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Abstract
In this paper, we present a method to certify the approximation quality of a low rank
tensor to a given third order symmetric tensor. Under mild assumptions, best low rank
approximation is attained if a control parameter is zero or quantified quasi-optimal low
rank approximation is obtained if the control parameter is positive. This is based on a
primal-dual method for computing a low rank approximation for a given tensor. The
certification is derived from the global optimality of the primal and dual problems,
and is characterized by easily checkable relations between the primal and the dual
solutions together with another rank condition. The theory is verified theoretically for
orthogonally decomposable tensors as well as numerically through examples in the
general case.
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1 Introduction

LetR be the field of real numbers and Sm(Rn) be the space of symmetric tensors with
real entries of order m and dimension n for positive integers m and n. When m = 2,
S2(Rn) is the space of symmetric n × n real matrices. A tensor A ∈ Sm(Rn) can be
represented by its entries ai1...im with i j ∈ {1, . . . , n} for all j ∈ {1, . . . ,m}. In this
paper, we will focus on third order symmetric tensors, i.e., m = 3, which is the most
important case in several applications [36]. In the set S3(Rn), there is the fundamental
set of decomposable tensors, i.e., tensors of the form x⊗3 for a vector x ∈ R

n , where
x⊗3 is a short hand for

x ⊗ x ⊗ x ∈ S3(Rn)

whose (i1, i2, i3)-entry is xi1xi2xi3 for all i1, i2, i3 ∈ {1, . . . , n}. A third order sym-
metric tensor A ∈ S3(Rn) has (real symmetric) rank r if it can be represented as (cf.
[7])

A =
r∑

i=1

λix
⊗3
i for some λi > 0 and ‖xi‖ = 1 with i = 1, . . . , r (1)

and a decomposition of the form (1) with a summand strictly smaller than r does not
exist. The rank of a tensor A is denoted as rank(A). A rank one decomposition of a
given A ∈ S3(Rn) is a decomposition as in (1), and it becomes a rank decomposition
if r = rank(A). It is a fact that each tensor A ∈ S3(Rn) has a rank decomposition as
(1) [7].

In this paper, we consider the following problem, which is termed as the best rank-r
approximation problem:

inf

{
1

2

∥∥A − B
∥∥2 : rank(B) ≤ r

}
(2)

for a given tensor A ∈ S3(Rn) and a positive integer r . Usually, r is assumed to
be small, and thus it is also called the best low rank approximation problem. The
prefix “inf" in the optimization problem (2) instead of “min" is due to the fact that
the constraint set is not necessarily closed and hence the optimizer may not exist,
which is emphasized by De Silva and Lim [12]. Therefore, the following assumption
is necessary.

Assumption 1 There exists a best rank-r approximation for the given tensor A, i.e.,
problem (2) has an optimal solution.

Assumption 1 is assumed throughout this paper. Under Assumption 1, the “inf" in
problem (2) can be strengthened as “min".

Tensors (a.k.a. hypermatrices) have become a standard tool in a wide variety of
applications and mathematical sciences [28, 31, 35, 36]. Particularly, it is one of
the foundations in multilinear algebra. A fundamental topic in this area is tensor
decomposition, which finds a decomposition of the given tensor via rank one tensors
with the smallest possible length (cf. (1)). A companion but with the same importance
is the best low rank approximation for a given tensor, which is a cornerstone in several
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disciplines, especially in applications where data is collected with noise and thus
approximation is prevalent [16]. The best low rank approximation problem for a given
tensor has a rich literature, see [6, 7, 11, 16, 24, 28, 31] and references therein.

In this paper, we will focus on symmetric tensors. A second order symmetric tensor
is the symmetric matrix in the usual sense. However, many crucial properties change
dramatically if we switch from second order symmetric tensors to higher orders, e.g.,
the possible nonexistence of optimizers for (2) [12]. Behind this unfavorable phenom-
ena is that the rank of a tensor has more complicated but rich features, such as the
NP-hardness to compute it as established by Håstad [17], the nonsymmetric rank dif-
fers from the rank as noted by Shitov [48]; we refer the reader to [7, 31] and references
therein for more information. However, despite of these mysteries, many favourable
properties, such as the celebrated Alexander–Hirschowitz theorem [1] which identifies
all the generic ranks, and Kruskal’s theorem on the uniqueness of the rank decompo-
sition [30], make methods based on symmetric tensor approximation/decomposition
unbelievably appealing in a wide range of applications, such as blind source separation
[8].

The developments of the symmetric tensor approximation problem are based on
the decomposition problem, cf. (2). The symmetric tensor decomposition problem,
also known as the Waring decomposition in the algebraic geometry literature [52],
has attracted considerable attentions even very recently, such as Balllico and Bernardi
[2], Bernardi, Gimigliano and Idà [3], Brachat, Comon, Mourrain and Tsigaridas [5],
Comon and Mourrian [9], Nie [41], and Oeding and Ottaviani [45], etc.

The other side of the coin is the symmetric tensor best low rank approximation
problem. It is particularly preferable in applications, see [16, 28]. For example, a low
rank approximation can reduce the complexity of manipulating anm-th order symmet-
ric tensor of dimension n from O(nm) to O(n), which is important and indispensable
for applications where n is large and computational cost such as O(nm) is prohibitive.
The matrix case (i.e., m = 2) is resolved by well-developed techniques in both theory
and algorithms [15]. However, in contrast to the matrix counterpart, the higher order
equivalents are still under investigation and several key problems must be resolved
first. Besides the possible nonexistence of optimal solutions [12], there are challenging
issues such as the NP-hardness even just to obtain the best rank one approximation
[20], etc. Therefore, it is an important research topic in the community. For the case
r = 1, i.e., the best rank one approximation, there are extensive research done, such as
Kofidis and Regalia [26], Kolda and Mayo [29], Nie and Wang [44], Qi [46], Zhang,
Ling and Qi [55], etc. For general r , alternating minimization techniques are adopted
to solve (2), see the survey [6, 16] and references therein. While very good numer-
ical performances were observed, there is a lack of theoretical justification on what
is found, such as global optimality certification, approximation quality guarantees,
etc, which are long standing fundamental questions for best low rank approximation.
A very recent progress is made by Nie [42], in which a method is proposed using
generating polynomials and it can find a quasi-optimal solution if the given tensor is
sufficiently close to the targeted low rank one.

In this paper, we will study the fundamental question in symmetric tensor best low
rank approximation:
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Certify a candidate as being globally optimal or as a quantified quasi-optimal solution.

For the rank one case (i.e., r = 1), Nie and Wang [44] proposed a semidefinite
relaxation method utilizing Reznick’s Positivstellensatz for forms. It is shown that
if the computed moment matrix has rank one, then certification of global optimality
can be derived. A theoretical result which guarantees the rank one property is given
under mild assumptions. Numerical results show that global optimality can always be
certified. Moreover, the nonsymmetric cases are studied and similar conclusions are
achieved as well in [44]. The rank one approximation under nonnegativity is studied
by the authors in [23]. This paper considers the case r ≥ 1.

Contributions. Our main theorem can be stated as follows, in which we defer the
exact meaning of the notation in the content for clarity.

Theorem 1 (Rank-r Approximation). Let A ∈ S3(Rn), k ≥ 2, σ ≥ 0 and r ≥ 1.
Given a tensor B = ∑r

i=1 λix
⊗3
i . Let y be the moment sequence defined by the

measure
∑r

i=1 λiδxi . If there exists a triplet (U ,W , Z) such that

1. the feasibility holds

M∗
k(Z) + P∗(U ) − L∗

k(W ) = σM∗
k(E0), and Z � 0;

2. the optimality holds

〈Z ,Mk(y)〉 = 0, and P(y) ∈ �R(r)(M(A) −U ).

Then, it holds

1. if r = 1 and σ < ρ(A), then (λ1 + σ)x⊗3
1 is a best rank one approximation ofA;

2. if σ <
τ(A)ρ(A)

2r and Assumption 2 holds when σ > 0, then B is a 2
√

r
τ(A)

((
1 −

√
τ(A)
r

)
‖A‖ + 2σ

)
σ -quasi-optimal rank-r approximation of A.

Note that when σ = 0, we get best rank-r approximants. We also note that τ(A) is
an intrinsic number determined by a rank decomposition of a best rank-r approximant
of A, which depends on r , and τ(A) = 1 when r = 1.

Theorem1 is proved byfirst establishing a primal-dualmethod (11)–(12) for solving
a relaxation of the best low rank approximation problem (2), and then an approximation
quality analysis of the primal problem (11) to (2).

More precisely, we apply the semidefinite relaxation for moment problems and a
rank characterization to reformulate the third order symmetric tensor best low rank
approximation problem as a rank constrained nonlinear matrix optimization problem.
Advantages of nonsmooth analysis on low rank projection of matrices are explored to
propose a relaxation for the reformulation, which is the primal problem. Then, the dual
problem is explicitly given. A theorem on the certification of the global optimality of
a candidate solution for the primal and dual problem is given. One ingredient is that
the global optimality certification conditions are explicitly given and easily checkable
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once a feasible solution for the primal problem, together with a Lagrange multiplier
which is always available from a primal-dual algorithm, is given. This is the result
of our careful design of the primal problem (11), while keeping in mind of a target
dual certificate. Approximation quality of problem (11) to the original best low rank
approximation problem (2) is then established. It depends on a control parameter σ .
If σ = 0, it relates to the best low rank approximation, and if σ > 0, a quantified
quasi-optimal low rank approximation is given. Positive σ is preferable to ensure the
strict feasibility of the dual problem, see Lemma 2. While, both σ = 0 and σ > 0
are allowable for approximation quality certifications, see Theorem 1. The validation
of this approach is verified for orthogonally decomposable tensors from a theoretical
perspective, and several examples numerically.

Our method employs recent advances from the semidefinite relaxation for the
moment problems, duality theory in low rank matrix optimization and nonsmooth
analysis for low rank matrix projection. In particular, it is directly motivated by the
works of Gao and Sun on low rank matrix optimization problems and the duality
theory [13, 14], of Nie on semidefinite relaxation of moment problems [38, 40, 43],
and of Tang and Shah on the tensor decomposition method [50], in which a theo-
retical justification for the decomposition of orthogonally decomposable tensors is
established.

Our method extends Nie and Wang’s important result on global optimality certi-
fication of best rank one approximation in [44], and Nie’s interesting investigation
on quasi-optimality of best low rank approximation in [42]. For global optimality, the
rank one case is studied in [44], and Theorem 1 extends it to best rank-r approximation
with r ≥ 1. Moreover, if global optimality cannot be certified, then Theorem 1 gives a
quantification on quasi-optimality. In [42], the best rank-r approximationwith r > 1 is
studied and qualitative quasi-optimality is shown under the assumption that the given
data is sufficiently close to the best rank-r approximation. In Theorem 1, the restriction
on the distance between the approximant and the given data is removed, and either
global optimality can be certified or a quantitative estimation on quasi-optimality can
be derived under mild assumptions. It is also worth mentioning that the approach in
this paper gives an alternative to those in [42, 44]. In particular, we explicitly involve
in our formulation the rank constraint and put emphasis on the dual problem.

Contents.The approximation problemand related preliminaries are given inSect. 2.
The nonlinear matrix optimization reformation is given in Sect. 3. In order to keep the
main theme of this paper on the tensor best low rank approximation, some notations
and supporting techniques for the nonsmooth analysis of low rank matrix projections
and others are put in Appendix A andAppendix B. Section4 studies the approximation
quality of the problem proposed in Sect. 3, and presents the theoretical certification.
The numerical illustration is given in Sect. 5. Some final remarks are given in Sect. 6.

2 Preliminaries

In this paper, wewill focus on third order symmetric tensors. Given a positive integer n,
a third order symmetric tensorA ∈ S3(Rn) is a collection of n3 scalars ai1i2i3 , termed
the entries of A, for all i j ∈ {1, . . . , n} and j ∈ {1, 2, 3}. As the case of symmetric
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matrices, the number of independent entries are smaller than, but in the same order
of, n3 due to the symmetry. There are all together

(n+2
n−1

)
independent entries encoded

by a third order n dimensional symmetric tensor. A symmetric rank one tensor in
S3(Rn) is an element x⊗3 for some vector x ∈ R

n\{0}. We refer the readers to [35]
and references herein for basic notions on tensors.

The notation ‖ · ‖ represents the Euclidean norm for a vector, the Frobenius norm
for a matrix [21], and the Hilbert-Schmidt norm for a tensor [35], defined as

‖A‖ :=
( n∑

i, j,k=1

a2i jk

) 1
2
for all A ∈ S3(Rn)

with the corresponding inner product defined as

〈A,B〉 :=
n∑

i, j,k=1

ai jkbi jk .

It can be shown that
ρ(A) := max{〈A, x⊗3〉 : xTx = 1}

defines a norm on S3(Rn) [46]. As for the matrix case, ρ(A) is called the spectral
radius of A. It can be shown that

ρ(A) ≤ ‖A‖.

Define

ζ(n, s) :=
(
n + s − 1

n − 1

)
.

Further basic notations are put in Appendix A, such as several bases of monomials,
moment sequences and matrices, localizations, and flatness, etc.

Given a third order symmetric tensor A ∈ S3(Rn), we will identify it with its
flattening matrix M(A) ∈ R

n×n2 via

M(A)i,( j−1)∗n+k := ai jk for all i, j, k ∈ {1, . . . , n}. (3)

Here M(A) is different from the Catalecticant matrix of A [31]. In view of the iden-
tification (3), we will interchangeably refer to a given tensor by A and M(A). It is
straightforward to check that ‖A‖2 = ‖M(A)‖2.

