Neurocomputing 313 (2018) 25-38

journal homepage: www.elsevier.com/locate/neucom

Contents lists available at ScienceDirect

NEUROCOMPUTING

Neurocomputing

Geometric measures of entanglement in multipartite pure states via )
complex-valued neural networks e

Maolin Che®', Liqun Qi"2 Yimin Wei%** Guofeng Zhang‘*

aSchool of Economic Mathematics, Southwest University of Finance and Economics, Chengdu 611130, P R China
b Department of Applied Mathematics, the Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
¢School of Mathematical Sciences and Key Laboratory of Mathematics for Nonlinear Sciences, Fudan University, Shanghai, 200433, P R China
d Department of Applied Mathematics, the Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

ARTICLE INFO

ABSTRACT

Article history:

Received 18 January 2018
Revised 11 May 2018
Accepted 27 May 2018
Available online 19 June 2018

Communicated by Prof. Qiankun Song

AMS subject classications:
15A18
15A69
65F15
65F10

Keywords:

Quantum entanglement
Multipartite state

Geometric measure of entanglement
Complex-valued neural network
Quantum eigenvalue problem
Local optimal complex rank-one
approximation

Lyapunov stability theory
Complex symmetric tensors
Complex tensors

The geometric measure of entanglement of a multipartite pure state is defined it terms of its geometric
distance from the set of separable pure states. The quantum eigenvalue problem is derived to compute
the separable pure state nearest to the given multipartite pure state. Computing the modulus largest
quantum eigenvalue for a multipartite pure state is equivalent to finding the best complex rank-one
approximation of the complex unit tensors, associated with the multipartite pure states. This paper is
devoted to present a complex-valued neural networks approach for the computation of the quantum
eigenvalue problem for multipartite pure states. We design the neural networks for computing the best
rank-one tensor approximation of complex tensors, and prove that the solution of the networks is locally
asymptotically stable in the sense of Lyapunov stability theory. This solution also converges to the local
optimal solutions of the best complex rank-one tensor approximation. We illustrate our theoretical results
via numerical simulations.

© 2018 Elsevier B.V. All rights reserved.

* Corresponding author.

E-mail addresses: chncml@outlook.com, cheml@swufe.edu.cn (M. Che),
ymwei@fudan.edu.cn (Y. Wei),

magqilq@polyu.edu.hk (L. Qi),
magzhang@polyu.edu.hk (G. Zhang).

1 This author is supported by the Fundamental Research Funds for the Central

Universities under grant JBK1801058.

1. Introduction

A tensor is an N-dimensional array of numbers denoted by
script notation A e Clixkx-xIn with entries given by

Qi iy €C, for i,=1,2,..., I, withn=1,2,...,N.

We use CTy | to denote the set of order N dimension I complex
tensors in general. That is, when A e CIy;, we have a;;, ; €C
where i, =1,2,...,]andn=1,2,...,N.

The problem of best rank-one approximation of A e Cl1xkx--xIy
is to find a real scalar o and N unit vectors X, € Ci" (||xp]l> = 1)

2 This author’s work was supported by the Hong Kong Research Grant Council
(Grant No. PolyU 15302114, 15300715, 15301716 and 15300717).

3 This author is supported by the National Natural Science Foundation of China
under grant 11771099.

4 This author is supported by the National Natural Science Foundation of China
and the Hong Kong Research Grant Council (Grant No. 61374057 and 15206915).

https://doi.org/10.1016/j.neucom.2018.05.094
0925-2312/© 2018 Elsevier B.V. All rights reserved.

that minimize

L L Iy

YN iy — 0 - Regy X2, ~--XN,iN){2,

i1=1i=1  iy=1


https://doi.org/10.1016/j.neucom.2018.05.094
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2018.05.094&domain=pdf
mailto:chncml@outlook.com
mailto:cheml@swufe.edu.cn
mailto:maqilq@polyu.edu.hk
mailto:ymwei@fudan.edu.cn
mailto:magzhang@polyu.edu.hk
https://doi.org/10.13039/501100001809
https://doi.org/10.1016/j.neucom.2018.05.094

26 M. Che et al./Neurocomputing 313 (2018) 25-38

where x,,;, is the ipth element of x, € Cch for i, =1,2,...,I, with
n=1,2,...,N, and o €R is a scaling factor. The relationship be-
tween the best rank-one approximation of complex tensors and ge-
ometric measures of entanglement in multipartite pure states will
be discussed in Section 2.1.

