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Abstract. This paper solves a fundamental open problem in variational analysis on the equiva-
lence between the Aubin property and the strong regularity for nonlinear second-order cone program-
ming (SOCP) at a locally optimal solution. We achieve this by introducing a reduction approach to
the Aubin property characterized by the Mordukhovich criterion and a lemma of alternative choices
on cones to replace the S-lemma used in Outrata and Ramirez [SIAM J. Optim., 21 (2011), pp.
789-823] and Opazo, Outrata, and Ramirez [SIAM J. Optim., 27 (2017), pp. 2143-2151], where
the same SOCP was considered under the strict complementarity condition except for possibly only
one block of constraints. As a byproduct, we also offer a new approach to the well-known result of
Dontchev and Rockafellar [SIAM J. Optim., 6 (1996), pp. 1087-1105] on the equivalence of the two
concepts in conventional nonlinear programming.
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1. Introduction. This paper aims to answer a long-time open problem in vari-
ational analysis: whether the Aubin property of the solution mapping associated with
the canonically perturbed Karush-Kuhn-Tucker (KKT) system and the strong reg-
ularity of the KKT system are equivalent for nonlinear conic programming without
assuming convexity at a locally optimal solution. In the context of nonlinear second-
order cone programming (SOCP) [1], here we completely settle this question by prov-
ing the equivalence of the two concepts in the absence of strict complementarity. To
be precise, we consider the nonlinear SOCP problem of the form

(1.1) Hel'%r}lf(a:) st. hx)=0, ¢(x)€Qj, j=1,...,J

where f: R® - R, h : R® — R™, and ¢/ : R® — R are twice continuously
differentiable functions, and Q; C R is the second-order cone defined by Q; :=
{yeR"™ |j>||ly||}. Here and throughout this paper, the components of vectors
in R are counted from 0 to 7. For a vector y € R'", we use y to denote the
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first component of y and define ¥ := (y1,...,%,) ", the subvector of y with the first
component of y being removed. Moreover, we write y = (¢;y) for simplicity and use
(¢ (x); 3’ (x)) to represent g/ (x) for convenience. The vectors in R” are indexed in
the standard way from 1 to n, for which ||-|| denotes the Euclidean norm. For the case
that 7; =0 in (1.1), we take the convention that Q; :=[0,400), so that (1.1) turns to
the conventional nonlinear programming if r; =0 for all 1 < j < J. For convenience,
we also discuss (1.1) in the more general conic programming form
(1.2) min f(z) st. G(x)eK,

xcX
where X and ) are two finite-dimensional real Hilbert spaces each endowed with an
inner product (-,-) and its induced norm || - ||, £ C Y is a closed convex cone which
is C?-cone reducible (cf. [5, Definition 3.135]) at every y € K, and the two functions
f:X —-Rand G: X — Y are twice continuously differentiable. Given two vectors
a € X and b€ Y, the canonically perturbed problem of (1.2) is given by
(1.3) min f(x) — (a,z) st. G(x)—bek.

zrzeX

Define the Lagrangian function of (1.2) by

L(z,y)=f(z) - (y,G(x)) V(r,y)e X x).
Then, the KKT system of (1.3) is given by
(1.4) a=V.L(z,y) and —yeNc(G(z)-Db),

where Vo L(x,y) denotes the adjoint of J,L(x,y), the partial Fréchet derivative of
L with respect to @, and N is the normal cone mapping over K used in convex
analysis. Moreover, * € X is called a stationary point to (1.2), if there exists a
multiplier y* € Y such that (z*,y*) is a solution to the KKT system (1.4) (with
a =0 and b =0) of (1.2). Then, for the (perturbed) KKT system (1.4), one can
define the solution mapping

(1'5) SKKT("’? b) = {(x’y) | a= Vmﬁ(way), be G(w) + Nk (y)}7

where K*:={y’ €Y |(y',y) >0 Vy € L} is the dual cone of K. At a locally optimal
solution &* to (1.2) with y* being the associated multiplier, i.e., (x*,y*) € SkkT(0,0),
this paper is concerned with the following two conditions:
(i) The solution mapping Skxr in (1.5) has the Aubin property at (0,0) for
(z*,y*), i.e., there exist a constant k >0 and open neighborhoods U of (0,0)
and V of (x*,y*) such that

SKKT<a/a b/> nyc SKKT(G, b) + KH (a’, b/> — ((L b) ||BX><)J
V(a,b),(a’,b") €U,

where By xy denotes the closed unit ball in X X Y centered at the origin.
(ii) The solution mapping Skkr in (1.5) has a single-valued Lipschitz continuous

localization around ((0,0), (x*,y*)), i.e., there exist a constant ' > 0 and

open neighborhoods U’ of (0,0) and V' of (x*,y*) such that Skxr(a,b) NV’

is single valued for (a,b) eU’, and

SKKT(CL,, b/) ny - SKKT(CL, b) Ny + n'||(a’, b/) — (a, b)”BXXy
V(a,b),(a’,b) el
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Note that (ii) = (i) trivially holds. Moreover, according to [30, Corollary 2.2], (ii) is
equivalent to the condition that (x*,y*) is a strongly regular solution (in the sense of
Robinson [30]) of the generalized equation

(1.6) 0€ (vwé((agf)’y)> + (/\A/Ci((f/)ﬂ ’

i.e., there exist two neighborhoods U of the origin (0,0) € X x Y and V of (x*,y*),
respectively, such that for every (a,b) € U, the linearized generalized equation (cf. [6,
Definition 22] or [27, Definition 13]) has a unique solution in V, denoted by ¢y (a,b),
and the mapping qy : U — V is locally Lipschitz continuous. Since the generalized
equation (1.6) is a reformulation of the KKT system (1.4) without perturbation, a
strongly regular solution to (1.6) is also called a strongly regular solution to the KKT
system of (1.2).

Conditions (i) and (ii) belong to central topics in variational analysis, and both
of them imply the constraint nondegeneracy, which holds at a feasible solution & € X
to (1.2) (or ¢ € X is nondegenerate, for simplicity) if

(L.7) JG(x)X +1linTie(G(x)) =,

where lin7Tc(G(x)) denotes the linearity space, i.e., the largest linear space contained
in this tangent cone (in the sense of convex analysis). The original definition of
constrain nondegeneracy takes the form of [4, Definition 2.1], and (1.7) is an equivalent
reformulation given in [6, Definition 16] since K is C2-reducible to a closed convex cone
[6, Lemma 15]. In particular, it is well known [6, Theorem 30] that (ii) is equivalent
to the strong second-order sufficient condition of SOCP (1.1) at «* (cf. (4.6)) and the
constraint nondegeneracy. Moreover, these two conditions have played a key role in
proving the fast linear or superlinear local convergence rates of augmented Lagrangian
methods [9, 19, 13, 25, 36]. Additionally, the strong regularity condition also implies
the full stability of locally optimal solutions for (1.2). One may refer to [22, 24] for
more information.

The most representative case of (1.2) is the conventional nonlinear programming,
for which the equivalence of the conditions (i) and (ii) has been properly addressed
in the seminal work of Dontchev and Rockafellar [12]. Since the proof in [12] is
highly related to the properties of polyhedral convex sets, deriving the equivalence of
the conditions (i) and (ii) with a nonpolyhedral cone K needs new ideas. An initial
important step was made in Outrata and Ramirez [27] (and the erratum by Opazo,
Outrata, and Ramirez [26]) in the setting of nonlinear SOCP (1.1), in which the
KKT system (1.4) without perturbation was formulated to the generalized equation
0eVf(x)+ VG(x)Ni(G(x)) and associated with solution mapping;:

(1.8) Sce(n) :={z|neVf(z)+VG(x)Nk(G(z))}.

Under the assumption that the strict complementarity condition holds except for
possibly only one block of the constraints, the equivalence of (i) and (ii) was proved
in [27] and [26]. As was concluded in [27, section 5], the authors were uncertain
whether such a restriction should be attributed to their proof technique based on the
S-lemma, or the intrinsic property of the second-order cones. Note that, however, for
convex programming, the equivalence between the two concepts is known from [11,
Proposition 5.1]. In a more general problem stetting, including problem (1.2) with K
being an arbitrary closed convex set, a recent work [3, Theorem 4.2] shows that the
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variational sufficient condition for local optimality [31] at «* is a sufficient condition for
the equivalence between (i) and (ii). The restrictiveness of this variational sufficient
condition will be discussed in Remark 4.2. Moreover, if additionally K is a C?-
cone reducible set, another recent work [16, Theorem 5.14] utilized an assumption on
relative interiors of subdifferential mappings to prove the equivalence between (i) and
(ii), and such a condition becomes the strict complementarity condition if (1.1) is the
problem in consideration.

In this paper, we aim to prove the equivalence between the two conditions (i)
and (ii) for SOCP (1.1) without assuming either the convexity or the strict comple-
mentarity. To achieve this, we introduce a reduction approach and propose a lemma
of alternative choices on cones to supersede the S-lemma used in the existing at-
tempts. Moreover, as a byproduct, we offer a new approach to the well-known result
of Dontchev and Rockafellar [12] on the equivalence of (i) and (ii) for conventional
nonlinear programming.

The remaining parts of this paper are organized as follows. In section 2, we provide
some basic definitions and preliminary results in variational analysis. In section 3, we
discuss coderivatives associated with second-order cones. In section 4, we establish
the equivalence between the two conditions (i) and (ii) by using a reduction approach,
in which the lemma of alternative choices on cones developed in section 2 plays a key
role. In section 5, we conclude this paper with some discussions.

