

j w̃j)
.
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From Equation (26), we can see that the costs of computing ÂMÂT and ÂMÂTd̄
for a given vector d̄ ∈ Rm reduce to O(m2|K|) and O(m|K|), respectively. The reduction
of the computation time is significant, since the sparsity of the solution induced by the
exclusive lasso regularizer implies that |K|  n. Note that when m is moderate, we can
use the Cholesky decomposition to solve the linear system (25) with the computational
cost of O(m3 +m2|K|). For the case when |K|  m, we can use the Sherman-Morrison-
Woodbury formula [8] to further reduce the computational cost of solving (25). To be
specific, we have(
Im + ÂKDiag(M̂1, . . . , M̂l)ÂT

K
)−1 = Im − ÂK

(
Diag(M̂−11 , . . . , M̂−1l )+ ÂT

KÂK
)−1

ÂT
K,

where for each j ∈ {1, . . . , l},

M̂−1j = I|Kj| +
(
c−1j − vTj vj

)−1
vjvTj .

Now, the cost of solving (25) is reduced toO(|K|3 + |K|2m). For the case whenm and |K|
are both large, we can employ the conjugate gradient (CG)method to solve (25), where the
computational cost of each iteration of CG method is O(m|K|).

As one can see, in our implementation, we fully take advantage of the sparsity of the
solution and the structure of the underlying Jacobian to highly reduce the computational
cost of solving the Newton system (23), which makes our SSNmethod efficient and robust
for large-scale problems.

5. Numerical experiments

In this section, we perform numerical experiments to evaluate the performance of our
proposed PPDNA for solving exclusive lasso models from two aspects:

(1) We compare our proposed PPDNA for solving exclusive lasso models with other four
popular algorithms. The numerical results show that the PPDNA outperms other
algorithms for solving the exclusive lasso model by a large margin.

(2) We apply the exclusive lasso models to some real application problems, including the
index ETF in finance, and image and text classifications.

All our computational results are obtained by running Matlab on a windows worksta-
tion (Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz, 64G RAM).

We terminate the tested algorithms when ηKKT ≤ ε, where ε > 0 is a given tolerance,
which is set to be 10−6 by default. To measure the accuracy of the obtained solution by
each algorithm, we use the following relative KKT residual:

ηKKT := ‖x− Proxλp(x− AT∇h(Ax)‖
1+ ‖x‖ + ‖AT∇h(Ax)‖ .

5.1. Performance of the PPDNA for solving exclusive lasso problems

In this subsection, we compare the proposed PPDNA for solving exclusive lasso models
with a given λ > 0 to four popular first-order algorithms: ILSA [11], ADMM with the
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step length κ = 1.618 [6], APG with restart under the setting described in [2] and the
coordinate descent algorithm in the R package ‘ExclusiveLasso’ ,1 which is widely used in
the statistics community. In the experiments, we also terminate PPDNA when it reaches
the maximum iteration of 200, and terminate ILSA, ADMM and APG when they reach
the maximum iteration of 200, 000. We reset the maximum iteration of the algorithm in
the R package ‘ExclusiveLasso’ to 50, 000 to try to obtain a solution with a relatively high
accuracy, and keep all the other settings as default in the solver. Here, we also add one
command in this R solver to let it return the solution of the last iteration if the maximum
iteration has been reached. In addition, we set the maximum computation time of each
experiment as one hour. To demonstrate the efficiency and scalability of the algorithms,
we perform the time comparison on synthetic datasets over a range of scales.