There exist numerical methods to compute the best rank-one
approximation of real tensors, e.g., the alternating least squares
(ALS) method, truncated higher-order singular value decomposi-
tion, higher-order power method and semi-definite relaxations. We
refer to Zhang and Golub [47], De Lathauwer, De Moor and Vande-
walle [13,14], Kofidis and Regalia [27], Qi et al. [38], Ni and Wang
[36], Nie and Wang [37] and the references therein.

Ni et al. [35] considered two eigenvalue problems of complex
tensors: the U-eigenvalue problem of a complex tensor and the
US-eigenvalue problem of a complex symmetric tensor, which are
related to the best rank-one approximation of complex tensors. Re-
cently, Ni and Bai [34] proposed an algorithm for computing the
US-eigenpairs of complex symmetric tensors based on a spherical
optimization problem of real-valued functions with complex vari-
ables. This algorithm was used to compute the upper bound of
entanglement in an arbitrary multi-partite system [39]. Che et al.
[9] presented iterative algorithms for computing US- (or U-) eigen-
pairs of complex tensors based on the Takagi factorization of com-
plex matrices.

Wang et al. [44] proposed complex-valued neural network
models for the computation of the Takagi vector of a complex sym-
metric matrix that corresponds to the largest Takagi values. The
readers can refer to [2,3,24], which studied a complex nonlinear
convex programming problem by means of complex-valued neural
network models. Generally speaking, complex-valued neural net-
works have different and more complicated properties than real-
valued ones. Thus, it is important to study the dynamical behaviors
of complex-valued neural networks.

One important aspects of the dynamics of neural networks is
their stability. To analyze the stability of neural networks, vari-
ous approaches, such as Lyapunov function method and synthesis
method, have been proposed [12,30,41]. Che et al. [8] presented a
neural dynamical network to compute a local optimal rank-one ap-
proximation of a real tensor and proved that the state of the pro-
posed neural network is locally asymptotically stable in the sense
of Lyapunov stability theory. The main purpose of this paper is
to design complex-valued neural network models for computing
the local optimal rank-one approximation of complex tensors. We
also derive that the solution of the complex-valued ODEs is locally
asymptotically stable in the sense of Lyapunov stability theory. As
shown in Section 7, the method of complex-valued neural network
models is a strong tool for calculating geometric measure of entan-
glement.

Throughout this paper, we assume that I, J, and N will be re-
served to denote the index upper bounds, unless stated otherwise.
Scalars are denoted by lower Greek letters and lower Roman let-
ters, e.g., « and a. Vectors are denoted by boldface letters and are
lower case, e.g., z. Matrices are denoted by block capital letters,
e.g., A. Tensors are denoted by calligraphic letters, e.g., A. The su-
perscripts -7, © and -* are used for the transpose, the complex
conjugate and conjugate transpose, respectively.

The two-norm and Frobenius norm are denoted by || .||, and
I - ||, respectively. The entry with row index i and column index
j in a matrix A, i.e., (A);, is symbolized by a;; (also (z); =z; and
(Aiyiy..iy = iyiy..iy)- We use parentheses to denote the concatena-
tion of two or more vectors, e.g., (a, b) is equivalent to (a™, b")T.
We use 9%(z) and 3(z) to denote the real and imaginary parts of a
vector z e Cl.