2. Notation and preliminaries. Let £ and F be two finite-dimensional real
Hilbert spaces each equipped with an inner product (-,-) and its induced norm || - ||,
and ) be a nonempty subset of £. We use int{) and bdry (2 to denote the interior and
boundary of €, respectively. For a subspace S C &, we use S* to denote its orthogonal
complement. For a given vector u € £, we use dist(u, Q) := inf{||u’ — u|| | v’ € Q}
to define the distance from u to Q2 and use Ig(u) := argmin{|ju’ — u|| | v’ € Q} to
denote the projection mapping. For a nonempty cone K C &, K°:={d' €& |(d',d) <
0 Vd € K} is the polar cone of K, and K*:= —K° is the dual cone of K. For a linear
operator M : £ — F, we use rgeM and kerM to denote its range space and null space,
respectively. It holds that rgeM = (kerM*)L, where M* denotes the adjoint of M.
If £ =F, and M is a self-adjoint operator, we write M > O to say that M is positive
definite. Given a set-valued mapping ¥ : £ = F, we use domV and gph¥ to denote
its domain and graph, respectively. We use I to represent the s X s identity matrix
and use Ogx; (or Oy if s =1) to represent the s X I zero matrix, and we often omit s
and [ if no ambiguity is introduced. For convenience, we use span(-) to represent the
subspace spanned by all the columns of the matrices in the brace.

We present two technical lemmas, which are crucial for our reduction procedure
to be introduced later. The first one is a lemma of alternative choices on cones.

LEMMA 2.1. Let M : & — &€ be a self-adjoint linear operator and QQ C & be a closed
convex cone with intQ # 0. Assume that (u, Mu) >0 for all u € bdry@Q \ {0}. Then
ezxactly one of the following two assertions is true:

(1) {(u, Mu) >0 Vu€intQ.

(2) Jv e —intQ and A >0 such that Mv=—-J v €Q.

Proof. Tt is easy to see that assertion (2) is not true if assertion (1) holds. On
the other hand, suppose that assertion (1) does not hold, i.e., Ju € intQ such that
(u, Mu) <0. Consider the following optimization problem:

(2.1) min{(u, Mu) |u € Q, ||lul|* — 1=0}.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.
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Since the feasible set of (2.1) is compact and (u, Mu) > 0 Yu € bdry@ \ {0}, there
exists a u* € intQ that globally solves (2.1) with (u*, Mu*) < 0. It is also easy
to check that Robinson’s constraint qualification [5, equation (2.182)] holds at u*
for (2.1). Consequently, there exists a multiplier (y,A) € £ x R, together with u*,
satisfying

2Mu 4+ y+22u* =0, v €Q,yeqQ°’, (y,u*)=0, ||u*||2:1.

Since u* € int@ and y € Q°, one must have y =0, so that Mu* = —Au*. Moreover,
one has A = —(u*, Mu*) > 0. Then, by taking v := —u* € —int@Q one has Mv =
—Av € Q. Thus, assertion (2) is true. |

The second lemma is a characterization of positive definite matrices that origi-
nates from [15, Theorem 3.6], and one may refer to [17, Proposition 3.1] for a more
straightforward proof based on the Moreau decomposition.

LEMMA 2.2. Let M be a nonsingular | X I real self-adjoint matriz and K C R! be
a closed convex cone. Then M = O if and only if

(d,Md)>0 vde K\ {0},
(d,M~'d)>0 VdeK°\{0}.

In the following, we present some definitions and preliminary results in variational
analysis. The regular (Fréchet) normal cone to  at u € Q is defined by

No(w):={pe&|(pu —u)<o(|u —ul) Vu'€Q}.

According to [21, Theorem 1.6], the limiting (Mordukhovich) normal cone to Q at u
can be defined by

No(u) == limsup N (u'),

where “limsup” denotes the Painlevé-Kuratowski outer limit. When the set () is
convex, Ng(u) coincides with Ng(u), and both of them are called the normal cone
(in convex analysis [32]) to © at u. Based on the definition of limiting normal cone,
the limiting coderivative of ¥ at w € dom¥ for v € U(u) was defined by

(2.2) DU (u,v)(q):={pef|(p,—q) € Ngphv(u,v)} VqgeF.

If ¥ is single valued, we use D*¥(u) to represent the limiting coderivative for sim-
plicity. Define R, :=[0,4+00) and R_ := (—00,0]. From (2.2), one has for any v < 0
and any u > 0 that

R if ¢=0,

0 otherwise and D*Ng, (u,0)(q) ={0} VgeR.

(23)  D"Ne,(0,0)(q) = {

Also, for any v € R one has
R_ if ¢<0,

(24) DNi, (0,0)()={R if g=0, and D*N{0}<o,v><q>={
0 if ¢>0,

R if ¢=0,

® otherwise.

According to [27, Lemma 19], we have the following result on coderivatives.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/09/25 to 124.233.1.164 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

AUBIN PROPERTY AND STRONG REGULARITY ave

LEMMA 2.3. Let Q C & be a closed convex set with u € Q and v € No(u). Then,
one has p € D*Nq(u,v)(q) if and only if —q € D*llg(u +v)(—q — p).

Thanks to Mordukhovich [20], an extremely convenient tool for analyzing the
Aubin property [2] via the limiting coderivative is available. Such a condition was
named the Mordukhovich criterion in [33]. It implies the following result.

LEMMA 2.4. Let x* be a stationary point to (1.2). Then the mapping Sgr defined
by (1.8) has the Aubin property at (0,2*) if and only if D*Sqg(0,2*)(0) ={0}.

Since K is C?-cone reducible at every y € KC, one can use the second-order chain
rule developed in [27, Theorem 7], which is a generalization of [23, Theorem 3.4], to
get the following result based on repeating the proof of [27, Theorem 20].

LEMMA 2.5. Let x* be a stationary point to (1.2). Suppose that the constraint
nondegeneracy (1.7) holds at x*, and y* is the corresponding multiplier. Then for the
mapping Scr defined by (1.8) one has

D*Scr(0,2¥)(0)
={-d|0e Vi, L(z",y")d + VG (z")D"Nic(G(z"), ~y") (T G(z")d)}.

3. Coderivatives of the second-order cone. Let » > 1 be an integer and
Q:={z=(%2) €R"™ | 2>z} be a second-order cone. From [1, Lemma 15] we
know that for any z,v € Q one has (z,v) =0 if and only if either z=0 or v =0, or
if there exists a scalar a > 0 such that z = a(; —9). For a given vector z € R'",
its spectral factorization associated with Q is given by z = o1(2)ct(2) + 02(2)c?(2),

where
1 . Z
i 2 s

() 2(1’( Y z||> =70
—(1;(-1)'w) if z=0,

and o;(z) =2+ (=D)z||, i=1,2

with w € R” being an arbitrary vector such that ||w| = 1. Then, according to [14,
Proposition 3.3], the explicit formula of IIg can be given as

Mo(z) =max{0,01(2)}c' (2) + max{0,09(z)}c*(z) VzecR™".

It follows from [38] that TIg is almost everywhere differentiable in R'*", and (con-

tinuously) differentiable at all z € R'*" such that 22 — ||2]|> # 0. The Bouligand
subdifferential of Tlg at z € R'™" is defined by

Opllg(z) := {klirrgojﬂg(zk)

zr — z,1lgis differentiable at zk} .

Moreover, the explicit formula of dgllg has been computed in [29, Lemma 14], [7,
Lemma 4], and [18, Lemmas 2.5 and 2.6]. In particular, one has

(3.1)

0pllg(0)=AI (0] U LY w
BI1o(0) = {114r, O14r} U3 5 { 201, + (1 — 2a)ww "

For convenience, define for any z € R'™" (with z # 0) the following two matrices:

(3.2) A(z):=IL4r— % (j) (—1 ||27‘T|\) and B(z):= % (;1') (1 %) .

[E

ael0,1]

weR", [w|[=1, }
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In [28], the limiting coderivative D*IIg was explicitly calculated as in the following
lemma, in which “conv” denotes the convex hull of a set.

LEMMA 3.1. Let r>1 and Q CRY™" be a second-order cone and z,r € RV,
(1) If z € —intQ, then D*Ilg(z)(r)={0}.
(2) If z€intQ, then D*Tlg(z)(r) ={r}.

T

1 Z
(3) If 2 ¢ QU(—Q), then D*Ilg(2)(r) = L | . L
: i () b
, _ Jeonv{r, A(z)r} if (r,c'(2)) >
(4) If z € bdryQ\ {0}, then D*IIg(2z)(r) = {{"‘,A( - otherwise.
conv{0, B(z)r} if (r,c(z))>0,

(5) If z € bdry(—Q)\{0}, then D*ig(z)(r) = {{O,B(z)r} otherwise.

(6) If z=0, then
DI (0)(r) = {9pllg(0)r} U {QN(r— Q)}
u U conv{r, Ar} U U conv{0, Br},

AcA BeB

where the two sets A and B are defined by

_ T

2\ w —ww
1 1 ’LUT T

To develop the main result of this paper, we need the following result on coderiva-
tives of the normal cone mapping to a second-order cone, which is a combination of
Lemmas 2.3 and 3.1.

LEMMA 3.2. Letr > 1 and Q C R be a second-order cone with u € Q and

veNg(u).
(1) If u=0 and v € —intQ, then D*Ng(u,v)(0) =R and D*Ng(u,v)(q) =0
VO#£qeR"™.

(2) IfucintQ and v =0, then D*Ng(u,v)(q) ={0} Vg R'*".
(3) If u € bdryQ\ {0} and v € —bdryQ\ {0}, then for any q € R**" it holds that

D*Ngm,v)(q):{é(gq"“‘3“1“”&) \TGR} if (a,v)=0,

otherwise.