For simplicity, we first take the weight vectorw to be all ones, and the vector c to be zero.
The exclusive lasso model can be described as

min
x∈Rn

⎧⎨⎩h(Ax)+ λ
l∑

j=1
‖xgj‖21

⎫⎬⎭ . (27)

5.1.1. The regularized linear regression problemwith synthetic data
In the model (27), we take h(y) :=∑m

i=1(yi − bi)2/2, where b ∈ Rm is given. Motivated
by Campbell and Allen [3], we generate the synthetic data using the model b = Ax∗ + ε,
where x∗ is the predefined true solution and ε ∼ N (0, Im) is a random noise vector. Given
the number of observationsm, the number of groups l and the number of features p in each
group, we generate each row of the matrix A ∈ Rm×lp by independently sampling a vector
from a multivariate normal distributionN (0,�), where� is a Toeplitz covariance matrix
with entries �ij = 0.9|i−j| for features in the same group, and �ij = 0.3|i−j| for features in
different groups. For the ground-truth x∗, we randomly generate 10 nonzero elements in
each group with i.i.d values drawn from the uniform distribution on [0, 10].

We mainly focus on solving the exclusive lasso model in the high-dimensional settings.
Hence, we fix m to be 200 and l to be 20, but vary the number of features p in each group
from50 to 1000. That is, we vary the total number of features n = lp from1000 to 20000. To
compare the robustness of different algorithms with respect to the hyper-parameter λ, we
test all the algorithms under three different values of λ. The time comparison for ε = 10−6
is shown in Figure 1, which demonstrates the superior performance of the PPDNA, espe-
cially for large-scale instances, comparing to ILSA, ADMM, APG and CD. As one can
observe, for the largest instance with λ = 0.1 or 0.001, PPDNA is at least one hundred
times faster than ADMM, which is the best performing first-order method. We find that
the CD scheme implemented in the R solver can not solve the exclusive lasso problems
with a small λ to a high accuracy within the given maximum number of iterations. For a
better illustration, we also report the time comparison of the five algorithms for a moder-
ate accuracy with ε = 10−4 in Figure 2. From Figure 2, we can see that for large λ = 10,
PPDNAperforms the best, ADMM,APG andCD also give satisfactory performance, while
ILSA gives the worst performance. For median λ = 0.1, PPDNA takes seconds to solve
each problem, while, ADMM, the best performing algorithm in the remaining methods,
needs about tens of seconds. For small λ = 0.001, PPDNA still only needs seconds to solve
each instance. However, ILSA and ADMM each takes up to 100 seconds, and APG and
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Figure 1. Time comparison among PPDNA, ILSA, ADMM, APG and CD for linear regression with an
exclusive lasso regularizer on synthetic datasets (with stopping criterion ηKKT ≤ 10−6).

Figure 2. Same setting as Figure 1 with stopping criterion ηKKT ≤ 10−4).

CD are even unable to solve many instances. These experiments show that PPDNA out-
performs the existing solvers for the exclusive lasso problems under both moderate and
high accuracy scenarios.

More numerical results on higher-dimensional cases (larger m, larger l and/or larger
p) with the stopping criterion ηKKT ≤ 10−6 are shown in Table 1. For testing purposes,
the regularization parameter λ in the problem (27) is chosen as λ = λb‖ATb‖∞, where
0 < λb < 1. As one can see from Figures 1 and 2, APG, ILSA and CD are not efficient
enough to solve large-scale instances. Thus we only compare PPDNAwithADMM in these
higher-dimensional cases. Here, we set the maximum iteration number of ADMM as 500,
000. For the instances in Table 1, PPDNA is able to solve most of the problems within one
minute, whereas ADMM takes dozens of times longer.

5.1.2. The regularized logistic regression problemwith synthetic data
To test the regularized logistic regression problem, we take h(y) =∑m

i=1 log(1+
exp(−biyi)) in (27), where b ∈ {−1, 1}m is given. We use the same synthetic datasets
described in the previous part, except for letting bi = 1 if Ax∗ + ε ≥ 0, and−1 otherwise,
where ε ∼ N (0, Im) is a random noise vector. As one can see in the previous experiments,
APG, ILSA andCDare very time-consumingwhen solving large-scale exclusive lasso prob-
lems compared to PPDNA and ADMM. Thus for logistic regression problems, we only
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Table 1. Comparison between PPDNA and ADMM for linear regression with an exclusive lasso regular-
izer on synthetic datasets.