The rest of this paper is organized as follows. In Section 2, we
introduce basic notations about quantum states, convert the prob-

lem for measuring entanglement of a multipartite pure state to the
complex best rank-one tensor approximation, and present the ex-
pressions for the complex gradient of real functions in complex
variables. In Section 3, we define the generalized Rayleigh quotient
of the complex tensors and establish the relationship between the
local optimal complex rank-one tensor approximation and the non-
linear quantum eigenvalue problem (US-eigenvalue problems or
U-eigenvalue problems [35]) based on the generalized Rayleigh
quotient of any complex tensor. We present neural networks and
consider the properties of these neural networks in Section 4. In
Section 5, we establish the complex-valued neural networks to find
the local optimal complex rank-one tensor approximation and an-
alyze its local asymptotic stability in the sense of Lyapunov stabil-
ity theory. We illustrate our theory via numerical simulations in
Section 6 and conclude our paper in Section 7.

2. Preliminaries

The mode-n product [28] of a complex tensor A e Clixl2x..xIy
by a matrix BeChnln denoted by AxpB, is a tensor Ce
Clxxh-1xJaxln 1 x-xIv whose entries are given by

IH
Cirociprjinr iy = D Gty iyDjis M =1,2,...,N.

in=1

In particular, the mode-n multiplication of a complex tensor
A e Clhixbx-xIy by a vector ze Ch is denoted by A x,z". If we
set C = A xpz' € Chxxlh1xlhpix..xIv then we have element-wise
[28],

lH
Ciy . ipineriy = E Qi iy ininq . inXin -
in=1

Given N vectors z; e Ci" (n=1,2,...,N), the notation A x1
z] x32] ... xyz} is easy to define. For any given tensor Ae
Chxhx-xIy and the matrices Fe QJnxln and G e ¢Jnxim one has
[28]

Axn ) xmG=(UxnG) xn F=Ax, FxnG;
AxnF) xn G=Ax, (G-F), with ], =Ip,

with m#ne{1,2,...,N}, where ‘.’ represents the multiplication
of two matrices.

If the entries of AeCh*2<-xIN are given by a;, ;, =
X1,i,X2,i, - --XN,iy, Where x,; is the inth element of x, e Chn for
n=1,2,...,N, then we call A a complex rank-one tensor [14,47].

2.1. Geometric measure of entanglement

Entanglement has been identified as a resource central to quan-
tum information processing. As a result, the task of characterizing
and quantifying entanglement is vitally important in quantum in-
formation theory. The geometric measure of entanglement is one
of most natural and important measures for pure states in bipar-
tite and multipartite systems. We refer to [42,45] and their infer-
ences therein. Mathematically speaking, the geometric measure of
entanglement is nothing but the injective tensor norm [21], which
appears in the theory of operator algebra [15]. The geometric mea-
sure of entanglement also has found wild applications in various
different topics, such as many-body physics [31,33], entanglement
witnesses [17,20] and the study of quantum channel capacities
[7,16,46].

Wei and Goldbart [45] extended the geometric measure of en-
tanglement from a bipartite pure state [42] to a multipartite pure
state via the entanglement eigenvalue of a nonlinear quantum
eigenvalue problem. Ni et al. [35] studied the nonlinear quantum
eigenvalue problem in two forms: the U-eigenvalue problem of a
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complex tensor and the US-eigenvalue problem of a complex sym-
metric tensor. For a symmetric pure state with nonnegative am-
plitudes, its geometric measure of entanglement problem can be
regarded as a tensor decomposition problem or a rank-one approx-
imation to higher-order tensors problem [21,25]. As shown in [10],
there exist two ways for computing geometric measure: the an-
alytic method and the numerical method. More methods for the
computation of geometric measure of entanglement can be re-
ferred to [18]. For the calculation of geometric measure, the in-
terested readers can refer to [10,11,19,32,48]| and the references
therein. In Section 6, we will compare our proposed complex-
valued neural network approach with the numerical method in
[10] for computing geometric measure of some multipartite pure
states in [10].

Let us first develop a general formation, which is appropriate
for multipartite systems comprising N parts, in which each part
has a distinct Hilbert space as state space. An N-partite pure state
[v/) of a composite quantum system can be regarded as a normal-
ized element in a tensor product Hilbert space H=H;  H; ® ... ®
Hy, where Hy :=Ch for n=1,2,...,N and ‘®’ is the Kronecker
product [23].