(4) If w€bdryQ\ {0} and v =0, then for any q € R*™" it holds that

|0 i a0,
D*Ng(u,v)(q) = T(l;—) TeR if ((1; ﬁ)q):o,
7T 7 <0 o (1. 0) <0

E

(5) If u=0 and v € —bdryQ\ {0}, then for any q € R*™" it holds that

1| (Pr@) =0 if >0, T( )
{”GR (p.q)=0 if 7<0 } T (N

0 otherwise.

D*NQ (u, ’U)(q) =

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.
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(6) If u=v=0, then the following conclusions hold:
D*Ng(u,v)(0) =R,
v

i

(6a)

(6b) p e D*No(u,v)(q) holds if p.q € —Q.

(6¢) p € D*No(u,v)(q) holds if pe —bdryQ\ {0}, g € R with (p,q) > 0.
(6d) p e D*No(u,v)(q) holds if p € RI", g € —bdryQ\ {0} with (p,q) > 0.
(6e) 0 € D*No(u,v)(q) VgeR™".

Proof. (1) Since w = 0 and v € —intQ, one has u + v € —intQ. From part
(1) of Lemma 3.1 one can see that D*Ilg(u + v)(r) = {0} for all » € R**". By
Lemma 2.3, such a condition implies —r € D*Ng(u,v)(0) for all r € R™" so that
D*No(u,v)(0) =R, Moreover, if there exist two vectors p,q € R such that p €
D*Ng(u,v)(q) with g # 0, one has from Lemma 2.3 that —q € D*Ilg(u+v)(—p—q),
which constitutes a contradiction to the fact that D*Ilg(u + v)(—p — q) = {0}.

(2) Since uw € intQ and v =0, one has u + v € intQ. From part (2) of Lemma 3.1
one can see that D*Ig(u 4 v)(r) = {r} for all » € R'*". Such a condition is
equivalent, by Lemma 2.3, to the condition that D*Ng(u,v)(—r) = {0} for all r €
R'*". Therefore, one has D*Ng(u,v)(q) = {0} for all g € R**".

(3) Note that v € Ng(u). Since u € bdryQ \ {O} and v € —bdryQ \ {0}, one
has from [1, Lemma 15] that —v = —2(4; —u) and —2 > 0. Therefore, one can get
u+tv=((1+2)a;(1—2)u). It follows that u + v ¢ Q U (—Q). Then by part (3) of
Lemma 3.1 one can get D*Ilg(u +v)(r) = {Wr} for all » € R**" where

—_

W =

(S

(u+v @’
! Tt el -
ato (g4 VI i (@) (wt) 2\ & 20 utoua
lz+o] Hu+v|\ latoll  Jlatof? fall 4=0 4= Jlu®

This condition is equivalent, by Lemma 2.3, to the following condition:

(3.3)

D*'No(u,v)(q) ={p|p=—q—r,-Wr=q}={p|Wp=(I-W)q} VqeR'"".
It is easy to see that W (i; —u) =0, so that Wov = 2W (i; —u) = 0. Since W' =W,
the condition Wp = (I — W)q implies that (q,v) = (g + p, Wv) = 0. Moreover, it is
equivalent to

Wp=(I-1W)q

S+ Igl f=0and — I T||2 u+ uz—u'oﬁ_ R L R e T
Spt Tt F=0and — fSup+ 3250 — 35 ﬁ\z’*’:‘ﬁ?@* - 2+ e
S+ [l f=0and Z5p— uzfv H%?ﬁz_fﬁ#ﬂ i

SP+T Tl T =0and (I - ﬁm\z)p:_%(h‘ "[‘5,2)&

Sp+ uuu f =0and (I —us) (p+ Sa) =0

@pe{( q—T;—%f}—l—Tﬁ) \TER},

which, together with (3.3), implies the explicit formulation of D*Ng(u,v)(q).
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(4) Since u € bdryQ \ {0} and v = 0, one has u 4+ v = u € bdryQ \ {0}. From
Lemma 2.3 we know that p € D*Ng(u,v)(q) if and only if —q € D*Ilg(u+v)(—p—q),
which is equivalent, by part (4) of Lemma 3.1, to the following condition:

(3.4)

c conv{—p—q,A(u)(—p—q)} if ((-p—q), (1; —ﬁ) >0, Vp.qe R,
{-p—q.A(u)(-p-q)} otherwise
where the definition of A(u) comes from (3.2). Note that (3.4) holds if and only if
0 1
(3.5) p:( u) L—ig) (P +a),
2\ Tl (1)

QE{[O i = {p (12 = (. (- 5%))

{0,1} otherwise.

Moreover, (3.5) implies

(3.6) (1*9)<(1;*ﬁ>,p>:9<(1;*“%”),q>-

For a given vector g € R we consider the following three cases, based on the value
of ((1; —ﬁ),q), to get the equivalent conditions of p € D*Ng(u,v)(q) from (3.5):

- If ((1; —ﬁ)q) > 0, one cannot take o =1, or else (3.6) fails to hold. When

€ (0,1), by (3.6) one should have <(1;—m)7p> > 0, but one cannot find

a vector p such that (3.5) holds in this case. Therefore, one can only take

0 =0, so that p = 0 by the equality in (3.5). In this case, it is easy to see
that (3.5) holds. Thus, D*Ng(u,v)(q) = {0}.

- If (1, — 7). @) = 0, by (3.6) one has ((1; —q57),p) = 0 whenever g € [0,1).
In this case, (3.5) holds if and only if p = 0. Moreover, when o = 1, (3.
always holds. In this case, (3.5) holds if and only if p = (1, ﬂ;” )p(1; _L\I)
Thus, D*NQ(uvU)(Q) ={r(L; \ul\) |TeR}

- I {(1; —ﬁ),q) < 0, one cannot take o =1, or else (3.6) fails to hold. When
0 =0, it is easy to see that (3.5) holds if and only if p=0. When g € (0, 1),
by (3.6) one should have (( '7%),p> < 0. Therefore, (3.5) holds if and only

fp=7(l—5 ”) with 7:= £(1, ﬂTH)(P—I—q) < 0. Note that such a condition
is valid for any 7 < 0 since p = m € (0,1) always holds. Thus,

a
D*No(u,v)(q) ={r(1;— ) [ 7 <0}.
(5) Since u =0 and v € —bdryQ \ {0}, one has u+v=v € —bdryQ \ {0}. From
Lemma 2.3 we know that p € D*Ng(u,v)(q) if and only if —q € D*IIg(u+v)(—p—q),
which is equivalent, by part (5) of Lemma 3.1, to the condition

57) —qe {conv{o,Bw)(pq)} it (-p—a, (L)) =0, VR

{0,B(v)(—p—q)} otherwise
where the definition of B(v) comes from (3.2). Note that (3.7) holds if and only if
o1 .
(3.8) g=-= (| |> (1, ﬁ’v”) (p+4q) with

‘dl

1))

Ql

[0 5 o )=

{0,1} otherwise.
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Ql

Therefore, one should have g = 7(1; ﬂ) for some 7 € R, and

(3.9) (179)<(1;H%),q>:9<(1;‘ H),p>-

Consequently, one can equivalently reformulate (3.8) to the condition that

Ql

eu‘e\

(3.10)

1 1 . 0,1 if —{p,(1;:2))>2r,
(1—Q)T(ﬁ>zg<5)(1,|”;|)p with p€ 0.1 i <p( U\)> T
Toll 2 \Tel {0,1} otherwise.
- If 7 =0, one can take o = 0 such that (3.10) holds for any p € RY*". Thus,
D*Ng(u,v)(0) =R"*".
- If 7 > 0, one cannot take o =0, or else (3.9) fails to hold. When g € (0,1), by
(3.9) one should have ((1; 72 ”v” ),p> >0, but one cannot find a vector p € R**"
such that f<p,( ST )) > 27. Therefore, one can only take o = 1, so that
((1; Hv\l)’p> ( 9). In this case, it is easy to see that (3.10) holds.
Thus, D NQ(U U)( )={p|(p.q) =0}
- If 7 <0, one has ¢ # 0 by the equality in (3.10). When ¢ =1, (3.10) holds
if and only if ((1; ToT ),p> = 0. When p € (0,1), one has —<(1;ﬁ),p> =
—199<(1, Hv\l)’q> 27(1 9 > 27 if (3.9) holds. Thus, (3.10) holds if and

only if there exists g € (0 1) such that W(l’ ﬁ’v”) =1. Since 7 <0, we
know that (3.10) holds if and only if ((1; ol ),p) < 0. Consequently, one has
in this case that D*Ng(u,v)(q) ={p| (p,q) > 0}.
(6a) Since u=v =0, by (3.1) and part (6) of Lemma 3.1 one has 0 € 9pIlg(u +
v)lig D*g(u+v)(r) for all r € R*". Then by Lemma 2.3 one has D*Ng(u,v)(0) =

R

(6b) Since w = v = 0, by part (6) of Lemma 3.1 one has {Q N (r — Q)} C
D*Tg(u+v)(r) for all » € R, Therefore, for any g € —Q and p € —Q, by letting
r=—p—qone has —q=7r — (—p) € (r — Q). Consequently, p € D*Ng(u,v)(q) for
any g€ —Q and p€ —Q.