Iter ηKKT Time

Data (m, l, p) λb PPDNA | ADMM PPDNA | ADMM PPDNA | ADMM
(500, 20, 2000)σmax(A) = 272, cond(A) = 1.9582 1e-3 13(48) | 3278 4.7e-7 | 9.9e-7 0:00:02 | 0:01:05

1e-5 23(103) | 14459 4.2e-7 | 1.0e-6 0:00:05 | 0:06:11
(500, 20, 3000)σmax(A) = 317, cond(A) = 1.7395 1e-3 13(47) | 3777 9.2e-7 | 1.0e-6 0:00:03 | 0:01:52

1e-5 23(101) | 45018 3.9e-7 | 1.0e-6 0:00:06 | 0:28:25
(1000, 20, 2000)σmax(A) = 304, cond(A) = 2.5902 1e-3 11(50) | 3302 1.4e-7 | 9.9e-7 0:00:04 | 0:01:57

1e-5 21(120) | 12986 1.9e-7 | 1.0e-6 0:00:12 | 0:09:47
(1000, 20, 4000)σmax(A) = 386, cond(A) = 1.9742 1e-3 11(45) | 3254 8.5e-7 | 9.9e-7 0:00:05 | 0:03:59

1e-5 22(123) | 27820 3.0e-7 | 1.0e-6 0:00:17 | 0:40:43
(5000, 20, 1000)σmax(A) = 401, cond(A) = 14.1741 1e-3 7(43) | 3576 2.7e-7 | 9.8e-7 0:00:04 | 0:06:25

1e-5 12(165) | 3456 1.3e-7 | 9.9e-7 0:00:50 | 0:06:47
(5000, 50, 1000)σmax(A) = 474, cond(A) = 6.158 1e-3 8(54) | 3664 8.4e-8 | 9.9e-7 0:00:14 | 0:14:25

1e-5 14(181) | 3562 2.2e-7 | 9.9e-7 0:02:25 | 0:14:50
Notes: In the table, ‘13(48)’ means ‘PPA iterations (total inner SSN iterations)’. Time is in the format of
(hours:minutes:seconds). σmax(·) means the largest singular value and cond(·) denotes the condition number of
a matrix, which is the ratio of the largest singular value to the smallest singular value.

Table 2. Time comparison between PPDNA and ADMM for logistic regression with an exclusive lasso
regularizer on synthetic datasets.

Iter ηKKT Time

Data (m, l, p) λb PPDNA | ADMM PPDNA | ADMM PPDNA | ADMM
(500, 20, 5000)σmax(A) = 386, cond(A) = 1.5352 1e-3 16(43) | 2252 3.6e-7 | 1.0e-6 0:00:05 | 0:08:14

1e-5 46(54) | 6249 8.3e-7 | 1.0e-6 0:00:06 | 0:16:31
(1000, 20, 8000)σmax(A) = 503, cond(A) = 1.6212 1e-3 12(47) | 1478 2.5e-7 | 1.0e-6 0:00:12 | 0:18:20

1e-5 67(75) | 6284 9.2e-7 | 1.0e-6 0:00:21 | 0:57:17
(2000, 20, 10, 000)σmax(A) = 595, cond(A) = 1.8496 1e-3 10(54) | 1685 1.9e-7 | 9.9e-7 0:00:31 | 0:57:59

1e-5 45(64) | 2255 5.5e-7 |1.3e-4 0:00:47 | 1:00:02
(5000, 20, 1000)σmax(A) = 401, cond(A) = 14.1741 1e-3 9(85) | 1178 2.6e-7 | 1.0e-6 0:01:21 | 0:52:44

1e-5 13(84) | 1523 3.2e-7 | 1.0e-6 0:02:01 | 0:48:00
(5000, 50, 5000)σmax(A) = 474, cond(A) = 6.158 1e-3 9(68) | 943 8.3e-8 | 1.0e-6 0:01:52 | 0:57:33