2.1 Polynomial identification

The problem (2) can be parameterized as

min

{
1

2

∥∥A −
r∑

i=1

λix
⊗3
i

∥∥2 : λi ≥ 0, ‖xi‖ = 1 for all i = 1, . . . , r

}
. (4)
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Note that the constraint ‖xi‖ = 1 is added to remove some ambiguity, since the
unitary scaling between xi and λi gives the same approximate tensor. Problem (4)
can be studied by applying techniques directly from polynomial optimization [33].
However, this may not be the best way from the computational perspective. Take the
case n = 10 and r = 2 for example, the standard Lasserre relaxation will give an
SDP with matrix size around ζ(25, 4) = 12650 and number of equations around
ζ(25, 4)2/2 [33]. The current SDP solvers have limited ability to solve such instances
[49, 51, 53, 56], let alone certifying global optimality of (2). In this paper, we will
present a method which gives a nonlinear matrix optimization problem with matrix
size around ζ(n + 1, 2) = ζ(11, 2) = 55.

For easy reference, in the following, we will denote the (n−1)-dimensional sphere
in Rn as Sn−1, i.e.,

S
n−1 := {x ∈ R

n : xTx = 1}.
Let M(Sn−1) be the set of Borel measures on S

n−1. The support of a Borel measure
μ ∈ M(Sn−1) is denoted as supp(μ), which is defined as the smallest closed set
S ⊆ S

n−1 such that μ(Sn−1\S) = 0. Given a measure μ ∈ M(Sn−1), we denote by
‖μ‖0 the cardinality of its support supp(μ). Whenever μ is finitely supported, ‖μ‖0
counts the number of points in the support; otherwise ‖μ‖0 := +∞. Let x ∈ S

n−1,
then δx ∈ M(Sn−1) is the Dirac measure at x, with support {x} and having mass
1 at x and mass 0 elsewhere. If a measure μ ∈ M(Sn−1) has finite support, whose
cardinality is r ≥ 0, then it can be represented as

μ =
r∑

i=1

λiδxi (5)

for some xi ∈ S
n−1 and λi > 0 with i = 1, . . . , r . In this case, it is called an r-atomic

measure.
A given third order symmetric tensor A can be uniquely decoded via

ai1i2i3 ↔ aα with α = (α1, . . . , αn) ∈ N
n=3 via x

α :=
n∏

i=1

xαi
i = xi1xi2xi3 . (6)

It is easy to see that this correspondence is one to one. With this correspondence, a
third order symmetric tensor A can be interpreted as a truncated moment sequence
(abbreviated as tms), which is defined as a vector

(aα) : α∈Nn=3
∈ R

(n+2
3 ).

Note that only the independent elements ofA are coded in this vector. More precisely,
a third order symmetric tensor A with a rank-r decomposition as (1) can be naturally
restated as a truncated moment sequence of a finite (r -atomic) Borel measure (5) on
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S
n−1. Actually, with μ = ∑r

i=1 λiδxi , it follows from (1) and (6) that

ai1i2i3 = aα =
r∑

i=1

λi (xi )i1(xi )i2(xi )i3 =
r∑

i=1

λixα
i =

∫

Sn−1
xα dμ(x)

for all i1, i2, i3 ∈ {1, . . . , n} and the corresponding α such that
∏n

i=1 x
αi
i = xi1xi2xi3 .

More concisely, (1) can be written as

A =
r∑

i=1

λix
⊗3
i �

∫

Sn−1
x⊗3 dμ(x), (7)

where the symbol “�" is understood as the obvious correspondence between the tensor
A and the vector on the right hand side. Therefore, from this perspective, each third
order symmetric tensor can be regarded as a truncatedmoment sequence of total degree
three and vice versa.

With the moment representation (7), the third order symmetric tensor best rank-r
approximation problem (2) can be reformulated as a quadratic moment optimization
problem with support constraint as follows.

Proposition 2 (Moment Reformulation). For any given third order symmetric tensor
A and any nonnegative integer r , the best rank-r tensor approximation problem (2) is
equivalent to the following moment optimization problem

min 1
2‖A − B‖2

s.t. B � ∫
Sn−1 x⊗3 dμ(x),

‖μ‖0 ≤ r ,
μ ∈ M(Sn−1)

(8)

in the sense that (B = ∑r
i=1 λix

⊗3
i , μ = ∑r

i=1 λiδxi ) is an optimal solution of (8)
whenever

∑r
i=1 λix

⊗3
i forms an optimal solution of (2) and vice verse.

Proof It follows from the preceding discussions. ��
Note that if r is chosen as rank(A), then (8) becomes the tensor rank decomposition

problem. While rank(A) is difficult to find [17], an upper bound r is usually given,
which then makes (8) a tensor decomposition problem.

There are two difficult issues in solving (8). The first one is the constraint ‖μ‖0 ≤ r ,
and the other one is the characterization for the setM(Sn−1). For the latter, there are
standard positive semidefinite relaxation schemes for approximating the setM(Sn−1)

exteriorly [32, 33, 38, 40, 43]. For the former, we will develop a dual certification
technique from optimization. Combing these two techniques, we will present a pos-
sibility, for the first time, to certify the global optimality of the third order symmetric
tensor best rank-r approximation problem (2). In the following, for simplicity, we will
say B := M(B) is a feasible (an optimal) solution of (2) in view of the equivalence
in (3).
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2.2 Semidefinite relaxation for themeasure

A positive semidefinite symmetric matrix A ∈ S2(Rn) is written as A � 0 or A ∈ Sn+.
Let k be a positive integer, and y ∈ R

ζ(n+1,2k) be the moment sequence of a given
measure μ ∈ M(Sn−1) up to degree 2k, i.e.,

y =
∫

Sn−1
x◦2k dμ(x).

It is well-known that if the measure is finitely supported with ‖μ‖0 = r , then the rank
of the truncated moment matrix rank(Mk(y)) ≤ r for every positive integer k. More
details on moment sequences and matrices are collected in Appendix A. We refer
the reader to [33, 43] for more basic notions and concepts on semidefinite relaxation
hierarchy of polynomial optimization.

With the observation on the rank constraint, we consider the following problem:

min 1
2‖A − B‖2

s.t. B � y|Nn=3
,

rank(Mk(y)) ≤ r ,
Mk(y) � 0,
Lk(y) = 0,
y ∈ R

ζ(n+1,2k),

(9)

where k ≥ 2, Mk(y) ∈ S2(Rζ(n+1,k)) represents the k-th moment matrix of the
moment sequence y, Lk(y) ∈ S2(Rζ(n+1,k−1)) represents the (k − 1)-th localizing
matrix of 1 − xTx at y.

The next result is a basis for the subsequent analysis.

Proposition 3 (Exact Relaxation). Let k ≥ 2 and y∗ ∈ R
ζ(n+1,2k) be an optimal

solution of (9). If the k-th flatness condition holds (cf. Appendix A), i.e.,

rank(Mk(y∗)) = rank(Mk−1(y∗)), (10)

then y∗ is the truncated moment sequence of a unique rank(Mk(y∗))-atomic measure
and B∗ is a best rank-r approximation of the given tensor A, i.e., a global minimizer
of (2).

Proof First of all, problem (9) is a relaxation of the problem (8). Thus, if there is
an optimal solution B of (9) such that it is a feasible solution of (8), then it must
be an optimal solution of the problem (8) and hence a global minimizer of (2) by
Proposition 2.

Since the sequence y∗ satisfies the flatness condition, by a well-known result of
Curto and Fialkow [10], it follows that the sequence y∗ admits a unique measure
supported by Sn−1, which is rank(Mk(y∗))-atomic. This, together with the rank con-
straint rank(Mk(y)) ≤ r , implies that B∗ � y∗|Nn=3

is a tensor with rank at most r ,
which is thus a feasible solution of (8) with exactly the same objective function value
as that of (9). ��

123



S. Hu et al.

There is amethod to extract the support of ameasurewhenever the flatness condition
is satisfied [18, 25, 33]. Thus, a rank decomposition of an optimal solution for (2)which
is a tensor of rank at most r can be computed, if an optimal solution of (9) satisfying
the flatness condition (10) was found. In our numerical computation, the method in
[18] is adopted. One could also apply the robust method in [25] for extraction when
the flatness condition is approximately satisfied.

3 Rank constrainedmatrix optimization

The problem (9) is a nonconvex optimization problem with rank constraint, which is
NP-hard in general. Nonetheless, a much harder part is to certify the global optimality
for a candidate of (9). Thus, Proposition 3 can merely be utilized in few peculiar
scenarios. In order to employ a dual certificate for global optimality for a wider class
of problems, we will propose a carefully designed variation for it.

3.1 Reformulation

We consider the following optimization problem

min ψ(B, X) := 1
2‖M(A) − B‖2 + σ 〈E0, X〉

s.t. B − P(y) = 0,
X − Mk(y) = 0,
Lk(y) = 0,
rank(B) ≤ r ,
X � 0,

(11)

where σ ≥ 0 is a control parameter, P(y) is the matrix generated by y as (A4), and
E0 ∈ S2(Rζ(n+1,k)) is the matrix with all entries being zero except that E0(1, 1) = 1.

Compared with (9), both the parameter σ and the rank constraint on B instead of
Mk(y) are for dual certificate reasons which will be addressed later. The parameter σ

is also for numerical considerations (cf. Lemma 2). In general, both σ > 0 and σ = 0
are allowable in problem (11). Actually, if σ = 0 is chosen, then (11) is (9) except that
the constraint rank(B) ≤ r is employed instead of the constraint rank(Mk(y)) ≤ r .
Since the matrix B in (11) is essentially a block sub-matrix ofMk(y) in the sense of
Lemma6, problem (11) is a relaxation of (9).Nevertheless, exact relaxation resultswill
be shown in Theorem 9. For general σ > 0, quantified quasi-optimal approximation
results will be given in Sect. 4.2.

Problem (11) is called the k-th relaxation of problem (2). Since k ≥ 2, the second
relaxation is called the basic relaxation. For the optimization problem (11), X and B
are determined once y was given. Thus, for simplicity, unless otherwise stated, only
the variable y is referred when we talk about feasible or optimal solutions. Note that
the feasible set of (11) is closed and the objective function is a polynomial which is
bounded from below on the feasible set. Moreover, we can prove the following result.
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Proposition 4 (Solvability). Each level set of the feasible set of the optimization prob-
lem (11) is bounded for σ > 0, and there is an optimizer of (11) for each σ ≥ 0.

Proof If σ > 0, we have that in each level set of the feasible set of problem (11), both
B and y0 must be bounded. It follows from the constraint Lk(y) = 0 that

y0 =
n∑

i=1

y2ei .

It then follows from the constraint X � 0 that all y2ei ’s are nonnegative and bounded. In
turn, it follows that all yα with |α| = 2 are bounded by the positive semidefiniteness
of X . The boundedness of yα with |α| = 1 follows from the boundedness of the
matrix B and the constraint Lk(y) = 0. In the following, we show that each y2ei+2e j
is bounded, which will imply the boundedness of all yα with |α| = 4 by the positive
semidefinitenss of X . Since it follows from Lk(y) = 0 that

y2ei =
n∑

j=1

y2ei+2e j ,

the boundedness of the left hand side and the positive semidefiniteness of X imply the
desired result. This proves the boundedness for the case k = 2.

The general case for k > 2 follows from a similar argument through induction. We
omit the details. The solvability for the case σ > 0 then follows immediately.

The solvability for the case σ = 0 has a different argument. It is clear that the
projection of the level set of the feasible set onto the B part is bounded. In the following,
we show that it is also closed. Then the conclusion follows.

For each given B in the closure of this given projection, it corresponds to a third
order symmetric tensorB. Each third order symmetric tensor has a rank decomposition
as (1), corresponding to a finite measure μ = ∑s

i=1 λiδxi for some s which could be
different from r . Let ȳ be the moment sequence generated by μ and (X̄ , ȳ, B̄) the
defined point by the first two constraints in (11). It is clear that all the constraints
are satisfied. Moreover, the resulting feasible point (X̄ , ȳ, B̄) has the same objective
function value as the given B, since B = B̄. Thus, the point (X̄ , ȳ, B̄) is in the level
set of the feasible set from which the projection is performed. Consequently, B is in
the projection and the projected set is closed as desired. The proof is completed. ��

3.2 Duality and feasibility

In this section, we discuss the dual problem of (11). To that end, the projection of a
givenmatrix onto the set ofmatrices of rank at most r is involved. Let R(r) ⊆ R

m×n be
the set ofmatrices inRm×n with rank atmost r ≤ min{m, n}. For notational simplicity,
the dependence on m and n is omitted in R(r) and it will be clear from the context.
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We will use �R(r)(A) ⊂ R(r) to denote the optimal solution set for the problem

minX 1
2‖A − X‖2

s.t. rank(X) ≤ r .

Here �R(r)(A) can be a set with infinitely many elements, but each element X ∈
�R(r)(A) has the same norm ‖X‖. Thus, ‖�R(r)(A)‖ can be used to define this com-
mon constant. We refer the reader to Appendix B for more details and the necessary
nonsmooth analysis for this projection.