(6¢) Since u =v =0, by part (6) of Lemma 3.1 one has for any » € R*™", it holds
that s € D*IIg(u 4 v)(r) or, equivalently (by Lemma 2.3),

(3.11) s—reD*Ng(u,v)(—s) VreR"™",

if s € conv{r, Ar} where A = I 4, — 2(_%,)(1,—w") for some w € R such that
|w| =1 and (r,(1;—w)) > 0. Since p € —bdryQ\ {0} and g € R with (p,q) >0,
by letting s := —q and r := —p — q, one can see that p = s —r. Meanwhile, by letting
w = H%H’ one can get that

(r, (1 —w)) = —(p+q,(1; P+ (p,w) -+ (q,w)
— _p_ g -2\ — _ L ) J.D
(3.12) ——p+<p, I > <q o >— p+ 1Pl + pr(dp + (@ p)
=2||p + =2 > 0.
In this case, one can further define p:= % € (0,1] and obtain that
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(1—o)r + oAr [ ( ) ]
=1-o(p-a)+o|litr—3 (1,-w")|(-p-q)
—a-p (5, ) 0whar s (L, ) 0w

=—q-p+3

(i- ’i?)(l) -8 (W)
=—q-p-— Q(ﬂ + |l <19> —q— zr+9@ﬂyﬂ”2(g>==—%

2l

which, together with (3.12) and the fact that ¢ € (0,1], implies p € D*Ng(u,v)(q)
from (3.11).

(6d) Since u = v = 0, by part (6) of Lemma 3.1 one has for any » € R**", it holds
that s € D*TIg(u 4 v)(r) or, equivalently (by Lemma 2.3),

(3.13) s—reD*Ng(u,v)(—s) VreR"™M",

if s € conv{0, Br}, where B = 1(1;w)(1,w") for some w € R" such that ||w| =1
and (r,(1;w)) > 0. Let p € R™" and q € —bdryQ \ {0} such that (p,q) > 0. By
letting s := —q and 7 := —p — q, one can see that p =s — r. Meanwhile, by letting

w:= —ﬁ, one can see that
(. (150) = —(p+ q, (1) =~ (p.w) i~ (@)
(3.14) ——p— (B~ 1) — i~ (@, ~14) = —p+ (B yy ) — d+llal

= 4B 1 9|q|| > 0.

In this case, one can further define g := % € (0,1] and obtain that

opr=2 () L) p- =4 (,i,) Lwa-2(,,) 0w

-5 ()35 (-5 () o

This, together with (3.13), (3.14), and the fact that ¢ € (0,1], implies that p €
D*Ng(u,v)(q) holds.

(6e) Since u = v = 0, by part (6) of Lemma 3.1 and (3.1) one has for any
r € R™" it holds that r € D*IIg(u + v)(r). This is equivalent, by Lemma 2.3, to
0 € D*Ng(u,v)(—r) for all # € R**". This completes the proof of the lemma. |

S

-QI‘»Q\

4. Equivalence of the Aubin property and the strong regularity. This
section establishes the main result of this paper. The main step is to show that the
strong second-order sufficient condition in Definition 4.1 holds. We will reformulate
the Mordukhovich criterion for the Aubin property of Sqg to the necessary condition
in Corollary 4.7. Moreover, by specifying a basis for the affine hull of the critical
cone in Corollary 4.8, we can put our discussion in a space with a lower dimension
(Lemma 4.9). Finally, by extensively utilizing Corollary 4.7 and Lemma 2.1, we obtain
the strong second-order sufficient condition by Propositions 4.10 and 4.11, in which
successive dimension reduction is involved.

Let * be a locally optimal solution to (1.1) with y* = (A\*, u*) being an associated
multiplier. Note that any index j € {1,...,J} belongs to one and only one of the
following 6 sets:
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Ju={jl g (@) =0, () € int%}
Jo={j|g’(x*) €intQ;, (u*)’ =0},

W Js = {jlgj(w*),( *)d eb.dryQ]\{O}h
Ji:={j|¢(x*) =0, (u*) €bdryQ;\ {0}},
Joi={j| ¢’ (2*) €bdryQ; \ {0}, (w7’ =0},
Jo:=1{j|g’(x")=0,(u") =0}.

For simplicity, J; U Js is abbreviated to J 2, J1 UJy U J3 is abbreviated to Ji 2.3, etc.
For an index set I C {1,2,3,4,5,6}, |J;| denotes the cardinality of the set J;. Note
that when r; =0, j must belong to Ji 2. Recall from [6, Lemma 25] that, for each
j=1,...,J, the tangent cone of Q; at g’(z*) is given by

R if j€Jy,
(42) TQj (g] (w*)) = Qj if ] S J1,4,6a
{v e R | (9,57 (x*)) — 0g (x*) <0} if j€ J35.

Furthermore, by [6, Corollary 26] the critical cone C(x*) can be given by

Jh(x*)d=0,

Jg (x*)d=0 VjeJ,
(43)  C(a")=qdeR"| Jg/(z*)decTo,(¢’(x*)) Vjc€Jss,

Jg (@)d e Ry ( u*), (B*)?) Vjé€Js,

(T¢ (z*)d, (n*)7) = Vje s

Moreover, if * is nondegenerate, according to [6, equation (47)], the affine hull of the
critical cone C(x*), i.e., the smallest subspace that contains the critical cone, can be
formulated as

Th(z*)d =0,

Y n| Jg(x*)d=0 VjeJi,

W) afC@) =R 7o @)de R((i) (7)) Ve,
(T @)d, () =0 Vi€ Js

In the following definition, the second-order and strong second-order sufficient condi-
tions for (1.1) come from [6, Theorems 29 and 30].

DEFINITION 4.1. Let &* be a stationary point of the nonlinear SOCP (1.1). We
say that the second-order sufficient condition holds at x* if there exists an associated
multiplier (A*, u*) such that

(4.5) (d, (V2 L(x* X, 1)+ H(z*, p*))d) >0 Vdel(z*)\ {0},

. . . * * J * *
where V3, L is the Hessian of L with respect to x, and H(x*, u*) =Y 75_ H;(x*, p*)
with

) gy (1 0T>.79j(:v*) if (") € bdryQ; \ {0}
v 0 -1, o
O, otherwise.
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We say that the strong second-order sufficient condition holds at x* if there exists an
associated multiplier (X*, u*) such that

(4.6) (d, (V2 L(x* X*, p*)+H(z",pn*))d) >0 Vdeaff(C(z*))\ {0}

Similarly, we say that the strong second-order necessary condition holds at ©* if there
exists an associated multiplier (A*, u*) such that

(4.7) (d, (V2 L(x* X, 1)+ H(z",p*))d) >0 Vdeaff(C(z*)).

Remark 4.2. We will show that (V2 L(z*, A", p*) + H(z*, n*))d # 0 for all
d € aff(C(x*)) \ {0} (Corollary 4.7) if the Aubin property of Skxr holds. Conse-
quently, we devote our main effort to proving that the strong second-order necessary
condition (4.7) holds to obtain Proposition 4.11. In [3, Theorem 4.2], by assuming
that the variational sufficiency for local optimality [31] holds, the authors established
the equivalence between the Aubin property of SxxT and the strong regularity of
(1.6) for stationary points. It can be observed from [31, Theorem 3 and Example
1] that for the conventional nonlinear programming, i.e., a special case of (1.2) with
ry =--- =1y =0, the variational sufficiency for local optimality is a sufficient condi-
tion for the strong second-order necessary condition (4.7). Therefore, making such an
assumption is very close to directly assuming the strong second-order sufficient con-
dition (4.6). In contrast, we will derive the strong second-order sufficient condition
solely from the Aubin property of Sxxr without assuming the variational sufficiency
as in [31].

4.1. Implications of the Aubin property. In this subsection, we introduce
a reduction approach to the Aubin property of Sgr (1.8) characterized by the Mor-
dukhovich criterion, for recasting it into a more accessible form. For convenience, we
make the following assumption.

Assumption 4.3. The point x* is a nondegenerate locally optimal solution (i.e.,
(1.7) holds at «*) to (1.1) with y* = (A", u*) being the associated multiplier, and the
index set {1,...,J} is classified by (4.1).

Thanks to Lemma 2.5, we can get the following coderivative-based characteriza-
tion for the Aubin property of Sgr (1.8).

LEMMA 4.4. Under Assumption 4.3, the mapping Sge in (1.8) has the Aubin
property at the origin for x* if and only if for all d € aff(C(x*))\{0} it holds that

V2, L(x* N, u*)d ¢ rgeVh(x*)
(4.8) T o , , )
— 4> Vg (@")p’ ) P’ € D"No, (¢’ (x), (")) (T ¢’ (x")d)
Jj=1

Proof. Since Assumption 4.3 holds, according to Lemmas 2.4 and 2.5 we know
that the mapping Sgg in (1.8) has the Aubin property at the origin for «* if and only
if for all d € R™\ {0},

Vaa L@ X", u")d ¢ — Vi(z")D*Nioy (h(z*), = X") (T h(z")d)

J
(4.9) B Zng(:B*)D*NQj (¢ (x%), — (")) (T g (z)d).
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From (2.4) we know that D*Nyoy(h(z*), =A")(Th(x*)d) = R™ if Jh(z*)d = 0 or,
else, it is an empty set. Therefore, (4.9) holds whenever Jh(x*)d # 0. Next, if
0 #£ d ¢ aff(C(x*)) satisfies Jh(x*)d = 0, according to (4.4), one can always choose
an index j such that at least one of the following three conditions holds:

j€Ji and Jg¢'(x*)d+#0,
j€Ji and Jg/(x*)d ¢ R((i*);— (")),
jeJs and (Jg¢’(x*)d,(n*)7) #0.