1e-5 15(63) | 1350 1.4e-7 |2.4e-4 0:02:37 | 1:00:01
Note: A value in bold means that the algorithm fails to solve the instance to the required accuracy.

compare PPDNAwith ADMM. The numerical results are shown in Table 2, where the reg-
ularization parameter λ in the exclusive lasso problem (27) is chosen as λ = λb‖ATb‖∞.
Again, we can observe the superior performance of PPDNA against ADMM, and the per-
formance gap is especially wide when the parameter λb = 10−5. For example, PPDNA is at
least 160 times faster than ADMM in solving the instance (500, 20, 5000) with λb = 10−5.

5.1.3. Regularized exclusive lasso problemswith non-uniformweights
In order to better assess the robustness and efficiency of our proposed algorithm, we now
move on to the case where the weight vector of the exclusive lasso problem is non-uniform.
Specifically, we consider the weighted exclusive lasso regularized linear regression problem

min
x∈Rn

⎧⎨⎩h(Ax)+ λ
l∑

j=1
‖wgj ◦ xgj‖21

⎫⎬⎭ , (28)
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Table 3. Comparison between PPDNA and ADMM for linear regression with a weighted exclusive lasso
regularizer on synthetic datasets.

Iter ηKKT Time

Data (m, l, p) λb PPDNA | ADMM PPDNA | ADMM PPDNA | ADMM
(500, 20, 2000) 1e-1 18(78) | 7867 7.7e-7 | 1.0e-6 0:00:04 | 0:03:01

1e-3 27(105) | 27,001 5.9e-7 | 1.0e-6 0:00:06 | 0:11:21
(500, 20, 3000) 1e-1 21(92) | 10,995 6.2e-7 | 1.0e-6 0:00:07 | 0:06:39

1e-3 29(108) | 65,933 2.2e-7 | 1.0e-6 0:00:09 | 0:43:05
(1000, 20, 2000) 1e-1 15(64) | 3358 2.5e-7 | 1.0e-6 0:00:06 | 0:01:46

1e-3 25(120) | 33,802 4.7e-7 | 1.0e-6 0:00:13 | 0:22:50
(1000, 20, 4000) 1e-1 19(93) | 9278 2.2e-7 | 1.0e-6 0:00:14 | 0:11:06

1e-3 26(125) | 47,640 8.1e-7 |4.8e-6 0:00:20 | 1:00:00
(5000, 20, 1000) 1e-1 7(37) | 3488 4.4e-8 | 9.9e-7 0:00:05 | 0:05:00

1e-3 9(45) | 3205 3.6e-7 | 1.0e-6 0:00:16 | 0:04:41
(5000, 50, 1000) 1e-1 7(45) | 3258 7.9e-7 | 9.8e-7 0:00:18 | 0:09:31

1e-3 17(100) | 3266 3.8e-8 | 1.0e-6 0:03:26 | 0:09:25

where h(y) :=∑m
i=1(yi − bi)2/2 and w ∈ Rn is a given weight vector. In the experiments,

we generate each element of the weight vector uniformly random on [0, 1] and then follow
the same procedure in Section 5.1.1 to generate the remaining data.

Since ADMM outperforms the algorithms APG, ILSA and CD for solving large-scale
uniformly-weighted exclusive lasso problem, we focus on comparing PPDNA and ADMM
on solving the problem (28). Note that compared to the experiments in Section 5.1.1, we
pick two different choices of the parameter λb to test the robustness of the algorithms as
well as to get reasonable number of non-zero elements in the obtained solutions. Detailed
numerical results are shown in Table 3. We can see that the overall performance of the two
algorithms on the uniformly weighted cases and non-uniformly weighted cases are quite
similar. Specifically, PPDNA can solve most of the instances within twenty seconds, while
ADMM takes much longer computational time.