Assume that the set {|e,; ) :in =1,2,...,Iy} is an orthonormal
basis of Hn with n=1,2,...,N. Then the set {|e;; e;;, ...ey;,):
in=1,2,....I;sn=1,2,...,N} is an orthonormal basis of H. Any
N-partite pure state |¢) € H can be written as

L b

In
Wy=> 3" aii.ileries, .. en;) with a;, ; €C.

ij=lip=1  iy=1
Assume that
L b

Iy
lo) =D ... > big,igleries, .. eny). with by ; €C,

i=1i=1  iy=1
we define
L b Iy

(Vlp) = Z Z e Z biiy...inGiiy...iy»

i1=1i=1 in=1

and

@)l = v {ele).

A separable N-partite pure state is expressed by |¢) = |¢1) ®
|h2) ® ... ® |¢Pn). where each part |¢,) is defined by

In
|¢n> = an,in|en4in)~
in=1
One can envisage a geometric definition of entanglement for
the state |y) via the distance

d=n‘1¢i)n||I1//>—|¢)|| (21)
between |1/) and the nearest separable state |¢) [45].

In the literature, the geometric measure for pure states is also
taken as

1 .
5 min [[|¥) - l)I> =1-G(y),
for separable pure states |¢), where G(v) is the maximal overlap:

G(r) :=max [(¥|§)]

for separable pure states |¢) with (¢|¢) = 1. In the bipartite case,
we can solve the minimization problem (2.1) via the Schmidt de-
composition (a restatement of the singular value decomposition)
[42].

According to the above description, to solve the minimization
problem (2.1), we focus on the following best complex rank-one

tensor approximation problem: find N nonzero vectors z, to mini-
mize

||.A—Z] OZ2O...OZN||12_-, (22)

where the tensor A € Ch*kxxIv is associated with the multipar-
tite pure state |¢) and the Frobenius norm of A is the square root
of the sum of the squares of the moduli of all its elements, i.e.,

h b

In
Z ZZ | @i,y |-

i1=1i=1 in=1

Al =

Meanwhile, we can impose the constraints ||z;||, = 1 and rewrite
the best complex rank-one tensor approximation (2.2) as

min|[A—-o0-(z;020...02zy)|2 (2.3)

If the scalar o is complex, then we can define yj:=
exp(t9/N)z,, (1=+/—1) to ensure that o is an associated real
number, where 6 € (-, ] is the argument of the scalar o. Hence,
in this paper, we always assume that the scalar o is real.

2.2. Real functions with complex variables

Consider a function f:C — C. The complex derivative of f at
z € C is defined as the limit, if it exists,

f/(z) = alzlm f(Z-i—(SZ) - f(Z)

—0 82
It is well known that f is differentiable in the complex sense, if and
only if the Cauchy-Riemann conditions hold. However, in many
practical applications, many functions are not differentiable in the
complex sense [4]. In order to deal with these problems, we de-
velop an alternative formulation that is based on the real deriva-
tives, and it is similar to that of the complex derivative.

The purpose of this section is thus to gather some results con-
cerning Wirtinger derivatives of real valued functions over com-
plex variables. Suppose that f : C! — R is a real function with com-
plex variables. Let z=xXx+ty € C! with x,y € Rl. We introduce a
calculus of the differential operators, which was developed princi-
pally by Wirtinger, often called the Wirtinger calculus. We refer to
[5,29,40,43] for the underlying framework of the complex deriva-
tives.

Definition 2.1. Let z=x+ty e C' with X,y € Rl. The cogradient
operator % and conjugate cogradient operator (.% are defined as

0,9 0 49
8 0x; 'Lam a 1 3X1_‘TL3}’1
oz~ 2 5 : s 0z 2 ) : s ’
TX,_LTy, TX,—’_LT}/,

where ¢ = 4/—1 is the imaginary unit.

Note that the Cauchy-Riemann conditions for f to be analytic in
z can be expressed compactly, using the cogradient as % =0, ie,
fis a function only of z. Analogously, f is analytic in z if and only
if 9L = 0.