-If j € J; and Jg’(z*)d # 0, by (4.1) one has ¢g’(x*) = 0 and (u*)? €
intQ;. Then one can get D*Nog, (¢7 (x*), —(1*)7)(T ¢’ (x*)d) = 0 by part (1)
of Lemma 3.2 (or (2.3) if r; =0).

-IfjeJyand T’ (x*)d ¢ R((f*)7; —(m*)?) holds, one can get from (4.1) that
¢/(x*) =0 and (p*)? € bdryQ, \ {0}, so that (j2*)7 = ||(@*)’||. Then by part
(5) of Lemma 3.2 one has D*Ng, (¢/ (*), —(pn*)?) (T ¢ (x*)d) = 0.

- If j € J3 and (T ¢’ (x*)d, (u*)?) # 0, one has from (4.1) that (u*)7, ¢’ (x*) €
bdryQ; \ {0}. Then one has D*Ng, (¢/ (x*), —(n*)?)(T ¢’ (x*)d) = @ by part
(3) of Lemma 3.2.

In summary, according to the above discussions, we know that (4.9) holds automati-
cally whenever d ¢ aff (C(x*))\{0}. Therefore, (4.8) is equivalent to (4.9). O

The following lemma, as an application of the reduction approach developed in
[5, section 3.4.4] for constraint systems, provides a convenient tool for characterizing
the affine hull of the critical cone (4.4) via the null space of a given matrix.

LEMMA 4.5. Suppose that Assumption 4.3 holds. Define the matriz
: E:= @) {T g (@) Yjen; { ()] Tg (@*)}jen: {S] Tg (@) }jen)
(4.10) (Th(a*); {T ¢ (@)Y jen; Y] T (@) }jess (8] T’ (&)} jen)

where the columns of each matriz S; € RFTDXTi span a basis of {((1*)7; —(*))}+.
Then, one has aff(C(x*)) = kerZ. Moreover, = has full row rank.

Proof. The first conclusion comes immediately from (4.4) and (4.10). Next, we

show that Z is surjective. Let ¢° € R™, {¢7 e R""7} ¢, {¢7 € R}jey,, and {é‘] €
R}, be arbitrarily given. Define

{¢’ ::06R1+Tf}jeJ256,{c-j = S } and {¢7:= (57 8,)71¢'}
o JEJ3

()72 jeds

One can see from (1.7) that there exist vectors d € R" and vl € lin(To, (¢?(x*)))
such that Jh(z*)d = ¢® and J¢’ (x*)d+ v/ = ¢’ for all j =1,...,.J, where by (4.2)
the linearity space of the tangent cone takes the following form:

R'*7i if j € Ja,
(4.11)  lin(Tg, (¢’ (2"))) = { {0} if j € Jia6,

{veR™™ | (0,57 (%)) — 0§ (%) =0} if j € Jys.
Then, by using (4.11) one has Jh(z*)d = O ATF (x*)d =Y jes, (T () d+vT =
¢ Yiess, and {T ¢ (2*)d = ¢’ }je,. Moreover, for all j € Js, it holds that

(Tg’ (x")d, (n*)7) = (¢ — v, (u*)) = (¢, (n*)) = ¢

Meanwhile, for all j € Jy, it holds that S;'—jgj(:c*)d = S;-'—Cj = éj. Therefore, we
know that = has full row rank since it is surjective. This completes the proof. ]
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Under Assumption 4.3, one can define the symmetric matrix © € R"*" by

(4.12) 0:=V2_L(x* X\, u*) — Z (M*)j Vgl (z*) <(1) OTT ) Jg (x*).

J *
o7, 9 ()

Based on Lemma 4.5, we further reduce the condition in Lemma 4.4 for characterizing
the Aubin property of the solution mapping Sgg (1.8).

PROPOSITION 4.6. Suppose that Assumption 4.3 holds. Let © € R™ " be the
matriz defined in (4.12), and H € R™" be a matriz with full column rank such that
rgeH = aff(C(x*)). Then, the mapping Sgg in (1.8) has the Aubin property at the
origin for * if and only if for all v € R*\ {0},

(4.13)

H'OHv¢-H' ¢ Y V¢ (a)p'| p) e D'No, (¢’ (&"), — (1)) (T ¢’ (") H)

Jj€Ja 5.6

Proof. In this setting, we know from Lemma 4.4 that the mapping Sgg (1.8) has
the Aubin property at the origin for «* if and only if (4.8) holds. For a given vector
d € aff(C(x*))\{0}, one can get from (4.4) that J¢’(x*)d =0 for all j € J;. Then by
part (1) of Lemma 3.2 (or (2.3) if r; = 0), D*Ng, (¢’ (z*), —(n*)))(T ¢ (x*)d) = R'*"5
holds for all j € J;. Meanwhile, one has that D*Nog, (g7 (x*), —(n*)?) (T ¢? (x*)d) =
{0} holds for all j € J, by part (2) of Lemma 3.2 (or (2.3) if r; =0). Furthermore, if
j € J3, one has (7 ¢’ (x*)d, (u*)?) = 0. Then by part (3) of Lemma 3.2 it holds that

D*No, (g (@), ~(1*)7)(T ¢’ (2")d)
—{(- e - fne + e ) IreR} vied,

g7 (x*)

where €7 := Jg’(z*)d. Note that

Y U )
@) (3 T @ T Te)
u 1 0—r (o e G (e . gj( ) :
gﬂ(w*)vg( )(0 5, )ren e (15 vien

Therefore, by the above discussions and (4.12), the condition (4.8) can be equivalently
written as for all d € aff(C(x*)) \ {0} it holds that

(414) ©dgR—-{ > ng(w*)pj‘pjGD*NQj(gj(w*)’*(M*)j)(jgj(w*)d) ;

J€Ja,5,6

where R is the subspace defined by
R :=span ({Vh PU{Vy (x }jeJl U{ng(:v*)(ﬂ*)j}jgs) .

Note that rgeH = aff(C(x*)). Hence, (4.14) holds if and only if for all v € R*\ {0} it
holds that

(4.15)

OHVER S > Vg (@")p’ | p' € D"Ng, (¢ ("), —(n))(T ¢’ (x")Hv)

j€Ja 5.6
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Therefore, the proof of the proposition is finished if (4.13) and (4.15) are equivalent.
On the one hand, suppose that (4.13) does not hold, i.e., there exists a nonzero
vector & € R? such that

(4.16)
HTOHo=—H" S Vgi(z*)p! with p’ € D"No, (¢ ("), — (")) (T ¢ (&) HD).
Jj€Ja5.6
Then, one has OHD + 3, ;. Vg’ (x*)p’ € kerH . Let = be the matrix defined in
(4.10). Then, for any ¢° € R™, {¢? € R"™"7}ic s, {¢7 € R}jey,, and (& e R }e,
one has
T (0. f¢i (eI e
— (C {C }j€J17{C }jeJ37{C }j6J4)
=Vh(@)¢"+ > Vg (@) + D V() (w) + ) Ve (=
jeJi jeJ3 JjE€J4
Since ker(HT) = aff(C(z*))" = rge= ", by defining R := R Uspan({V¢i (x *)S;tieds)
one can get
OHPER - { ¥ Vgila)p! | P €D N, (g ("), —(u*)j)(Jgﬂ‘(m*)Hm}.
j€Ja5.6

Note that for any j € Jy one has from (4.1) that (u*)7 € bdryQ; \ {0}. Meanwhile, as
Hv € aff (C(x*)), one has from (4.4) that
*)d

) N PPN v _ J N i

T @) HD =773~ (7)) = 7)) (1575 ) =70y (1 -7ty )
with 7; € R. Recall that the columns of S; span a basis of {((4*)7;—(m*)7)}*.
Consequently, we know that (S C ,J ¢ (x*)Hv) = 0 for any C € R". Then by part
(5) of Lemma 3.2 one has

—5,¢ €D No, (¢ (&), —(w* V) (T g’ (&) Hi) V&' €R™T Vje s,
Recall from (4.16) that p’ € D*Ng, (¢’ (*), —(p*)?)(T ¢’ (x*) HD). Meanwhile, for
any j € Jy, it holds that (p/ — Sjéj, J¢ (x*)HD) = (p?, T g’ (x*)H¥). Then, it is easy
to see from part (5) of Lemma 3.2 that
P —5;¢ €D No, (¢ (=), — (W) ) (T ¢’ (x")HD) V¢ €R™ V)€ .
Consequently, (4.15) does not hold.

On the other hand, suppose that (4.15) is not true. Then there are vectors and real
numbers € RY, ¢° e R™, {¢7 e R*"" Y e, {¢7 € RYjes,, and {p/ € R Yiedise
such that

OHD =Vh(z*)¢"+ > Vg (@)¢/ + > IV (@) (w) - > Vi(z
JjE€J1 JEJ3 Jj€Ja 5,6

with pj € D*No, (¢ (x*), —(n*)!) (T g/ (x*)HD) for all j € Jy56. Then, for any
v € R, by noting that Hv € aff(C(x*)) and using (4.4) one can get
(v, HTOHD) = (Hv,©HD)

= (Th(z*)Hv, (") + Y (Tg;(=")Hv,¢7) + > (T (@") Hu, (1))

Jj€N JEJ3
- Z <HV7v9J($*)pj>:_ Z <V7HTv.gj(m*)pj>'

Jj€Ja5.6 Jj€Ja5.6
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Since v can be arbitrarily chosen, one can get H OHD = — Zj€J4,5,6 H'Vg (z*)p’,
which contradicts (4.13). This completes the proof. |

The following result is a direct consequence of Proposition 4.6.