5.2. Real applications

In this subsection, we apply the exclusive lasso model to some real application problems,
including the index exchange traded fund (ETF) in finance, image and text classifications
in multi-class classifications.

5.2.1. Index exchange-traded fund
Consider the portfolio selection problem where a fund manager wants to select a small
subset of stocks to track the S&P 500 index. In order to diversify the risks, the portfolio is
required to span across all sectors. Such an application naturally leads us to consider the
exclusive lasso model.

In our experiments, we download all the stock price data in the US market between
2018-01-01 and 2018-12-31 (251 trading days) from Yahoo finance ,2 and drop the stocks
with more than 10% of their price data being missed. We get 3074 stocks in our stock uni-
verse and handle the missing data via the common practice of forward interpolation. Then
we denote the historical daily return matrix as R ∈ R250×3074, and the daily return of the
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Figure 3. In-sample andout-of-sampleperformanceof the exclusive lasso, thegroup lasso and the lasso
model for index tracking of S&P 500.

S&P 500 index as y ∈ R250. Since there are 12 sectors in theUSmarket (e.g. finance, health-
care), we have a natural group partition for our stock universe as G = {g1, g2, . . . , g12},
where gi is the index set for stocks in the ith sector.

To test the performance of the exclusive lassomodel in index tracking, we use the rolling
window method [34, Chapter 9] to test the in-sample and out-of-sample performance of
the model. We use the historical data in the last 90 trading days to estimate a portfo-
lio vector via the model for the future 10 days. In each experiment, we scale the feature
matrix A and the response vector b by 1/

√‖A‖F , and select the parameter λ in the range
of 10−3 to 10−5 with 20 equally divided grid points on the log10 scale, using 9-fold cross-
validation. The in-sample and out-of-sample performance of the exclusive lasso model,
the lasso model and the group lasso model is shown in Figure 3. The out-of-sample perfor-
mance of the exclusive lasso model is visibly better than those corresponding to the lasso
and group lasso models.

We plot the percentage of stocks from each sector in the portfolio obtained from the
three tested models in Figure 4. The result shows that the exclusive lasso model can select
stocks from all the 12 sectors, but the lasso model selects stocks only from 10 sectors and
the group lasso model selects stocks only from 7 sectors in the universe.

5.2.2. Image and text classifications
We test the exclusive lasso model on multi-class classifications. For a given k-class classifi-
cation dataset {(ai, bi)}Ni=1, where ai ∈ Rp is the feature vector and bi ∈ Rk is the one-hot
representation of the label, the exclusive lasso regression model for this problem [3,11,32]
is given by:

min
X∈Rp×k

⎧⎨⎩1
2
‖AX − b‖2F + λ

p∑
j=1
‖Xj,:‖21

⎫⎬⎭ , (M1)

whereA = [a1, a2, . . . , aN]T ∈ RN×p and b = [b1, b2, . . . , bN]T ∈ RN×k. The keymotiva-
tion for considering this model is to capture the negative correlation among the classes.
However, the exclusive lasso regularizer may not exclude uninformative features if we
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Figure 4. Percentage of selected stocks by sectors. (a) the exclusive lassomodel. (b) the lassomodel and
(c) the group lasso model.

Table 4. Details of real datasets.

Target problem

Dataset Num. of classes k Num. of samples N Num. of features p (m, n) = (kN, kp) σmax(A) cond(A)

MNIST 10 60,000 784 (600,000, 7840) 1.5e3 Inf
20 Newsgroups 20 11,314 26,214 (226,280, 524,280) 4.7 Inf

penalize X row-wise since it prefers to select at least one representative from each fea-
ture group. This phenomenon has also been discussed in a recent paper [18]. In our
experiments, we consider the following model instead:

min
X∈Rp×k

⎧⎨⎩1
2
‖AX − b‖2F + λ

k∑
j=1
‖X:,j‖21

⎫⎬⎭ . (M2)

The motivation for considering model (M2) is that we can do class-wise feature selections,
since the informative features for different classes are usually not identical. Also, uninfor-
mative features will automatically be excluded by the nature of class-wise feature selections.
In order to show that the newmodel we suggest is meaningful, we first compare the model
performance on two popular real datasets: MNIST [14] and 20 Newsgroups .3 We summa-
rize the details of the datasets in Table 4. Note that, after vectorization, the target problem
size is actually kN × kp.