Proposition 5 (Lagrangian Dual Problem). The Lagrangian dual problem of (11) is

min 1
2‖�R(r)(M(A) −U )‖2

s. t. M∗
k(Z) + P∗(U ) − L∗

k(W ) = σM∗
k(E0),

Z � 0,
(12)

where L∗
k ,M∗

k and P∗ are the adjoint operators of Lk,Mk and P respectively.

Proof The Lagrangian function of problem (11) is

L(B, X , y;U , V ,W ) := 1

2
‖M(A) − B‖2 + σ 〈E0, X〉
+ 〈U , B − P(y)〉 + 〈V , X − Mk(y)〉 + 〈W ,Lk(y)〉

and problem (11) can be equivalently written as

min
X�0, rank(B)≤r , y

max
U ,V ,W

L(B, X , y;U , V ,W ).

Let
g(U , V ,W ) := min

X�0, rank(B)≤r , y
L(B, X , y;U , V ,W ).

The Lagrangian dual problem of (11) is then (cf. [4])

max
U ,V ,W

g(U , V ,W ).

By a direct calculation, we have

min
X�0, rank(B)≤r , y

L(B, X , y;U , V ,W )

= min
rank(B)≤r

{1
2
‖M(A) − B‖2 + 〈U , B〉}

+ min
X�0

{〈σ E0 + V , X〉} + min
y

{〈W ,Lk(y)〉 − 〈V ,Mk(y)〉 − 〈U ,P(y)〉}

= min
rank(B)≤r

{1
2

(‖B − (M(A) −U )‖2 − ‖M(A) −U‖2 + ‖M(A)‖2)}
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+ min
X�0

{〈σ E0 + V , X〉} − χ{0}(L∗
k(W ) − M∗

k(V ) − P∗(U ))

= 1

2

(‖M(A)‖2 − ‖�R(r)(M(A) −U )‖2)

− χ
Sζ(n+1,k)

+
(σ E0 + V ) − χ{0}(L∗

k(W ) − M∗
k(V ) − P∗(U )),

where χS is the indicator function of a given set S, i.e., χS(x) = 0 if x ∈ S, and ∞
otherwise. Therefore, we have the dual problem

max 1
2‖M(A)‖2 − 1

2‖�R(r)(M(A) −U )‖2
s.t. L∗

k(W ) − M∗
k(V ) − P∗(U ) = 0,

σ E0 + V � 0.

In a more concise form, it is

max φ(U ) := 1
2‖M(A)‖2 − 1

2‖�R(r)(M(A) −U )‖2
s.t. M∗

k(Z) + P∗(U ) − L∗
k(W ) = σM∗

k(E0),

Z � 0.
(13)

We see that (12) is actually the minimization formulation of (13). ��
Problem (13) (equivalently (12)) is a convex optimization problem, as expected,

but with a nonsmooth objective function φ(U ). One advantage of the formulation (12)
is that we can interpret the constraint via sums of squares of polynomials.

Lemma 1 (Dual Feasibility). A triplet (U ,W , Z) is a feasible solution of problem (12)
if and only if there exist a homogeneous polynomial u(x), and polynomials w(x) and
z(x) with

deg(w(x)) ≤ 2k − 2, deg(u(x)) = 3, and deg(z(x)) ≤ 2k

such that
z(x) = (1 − xTx)w(x) − u(x) + σ (14)

is a sum of squares of polynomials. Moreover, there is a correspondence between the
triplets (U ,W , Z) and (u(x), w(x), z(x)) as indicated in Appendix A.

Proof Recall the sizes of the triplet (U ,W , Z), which are

U ∈ R
n×n2 , W ∈ S2(Rζ(n+1,k−1)) and Z ∈ S2(Rζ(n+1,k)).

Let x◦k be the monomial basis up to order k defined as in (A1) and let x⊗2 be the
extended monomial basis of order 2 defined as in (A2). Let

w(x) := (x◦(k−1))TWx◦(k−1), u(x) := xTUx⊗2, and z(x) := (x◦k)TZx◦k .

123



S. Hu et al.

Then by the feasibility of (U ,W , Z), we have that

(1 − xTx)w(x) + σ − u(x) − z(x) = 0.

Since Z is a positive semidefinite matrix, which is equivalent to having the polynomial
z(x) being a sum of squares of polynomials [33], the conclusion follows. ��
Lemma 2 (Strict Feasibility). For any positive σ > 0 and integer k ≥ 2, problem
(12) is strictly feasible, i.e., there exists a triplet (U ,W , Z) with Z � 0 such that
M∗

k(Z) + P∗(U ) − L∗
k(W ) = σM∗

k(E0).

Proof First note that for any given positive scalars μi (i = 0, . . . , k), we can find a
positive definite diagonal matrix A such that

(x◦k)TAx◦k =
k∑

i=0

μi (xTx)i .

Thus, the conclusion will follow, by Lemma 1, if we can find polynomials w(x) and
u(x) such that

(1 − xTx)w(x) + σ − u(x) =
k∑

i=0

μi (xTx)i

for positive μi ’s. This can be fulfilled by taking u(x) = 0 and

w(x) :=
k−1∑

i=0

λi (xTx)i

for any choices of λi ’s such that −σ < λ0 < λ1 < · · · < λk−1 < 0. In this case,

μ0 = σ + λ0 > 0, μi = λi − λi−1 > 0 for i = 1, . . . , k − 1 and μk = −λk−1 > 0.

This completes the proof. ��
The strict feasibility does not hold for σ = 0. The cubic form u(x) either is zero

or takes positive value on the sphere. Thus, z(x) = (1 − xTx)w(x) − u(x) either is
identically zero or takes negative function value on the sphere. Consequently, if σ = 0,
the feasibility condition (14) forces U = 0, and hence problem (12) becomes a feasi-
bility problem with constant objective function. Then the possibility for strong duality
between (11) and (13) is weakened. As a result, it is necessary for numerical reasons
to impose positive σ and therefore the relationship between the optimal solutions for
(11) and those for the original best approximation problem (2) should be established.

3.3 Optimality

The following conclusion is classical, which follows from the saddle point theorem
[4].
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Proposition 6 (Lagrangian Duality). Let (B, X , y) and (U , V ,W ) be feasible solu-
tions of problems (11) and (12) respectively. Then we have

ψ(B, X) ≥ φ(U ).

If ψ(B, X) = φ(U ), then both (B, X , y) and (U , V ,W ) are optimal solutions of
problems (11) and (12) respectively.

While the primal problem (11) is a nonlinear semidefinitematrix optimization prob-
lemwhich is nonconvex due to the rank constraint, the dual problem (12) is a nonlinear
convex semidefinite matrix optimization problem. By the feasibility characterization
in Lemma 1, the optimality of (12) can be concisely determined with the help of
convex analysis [47].

Proposition 7 (Optimality).We have that a feasible solution (Ū , W̄ , Z̄) of (12) is an
optimal solution if there exists a vector ȳ ∈ R

ζ(n+1,2k) such that

Lk(ȳ) = 0, Mk(ȳ) � 0, 〈Z̄ ,Mk(ȳ)〉 = 0, and

P(ȳ) ∈ conv
(
�R(r)(M(A) − Ū )

)
.

(15)

It becomes also a necessary condition if σ > 0.

Proof This follows from Lemma 2, Lemma 7 in Appendix B and standard convex
analysis [47, Theorem 27.4].

The sufficiency is important for our subsequent analysis and we give a proof by the
following direct calculation. For any feasible (U ,W , Z) of (12), we have

1

2
‖�R(r)(M(A) −U )‖2 ≥ 1

2
‖�R(r)(M(A) − Ū )‖2 + 〈−P(ȳ),U − Ū 〉

= 1

2
‖�R(r)(M(A) − Ū )‖2 − 〈ȳ,P∗(U ) − P∗(Ū )〉

= 1

2
‖�R(r)(M(A) − Ū )‖2 − 〈ȳ,L∗

k(W ) − L∗
k(W̄ )〉

+ 〈ȳ,M∗
k(Z) − M∗

k(Z̄)〉
= 1

2
‖�R(r)(M(A) − Ū )‖2 + 〈Mk(ȳ), Z − Z̄〉

= 1

2
‖�R(r)(M(A) − Ū )‖2 + 〈Mk(ȳ), Z〉

≥ 1

2
‖�R(r)(M(A) − Ū )‖2,

where the first inequality follows from Lemma 7 and (15), the second equality from
the feasibility, and the rest all follow from (15). ��

We are in the position to present one of our main results.
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Theorem 8 (Dual Certification). If there exist a triplet (Ū , W̄ , Z̄) such that the fea-
sibility of problem (12) is satisfied and a vector ȳ such that the optimality condition
(15) is satisfied, and

rank(P(ȳ)) ≤ r , (16)

then strong duality holds for problems (11) and (12), and ȳ gives an optimal solution
to problem (11).

Proof Let
B̄ := P(ȳ) and X̄ := Mk(ȳ).

Then, (B̄, X̄ , ȳ) is a feasible solution for (11) by (15) and (16). Moreover, B̄ ∈
�R(r)(M(A) − Ū ) by Lemma 8 and (16). Thus,

φ(Ū ) = 1

2
‖M(A)‖2 − 1

2
‖�R(r)(M(A) − Ū )‖2

= 1

2
‖M(A)‖2 + 1

2
‖M(A) − Ū − �R(r)(M(A) − Ū )‖2 − 1

2
‖M(A) − Ū‖2

= 1

2
‖M(A)‖2 + 1

2
‖M(A) − Ū − B̄‖2 − 1

2
‖M(A) − Ū‖2

= 1

2
‖M(A) − B̄‖2 + 〈Ū , B̄〉.

Therefore, we have

φ(Ū ) = 1

2
‖M(A) − B̄‖2 + 〈Ū , B̄〉

= 1

2
‖M(A) − B̄‖2 + 〈Ū ,P(ȳ)〉

= 1

2
‖M(A) − B̄‖2 + 〈P∗(Ū ), ȳ〉

= 1

2
‖M(A) − B̄‖2 + 〈L∗

k(W̄ ) − M∗
k(Z̄) + σM∗

k(E0), ȳ〉

= 1

2
‖M(A) − B̄‖2 + 〈W̄ ,Lk(ȳ)〉 − 〈Z̄ ,Mk(ȳ)〉 + σ 〈E0,Mk(ȳ)〉

= 1

2
‖M(A) − B̄‖2 + σ 〈E0, X̄〉

where the fourth equality follows from the feasibility of (12) and the last equality
follows from (15). Thus, by (11),

ψ(B̄, X̄) = φ(Ū ).

By Lagrangian duality (cf. Proposition 6), we get the conclusion. ��
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4 Quality of approximation

In Theorem 8, we established a certification for global optimality of problem (11).
In this section, we will give the relationships between the global optimal solutions of
(11) and the original best low rank approximation problem (2). The discussions are
divided into two subsections based on the control parameter σ : the case σ = 0 and
the case σ > 0.

4.1 Best low rank approximation

In this subsection, we consider the case σ = 0 in problem (11), which is related to the
best low rank approximation.

Let O(n) ⊂ R
n×n be the group of orthogonal matrices and Q ∈ O(n). For a given

A ∈ S3(Rn) with A = (ai jk), the matrix-tensor multiplication (Q, Q, Q) · A is
defined as a tensor in S3(Rn) with its components being

[
(Q, Q, Q) · A]rst =

n∑

i, j,k=1

qriqs j qtkai jk for all r , s, t ∈ {1, . . . , n}. (17)

This multiplication can be extended for general cases in an obvious way.

Lemma 3 If {x1, . . . , xr } ⊂ R
n has rank exactly r , then

rank

( r+1∑

i=1

λixi (x
⊗2
i )T

)
≤ r

for any xr+1 ∈ span{x1, . . . , xr } and λi ≥ 0.

Proof Let xr+1 = ∑r
j=1 α jx j for coefficients α j ’s. We have

r+1∑

i=1

λixi (x
⊗2
i )T =

r∑

i=1

λixi (x
⊗2
i )T + λr+1

( r∑

j=1

α jx j

)
(x⊗2

r+1)
T

=
r∑

i=1

xi (λix
⊗2
i + λr+1αix

⊗2
r+1)

T,

which is a rank one decomposition with rank at most r . ��
Lemma 4 Let {x1, . . . , xs} ⊂ R

n be a set of nonzero vectors of rank s − 1. Then, the
matrix B := ∑s

i=1 xi (x
⊗2
i )T has rank at least s − 2, and B has rank s − 2 if and only

if xi = −x j for some i �= j .

Proof Without loss of generality, we assume that x1, . . . , xs−1 are linearly indepen-
dent. There exists a nonsingular matrix P ∈ R

n×n such that

Pxi = ei for all i = 1, . . . , s − 1.
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We have

PB(P ⊗ P)T =
s∑

i=1

(Pxi )[(Pxi )⊗2]T.

Thus, without loss of generality, we assume that

xi = ei for all i = 1, . . . , s − 1 and xs =
s−1∑

i=1

αiei .

Let Q ∈ R
n2×n2 be the permutation matrix such that

s−1∑

i=1

ei (e
⊗2
i )TQ =

[
Is−1 0
0 0

]
.

Thus,

BQ =
[
Is−1 0
0 0

]
+
( s−1∑

i=1

αiei

)
(x⊗2

s )TQ.