COROLLARY 4.7. Suppose that Assumption 4.3 holds. Let © € R™ "™ be the
matriz given in (4.12), and H € R™ be a matriz with full column rank such that
rgeH = aff(C(x*)). Then the mapping Sgr in (1.8) having the Aubin property at the
origin for x* implies that for all v € RY \ {0} it holds that

4.1 HTOHv ¢ — T 1.5 | P €D Np 15)(0,0)(G;v),
(417 OHv ¢ {jeZJ;;,ngp +j§6g]p p’ € D*Ng,(0,0)(G;v ’

where each G; is either a vector in R’ or a matriz in RU+73)%¢ defined by

(@) —(p*)) " Tg'(x*)H  Vje s,
(4.18) Gj =1 (¢ (x*); =g’ (x*) " T g/ (x*)H Vje s,
Jg (x*)H Vi€ Js.

Moreover, the matric HT ©H € R“ is nonsingular.

Proof. Let 0 # v € RY be arbitrarily chosen. For j € Jy, one has from (4.4)
that Jg¢/ (z*)Hv = 7;((1*)7; —(p*)7) with 7; € R. Meanwhile, from (4.1) one has
¢/(z*) =0 and (p*)? € bdryQ; \ {0}. Then by part (5) of Lemma 3.2 and (4.18) one
has p/ € D*Ng, (¢7 (x*), —(u*)?)(T ¢’ (x*)Hv) if and only if

p’ R if Gv =0,
(Jg(x*)Hv,p’) =0 if Gjv >0,
(Jg’(x*)Hv,pl) >0 if Gjv <0,

which, by (2.4), is equivalent to —(J ¢ (x*)Hv,p’) € D*Njg 400)(0,0)(G;v).

For j € Js, from (4.1) one has ¢/ (z*) € bdryQ; \ {0} and (p*)7 = 0. Therefore,
by part (4) of Lemma 3.2 one has p’ € D*Ng, (¢’ (z*), —(p*)?)(T ¢’ (x*)Hv) if and
only if p’ = pi (¢7 (2*); —g? () with

P eRif Gjv =0, P =0if Gjv >0, and p’ <0if Gv <0.

By (2.4), the above condition on p’ is exactly p’ € D*No,4+)(0,0)(G;v). Further-
more, one has ¢g/(z*) = (u*)? = 0 for j € Js. Therefore, (4.13) in Lemma 4.6 is
equivalent to

Y H'Vg (" )p'+ X G/ + X G/ p
Jj€Js ) Jj€Js Jj€Js
(419) HTOHv¢—{ —(Tgi (") Hv,p) € D*Nig.100)(0,0)(G;v), j € Ji,
p:l. € D*/\[[O,+oo) (070)((]]”)7 .7 S J57
p’ GD*NQJ(O,O)(QJ‘I/), jE€Jg
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Note that for j € J4, one has

{67919 €D N1 000G}
pPER i ((0*)s—(m*)) T¢’ (x*)Hv =0,

=G/ | pPP=0 if (o) —(n*)) Tg' (x*)Hv >0,
P <0 if ()75 — (%)) T T gl (x*)Hv <0

—pl €R'T if Gv=0,
HVg (@) | —~(T¢ (@) Hv.p/)=0 if Gv >0,

—(J¢ (x*)Hv,p?) <0 if Gjv <0
—{HTVg @ |~ (T9 (@) Hy.p) € D N o) 0.0)G,) )

N

Therefore, (4.17) is a consequence of (4.19).

Suppose that there exists a nonzero vector v € R' such that HTOHv = 0. In
this case, one can take p’ = 0 for all j € Jy6 and p’ =0 for all j € J5 to get valid
coderivatives in (4.19) via (2.4) and part (6e) of Lemma 3.2. This contradicts (4.19),
so the matrix H " ©H is nonsingular, which completes the proof. ]

We have the following result for supplementing Corollary 4.7.

COROLLARY 4.8. Suppose that Assumption 4.3 holds. Let © € R™ "™ be the
matriz defined in (4.12), and H € R™* be a matriz with full column rank such that
rgeH = aff(C(x*)). For G; defined in (4.18), one has

(4.20) rge ({g] }].6]41576) — R‘J4’5‘+ZJ‘EJG(1+”),
where {Gj}jer, 56 15 the matriz with rows being Gj.

Proof. For the given vectors ¢/ € R (j € Jy5) and ¢/ € R (j € Jg), we show
that there exists a vector v € R® such that G;v = ¢/ for all j € Jy5 and Gjv = ¢J
for all j € Jg. Recall that the constraint nondegeneracy condition (1.7) holds at x*.
Then, for the given vectors z/ € R**" defined by

zi:=0 if je J1)2’37 zJ = % if je J4,
2i=¢ ifjeds, and zii=SEENEEN it je g,

there always exists a vector d € R™ such that
Th(z*)d=0 and Jg¢’ (z*)d + v’/ =27 with v’ €lin (T, (¢’ (x*))) Vi=1,...,J,

where lin (7o, (¢?(z*))) is defined in (4.11). It can be routinely examined from (4.4)
that d € aff(C(x*)). Moreover, since H has full column rank such that rgeH =
aff(C(x*)), there exists a unique vector v € R® such that Hv =d. For all j € .J4, one
has v/ = 0, so that by (4.18) one can get Gjv = ((1*)7;—(p*)?) " Jg¢/ (z*)Hv = (7.
Furthermore, for j € Js, one has (v7,§7(z*)) — 977 (x*) = 0. Thus by (4.18) one has

Giv= (¢ (x");—g' (&))" T¢’ (@) Hv = (§ («"); =5’ (")) T (=7 —v’) = (.
Finally, for j € Js, one has from (4.18) that v/ = 0 and G;v = J¢/(x*)Hv = ¢’.
Consequently, we know that (4.20) holds, which completes the proof. 0

Note that in the reduction procedure introduced above, we have reduced the
original condition (4.9) for characterizing the Aubin property of Sgg to the condition
(4.17) in Corollary 4.7. The former condition is related to all the constraints in the
nonlinear SOCP (1.1), while the latter condition is only related to the blocks at which
the strict complementarity does not hold.
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4.2. Deriving the strong second-order sufficient condition. Here we re-
formulate the second-order optimality conditions (4.5) and (4.6) to fit (4.17) in Corol-
lary 4.7.

LEMMA 4.9. Suppose that Assumption 4.3 holds. Let © € R™™" be the matrix
given in (4.12), and H € R™ " be a matriz with full column rank such that rgeH =
aff(C(x*)). Then the second-order sufficient condition (4.5) is equivalent to

(4.21) (v, HTOHV)>0 VYveV\{0},
where V is the closed convex cone defined by
(4.22) vz{ueRf’gjuzo,vj'eJ%, GiveQ; VjeJG}

with each G; being defined in (4.18). Moreover, the strong second-order sufficient
condition (4.6) is equivalent to HTOH = O.

Proof. According to the definition of © in (4.12), one can rewrite (4.5) as
(4.23) (d,0d) >0 VvdeClC(x*)\ {0},

where the critical cone C(x*) is given by (4.3). Since H € R™** is of full column rank
and rgeH = aff(C(x*)), from the definition of the critical cone in (4.3) and its affine
hull in (4.4), one can see that the second-order sufficient condition (4.23) is equivalent
to (4.21) with

V.= {UERZ

Jg (") Hv € R ((); —(B*)’) Vj€Ja,
Jg’ (x*)Hv € To, (¢’ (x7)) Vi€dse |

Based on the explicit formulations of the tangent cones in (4.2), one can reformulate
V as the one in (4.22). The conclusion on the strong second-order sufficient condition
directly comes from the fact that rgeH = aff(C(x*)). This completes the proof. O

Let © € R™*" be the matrix given in (4.12). Suppose that Assumption 4.3 holds
and that H € R™* is a matrix with full column rank such that rgeH = aff(C(x*)). To
prove the strong second-order sufficient condition, i.e., HTOH = O, we construct a
series of symmetric matrices of different dimensions and prove that they are positive
definite.

We further suppose that (4.17) holds with G; (j € Ju5,6) being defined by (4.18).
For convenience, for each integer ¢ € {1,...,|Js56|}, we assign it a unique index
J € Jus,6 denoted by j;. Without loss of generality, we assume that

(424) jla"'aj|J4\g=]4 and j\.]4|+17"'7j\.]415\g‘]5~
Then one can write (4.18) as follows

() —(@* )T T (x*)H,  i=1,...,|Ju,
(4.25) Gj, =1 (¢ (x*); —g7 (a:*))Tjgﬁ (x*)H, i=|Ja|+1,...,|Jusl,
Jg’ (x*)H, i=|Jas|+ 1, ase

Recall from Corollary 4.7 that H'©H is nonsingular and (4.20) holds. Based on
(4.25), we can define the following matrices recursively,

(4.26)
RiERMﬁH’l)X(Z?i), Z.:1a"'a|(]4,5 )
Ri c R(Z_i+1_zz;l\14,5|+l rjk) x (l_i_zi=‘J4’5‘+1 rjk>7 = |J475| + 1, ey |J4,576|
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such that
(4.27) rge R; = ker (G, P;_1),

where Py € R“* is the identity matrix and

(4.28)
P;:=R; x Ry x -~ x R e R™*(79), i=1,...,|Jasl,
Pi:=Ry xRy x -+ x R esz(f_i_zi=u4,5\+1”k), i=|Jus| +1,...,| a5l

In addition, define the matrices Ty := H ' ©H and

(429) T;:=P'H'"OHP,=R] x--- xR ToRy x---x R;, i=1,...,

It is obvious from (4.27) that each P; has full column rank. Moreover, we have the
following result, which is the most crucial step in our analysis.