We train (M1) and (M2) independently on the two datasets. As prior knowledge, a cer-
tain percentage of features are uninformative for these datasets (e.g. background pixels for
the MNIST dataset and some uninformative words for the 20 Newsgroups dataset). Thus
in each experiment, we set a lower bound for the value of λ such that no more than 90%
features are selected by the model. As a result, for the MNIST dataset, we train (M1) with
λ in the range from 10 to 0.1 and (M2) with λ from 10 to 10−3 with grid search and cross-
validation. Similarly, for the 20 Newsgroup dataset, we train (M1) with λ from 1 to 10−3
and (M2) with λ from 1 to 10−6. We summarize the results in Table 5 and Figure 5.We can
observe that, the classification accuracy of the twomodels are comparable, butmodel (M2)
obviously performs better in terms of feature selections. More importantly, as we can see
in Table 5 and Figure 5, for the MNIST dataset, although the numbers of features in each
class selected by two models are close, the total selected unique features of model (M2) is
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Table 5. Model comparison on real datasets.

Dataset Model λ∗ Total selected unique features nnz(X) Training accuracy Testing accuracy

MNIST (M1) 1.0e-1 717 1922 84.01% 84.64%
(M2) 1.0e-3 449 1818 84.03% 84.79%

20 Newsgroups (M1) 1.0e-3 25,714 27,537 88.15% 77.46%
(M2) 1.0e-6 2789 5942 91.70% 79.14%

Figure 5. Model comparison between (M1) and (M2).

Figure 6. Time comparison on multi-class classifications.

much less than that of model (M1). This is because a group of important features which
are selected by model (M2) are shared across different classes, which is consistent to our
prior knowledge since almost all the targeted digits are located at the centre of the images
in the MNIST dataset. On the contrary, model (M1) selects 717 unique features out of the
total 784 features, which means it selects a lot of uninformative features.

From now on, we focus on model (M2) and test the efficiency of our proposed PPDNA
for solving the model with a sequence of hyper-parameters. For the two datasets, we gen-
erate solution paths for λ over the range from 1 to 10−3 with 10 equally divided grid
points on the log10 scale, and 10−3 to 10−6 with 10 equally divided grid points on the
log10 scale, respectively. We compare the computation time for generating the solution
path by PPDNA and ADMMwith or without warm-start strategy. The results are summa-
rized in Figure 6. On the MNIST dataset, the warm-start strategy can reduce 18% and 9%
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of the computation time of PPDNA and ADMM, respectively. Moreover, PPDNA (with
warm-start) is 4 times faster than ADMM (with warm-start) on this dataset. On the 20
Newsgroups dataset, the warm-start strategy can accelerate PPDNA and ADMM by 31%
and 17%, respectively. Moreover, PPDNA (with warm-start) is around 8 times faster than
ADMM (with warm-start) on this dataset.

6. Conclusion

In this paper, we design a highly efficient and scalable dual Newton method based precon-
ditioned proximal point algorithm to solve the exclusive lasso models, which is proved to
enjoy a superlinear convergence rate. As important ingredients, we systematically study the
proximal mapping of the weighted exclusive lasso regularizer and its generalized Jacobian.
Numerical experiments show that the proposed algorithmoutperforms the state-of-the-art
algorithms by a large margin when solving large-scale exclusive lasso problems.

Notes

1. https://github.com/DataSlingers/ExclusiveLasso.
2. https://finance.yahoo.com.
3. https://qwone.com/∼ jason/20Newsgroups/.
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