As the right most term is rank one, we have rank(B) = rank(BQ) ≥ s − 2. If
rank(B) = s − 2, we must have that the (s − 1)× (s − 1) leading principal submatrix
of BQ, which is

Is−1 + x̃s[(x⊗2
s )TQ]1:s−1,

has rank s−2,where x̃s = (xs)1:s−1. Without loss of generality, assume that {1, . . . , p}
are exactly the nonzero components of xs . Then, BQ has the following block form

⎡

⎣
Ip + uvT 0 uwT 0

0 Is−1−p 0 0
0 0 0 0

⎤

⎦ , (18)

whereu := (xs)1:p and v := [(x⊗2
s )TQ]1:p, and the third block columns corresponding

to the square-free elements of x⊗2
1:p. If p = 1, then w is vacuous, and if p > 1, then

w is a nonzero vector. We know that the matrix Ip + uvT is singular if and only if
〈u, v〉 = −1. Thus, when BQ has rank s − 2, we have that 〈u, v〉 = −1. Therefore,
the vector v, together with a basis for the orthogonal complement of u, gives a basis
for the whole spaceRp. Thus, each vector x ∈ R

p can be written uniquely in the form
x = u0 + μv for a vector u0 orthogonal to u and μ ∈ R. Thus,

xT
[
Ip + uvT 0 uwT 0

] = (uT0, 0,−μwT, 0). (19)

Since w is a nonzero vector, the resulting vector in (19) is nonzero whenever x �= 0.
Consequently, the left null space of the matrix

[
Ip + uvT 0 uwT 0

]
is trivial and this

matrix has full rank. Hence, the matrix in (18) has full rank s − 1. As a result, we
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must have that p = 1. In this case, 〈u, v〉 = −1 implies that xs = −e1, and hence for
the general case we have

xs = −ei for some i ∈ {1, . . . , s − 1}.

The sufficiency is clear. Consequently, the conclusion follows. ��
Proposition 3 indicates that (9) is an exact relaxation of the best low rank approx-

imation problem (2). The following result characterizes the approximation quality of
the further relaxation (11) to (2).

Theorem 9 Let y be an optimizer of problem (11) with k = 2 and σ = 0 satisfying
rank(M1(y)) = rank(M2(y)). Then

rank(y) = rank(M2(y)) ≤ r + 2. (20)

Moreover,

1. if rank(M2(y)) ≤ r or rank(M2(y)) = r + 2 or r = 1, then P(y) is an optimal
solution for (2);

2. if rank(M2(y)) = r + 1 and r > 1, then a feasible solution B of (2) can be
constructed from y such that

‖A − B‖2 ≤ ‖A − B∗‖2 + ρ(A − B)2

where B∗ is an optimal solution of (2).

Proof By Proposition 3, for the conclusion (20), it is sufficient to show that
rank(M2(y)) ≤ r + 2.

Let rank(M2(y)) = s for some integer s ≥ 0. In the following, we consider the
case s > r , since when s ≤ r , the optimal B = P(y) corresponds to a tensor of rank
at most r . Thus, it gives an optimal solution for (2).

By the fact that y satisfies the second flatness condition, we have that there exist
λi > 0 and xi ∈ S

n−1 for all i = 1, . . . , s such that

y =
∫

Sn−1
x◦4 dμ(x)

with μ := ∑s
i=1 λiδxi . It then follows from the definition that

M1(y) =
s∑

i=1

λi x̄i x̄Ti

with

x̄i :=
[
1
xi

]
for all i = 1, . . . , s.
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By the flatness condition, rank(M1(y)) = s > 0. Thus, the set of vectors {x1, . . . , xs}
has rank at least s − 1. On the other hand, by the feasibility of y for (11), it follows
that the matrix

B̄ :=
s∑

i=1

λixi (x
⊗2
i )T

is of rank not greater than r . If the vectors x1, . . . , xs are linearly independent, then
the corresponding matrix B̄ must have rank s > r , which is a contradiction. Thus, the
set of vectors {x1, . . . , xs} has rank s − 1. Consequently, by Lemma 4, we have that
r < s ≤ r + 2. The conclusion (20) then follows.

Moreover, by Lemma 4 again, we have that s = r + 2 exactly when 3
√

λixi =
− 3
√

λ jx j for a pair i �= j . But in this case, the terms λix
⊗3
i and λ jx

⊗3
j combined into

a zero sum. Consequently,

B̄ =
∑

k∈{1,...,s}\{i, j}
λkxk(x

⊗2
k )T,

which corresponds to a tensor of rank s − 2 = r . Similar to the case s = r , an optimal
solution for (2) is found.

In the following, we consider the case s = r + 1.
We assume, without loss of generality, that the vectors x1, . . . , xr are linear inde-

pendent and xr+1 ∈ span{x1, . . . , xr }. If r = 1, then xr+1 = x2 = ±x1 and B = P(y)
corresponds to a tensor of rank at most one. Hence, it is an optimal solution.

In the following, we assume that r > 1. By the equivalence of the matrix flattening,
we have that

‖A −
r+1∑

i=1

λix
⊗3
i ‖2 ≤ ‖A − B∗‖2, (21)

where B∗ is an optimal solution to problem (2), since (11) is a relaxation of (2). It
follows from the definition that (cf. (17))

‖(P, P, P) · A‖ = ‖A‖

for an orthogonal matrix P ∈ O(n). Thus, we can assume without loss of generality
that

span{x1, . . . , xr } = span{e1, . . . , er }, (22)

where ei ∈ R
n is the i-th column vector of the identity matrix of matching size for all

i ∈ {1, . . . , r}.
On the other hand, by Lemma 3, it holds that

B :=
r∑

i=1

λixi (x
⊗2
i )T + βx(x⊗2)T (23)

has rank at most r for any x ∈ span{x1, . . . , xr } and β ≥ 0. Hence, every β and
x ∈ span{x1, . . . , xr }, together with∑r

i=1 λix
⊗3
i , give a feasible solution for problem
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(11) with the corresponding B as (23). Note that xr+1 ∈ span{x1, . . . , xr } and (22)
holds. Thus, by the global optimality of

∑r+1
i=1 λix

⊗3
i and the fact that

1

2
‖M(A) − B‖2 = 1

2

∥∥∥∥∥

(
A −

r∑

i=1

λix
⊗3
i − βx⊗3

)

1:r

∥∥∥∥∥

2

+ c

= 1

2

∥∥∥∥∥

(
A −

r∑

i=1

λix
⊗3
i

)

1:r
− β

(
x⊗3

)

1:r

∥∥∥∥∥

2

+ c

for a constant c, we can conclude that λr+1((xr+1)1:r )⊗3 is a best rank one approx-
imation of the sub-tensor (A − ∑r

i=1 λix
⊗3
i )1:r . Here u1:r ∈ R

r is the sub-vector
of u ∈ R

n formed by the first r entries u1, . . . , ur , and U1:r ∈ S3(Rr ) is the sub-
tensor of U ∈ S3(Rn) formed by the entries ui1i2i3 with i1, i2, i3 ∈ {1, . . . , r}.
Moreover, if xr+1 was determined, by expanding the quadratic objective 1

2

∥∥∥∥

(
A −

∑r
i=1 λix

⊗3
i

)

1:r
− β

(
x⊗3
r+1

)

1:r

∥∥∥∥
2

with respect to β, the optimal β = λr+1 should be
〈(

A − ∑r
i=1 λix

⊗3
i

)

1:r
,

(
x⊗3
r+1

)

1:r

〉
. Thus, the global optimality implies that

λ2r+1 = ρ

(
(A −

r∑

i=1

λix
⊗3
i )1:r

)2

≤ ρ(A −
r∑

i=1

λix
⊗3
i )2 (24)

and ∥∥∥∥∥A −
r+1∑

i=1

λix
⊗3
i

∥∥∥∥∥

2

=
∥∥∥∥∥A −

r∑

i=1

λix
⊗3
i

∥∥∥∥∥

2

− λ2r+1. (25)

Therefore, with B := ∑r
i=1 λix

⊗3
i , (21), (24) and (25), we have

‖A − B‖2 ≤ ‖A − B∗‖2 + ρ(A − B)2.

This completes the proof. ��
It would be interesting to study the counterparts of Theorem 9 for the case k > 2.

One difficulty on extending the above analysis is the rank estimation of the k-th order
moment matrix from that of the matrix B. While if rank(y) ≤ r , we see that P(y) is
an optimal solution by Proposition 3.

In the sequel, we show the exact relaxation of (11) when the given tensor is orthogo-
nally decomposable. To do this, recall that a third order symmetric tensorA ∈ S3(Rn)

is called orthogonally decomposable (cf. [27, 54]1) if there exist an orthonormalmatrix

A = [a1, . . . , ar ] ∈ R
n×r

1 In [27], this notion was referred as completely orthogonally decomposable tensors by Kolda.
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and positive numbers λi ∈ R for i = 1, . . . , r such that

A =
r∑

i=1

λia
⊗3
i . (26)

The number r is the rank of the tensor A. It is well-known that the rank one decom-
position (26) of an orthogonally decomposable tensor A is unique [54].

Theorem 10 (Exact Relaxation). Let k ≥ 2. If A is an orthogonally decomposable
tensor with rank s ≤ n, then for σ = 0 and r ≤ s, (11) is an exact relaxation of the
best rank-r approximation problem.

Proof Suppose that

A =
s∑

i=1

λix
⊗3
i

be an orthogonal decomposition of A with λ1 ≥ · · · ≥ λs > 0. Let

μ :=
r∑

i=1

λiδxi

and ȳ the corresponding moment sequence generated by the r -atomic measure μ. It is
immediate to see that ȳ is a feasible solution of problem (11).

A dual feasible solution for (13) is (U , V ,W ) = (0, 0, 0). Obviously,

rank(P(ȳ)) ≤ r ,

since

P(ȳ) =
r∑

i=1

λixi (x
⊗2
i )T.

IfP(ȳ) ∈ conv(�R(r)(M(A))), then byProposition 7 andTheorem8,we can conclude
that ȳ is an optimal solution of problem (11). Consequently, it is an optimizer of the
best rank-r approximation problem by Theorem 9, since the flatness is satisfied.

Note that

M(A) =
s∑

i=1

λixi (x
⊗2
i )T (27)

and [
x1 , . . . , xs

]

is an orthonormal matrix. Likewise, the matrix

[
x⊗2
1 , . . . , x⊗2

s

]

is also orthonormal. Thus (27) is a singular value decomposition (a.k.a. SVD [15])
of the matrix M(A). By the classical Eckart–Young–Mirsky theorem (cf. [21]), the
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truncated SVD is an optimizer of the best rank-r approximation problem for thematrix
M(A). Thus, P(ȳ) ∈ conv(�R(r)(M(A))). The result then follows. ��

4.2 Quasi-optimality

In this section, we discuss the case when σ > 0 in problem (11), which is related to
quasi-optimal low rank approximations of the given tensor.

Definition 1 Given a nonzero tensor A ∈ S3(Rn) and a positive integer r , let B be a
best rank-r approximation of A and α ≥ 0. A tensor B ∈ S3(Rn) is called a α-quasi-
optimal rank-r approximation of A if

‖A − B‖2 ≤ ‖A − B‖2 ≤ ‖A − B‖2 + α.

We first show that optimal solutions of (11) can actually give best rank one approx-
imants.

Proposition 11 Let k ≥ 2. LetA ∈ S3(Rn) be nonzero, r = 1, (B, y, X) be an optimal
solution of (11) with σ > 0. Then, we have B = X(1, 1)x(x⊗2)T for some x ∈ S

n−1.
If σ < ρ(A), then (X(1, 1) + σ)x⊗3 is a best rank one approximation of A.

Proof Note that B = P(y) has rank at most one by the feasibility, then it follows that

B = λx(x⊗2)T

for some unit vector x ∈ S
n−1 and λ ≥ 0, since a third order symmetric tensor U

has rank one if and only if its flattening matrix M(U) has rank one [31]. First of all,
we will derive from the fact that the matrix X = Mk(y) is positive semidefinite and
Lk(y) = 0 that X(1, 1) ≥ λ. Actually, it follows from Lk(y) = 0 that

M1(y) =
[

β λxT

λx A

]

for some positive semidefinite matrix A ∈ S2(Rn). The case when λ = 0 is trivial. In
the following, we assume that λ > 0 and thus β > 0 by the positive semidefiniteness
of M1(y). By Schur’s complement theory [21], we have that A � λ2

β
xxT. While, it

follows from Lk(y) = 0 that

β = tr(A) ≥ λ2

β
.

Thus X(1, 1) = β ≥ λ. The result then follows.
As a result, the optimal X of (11) must have the smallest possible X(1, 1), which

is λ. Thus, X must be of rank one and ‖B‖ = λ = X(1, 1). Let the optimal solution
be λx⊗3. We must have

1

2
‖M(A) − λx(x⊗2)T‖2 + σλ ≤ min

μ≥0,z∈Sn−1

{1
2
‖M(A) − μz(z⊗2)T‖2 + σμ

}
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by the optimality. If the optimal z was determined as x, then the optimal μ can be
computed explicitly since it is a univariate quadraticminimization over the nonnegative
orthant. Expanding the objective function, we get

1

2
μ2 + μ(σ − 〈A, x⊗3〉) + 1

2
‖A‖2.

Thus, the optimal μ ≥ 0 is given by

λ = max{〈A, x⊗3〉 − σ, 0}.

Since σ < ρ(A), there is a z such that 〈A, z⊗3〉 − σ > 0. Thus, by the global
optimality, λ = 〈A, x⊗3〉 − σ and

1

2
‖M(A) − λx(x⊗2)T‖2 + σλ = 1

2
‖A‖2 − 1

2
λ2.