Jz

d _ (.0 d \T d _ (.0 A \T it i
Let —ax_(—axl,...,axl) and By_(ayl""’ay,) , it is clear
that

o 0 n a a _, a ad
ox 0z 0dz° 9dy \odoz 0z)°

The complex Taylor series as presented in this paper is due to
van den Bos [43], who found a compact way of transforming the
real gradient and Hessian into their complex counterparts. Kreutz-

Delgado points out that there is actually more than one way to
define the complex Hessian [29].
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Lemma 2.1. ([29, 34]|) Suppose that a real valued function f(z) with
complex variables z € C! is first-order differentiable. Then, the first-
order Taylor series of fz) is

.
fz+82) = f(z) +2% (ag(zz)) 5z | +0(||sz]2)

T T
_ af(2) af(@)
= f(@) + < X ) (SX+< 3y dy
+O(lI8x]13 + l18yl13),
where 8z = 8x + 18y with 8x, 8y € R/,

3. Equivalent rank-one formulations

Similar to the generalized Rayleigh quotient of any real tensor
[47], we define the the generalized Rayleigh quotient of any com-
plex tensor in Cl1*2xxI 35 follows.

Definition 3.1. Suppose that A e Ch*kxxIn_ For N given nonzero
vectors z, € Ch, the generalized Rayleigh quotient of the tensor A
is defined as

1 Ax1ZF xo2Z8 - xXNZ5+AX12Z] xo2Z) - xN2Z)
GRQ(z1, 2y, . .., ) == - 141 %24 NN 14 %24 NN
2 lz11121lz2 12 - - lzvll2

Similar to the standard Rayleigh quotient with real symmetric
matrices, we define the generalized Rayleigh quotient of the ten-
sor A in a way that is invariant under a positive scaling of one of
the vectors zq,2,, ..., zy. We have the following lemma to estab-
lish the relationship between the generalized Rayleigh quotient of
a tensor A € Ch<xxIn and the minimization problem (2.3).

Lemma 3.1. Suppose that A e Chxl2x-xIn_[f the vectors z, satisfy
|znll2 =1 with n=1,2,...,N, then o, = GRQ(z1, 23, ..., Zy) mini-
mizes (2.3), and the minimum value is

||A||% —GRQ(z1,2,, ..., ZN)ZA

Proof. For two given scalars z;,z, € C, it is easy to see that
|z1 — 231? = |z112 + |122|? — (Z122 + z1Z»). According to the Frobenius
norm of A, the formula ||A—-0-(z;0Z30... ozN)||§ can be repre-
sented as

lAIZ -0 (Ax1Z %225 xNZy + Ax12Z] X223 -+ XN Z)
+a?(zill2llz2llz - - - llznll2)?.

Then, the minimizer of (2.3) is 0 = GRQ(zy, z,, ..
minimum value is

||¢4||% —GRQ(z1.2;. ..., ZN)2~

Hence, this proof is completed. O

.,Zy) and the

It follows that the minimization problem (2.3) is equivalent to
the problem of maximizing the absolute value of the GRQ

1 _
max’?(Ax]z’{ X2Zy o XNZy+ AX12] X2Zy .. XN ZY)

(3.1)

under the constraints that ||z;||, =1 with n=1,2,...,N. As we
know, the above optimization problem is equivalent to

1 —
max§~(Ax1ZT X225 xNZy + A x1 2] XZZ;"'XNZE) (32)

under the constraints that ||z,;||, =1 withn=1,2,...,N; or

=1 _
1‘111117~(.A><1Z’1k ><zl§-~-><NZ?(]-~-.A><1Z1T xzz;anz,E)

(3.3)

under the constraints that ||z;||, =1 withn=1,2,...,N.
We write the Lagrangian function of the maximization problem
(3.2) as

1 _
£ = i-(Axlz’{ X225 XNZy+ Ax12Z] xzz;--.xNz{,)

N

=Y Bzl - 1.
n=1

By differentiating £ with respect to z;, and z, separately, we
obtain the following system at a critical point z;:

F(z1.23,....ZN)-n = nZn., G(21.23,....2ZN)n = nZn.  (3.4)
where
F(z1,2y,...,Zy)_n = Axl Zi ... Xn1Zh_q Xnt1Zp - XNZR
G(Z1.22, .. .. ZN) n = AX1Z] ... Xn_1Z) | Xny1Z) .. XNZY.