PROPOSITION 4.10. Suppose that Assumption 4.3 holds. Let © € R™ "™ be the
matriz given in (4.12) and H € R™* be a matriz with full column rank such that
rgeH = aff(C(x*)). Suppose that (4.17) holds. For the matrices defined in (4.26),
(4.28), and (4.29), one has that each T; is nonsingular, and

(4.30) G, Pi-1]T (G, Pica]" = O Vi=1,...,

Proof. Since (4.17) holds in this setting, by using (4.24) we can get that, for any
v eR"\ {0},

(4.31)
[Ja5] ) [Ja,5,6] ) Jji € D* N, (0 0)(g I/)
HTOHv ¢ — Tpii 4 Tpie | P €Y Nooo) 0 0H5:1), |
’ {2 Tl i:\g:,smg“p P’ € D"No, (0,0)(G;,v)

We first show that for any k € {0,...,|Js5|} and any 5 € R*"%\ {0}, it holds that

(4.32)

[Ja,5] _ [J4,5,6] Jji ¢ D* N ( ,0)(G;. Pim),

T _pT ngj7 + ng] ‘ p A 0,400) G L KT ]
g —F {i—%:ﬂ ’ i:\EH-l p"ED NQ] (0,0)(Gj: Prm)

Recall that Ty = HT©H. Then, by (4.31) we know that (4.32) holds for k = 0. If

1<k <|Jys|, one has from (4.28) that G;, Py fg] Ri X Ry X -+- x Rj. Then one can

get from (4.27) that G;, Pym =0 for any n € R and all i=1,...,k. Thus, by (2.4)

we know that (4.31) implies that, for any € R*™%\ {0}, it holds that

H'"O©HPyn ¢ span ({gjt}izl,“.,k)

[Ja,5] [Ja,5,6] -
(4.33) Z T j Z . | P eD* Ny (0,0)(Gj; Pem)
_ g i + gT Ji y " [ 7+OO) ) Ji ?
i=k+1 ,,PJ i=|Jy,5]+1 P p"eD NQu (0,0)(Gj; Prm)

Note that PG = 0 for all i = 1,...,k, so that {G] }i—1, . x C kerP. More-
over, as P—r € R(l Bl has full row rank by definition, the dimension of kerPT
is exactly k Then by Corollary 4.8 we know that span({g i}zfl,..w ) = kerPk

Suppose to the contrary that (4.32) cannot be true. That is there exist a non-
zero vector j € R scalars p/i € R for all i = k + 1,...,]|Ja5], and vectors
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pe RHTJ& for all i = |Jy 5|+ 1,...,|Jas5.6| satisfying p?* € D* N 100y (0,0)(G;, Peiy)
and p’* € D*Ng, (0,0)(G;, Pi), such that

[Ja,5] , [Ja,5,6] )
Tyn=P/H ©HPn=—P/ < > G+ X Q;ﬁ“) )
i=kt1 i=|Jas|+1

Then one has

[Ja,5] ) [Ja,5,6] .
H'OHPwq+ Y Glpii+ Y Gl p' ekerP] =span ({G] }iz1,..)
i=k+1 i=|Ja5|+1

which contradicts (4.33). Particularly, if 77 = 0, one can take p* = 0 and p’* = 0
due to (2.4) and part (6e) of Lemma 3.2. Therefore, we know that (4.32) holds and
T}, is nonsingular.

Next, we show that for any k€ {|Jy5|+1,...,|Js5,6|} one has

(4.34)
[J4,5,6] ) ) -
Tyn ¢ 7PI: { Z g;[p]m pli e D*NjS (070)(gjipk77)} Vne Reik \ {O}a
i=k+1

where k:=k + Zf:lh.slﬂ T, I [Jus| +1<k<|Jys5,6], from (4.28) one has G;, P, =

Gj,R1 X Ry x --- X Ry,. According to (4.27) one can get G;, P,n =0 for any n € R¢F
and any i = 1,...,k. Then, by (2.4) and part (6a) of Lemma 3.2 (or (2.4) if r; = 0)
we know that (4.31) implies that, for any n € R*7%\ {0},

(4.35)

[Ja,5,6] . .
HTOHPn ¢ span ({ng}izlk) — { > ngip“ pli e D*./\/'jS (0,0)(gjiPkn)} .
i=k+1

Note that P,IQ; =0 for all : = 1,...,|J475|~ and P,;'—g; = O(é_;c)x(l_w“) for all
i= |J4’5\ +1,...,k. Moreover, since P,;'— e RFIX has full row rank, one has
{gj—-:}izl,...,\J4,5\ U {Spang;}i:|(]4)5|+1,...,k C kerP,) .

Then by Corollary 4.8 we know that span ({gjt}i:17,__,k) = kerPkT. Suppose on the

contrary that (4.34) is not true, i.e., there exist a nonzero vector 7 € R** and vectors
ﬁ]i € R1+Tji (’L =k+ 1, ceey |J4,576|) such that

[J4,5,6] . )
Tyn=P H'"OHP,n=—-P,) ( > ngiﬁ]i) and p’i € D*./\/'jS (0,0)(G;, Pem).
i=k—+1
Then one can get
[Ja,5,6] N
HTOHPm+ Y. G p" cker(P])=span({G] }i=1.. k),
i=k+1

which contradicts (4.35). Therefore, (4.34) holds, and it is easy to see that T} is
nonsingular.
In the following, we separate the proof of (4.30) into three cases:
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(1) Suppose that there exists an index ¢ € {1,...,|Js4|} such that

[gJL L= 1] [gjL L— 1] <0.

Let k:=¢—1in (4.32). According to (2.4) and part (6e) of Lemma 3.2, one can fix
all p/t =0 and all p/i =0 in (4.32) for all i # «. By doing this one can obtain that

(436) Tioin#—PLiGlp VpED N 100)(0,0)(G), Pim) Vme R\ {0}

From (4.25) one has G;, = ((4*)7; —(*)7) T T g7 () H. Then, by defining the vector
n:=T_4(G;, P._1]" one can get
(4.37)

(") —(B)"), T g (&) HPmin) = Gj, Piean = [G;, P ] T4 (G5, Piea] T <0.
It can be easily observed from (2. 4) that p:= —1€ D*N{g 1+00)(0,0)(G;, P.—1m). Mean-
while, one has T,_1n =[G;, P._1]" = —P," ;G p. However, this contradicts (4.36), so

that (4.37) fails. Therefore, (4.30) holds for all i € {1,.. \J4\}
(2) Suppose that there exists an index ¢ € {|J4| +1,...,|Js5|} such that

[gjb L= 1} [gj ] <0.

Let k:=¢—1in (4.32). According to (2.4) and part (6e) of Lemma 3.2, one can fix
all p/t =0 and all p/i =0 in (4.32) for all i # «. By doing this one can obtain that

(438) Toin#-PLiGlp VpED N 100)(0,0)(G), Pim) ¥ne R\ {0}

From (4.25) one has G;, = (¢’ (x*);—g’(x*)) Tg¢’(x*)H. Then, by letting
n:=T_4(G;, P._1]" one can get

(4.39)
(5" (@) =g (@) Tg* (@) HPoo1n = Gy, P = [0, P13 (65, Pia] T <0,

Thus, it can be easily observed from (2.4) that p:=—1¢&D* j\/[o +oo)(0 0)(G;, P.—1m).
Moreover, by the definition of n we have T,_1n =[G, P,— T = P—r 1g =— LT,ngTLp.
However, this contradicts (4.38), so that (4.39) fails. Therefore, (4. 30) holds for all
ie{|Jal+1,...,|Jusl}

(3) Suppose that there exists an index ¢ € {|Ja 5| +1,...,|Js5,6]} such that

(4.40) [Gj, P—1]T,24[G;, P—a] T # O.

Let k :=¢— 1 in (4.34). According to part (6e) of Lemma 3.2 (or (2.4) if r; o),
one can fix p/i = 0 in (4.34) for all i # . By doing this and using the fact that
k=k+ Zt \Ja 5|41 3. one can obtain that

(441)  T,im#-Pl.G]p VpeD'Ng, (0,0)(G; P,1n) YneR'*\{o}.

Note that kerP"; = span({g }i=1,...—1). Moreover, recall frorn (4.27) and (4.28)
that each P; has full column rank. Suppose that [G;, P,_1]T,_ [gj, i 1] T is singular,
i.e., there exists a nonzero vector § € R*"9 such that [QJL 1 T74[G,, P_1]T6=0.
Then, on the one hand, if f := T.-}[G; P._1]7@ = 0, one has P, Qj—'jé =
[gjLPL,l]Té =0, so that

G110 espan({G] }i=1.....-1),
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but this contradicts (4.20) of Corollary 4.8. On the other hand, if ) # 0, one has
from the fact G;, P,_1f) = 0 and part (6a) of Lemma 3.2 (or (2.4) if r; = 0) that
-6 e D*Ng, (0,0)(G;, P._17). Moreover, one can see that T, 17 = [QjLPL_l]Té =
—PLT_lngL(—é), which contradicts (4.41). Therefore, [G;, P,_1]T,"}[G;, P.—1]" is non-
singular. Then, one can define the matrix M := ([G;, P,_1]T,_[G;, P.—1] ") ™"

For a vector ¢ € R one can define p := —Mq and 5 := —T,"}(G; P,_1] " p.
Then one has G;, P,_1n = q and, consequently, T,_1n = —[G;, P,_1]'p=—-P,",G/p.
Moreover, since (4.41) holds, one obtains that

(4.42) —~Mq#D*No, (0,0)(q) VgeR" .