Note that for the best rank one approximation objective 1
2‖A − νz⊗3‖2, where the

variables are ν and z, we have that the final ν = 〈A, z⊗3〉 by the optimalitywith respect
to ν. Thus, 12‖A−νz⊗3‖2 = 1

2‖A‖2− 1
2ν

2 = 1
2‖A‖2− 1

2 〈A, z⊗3〉2, and hence the best
rank one approximation problem is equivalent to solve ρ(A) = maxz∈Sn−1〈A, z⊗3〉.
It further follows from the optimality that

λ = 〈A, x⊗3〉 − σ = max{〈A, z⊗3〉 − σ : z ∈ S
n−1} = ρ(A) − σ.

Hence, (λ+σ)x⊗3 = ρ(A)x⊗3 is a best rank one approximation ofA. The conclusion
then follows. ��

The coherence of a matrix A = [x1, . . . , xr ], denoted by μ(A), is defined as (cf.
[37])

μ(A) := max
i �= j

|〈xi , x j 〉|.

It follows that μ(A) is the maximum absolute value of the off-diagonal elements of
ATA.

Lemma 5 Let A = [x1, . . . , xr ] be a given matrix with unit columns, and C = ATA ◦
ATA ◦ ATA, where ◦ is the Hadamard product. Then,

1. if the r-th singular value of A is not smaller than a constant κ > 0, then C is
positive definite with its smallest eigenvalue not smaller than κ6, and

2. if r > 1 and the coherence μ(A) < 3
√

1
r−1 , then C is positive definite with its

smallest eigenvalue not smaller than 1 − (r − 1)μ(A)3.

Proof For the first one, since the r -th singular value of A is not smaller than κ > 0, we
see that ATA is positive definite with the smallest eigenvalue being no smaller than κ2.
It follows from [19] that the smallest eigenvalue of C is not smaller than the smallest
eigenvalue of (ATA)3, which is lower bounded by κ6.
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The second one follows from a similar proof as that for [37, Theorem 25]. The
conclusion follows. ��

For r > 1, the set of tensors with rank at most r has complicated geometry [12,
31]. It may happen that the matrix of factor vectors [x(k)

1 , . . . , x(k)
r ] for a best rank-r

approximation tensor sequence approaches to the boundary of the set of matrices with
rank at most r . Thus, in addition to the existence Assumption 1, we should also make
a well-conditioned assumption on a best rank-r approximation for a given tensor A.

Assumption 2 For a given tensor A, there is a best rank-r approximation B =∑r
i=1 λix

⊗3
i such that

1. either the r-th singular value of the factor matrix A := [x1, . . . , xr ] is greater
than a constant κ(A) > 0;

2. or the coherence μ(A) < 3
√

1
r−1 and r > 1.

Assumption 2 actually indicates that a rank one decomposition of a best rank-
r approximant of A is well-conditioned. It only needs the existence of such a best
approximant, and do not require that all best approximants satisfy this condition. If
Assumption 2 is satisfied, we define

τ(A) :=

⎧
⎪⎨

⎪⎩

max{κ(A)6, 1 − (r − 1)μ(A)3} if both (1) and (2) hold,

κ(A)6 if only (1) holds,

1 − (r − 1)μ(A)3 if only (2) holds.

(28)

Note that Proposition 11 does not require the flatness condition. However, if r > 1,
then we need to assume the flatness condition.

Proposition 12 Let k ≥ 2, A ∈ S3(Rn) be nonzero and have rank greater than
two, r ≥ 2, B be a best rank-r approximant of A satisfying Assumption 2, and
(B, y, X) be an optimal solution of (11) with σ ∈ (0, τ(A)ρ(A)

2r ). Suppose that y
satisfies rank(Mk−1(y)) = rank(Mk(y)) ≤ r . Then B gives a α-quasi-optimal rank-
r approximation of A with α given by

α := 2
√

r

τ(A)

((
1 −

√
τ(A)

r

)
‖A‖ + 2σ

)
σ.

Proof By the flatness hypothesis, we know that y has an atomic measure with rank s

at most r . Let it be μ = ∑s
i=1 λiδxi . Then B = ∑s

i=1 λixi
(
x⊗2
i

)T, and we have that

1

2
‖M(A) − B‖2 + σeTλ ≤ 1

2
‖M(A) − B‖2 + σeTλ, (29)

where e is the vector of all ones, B = ∑r
i=1 λixi (x

⊗2
i )� (with λi > 0 and ‖xi‖ = 1

for all i = 1, . . . , r ) corresponds to the best rank-r approximation B ofA and λ is the
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corresponding vector of positive coefficients. Then, we have

1

2
‖M(A) − B‖2 ≤ 1

2
‖M(A) − B‖2 + σ

(
eTλ − eTλ

)
.

We note that possibly, λ and λ have different lengths. An observation is that eTλ for a
best rank-r approximation is not smaller than the largest eTλ over all optimal solutions
of (11) satisfying the flatness condition, since otherwise the optimality is violated.

By the optimality of the best rank-r approximation, we have

1

2
‖M(A) − B‖2 = 1

2
‖M(A)‖2 − 1

2
λ
T
Cλ,

where C := A
T
A ◦ A

T
A ◦ A

T
A with A := [x1, . . . , xr ]. Thus,

λ
T
Cλ ≤ ‖A‖2.

By Lemma 5 and the hypothesis, we know that the smallest eigenvalue of the positive
definite matrix C is lower bounded by τ(A) given by (28). Therefore,

‖λ‖1 = eTλ ≤ √
r‖λ‖ ≤

√
r√

τ(A)
‖A‖. (30)

On the other hand, we have

ρ(A)2 < λ
T
Cλ ≤

r∑

i=1

r∑

j=1

λiλ j |Ci j | ≤
r∑

i=1

r∑

j=1

λiλ j = ‖λ‖21,

where the strict inequality follows from the fact that a best rank r ≥ 2 approximation
must be strictly better than the best rank one approximation, and the second inequality

from |Ci j | = |(A�
A)i j |3 = |x�

i x j |3 ≤ 1. Thus, ‖λ‖1 ≥ ρ(A). Similarly, we also
have λ�Cλ ≤ ‖λ‖21, where C := ATA ◦ ATA ◦ ATA with A := [x1, . . . , xs].

Expanding the left hand side of the inequality (29), it becomes

1

2
‖M(A)‖2 −

s∑

i=1

λi 〈A, x⊗3
i 〉 + 1

2
λTCλ + σeTλ. (31)

Note that each λi > 0, and thus by the optimality of λ (i.e., setting the derivative of
the above expression with respect to λ to zero), we must have

s∑

i=1

λi 〈A, x⊗3
i 〉 − σeTλ = λTCλ.
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Consequently, we have

1

2
‖M(A) − B‖2 + σeTλ = 1

2
‖M(A)‖2 − 1

2
λTCλ.

Thus, from (29), we have

−1

2
λTCλ ≤ −1

2
λ
T
Cλ + σeTλ.

This, together with the fact that λ�Cλ ≤ ‖λ‖21, implies

‖λ‖21 ≥ λTCλ ≥ λ
T
Cλ − 2σeTλ

≥ τ(A)‖λ‖2 − 2σeTλ ≥ τ(A)

r
‖λ‖21 − 2σ‖λ‖1

= τ(A)

r

(
‖λ‖21 − 4

rσ

τ(A)
‖λ‖1 + ( 2rσ

τ(A)

)2 + 2
rσ

τ(A)
‖λ‖1 − (

2
rσ

τ(A)

)2)
,

(32)

where the third inequality follows from Lemma 5 and (28). This, together with (30)
and ‖λ‖1 ≥ ρ(A), implies that when σ ≤ τ(A)ρ(A)

2r , we have

‖λ‖1 ≥
√

τ(A)

r

(
‖λ‖1 − 2

r

τ(A)
σ
)
. (33)

It then follows from (29), (30), and (33) that

‖M(A) − B‖2 ≤ ‖M(A) − B‖2 + 2σ

((
1 −

√
τ(A)

r

)√ r

τ(A)
‖A‖ + 2

√
r

τ(A)
σ

)
.

(34)
This completes the proof. ��

We can apply a similar refinement technique as Proposition 11 to improve the
quality of B given in Proposition 12. Actually, by the optimality of λ in (31), we have
that λ = C†(u − σe) and hence

‖M(A) − B‖2 = ‖A‖2 − 2λTu + λTCλ = ‖A‖2 − uTC†u + σ 2eTC†e,

where u := (〈A, x⊗3
1 〉, . . . , 〈A, x⊗3

s 〉)T. Given the vectors x1, . . . , xs , we can optimize
their coefficients to an approximant B′ := ∑s

i=1 μix
⊗3
i such that

‖A − B′‖2 = ‖A‖2 − uTC†u.

This can reduce at least the amount of σ 2 from (34) since eTC†e ≥ 1. Note that
when r = 1, we can take τ(A) = κ(A) = 1, and we thus get a 4σ 2-quasi-optimality
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estimation from (34). While, even with the above refinement, we can only get 3σ 2-
quasi-optimality; but we know that a best rank one approximant can be recovered
by Proposition 11. This follows largely by the estimations from (32) and (33), and
it indicates that there are some room for improvement. Nevertheless, the next result
shows that the estimation of σ 2 in Proposition 12 cannot be eliminated.

Proposition 13 Let k ≥ 2. If A is an orthogonally decomposable tensor with rank
s ≤ n, then for σ ∈ [0, λr − λr+1]2 with r ≤ s, μ := ∑r

i=1(λi − σ)δxi gives a global
optimizer of problem (11) and a rσ 2-quasi-optimal rank-r approximation of A.

Proof Let A = ∑s
i=1 λix

⊗3
i be an orthogonal decomposition. Let

u(x) :=
r∑

i=1

σ(xTi x)
3.

Let μ := ∑r
i=1(λi − σ)δxi be the r -atomic measure and ȳ be the moment sequence

defined by the measureμ. LetU be the corresponding matrix for the cubic polynomial
u(x). Since λr − σ ≥ λr+1, we have that P(ȳ) gives a best rank-r approximation of
the matrix M(A) −U . Let

w(x) := 3σ

2
xTx.

Let Z̄ be the moment matrix defined by the following polynomial:

z(x) := σ − u(x) + w(x)(‖x‖2 − 1).

Obviously,
z(xi ) = 0 for all i = 1, . . . , r ,

so the complementarity between Z̄ and Mk(ȳ) is fulfilled. In the following, by The-
orem 8, we only need to check that the polynomial w(x) satisfies the fact that the
polynomial z(x) is a sum of squares of polynomials.

Applying an orthogonal transformation if necessary, we can assume without loss
of generality that xi = ei (the i-th column vector of the identity matrix) for all
i = 1, . . . , r . Let the resulting polynomial be ẑ(x). We then have

ẑ(x)
σ

= 1 −
r∑

i=1

x3i + 3

2
(xTx)(xTx − 1).

Thus, it follows from [50, Section 7.3 (in Supplementary)] that the polynomial ẑ(x)
σ

and hence z(x) is a sum of squares.
By Theorem 8, ȳ is a global minimizer of (11). The approximation error to the best

rank-r approximation y∗ generated by
∑r

i=1 λiδxi is given by

‖A − B‖2 = ‖A − B∗‖2 + rσ 2.

2 We let λs+1 = 0 if needed.
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The conclusion then follows. ��
Of course, a refinement as in the preceding analysis will give the global optimal

solution in the scenario of Proposition 13. But a generic tensor does not necessarily
have an orthogonal decomposition [31], which implies that the linear term over σ in
(34) is probably essential.

From the proofs of Theorem 10 and Proposition 13, we get the following result.

Proposition 14 Let k ≥ 2. If A is an orthogonally decomposable tensor with rank
s ≤ n, then for σ ∈ [0, λr − λr+1] with r ≤ s, strong duality holds for problems (11)
and (12).

As the tensor rank can be larger than the flattening matrix rank, it could happen that
rank(Mk−1(y)) = rank(Mk(y)) = r + 1. Actually, by the analysis of Theorem 9,
this would be the case if σ is small and if the approximation residual (24) is large.
Thus, we include the following corollary to address this case.

Corollary 1 Let k ≥ 2, A ∈ S3(Rn) be nonzero and have rank greater than two,
r ≥ 2, B be a best rank-r approximant of A satisfying Assumption 2, and (B, y, X)

be an optimal solution of (11) with σ ∈ (0, τ(A)ρ(A)
2r ). Suppose that y satisfies

rank(Mk−1(y)) = rank(Mk(y)) ≤ r + 1. Then a candidate B′ can be constructed
from B and y such that it gives a α-quasi-optimal rank-r approximation of A with α

given by

α := 2
√

r

τ(A)

((
1 −

√
τ(A)

r

)
‖A‖ + 2σ

)
σ + ρ(A − B′)2.

Proof The proof is a combination of those of Theorem 9 and Proposition 12. We omit
the tedious details. ��

4.3 Optimality

In this section, we summarize the established results into certifications on best approx-
imations and quasi-optimal approximations of a given tensor. The next result is for
the basic relaxation, i.e., k = 2, higher order relaxations can be stated similarly.