When we multiply z; and z] to each part of the equations
(3.4) with n=1,2,...,N, respectively, we can derive that u; =
M2 =...=uy =GRQ(zy,2,, ..., zy).

Let 0 = GRQ(z,2;, ..., Zy), then we can rewrite the above sys-
tem as [22,35,45]

F(z1,23,...,2ZN) .n =02y, G(21,2Z3,...,2Zy)n = OZp,
F(z1,23,...,2y) + G(21, 23, ..., 2y) = 20, (3.5)
where
{F(z1,zz,...,zN) =Ax12Z5 X225 ... XN Zy,
G(Z1.23,....2Zv) = AX1Z] X2Z; ... XN Z},.

When A is the associated tensor corresponding to a multipar-
tite pure state |{), we call the vector z, as a mode-n quantum
eigenvector of the complex tensor A with ||z,||, = 1, correspond-
ing to the quantum eigenvalue o € [-1, 1]. Meanwhile, we can also
derive the first-order optimal condition for the dual problem (3.3),
as shown in the nonlinear quantum eigenvalue problem (3.5). For
the modulus largest quantum eigenvalue of a complex tensor A €
ChixhxxIy ye have the following remark.

Remark 3.1. The modulus largest quantum eigenvalue ¢ of a ten-
sor A e ChxkxxIv is called the entanglement eigenvalue and we
have

lol = max [(A, B)|,
for all complex rank-one tensors B e ChxRxxIy,

Let an (N + 1)-tuple (o,Vq,Vs,...,vy) be a quantum eigenpair
of a tensor A e Ch*kx-xIv with ||vy||, =1 forn=1,2,...,N, then
we have the following results.

+ The vector exp (t0,)vy is the mode-n quantum eigenvector of
the tensor A, corresponding to the quantum eigenvalue o
with exp(t(61+6,+---+6y)) =1 and 6, € (-7, ]; the vec-
tor exp (t6n)vy is the mode-n quantum eigenvector of the ten-
sor A, corresponding to the quantum eigenvalue —o with
exp(t(@1 +65+---+60y))=-1and 6, € (—m, 7]

If the 2-norm of the vy, is not one, then, the nonlinear quantum
eigenvalue problem (3.5) should be rewritten as

F oo w) o = 0 (T IVl Va1l
GV Va. o W)-n = 0 (T Vil )V vl
and

N
F(V1,V2,...,VN) + G(V1, Vo, ...,Vy) =20 ]_[||vm||2 ,

n=1
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We establish an important property for the generalized
Rayleigh quotient of the complex tensor A e Clixfx-.xIy,

Theorem 3.1. Assume that the (N + 1)-tuple (o.,uq,..., uy) is a
nonzero solution to the nonlinear quantum eigenvalue problem (3.5).
Then for N small perturbations §z,, we have
GRQ(uq +6z1,uy + 624, ..., uy + Ozy)

=0, + 018215 + 1822115 + ... + 182w 13).

Proof. For clarity, let w = (z,2,,...,zy) and define

f(w) = GRQ(z1,2;, ...,2Zy)
_ 1 Axizi %025 XNZY+ Ax12] x22) - XN Zf,
2 lzill2l1z2l2 - . - llzwll2

In order to prove the result, we need to introduce the first-order
(complex multivariate) Taylor series of f at w=w, with w, =

(ul,uz,...,uN):

af(w)
ow

.
f(w, +86w) = f(w,) +29t[< ) (Sw} +O(]|sw]2).

(3.6)
According to the assumption, we have
6wlI3 = 182115 + 1822115 + ... + [ 6z 13,

where Sw = (621, 0z;, ..., 0zy).