Next, we show that (4.40) cannot be true. We first consider the case that r;, =0.
If (4.40) holds in this case, by setting ¢ = [G;, P,_1]T,_}[G;, P.—1]T < 0, one has
—M~'q = —1 < 0. Then, by (2.4) we know that —Mgq € D*Ng, (0,0)(¢), which
contradicts (4.42). Consequently, one has [G;, P,_1]T,_%[G;, P,—1] " > 0 in this case. In

the following, we deal with the case that r;, > 1. First, we shall prove that
(4.43) (6,M~10)>0 VOcbdryQ; \{0}.

Suppose on the contrary that there exists a vector @ € bdryQ; \ {0} such that
(,M~16) < 0. By taking q := M8, one has (—0,q) > 0. Then, by part (6¢)
of Lemma 3.2 we know that —Mg=—0 € D*Ng,, (0,0)(q), which contradicts (4.42).
Therefore, (4.43) holds. Second, we shall show that the following holds:

(4.44) (6,M~'0)>0 VOcintQ;,.

For the purpose of contradiction, assume that (4.44) does not hold. Since the matrix
M~ is nonsingular and symmetric, we know from (4.43) and Lemma 2.1 that there
exists a nonzero vector p € —intQ;, such that g:=—M~'p € —Q;, . From part (6b) of
Lemma 3.2 one can see that —Mq =p € D*Ng, (0,0)(q), which contradicts (4.42).
Therefore, (4.44) holds. Third, we shall show that

(4.45) (€, M&) >0 VEe Qs \ {0},

Since Qj, is a self-dual cone, one has Q7 = —Q; . On the one hand, if there exists
a nonzero vector & € —bdryQ;, such that (é, Mé> <0, then we know from part (6d)
of Lemma 3.2 that —M§ € D*Ng, (0,0)(£), which contradicts (4.42). Therefore, it
holds that '

(4.46) (€, Mg)>0 VE&ehbdryQ? \ {0}.

On the other hand, if there exists a vector & € —intQ;, such that @,M@ <0, we
obtain from (4.46) and Lemma 2.1 that there exists a nonzero vector v € —intQ;,
such that Mv € Q;,. Then, one has (v, Mv) <0, i.e., (Mv), M~*(Mv)) <0. This
contradicts either (4.43) or (4.44) since 0 # Mwv € Q;,. Thus (4.45) holds. Combining
(4.43), (4.44), and (4.45) we know from Lemma 2.2 that (4.40) does not hold. This
completes the proof. ]

Based on the previous discussions in this section, we can establish the following
result on the strong second-order sufficient condition.
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PROPOSITION 4.11. Let * be a locally optimal solution to the nonlinear SOCP
(1.1) with y* = (A", u*) being an associated multiplier. Let the index set {1,...,J} be
classified as in (4.1). Assume that the solution mapping Skxt given in (1.5) has the
Aubin property at (0,0) for (x*,y*). Then the strong second-order sufficient condition
(4.6) holds for (1.1) at x*.

Proof. Since the solution mapping Sk in (1.5) has the Aubin property at (0, 0)
for (x*,y*), we know that the mapping Sgg in (1.8) also has the Aubin property at
the origin for *. Then, by [10, Corollary 25] the constraint nondegeneracy condition
(1.7) holds at * and the second-order sufficient condition holds (4.5) at *. Therefore,
Assumption 4.3 holds.

Let © € R™ " be the matrix defined in (4.12), and H € R™*¢ be a matrix with full
column rank such that rgeH = aff(C(x*)). From Corollary 4.7 we know that (4.17)
holds with G; (j € Ju5,6) being defined by (4.18). Furthermore, one knows that (4.20)
holds by Corollary 4.8. Then, based on (4.24) and (4.25), one has (4.30) holds for the
matrices R;, P;, and T; defined in (4.26), (4.28), and (4.29) by Proposition 4.10.

From Lemma 4.9 we know that (v, H' ©Hv) >0 Vv € V\ {0}, where V is defined
in (4.22). Therefore, one has

(4.47)
(v,H'"OHV)>0 YO#vcliny = {u eR’

gjl.V:O’ 1§i§|=]4,5|7
gjil/: O, ‘J4’5| SZS |J4’5’6| ’

On the one hand, if v € linV, one has G; v = 0. From (4.27) one has rgeR; =
ker (G;, Py) = ker G, , so that v € rgeR; = rgeP;. Furthermore, if one has v € rgeP,_;
for a certain ¢ € {2,...,]|Js 56|}, one can get from (4.27) that rge R; = kerG,, P;_;.
Then from the definition of lin) in (4.47) one can see that v € rgeP;_1 R; = rgeP;.
Consequently, one can get by induction that

(4.48) vergePy, , 4

On the other hand, if (4.48) holds, then it is easy to see from (4.27) that v € lin}V
holds. Therefore, v € linV if and only if (4.48) holds. Consequently, by (4.47) one has
(v,HTOHv) >0 forall 0 £ v € rgeP s, ; ;- This is equivalent, by (4.28) and (4.29),
to the condition that

(4.49) T,=P'H'OHP, =R/ T, 1R; = O with i=|Jy5¢]|

Recall that each R; defined in (4.26) has full column rank and each P; in (4.28) also
has full column rank. From Corollary 4.8 we know that each G, is surjective. Then
by (4.27) we know that

(450) (rgeRi)o :rge[gjiPi,l]T Vizl,...,|J4,5’6|.
Recall from (4.30) of Proposition 4.10 that
(4.51) (G, Pia]T,41Gj Pica] T = O with  i=|Jus6]-

Based on (4.49), (4.50), and (4.51), one can apply Lemma 2.2 to get T}, ; sj-1 = O.
Furthermore, for any index ¢ € {2,...,|Js 56| — 1}, if one has

(4.52) T,=R/T, 1R; = O,
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one can get from (4.30) of Proposition 4.10 that [G;, Pi—1]T;_}[G;, Pi—1] T = O, which,
together with (4.50) and (4.52), implies T;_; > O by Lemma 2.2. Therefore, one can
get Ty = H"OH = O by induction. Note that rgeH = aff(C(x*)) and © € R™*" is the
matrix defined in (4.12). Then from Lemma 4.9 we know that the strong second-order
sufficient condition (4.6) holds. ad

4.3. The equivalence theorem. The main result of this paper is given in the
following theorem.

THEOREM 4.12. Let * be a locally optimal solution to the nonlinear SOCP (1.1)
and y* = (A", u*) be a corresponding multiplier. The following two statements are
equivalent:

(1) the solution mapping Skxt in (1.5) has the Aubin property at (0,0) for

(", y");

(2) the solution (x*,y*) is strongly regular to the generalized equation (1.6).

Proof. Note that (1) is an immediate consequence of (2). On the other hand, if (1)
holds, we know from [10, Corollary 25] that «* is nondegenerate and the second-order
sufficient condition (4.5) holds at x*. Consequently, it follows from Proposition 4.11
that the strong second-order sufficient condition (4.6) holds. Thus, by using [6, The-
orem 30] we know that (2) holds. This completes the proof. d

Theorem 4.12 establishes the equivalence between the Aubin property and the
strong regularity for the nonlinear SOCP (1.1) at local optimal solutions without
requiring the strict complementarity. Moreover, Theorem 4.12 implies its counterpart
for conventional nonlinear programming ([12, Theorems 1, 4, and 5]) as a special case
as one can take r; =0 for all j=1,...,J.

According to Theorem 4.12, Sk in (1.5) having the Aubin property at (0, 0) for
(z*,y*) is also equivalent to many other conditions, such as (a) * is nondegenerate
and the uniform second-order growth condition [5, Definition 5.16] holds at x* (by [6,
Theorem 30]); (b) &* is a nondegenerate and fully stable [24, Definition 4.1] locally
optimal solution (by [24, Theorem 4.8]); and (c) Clarke’s generalized Jacobian of a
KKT system is nonsingular (by [37, Theorem 3.1]). One may refer to the relevant
references for details.

5. Conclusions. In this paper, we established the equivalence between the
Aubin property of the perturbed KKT system and the strong regularity of the KKT
system for nonlinear SOCP problems at locally optimal solutions. Our results extend
beyond prior work by removing the restrictive condition |Jy U J5 U Jg| < 1 required
in [27, 26]. We achieved this by introducing a novel reduction approach to derive
the strong second-order sufficient condition from the Aubin property of the perturbed
KKT system, in which the lemma of alternative choices on cones we developed here
plays an essential role. Our findings prompt further investigations into whether the ap-
proach introduced here could lead to similar equivalences for a broader range of (conic)
optimization problems. Recently, for nonlinear semidefinite programming (SDP) [35],
[8] achieved the same equivalence after the announcement of this work, but their
approach leverages properties specific to nonlinear SDP. While SOCPs can be re-
formulated as SDPs, simultaneous satisfaction of constraint nondegeneracy can fail
[34, 5], implying that the results in [8] cannot carry over to SOCPs.! The equivalence

1To see this, one may consider the nonlinear SOCP of minimizing f(xo,z1) := %(1(2) + 2x0 +
22) subject to (w0,z1) € {(z0,21) | To > |z1|}, together with its equivalent SDP reformulation of

minimizing f(zo,z1) subject to (39 74 ) = 0, as an illustrative example.
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between the Aubin property and the strong regularity for general optimization prob-
lems, particularly those with nonpolyhedral C2?-cone reducible constraints, remains
an open question. We leave this as one of our future research topics.
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