Theorem 15 (Rank-r Approximation). Suppose that σ ≥ 0 and k = 2 are chosen in
(11). If there exist a triplet (Ū , W̄ , Z̄) such that the feasibility (13) is satisfied and a
vector ȳ such that all the optimality condition (15), rank(M1(ȳ)) = rank(M2(ȳ)) �=
r + 1, and

rank(P(ȳ)) ≤ r

are satisfied, then ȳ gives an optimal solution for (11) and

1. if σ = 0, or r = 1 and σ < ρ(A), then P(ȳ) gives a best rank-r approximation
of A;
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2. if σ ∈ (0, τ(A)ρ(A)
2r ), r > 1, rank(M1(ȳ)) ≤ r , and Assumption 2 is satisfied, then

P(ȳ) gives a 2
√

r
τ(A)

((
1−

√
τ(A)
r

)
‖A‖ + 2σ

)
σ -quasi-optimal rank-r approx-

imation of A.

Proof It follows from Theorem 8, Theorem 9, and Proposition 12. ��
The case of the best rank one approximation is more clear.

Theorem 16 (Rank One Approximation). Let k ≥ 2. Suppose that σ < ρ(A) is
chosen in (11) and r = 1. If there exist a triplet (Ū , W̄ , Z̄) such that the feasibility
(13) is satisfied and a vector ȳ such that the optimality condition (15) is satisfied, and
rank(P(ȳ)) ≤ 1, then ȳ gives a best rank one approximation of A.

Proof This follows from the fact that (11) is a relaxation of (2) and B is a tensor
of rank at most one if and only if the corresponding matrix B has rank at most one
[31]. Thus, the flatness condition in Theorem 15 is not needed in this case. The result
follows from Proposition 11 and Theorem 9. ��

Note that for the rank one case, if σ > 0 in Theorems 15 and 16, a simple refinement
as in Proposition 11 to get a best approximant is necessary.

Actually, the vector ȳ in both Theorems 15 and 16 need not be computed for a
candidate solution to problem (11). We can have such a moment sequence by other
means or methods, and we can also check the optimality for it using these theorems.
This is exactly Theorem 1 when a candidate tensor is available.

5 Numerical illustration

In this section, we present some numerical examples to illustrate the usefulness of the
theoretical results presented so far.

The emphasis is put on certifying the global optimality for the best low rank tensor
computed, which is achieved by solving the dual problem (12) and employing The-
orem 8 to check the optimality. Note that the dual problem (12) is not easy to solve,
due to the particular nonsmooth objective function (cf. (13)). The design of a highly
efficient numerical algorithm for solving this problem will be addressed in another
paper. We will apply existing methods for (12) in the current paper. For the sake of
not lengthening the paper or taking us far afield, we do not include the full details,
but just give a brief description of the implementation here. We will apply a proximal
sGS-ADMM to solve the dual problem (12).

Note that there are some benefits for solving the dual problem (12) instead of the
primal problem (11): (i) The dual problem (12) is convex while the primal problem
(11) is nonconvex. For smaller n and r , solving the primal problem (11) works as
well in our experiments. While, for larger n and r , it is hard to get a global optimal
solution of (11) and consequently the theoretical results established for quantification
cannot be verified. (ii) The dual problem has simpler constraint which is linear and
has a separable structure, while the primal problem has a complicated rank constraint.
Moreover, there are well-developed numerical methods for solving problems of the
form as (12).
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5.1 Algorithmic rationale

In the following, for simplicity, we omit the subscript k for the order of relaxation in
(12). In this section, k = 2 is applied. For problem (12), we first rewrite it as

min 1
2‖�R(r)(M(A) −U )‖2 + χ

Sζ(n+1,2)
+

(Z)

s.t. M∗(V ) + P∗(U ) − L∗(W ) = σM∗(E0),

V − Z = 0,
(35)

where V is an auxiliary variable.
Problem (35) is a linearly constrained convex matrix optimization problem with a

nonsmooth objective function. The variables can be grouped into two sets {W ,U } and
{Z , V }. Corresponding to each set, the objective function has a nonsmooth part. We
apply the proximal symmetricGauss-Siedel alternating directionmethodofmultipliers
(proximal sGS-ADMM) [34] to solve (35) based on the grouping of the above two
sets of variables.

The augmented Lagrangian function of (35) is

Lβ(U , V ,W , Z; y, X) : = 1

2
‖�R(r)(M(A) −U )‖2 + χ

Sζ(n+1,2)
+

(Z)

+ 〈y,M∗(V ) + P∗(U ) − L∗(W )

− σM∗(E0)〉 + 〈X , V − Z〉
+ β

2
‖M∗(V ) + P∗(U ) − L∗(W )

− σM∗(E0)‖2 + β

2
‖V − Z‖2,

where β > 0 is the Lagrange penalty parameter. The main loop of the algorithm is
described in Algorithm 1.

In the algorithmic description, η > 0 is a proximal parameter, τ is a steplength
parameter, and Q is a positive semidefinite operator Q : Rn×n2 → R

n×n2 defined as

Q(U ) := γU − βPP∗(U ) for all U

with an appropriately chosen γ > 0. In Algorithm 1, there are closed formulae for the
subproblems of W , V and Z respectively. However, solving the subproblem for U is
not that straightforward. With the choice of the operatorQ, we are giving the problem

min
U

1

2

∥∥�R(r)(M(A) −U )
∥∥2 + γ

2

∥∥∥U − Ci
∥∥∥
2

(36)

with

Ci := 1

γ

(
Q(Ui ) − βP(M∗(V i ) − L∗(Wi+ 1

2 ) − σM∗(E0)) − P(yi )
)
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Algorithm 1 proximal sGS-ADMM

1: Step 1: Compute (Ui+1,Wi+1) via the following steps.

2: Substep 1: compute Wi+ 1
2 via

Wi+ 1
2 ∈ argmin Lβ(Ui , V i ,W , Zi ; yi , Xi ) + η

2
‖W − Wi‖2.

3: Substep 2: compute Ui+1 via

Ui+1 ∈ argmin Lβ(U , V i ,Wi+ 1
2 , Zi ; yi , Xi ) + 1

2
‖U −Ui‖2Q.

4: Substep 3: compute Wi+1 via

Wi+1 ∈ argmin Lβ(Ui+1, V i ,W , Zi ; yi , Xi ) + η

2
‖W − Wi+ 1

2 ‖2.

5: Step 2: Compute (V i+1, Zi+1) via the following steps.

6: Substep 1: compute Zi+
1
2 via

Zi+
1
2 ∈ argmin Lβ(Ui+1, V i ,Wi+1, Z; yi , Xi ).

7: Substep 2: compute V i+1 via

V i+1 ∈ argmin Lβ(Ui+1, V ,Wi+1, Zi+
1
2 ; yi , Xi ).

8: Substep 3: compute Zi+1 via

Zi+1 ∈ argmin Lβ(Ui+1, V i+1,Wi+1, Z; yi , Xi ).

9: Step 3: Update the multipliers via

yi+1 := yi + τβ(M∗(V i+1) + P∗(Ui+1) − L∗(Wi+1) − σM∗(E0)),

Xi+1 := Xi + τβ(V i+1 − Zi+1).

10: Step 4: If a termination is not reached, go back to Step 1.

=Ui − β

γ
P
(
P∗(Ui ) + M∗(V i ) − L∗(Wi+ 1

2 ) − σM∗(E0)
) − 1

γ
P(yi ).

Thus,
Ui+1 := M(A) − prox�2

R(r),
1
γ
(M(A) − Ci ),

where prox�2
R(r),

1
γ
is the proximal operator of the function �2

R(r), i.e., prox�2
R(r),

1
γ
(Y )

represents the optimizer of the following problem

min
X

1

2

∥∥�R(r)(X)
∥∥2 + γ

2
‖X − Y‖2 .
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In the following, we briefly describe this proximal operator’s calculation. Suppose
that n ≤ m and Y ∈ R

n×m . Let the SVD of Y be

Y = U�V T with � = diag{y1, . . . , yn},

where y1 ≥ · · · ≥ yn . Then, by the unitary invariant property of the objective function,
the solution X must have the form

X = U diag(x)V T

for a nonnegative vector x. Since the low rank projection is permutation invariant and
y is ordered nonincreasingly, we must have that x is ordered nonincreasingly as well.
The objective function value is then

1

2

r∑

i=1

x2i + γ

2
‖x − y‖2.

If γ
1+γ

yr ≥ yr+1, then the optimal solution is given by

x1:r := γ

1 + γ
y1:r and xr+1:n := yr+1:n .

Otherwise, suppose that for a pair (s, p) with s < r and p ≥ r + 1, and some κ > 0,
the optimizer is

x1:s := γ

1 + γ
y1:s, xs+1:p := κ, and xp+1:n := yp+1:n .

By the optimality, we must have

κ = γ
∑p

i=s+1 yi
(r − s) + γ (p − s)

.

A necessary condition for the optimality is that

γ

1 + γ
ys ≥ κ or s = 0, and κ ≥ yp+1 or p = n.

A method can be designed for finding such a pair (s, p), and the detail is omitted in
this paper.

For the optimality criteria, by a direct calculation, the optimality condition of (35)
is

0 � Z ⊥ M(y) � 0,
P(y) ∈ conv(�R(r)(M(A) −U )),

L∗(W ) − P∗(U ) − M∗(Z) + σM∗(E0) = 0,
Z − V = 0, and L(y) = 0.

(37)
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If rank(P(y)) ≤ r , then by Lemma 8 the second condition is equivalent to

P(y) ∈ �R(r)(M(A) −U ).

In this case, by Łojasiewicz’s inequality, this condition can be measured by

∣∣‖M(A) −U − �R(r)(M(A) −U )‖ − ‖M(A) −U − P(y)‖∣∣ .

5.2 Illustrative examples

All the tests were conducted on a Lenovo laptop with 128GB RAM and 2.8GHz E-
2276M CPU running 64bit Windows operation system. All codes were written in
Matlab. The default parameters are chosen as τ = 1.25, β = 100, η = 10−5, σ =
10−5, γ = 103, where τ is the steplength in sGS-ADMM, β is the penalty parameter
for the augmented Lagrangian function of (35), η is a proximal parameter, and γ

is the proximal parameter for the subproblem of U . The computed multiplier y is
used to generate a feasible solution of problem (11). In the examples, the duality gap
refers to the difference ψ(B, X) − φ(U ) as defined respectively in (11) and (13);
the feasibility refers to the maximum of the primal feasibility and the dual feasibility
violations; the psd residual refers to the violation of the first condition in (37); and
the projection residual refers to the violation of the second condition in (37). The
algorithm is terminated whenever either the residual of the system (37) is smaller than
10−10 or the number of iterations is over 2 × 105.

We see thatwhen all the duality gap, feasibility violation, psd residual and projection
residual are small, and the rank of B is bounded by r , then both the primal problem (11)
and the dual problem (12) are solved globally. If furthermore the flatness condition
is satisfied or rank(B) = 1, then the original best rank-r approximation problem is
solved globally with good quality (cf. Theorem 15, Theorem 16 and Corollary 1),
and the certification is met. If furthermore the flatness condition is satisfied with rank
�= r + 1 or rank(B) = 1 (cf. Theorem 15, Theorem 16), then we say that strong
certification is met.

Example 1 This example is taken from De Lathauwer, De Moor and Vandewalle [11,
Example 5]. It is a tensor in S3(R2) with the independent elements being

a111 = 2, a112 = 1, a122 = 1, and a222 = 1.

The best rank one approximation computed is

λ = 3.2560 with x = (0.7981, 0.6025)T,

which is exactly the one given in [11]. The global optimality is certified with the
duality gap = 2.9 × 10−11, feasibility = 6.6 × 10−15, psd residual = 1.7 × 10−13,
projection residual = 3.8 × 10−11, and the computed matrix B having rank one. The
approximation residual is ‖A − B‖ = 0.6310.
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Fig. 1 The computed best rank one tensors along the perturbations

Example 2 This example tests a set of perturbed versions of Example 1. They are
tensors in S3(R2) with the independent elements being

a111 = 2, a112 = 1, a122 = 1 − ε, and a222 = 1 + ε,

where ε > 0 is a perturbation in [10−6, 10−1]. We tested 100 instances, each taking
an ε ∈ [10−6, 10−1], starting from 10−6 with an equal difference 10−3. In each case,
the method successfully computed the best rank one approximation, together with
a global optimality certification as in Example 1. We do not present the similar but
tedious data, while show the computed λ, and the coordinates of the vector x in Fig. 1,
from which we can see the evolution of the optimal solutions along the perturbations.

Example 3 This tensor is taken from Qi [46, Example 2] as well as Nie and Wang [44,
Example 3.3]. This is a tensor in S3(R3) with the independent elements being

a111 = 0.0517, a112 = 0.3579, a113 = 0.5298, a122 = 0.7544, a123 = 0.2156,

a133 = 0.3612, a222 = 0.3943, a223 = 0.0146, a233 = 0.6718, a333 = 0.9723.

The best rank one approximation computed is

λ = 2.1110 with x = (0.5204, 0.5113, 0.6839)T,

which is certified with the duality gap = 5.1 × 10−11, feasibility = 7.8 × 10−15, psd
residual= 5.9×10−13, projection residual= 3.8×10−11, and the computedmatrix B
having rank one. The result agrees with that in [44, Example 3.3]. The approximation
residual is 1.2672.

Example 4 This is a tensor in S3(R3) with the independent elements being

a111 = 0.7239, a112 = 0.1505, a113 = 0.0199, a122 = 0.0266, a123 = 0.1232,

a133 = 0.5176, a222 = 0.0835, a223 = 0.0833, a233 = 0.0801, a333 = −0.1353.