Next, we prove that the second part on the right-hand side of
the equation (3.6) is equal to zero. Since the pair (o, uq,..., uy) is
a nonzero solution to the quantum eigenvalue problem (3.5), then
we have

fw,) =0,, and

F(uj, up,...,uy)_p = 0,Up,
G(uy, Uy, ..., uy) 5 = O.Uy,
F(U],U2,...,UN) +G(U],U2,...,UN) = 20,,
Note that the nonzero solution (o, uy,..., uy) to the quantum
eigenvalue problem (3.5) automatically guarantees that |juy|; =1
forn=1,2,...,N. Some tedious manipulation yields that the value

of % at w= vainshes. Hence, this theorem is proved. O
4. Complex-valued neural networks for (3.1)

We propose a neural network model for computing the lo-
cal optimal rank-one approximation of the tensors A e Chxfkx-xIy,
Some properties for the states of the complex-valued neural net-
works are also presented.

4.1. Case I: complex symmetric tensors

A tensor A e Cly, is called symmetric, if its entries a;;, ;, are
invariant under any permutation of their indices. Denote by CSTy, |
all complex symmetric N-order I-dimensional tensors.

For a given A € CSTy, the nonlinear quantum eigenvalue prob-
lem (3.5) can be reduced to the following nonlinear quantum
eigenvalue problem

AV =ov, AV =0V, (4.1)

where the vector v € C! satisfies ||v||, = 1 with o € R.
Let the pair (o, v) be any quantum eigenpair of the complex
symmetric tensor A. Then, it is easy to derive the following results.

« For even N, the vectors -v, exp(2uw/N+2kmi)v and
exp(—2ur /N + 2kmi)v are the quantum eigenvectors of the
tensor A, corresponding to the quantum eigenvalue o, the
vectors exp(tw/N+2kmi)v and exp(—tmw /N + 2kmwi)v  are
the quantum eigenvectors of the tensor .4, corresponding to
the quantum eigenvalue —o, with k=0, £1,42,....

 For odd N, the vectors exp (2t /N + 2kmt)v and exp(—2tw /N +
2kmi)v are the quantum eigenvectors of the tensor A, cor-
responding to the quantum eigenvalue o, the vectors —v,
exp(tr /N + 2kmre)v and exp(—tm /N + 2kme)v are the quantum
eigenvectors of the tensor A4, corresponding to the quantum
eigenvalue —o, with k=0,4+1,+£2,....

« If |||l #1, then the nonlinear Eq. (4.1) should be rewritten as

AV = o |vl[§2v, AV = oy )2

where the nonzero vector v e C! with o € R.
We shall use the fact that exp(+2kmt¢) =1 and exp(+(2k —
1)) = —1 with k=0, +1,+2,.... The dynamics of the complex-

valued neural network model for computing the quantum eigen-
vectors of a complex symmetric tensor A € CSTy; is described by

dz(t) et AZON + Az
=Az(t)"" - —————1(t), (4.2)
dt 2)lz(®)113
or,
dz(t) — ...y AZON+Az(t)N_
=Az(0)" - ————Z(1),
dt 2)|lz®)113
for t>0, where z = (21,25, ...,2)" € C! represents the state of the
network.

We have the following lemma to state the property for the so-
lution of the neural network described by (4.2).

Lemma 4.1. If the vector z(t) is a solution of the neural network de-
scribed by (4.2) for all t>0, then we have ||z(t)||3 = ||z(0)|2 for all
t> 0, where the nonzero vector z(0) € C! is any nonzero initial value.

Proof. Suppose that z(t) =x(t) +ty(t) for all t>0. Then, we
have

dz(t) x(t)  y(@)

dt — dt dt ’ dt — dt dt ’
that is,

dx(t) 1(dz(t) dz(t)\ dy(t) ¢ (dz(t) dz(t)
a 2\ 7a ta ) Tar “2\"ac " ar )

According to the neural network described by (4.2), we have

dz(t) _x(t) y()

dx(t)  AZ(ONT + Az(t)N! _ AZ(ON + Az(t)N

& - 2 azop 2O TED)
= R Az@ON) - %X(t),
d3‘/j(tt) _ <Az(t)”*] ;Ai(t)”’] - Ai(zl)|l|vl—(: ;le%(t)” @) Z(t))>
= —3(Az@ON ) — %y(t).