This tensor has rank three and has a rank decomposition given by

0.8768 ×
[

0.7015
−0.0770
−0.7132

]⊗3

+ 0.7093 ×
[
0.8494
0.3156
0.6092

]⊗3

+ 0.6065 ×
[−0.2804

0.4666
0.3328

]⊗3

.
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The computed best rank two approximation tensor B has independent elements

a111 = 0.7173, a112 = 0.1546, a113 = 0.0178, a122 = 0.0609, a123 = 0.1235,

a133 = 0.5202, a222 = 0.0230, a223 = 0.0442, a233 = 0.0797, a333 = −0.1280.

It is a rank two tensor, and has a rank decomposition given by

0.8379 ×
[

0.7066
−0.0139
−0.7039

]⊗3

+ 0.9140 ×
[
0.7728
0.2923
0.5605

]⊗3

.

The approximation residual is 0.1092. The duality gap is 4.2 × 10−12 with the dual
objective function value = 0.0060. The feasibility = 4.5 × 10−15, psd residual =
2.4× 10−14, and projection residual = 3.0× 10−11. The computed moment vector y
is

(1.7519, 1.2984, 0.2572,−0.0660, 0.9641, 0.1994,−0.0123, 0.0788, 0.1606,

0.7090, 0.7173, 0.1546, 0.0178, 0.0609, 0.1235, 0.5202, 0.0230, 0.0442,

0.0797,−0.1280, 0.5347, 0.1198, 0.0331, 0.0470, 0.0950, 0.3824, 0.0177,

0.0342, 0.0619,−0.0795, 0.0067, 0.0130, 0.0251, 0.0527, 0.3014)T,

from which we can see that the (numerically) nonzero eigenvalues of the first moment
matrixM1(y) are 0.7486, 2.7552, and those of the second moment matrixM2(y) are
1.1870, 3.6142. Therefore, the flatness condition is satisfied and hence the quantified
optimality is certified.

Example 5 This is a tensor in S3(R4) with the independent elements in lexicographic
order as follows

0.4287,−0.1614,−0.0696,−0.2829, 0.0404,−0.0544, 0.0888,

− 0.0715, 0.0159, 0.2633,−0.0979,−0.0933,−0.0524,−0.1570,

− 0.0081,−0.0644,−0.2576,−0.0222,−0.0299,−0.3253.

This tensor has rank four and has a rank decomposition given by

0.7868×

⎡

⎢⎢⎢⎢⎣

0.5581

−0.0331

−0.1593

−0.1216

⎤

⎥⎥⎥⎥⎦

⊗3

+0.3361×

⎡

⎢⎢⎢⎢⎣

0.5549

−0.0319

−0.1092

−0.9176

⎤

⎥⎥⎥⎥⎦

⊗3

+0.6221×

⎡

⎢⎢⎢⎢⎣

0.7320

−0.3972

0.0278

−0.4689

⎤

⎥⎥⎥⎥⎦

⊗3

+0.4636×

⎡

⎢⎢⎢⎢⎣

−0.2744

−0.5026

−0.8182

−0.0511

⎤

⎥⎥⎥⎥⎦

⊗3

.

The computed best rank three approximation tensor B has independent elements in
lexicographic order as

0.4128,−0.1766,−0.0546,−0.2891, 0.0324,−0.0443, 0.0873,

− 0.0829, 0.0190, 0.2617,−0.0856,−0.0989,−0.0405,−0.1565,
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− 0.0152,−0.0605,−0.2542,−0.0188,−0.0318,−0.3250.

It is a rank three tensor, and has a rank decomposition given as

0.6365 ×

⎡

⎢⎢⎣

0.8303

−0.3470

−0.0381

−0.4343

⎤

⎥⎥⎦

⊗3

+ 0.4372 ×

⎡

⎢⎢⎣

0.5097

−0.0577

−0.0819

−0.8552

⎤

⎥⎥⎦

⊗3

+ 0.4635 ×

⎡

⎢⎢⎣

−0.2746

−0.5027

−0.8182

−0.0512

⎤

⎥⎥⎦

⊗3

.

The approximation residual is 0.0639. The duality gap is 1.4 × 10−12 with the dual
objective function value = 0.0021. The feasibility = 2.1 × 10−15, psd residual
= 3.2 × 10−14, and projection residual = 1.8 × 10−11. The computed y ∈ R

70,
from which we get the (numerically) nonzero eigenvalues of the first moment matrix
M1(y) are 0.0948, 0.5875, 2.3921, and those of the second moment matrix M2(y)
are 0.2449, 0.9786, 3.0383. Therefore, the flatness condition is satisfied and hence the
quantified optimality is certified.

Example 6 This is a tensor A ∈ S3(R2) with the independent elements being

a111 = 0.5662, a112 = −0.0971, a122 = 0.0713, and a222 = 0.2664.

This tensor is an orthogonally decomposable tensor with rank two. The computed best
rank two approximation is given by

B = 0.5950 ×
[
0.9826

−0.1859

]⊗3

+ 0.2848 ×
[
0.1859
0.9826

]⊗3

with the approximation residual being ‖A − B‖ = 1.4 × 10−5. We see that B is
an orthogonally decomposable tensor. The duality gap = 3.9 × 10−13, feasibility
= 2.7×10−13, psd residual= 2.2×10−12, and projection residual= 5.3×10−11. The
approximation quality is consistent with the theoretical bound given in Proposition 13.

We also tested its best rank one approximation. The best rank one approximation
computed is

B = 0.5949 × x⊗3 with x = (0.9826,−0.1859)T

with the approximation residual being ‖A − B‖ = 0.2848. The duality gap = 1.4 ×
10−13, feasibility = 5.6× 10−15, psd residual = 2.8× 10−11, and projection residual
= 5.1 × 10−13. We see that the approximation quality is very good.

Since the given tensor is orthogonally decomposable, we know all the local mini-
mizers [22]. By a DCAmethod for the primal problem (11), a local minimizer is found
as

B = 0.2848 × x⊗3 with x = (0.1861, 0.9825)T

with the approximation residual being ‖A−B‖ = 0.5949. The duality gap = 0.1429,
feasibility= 5.2×10−9, psd residual= 2.0×10−9, and projection residual= 0.3209.
Thus, it cannot be certified as a global optimizer by the theory established in this paper,
which agrees with the observed fact.
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Table 1 Performance of the perturbed orthogonally decomposable tensors

ε

Paras ‖B‖ Num Max-gap Mean-gap Max-res Mean-res

10−1 0.66623 100 1.5417×10−11 1.5378×10−11 0.47144 0.47144

10−2 0.60013 100 2.2139×10−12 2.2082×10−12 0.30137 0.30137

10−3 0.59543 100 1.7190×10−13 1.6918×10−13 0.28645 0.28645

10−4 0.59498 100 1.0934×10−12 8.6368×10−13 0.28501 0.28501

10−5 0.59493 100 1.8477×10−13 1.1607×10−13 0.28486 0.28486

10−6 0.59493 100 1.4534×10−13 1.2692×10−13 0.28485 0.28485

Example 7 Tensors in this example are perturbed variations of the tensor in Example 6.
We tested six variations, by adding to each component of the tensor in Example 6 with
ε = 10−1, 10−2, 10−3, 10−4, 10−5 and10−6 respectively. For each case, the algorithm
is excuted 100 times with random initialization. The results are summarized in Table 1.
In this table, “‖B‖" represents the norm of the best rank one approximation tensor
found by the algorithm, “Num” represents the number of strong certification, “max-
gap” and “mean-gap” represent the maximum duality gap and the mean duality gap
between the primal and the dual problems respectively, and “max-res” and “mean-res”
represent the maximum approximation residual and the mean approximation residual
respectively. We see from Table 1 that the computation is very stable, and in all cases
global optimal solutions are found. From the last column of this table, we see that the
approximation quality is consistent with our theory.

Example 8 Tensors in this example are randomly generatedwith each element in [0, 1].
The best rank one approximation is computed, i.e., r = 1. Examples with differ-
ent dimensions n are simulated. For each n ∈ {2, . . . , 10}, 100 randomly generated
instances are tested. The results are summarized in Table 2. In this table, “Num" refers
to the number of strong certification; “max-gap” and “mean-gap” are as Table 1, for
the certified simulations; “mean-psd”, “mean-feas” and “mean-proj” are the mean
residuals for the psd residual, the feasibility, and the projection residual respectively.
We see from Table 2 that the performance is quite promising.

Example 9 Tensors in this example are in the following form

A =
r+2∑

i=1

λix
⊗3
i ,

where λi and each component of xi ∈ R
n are randomly generated from [0, 1]. The best

rank-r approximation is computed. Examples with different pairs (n, r) of dimension
n and approximation rank r are simulated. For each pair, 100 randomly generated
instances are tested. The computational results are summarized in Table 3. In this table,
“c” and “sc” refer to “certification” and “strong certification” respectively. Whenever
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Table 2 Performance of randomly generated tensors for r = 1

n
Paras

Num Max-gap Mean-gap Mean-psd Mean-feas Mean-proj

2 98 5.0×10−11 1.5×10−11 2.4×10−14 2.5 ×10−15 2.8×10−11

3 100 7.3×10−11 3.8×10−11 3.7×10−13 5.8×10−15 2.9×10−11

4 100 9.3×10−11 5.1×10−11 5.3×10−12 1.0×10−14 2.3×10−11

5 100 8.9×10−11 3.2×10−11 2.2×10−11 1.4×10−14 1.0×10−11

6 100 6.9×10−11 2.4×10−11 2.3×10−11 1.9×10−14 5.6×10−12

7 100 7.3×10−11 1.7×10−11 1.8×10−11 2.4×10−14 3.2×10−12

8 100 4.3×10−11 1.3×10−11 1.3×10−11 3.0×10−14 2.0×10−12

9 100 3.9×10−11 9.5×10−12 1.0×10−11 3.9×10−14 1.2×10−12

10 100 3.5×10−11 8.5×10−12 9.5×10−12 4.4×10−14 9.3×10−13

it appears “70(92)”, the number in the bracketmeans that there are extra 22 simulations
for which no duality gap between the primal and the dual problem is observed but the
flatness condition fails, thus we cannot get a certification. The other parameters are as
those in Table 2, for the certified cases. The performance is also promising.We remark
that for the case (n, r) = (6, 5), standard Lasserre’s relaxation to problem (4) gives
SDP with matrix size ζ(38, 4) = 73815 and number of equations around ζ(38, 4)2/2.
From this perspective, essentially, it is a very hard problem.

Example 10 Tensors in this example are principal component tensors with perturba-
tions, i.e., A ∈ S3(Rn) in the form

A =
r∑

i=1

λix
⊗3
i + εE,

where λi and xi ’s are as Example 9, E ∈ S3(Rn) is the tensor of all ones, and
ε ∈ {10−1, 10−2, 10−3, 10−4, 10−5, 10−6}. For each pair of (n, r), 100 randomly
generated instances are tested for each ε. The computational results are summarized
in Table 4. The parameters are the same as Table 3. Data in bold are extra exper-
iments under higher accuracy (tolerance lower than 10−12 or number of iterations
upto 3 × 105). The performance is similar as Example 9. Higher accuracy promotes
performance. Note that when ε = 0.1, the principal components are merged by the
perturbation.

6 Conclusions

In this paper, we presented a method for computing the best low rank approximation
for a given third order symmetric tensor. It is shown that this method can certify the
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Table 4 Performance of randomly generated principal component tensors

ε 10−1 10−2 10−3 10−4 10−5 10−6

(n, r)
Type

c/sc c/sc c/sc c/sc c/sc c/sc

(3, 2) 93/39 87/72 95/92 99/99 100/100 100/100

(4, 2) 95/60 86/ 80 100/ 100 99/99 100/100 100/100

(4, 3) 54(91)/3 55(80) /14 86(89)/47 98(99)/91 99(100)/99 100/100

(5, 2) 94/66 79/73 99/99 100/100 100/100 100/100

(5, 3) 50(86)/3 49(70)/11 96(98)/55 99/96 99(100)/99 100/100

(5, 4) 10(90)/1 14(78)/2 65(91)/30 98/84 100/100 100/100

32(93)/11 62(80)/18

(6, 2) 96/72 77/72 98/98 100/100 100/100 100/100

(6, 3) 63(82)/6 53(64)/12 92(93)/72 100/100 100/100 100/100

(6, 4) 13(90)/3 15(67)/1 73(84)/33 100/94 100/100 100/100

39(82)/13 63(77)/21

(6, 5) 5(87)/0 6(77)/2 58(88)/17 95(96)/82 99(100)/99 99(100)/98

34(90)/8 44(82)/11

global optimality or quantified quasi-optimality undermild assumptions by employing
techniques from polynomial optimization, matrix optimization, duality theory, and
nonsmooth analysis. The applicability of the theory is verified by several numerical
examples.

The emphasis of this paper is on the global optimality and quantified quasi-
optimality certification of the best low rank approximation. Numerical illustration
is presented for the validation of the theory as well. However, more carefully and
wisely designed numerical methods should be investigated in our future research for
solving the hard optimization problems involved in the theory. In particular, themethod
employed in this paper for the problem (35) is a first order method, which typically
has a slow convergence and it is difficult to get a high accuracy solution for large
scale problems. In order to facilitate the global optimality certification, high accuracy
solution for the dual problem (12) is necessary (cf. Table 4). While problem (12) has
a complicated nonsmooth convex objective function, it is a challenging problem to be
solved, especially at degenerate solutions. On the other hand, note that we used the
approximate solution (the multipler for (35)) for the dual problem of (35) to generate
a candidate for the solution of (11). The polynomial optimization ingredients in our
reformulation (11) require a high accuracy solution; otherwise, the flatness condition
is impossible to be satisfied. Hence, methods and theory for solving (35) and its dual
problem targeted with high accuracy and fast convergent properties should be devel-
oped. In particular, properties of the conjugate function and the proximal mapping of
the squared low rank projection function involved in (36) should be investigated.

Nevertheless, the numerical examples in Sect. 5 as well as the theoretical results in
Sect. 4 on the global optimality certification convinced us that this approach is quite
promising.
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Appendix A Basics onmoments

Moment matrices are useful tools in the study of polynomial optimization, we refer to
[32, 33, 38–40, 43] and references therein for basic notions and advances of polynomial
optimization. Let

x◦s := (1, x1, . . . , xn, x
2
1 , . . . , x

s
n)

T (A1)

be the vector of monomials up to degree s in the n variables x1, . . . , xn ordered
lexicographically. The dimension of x◦s is

(n+s
n

)
. Let

x[s] = (xs1, x
s−1
1 x2, . . . , x

s
n)

T

be the sub-vector of x◦s corresponding to the monomials of degree exactly s. The
dimension of x[s] is

ζ(n, s) :=
(
n + s − 1

n − 1

)
.

Define the extended monomial basis of order 2 as

x⊗2 := (x21 , x1x2, . . . , x1xn, x2x1, x
2
2 , . . . , x2xn, . . . , xnx1, . . . , x

2
n )

T, (A2)

and generalize to x⊗s for s ≥ 3 in a straightforward way. Note that x⊗s is used to
refer to the symmetric rank one tensor of order s generated by x as well. We hope
that this abuse of notation will not bring confusion, since (A2) is consistent with the
classical meaning and it is actually a vectorization of the rank one tensor x⊗s in the
lexicographic order. The exact meaning would be clear from the context.

There is a natural one to one correspondence between amonomial xα and a vector in
N
n . The relation is indicated directly by the exponent vector α of the given monomial.

Let

N
n≤s := {α ∈ N

n : |α| := α1 + · · · + αn ≤ s},
N
n=s := {α ∈ N

n : |α| := α1 + · · · + αn = s}.

Note that for each given integer s ≥ 0, there exists a set of mutually orthogonal
symmetric matrices Aα ∈ S2({0, 1}ζ(n+1,s)) such that

x◦s(x◦s)T =
∑

α∈Nn≤2 s

xαAα.

In the classical analysis of polynomial optimization, a moment matrix of order s is a
matrix M ∈ S2(Rζ(n+1,s)) in the form

M :=
∑

α∈Nn≤2s

yαAα (A3)
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for a vector y ∈ R
ζ(n+1,2s) which is indexed by the vector of exponents of monomials

in x◦2s . The matrix M in (A3) is denoted asMs(y), and it is known as the s-th order
moment matrix generated by y.

Let s ≥ 2 be a given integer. Suppose that vectors in R
ζ(n+1,2 s) are indexed by

N
n≤2 s as above. Define an operatorP : Rζ(n+1,2 s) → R

n×n2 as follows: given a vector

y ∈ R
ζ(n+1,2 s), P(y) is defined component-wisely as

(P(y))i,( j−1)∗n+k := yei+e j+ek for all i, j, k ∈ {1, . . . , n}. (A4)

To certain extent, the operator P is independent of s. Thus, for simplicity, we omit
this nominal dependence in the notation.

Lemma 6 Let positive integer s be given and y ∈ R
ζ(n+1,2 s). Then there exists a

nonsingular matrix P ∈ R
n2×n2 such that

P(y)P = [
M 0

]
,

where M is the submatrix ofMs(y) corresponding to theNn=1×N
n=2 block. Therefore,

rank(P(y)) ≤ rank(Ms(y)).

Proof By (A4), the matrix P(y) is almost the target Nn=1 ×N
n=2 block ofMs(y), but

with some repeated columns. These columns can be eliminated, and the result follows
then. ��

Let y ∈ R
N
n
be a moment sequence. The (infinite) moment matrix M(y) is defined

element-wisely as
(M(y))α,β := yα+β.

We see that the moment matrix of order s defined by (A3) is actually the leading
|Nn≤s |×|Nn≤s | principal sub-matrix of themoment matrixM(y). Likewise, themoment
tensor T (y) is defined element-wisely as

(
T (y)

)
α,β,γ

:= yα+β+γ .

Themoment tensor of order p, q, r , denoted as Tp,q,r (y), is then defined as the leading
|Nn≤p| × |Nn≤q | × |Nn≤r | principal sub-tensor of the moment tensor T (y). Given a
polynomial g(x) ∈ R[x]r , the localizing matrix Lk

g(y) of order k is given by

pTLk
g(y)p = 〈y, p2 g〉 for all p(x) ∈ R[x]k .

Proposition 17 (Localizing Matrix via Moment Tensor). For any given polynomial
g(x) ∈ R[x]r , it always holds that

Lk
g(y) = 〈Tk,k,r (y), g〉3:1 ∈ R

|Nn≤k |×|Nn≤k |,

where
(〈Tk,k,r (y), g〉3:1

)
α,β

:= ∑
γ∈Nn≤r

(
Tk,k,r (y)

)
α,β,γ

gγ for all α, β.
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Proof It follows that

〈y, p2 g〉 =
∑

α,β,γ

yα+β+γ pα pβgγ = 〈Tk,k,r (y),p ⊗ p ⊗ g〉.

The result thus follows. ��
In the following, we review basic facts about flatness of truncatedmoment sequence

over the unit sphere Sn−1 (abbreviated as utms). For k ≥ 2, a utms y ∈ R
ζ(n+1,2k) is

flat if (cf. [38])

Mk(y) � 0, Lk(y) = 0, and rank(Mk(y)) = rank(Mk−1(y)), (A5)

where Lk(y) := Lk−1
1−xTx

(y) is the (k − 1)-th localizing matrix of the polynomial

1 − xTx.
To be more precise, the condition (A5) is called the k-th flatness condition for the

utms. If y satisfies the k-th flatness condition, then y can be represented as a unique
measure which is rank(Mk(y))-atomic [10, 38]. We will call the cardinality of the
support of this unique measure the rank of the utms, denoted as rank(y). Thus, in this
case, rank(y) = rank(Mk(y)). If y does not satisfy the k-th flatness condition but
some extension z of y satisfies the s-th flatness condition with s > k, then y can also
be represented as a unique measure which is rank(Ms(z))-atomic, and rank(y) :=
rank(z). SinceMk(y) is a principal sub-matrix ofMs(z), itmayhappen that rank(y) =
rank(z) = rank(Ms(z)) > rank(Mk(y)).

Appendix B Nonsmooth analysis of matrix low rank projection

Let positive integers m ≤ n. Given a matrix X ∈ R
m×n and a positive integer r ≤ m,

we consider the following problem on projection of X onto the set R(r) of matrices
of rank at most r in the ambient space Rm×n , i.e.,

min 1
2‖Y − X‖2

s.t. rank(Y ) ≤ r ,
Y ∈ R

m×n .

(B6)

It is well-known that an optimizer of (B6) can be computed via singular value decom-
position by Eckart–Young–Mirsky’s theorem [15]. Actually, let

X = P�(X)QT

be the singular value decomposition of X with an orthogonal matrix P ∈ R
m×m and

an orthonormal Q ∈ R
n×m , and a diagonal matrix � = diag{σ1, . . . , σm} with the

singular values being ordered nonincreasingly. In the sequel, we follow [13, 14] for
the nonsmooth analysis of the matrix low rank projection. We can partition the index
set as

α := {i : σi > σr }, β := {i : σi = σr } and γ := {i : σi < σr }. (B7)
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Let�R(r)(X)be the set of optimizers of problem (B6). In generic case, the set�R(r)(X)

is a singleton, while in some cases, it is a smooth manifold of dimension greater than
one. Nevertheless, each optimizer of (B6) can be written as

[
Pα PβUβ

]
diag(v)

[
Qα QβUβ

]T

with an orthogonal matrix Uβ ∈ O(|β|) and v ∈ V with

V :=
{
v ∈ R

|α|+|β| : vi =

⎧
⎪⎨

⎪⎩
σi

for all i ∈ α ∪ β∗ with β∗ ⊆ β

and |β∗| = r − |α|,
0 for the others

}
. (B8)

It is a direct calculation to check that

‖X − Y‖2 =
m∑

i=r+1

σ 2
i

is a constant for all Y ∈ �R(r)(X), if it is not a singleton. Thus, we will (in some sense
abuse of notation) use

‖X − �R(r)(X)‖2
to denote the above constant. Similar convention is taken in some other situation as
well. Let

�r (X) := 1

2
‖�R(r)(X)‖2.

We then have

�r (X) = 1

2
‖X‖2 − 1

2
‖X − �R(r)(X)‖2

= 1

2
‖X‖2 − min

Y∈R(r)

1

2
‖X − Y‖2

= max
Y∈R(r)

{1
2
‖X‖2 − 1

2
‖X − Y‖2

}

= max
Y∈R(r)

{〈X ,Y 〉 − 1

2
‖Y‖2},

which shows that �r is a convex function. As a convex function, we can compute its
subdifferentials [47]. Given a subset S, conv(S) denotes its convex hull in the ambient
space. The next result follows from [13, Proposition 2.16].

Lemma 7 We have
∂�r (X) = conv

(
�R(r)(X)

)
. (B9)

Lemma 8 Given a matrix X ∈ R
m×n and positive integer r ≤ m. If Y ∈

conv(�R(r)(X)), then

Y ∈ �R(r)(X) if and only if rank(Y ) ≤ r .
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Proof Let
X = P�(X)QT

be the singular value decomposition of X with � = diag{σ1, . . . , σm} consisting of
nonincreasingly ordered singular values. We can partition the index set as (B7). Each
matrix Z ∈ �R(r)(X) takes the following form

[
Pα PβUβ

]
diag(v)

[
Qα QβUβ

]T

with v ∈ V and V defined as in (B8). More concretely, it can be written as

PTZ Q̃ =
⎡

⎣
diag(�α) 0 0

0 σrUβ∗U T
β∗ 0

0 0 0

⎤

⎦ ,

where Uβ∗ ∈ R
|β|×|β∗| is formed by the columns of Uβ indexed by β∗, and Q̃ is an

orthogonal matrix formed as [Q Q̄]. Let Y ∈ conv(�R(r)(X)). By Carathéodory’s
theorem [47], we can write

Y =
S∑

s=1

μs Zs

as a convex combination of Zs ∈ �R(r)(X). We thus have

PTY Q̃ =
⎡

⎣
diag(�α) 0 0

0 σr
∑S

s=1 μsUs
(β∗)s (U

s
(β∗)s )

T 0
0 0 0

⎤

⎦ (B10)

for orthogonal matrices Us and index sets (β∗)s with s ∈ {1, . . . , S}. The case when
σr = 0 is trivial. In the following, we assume that σr > 0.

Let
p := |(β∗)s | for all s = 1, . . . , S

and p = r − |α|. Then

rank((Us
(β∗)s )(U

s
(β∗)s )

T) = p, ∀ s = 1, . . . , S.

By the assumption, we have

rank(Y ) ≤ r = |α| + p.

Therefore, we have from (B10) that

rank

( S∑

s=1

μs(U
s
(β∗)s )(U

s
(β∗)s )

T
)

= rank((Us
(β∗)s )(U

s
(β∗)s )

T) = p
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for each s = 1, . . . , S. In fact, since each component matrix in the summation

S∑

s=1

μs(U
s
(β∗)s )(U

s
(β∗)s )

T

is positive semidefinite and has all the eigenvalues being 0 or μs , we must have the
component matrices are the same. Actually, we have

ker

( S∑

s=1

μs(U
s
(β∗)s )(U

s
(β∗)s )

T
)

⊆ ker

(
(U 1

(β∗)1)(U
1
(β∗)1)

T
)

whose dimensions equal to |β| − p, and thus the two kernels are equal to each other.
Consequently, all the kernels

ker((Us
(β∗)s )(U

s
(β∗)s )

T) for all s = 1, . . . , S

are the same. LetW ∈ R
|β|×(|β|−p) be a matrix with orthonormal columns which form

a basis for the common kernel. Then, we have for all s = 1, . . . , S

[
(Us

(β∗)s ) W
]

is an orthogonal matrix. Therefore, we have

(Us
(β∗)s )(U

s
(β∗)s )

T = I − WW T for all s = 1, . . . , S,

which implies that all the matrices in the convex combination are the same. Therefore,

Z1 = · · · = ZS .

The conclusion then follows. ��
By the proof, we see that the extreme points of conv(�R(r)(X)) are those in the set

�R(r)(X), and can be characterized by the rank function.A similar result for symmetric
matrices can be proved similarly, we state it here for its independent interest. Let S(r)
be the set of symmetric matrices of rank at most r .

Proposition 18 Given a matrix X ∈ S2(Rn) and a positive integer r ≤ n. If Y ∈
conv(�S(r)(X)), then

Y ∈ �S(r)(X) if and only if rank(Y ) ≤ r .
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