We have %R(Az(0)N) =x(@)TRw(Az()N-1) —y(©) TI(Az()N-T)
and ||z(t)]13 = [Ix(0) |2 + |ly(¢)||3. Hence, we have

dllz®)]3 x(t) y(©)

72 9 TV TSIV =0.
t XO g YO T ) =0

The analytical solutions of the network described by (4.2) are given

by [1z(t)|12 = [|1z(0)||3. This completes the proof. O

4.2. Case II: general complex tensors

More generally, we now consider to design the complex-valued
neural networks for solving the best complex rank-one approxima-
tion problem with a general complex tensor, which is not necessar-
ily symmetric. Consider the complex-valued neural network model
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for computing the mode-n quantum eigenvectors of the tensor .4
is described by

dzgt(t) =F(z1, 1, ..., ZN)n— F(z],zz,...,zgﬂ;;ﬁ%(z],zz, anL) ns
(4.3)

or,

dz(,;t(t) G ... 20)n — F(zy,2,, ..., Z;lelrl;%(h’ Z, ..., ZN)in,

for all t>0, where z, = (251,242, ..., Zny,)' € Cl represents the

state of the network with n=1,2,...,N.

We present the following lemma that gives the property for the
solution of the neural network described by (4.3).

Lemma 4.2. If the vector z,(t) is a solution of the neural network
described by (4.3) for all t >0, then we have ||z, (t)||3 = ||z, (0)|3 for
all t>0, where the nonzero vector z(0) € Ch is any nonzero initial
value withn=1,2,...,N.

Proof. The process for proving this lemma is similar to that for
Lemma 4.1. Hence, we omit its proof. O

For clarity, we suppose that ||z;(0)||; = 1. By Lemma 4.2, we
have ||z;(t)]]; =1 for all t>0 with n=1,2,...,N. When the vec-
tor z,(t) converges to a nonzero vector u, € Ch as t — 400, we
have

{F(ll],llz, ..

F(uj,uy,... uy)+G(ug,uy,...u,
LuUy)on = (u;,up N)+G(ug,uy N)u'17

2
Gy, Uy, ..., y) = FOtet) O S t)

that is, the vector u, is a mode-n quantum eigenvector of
the tensor A, corresponding to the value (F(uq,uy,...,uy)+
G(uy,uy, ..., uy))/2.

5. Asymptotic stability analysis

In this section, we prove that the solutions of (4.2) and (4.3) are
locally asymptotically stable in the sense of Lyapunov stability the-
ory.

5.1. Case I: general complex tensors

For any given locally maximizer (uq,uy,..., uy) of the max-
imization problem (3.1), we define a neighbourhood of u with

u= (ug,uy,...,uy) as
B(up, U, ....uy, €) :=B(u,€) ={z=(21,23.....2y)

|z—ull; <€}

where z, e C'" and 0 <€ <¢p, with €g =min|v—ul|, for any
other local maximizer v := (v{,V;,...,vy) of the maximization
problem (3.1).

Let z, = Xy +tyn wWith n=1,2,...,N. Since F(z1,2,...,2Zy) +
G(z1,2y,...,2y) is continuous and differentiable with respect to its
real and imaginary parts, then, there exists 0 < € < € such that the
sign of F(z1,2;,...,2y) + G(Z1,Z,, ...,2Zy) is the same as the sign
of F(uj,uy,...,uy) +G(uq,uy, ..., uy) forall z=(z1,2,,...,2y) €
B(u, €).

We obtain the following theorem to show that the solution
of the network described by (4.3) is locally asymptotically stable
in the sense of Lyapunov stability theory at any locally maximizer
of the maximization problem (3.1).

Theorem 5.1. Suppose that the N vectors u, € C' forms a lo-
cally maximizer of the optimal problem (3.1), with |lu,|l, =1. If
the initial value zy(0) of the neural network described by (4.3) be-
longs to the set B(exp(t6;)uy, exp(t6y)uy, ..., exp(tBy)uy, €) with
1zn(0)||, = 1, then the solution of the neural network described by

(4.3) is locally asymptotically stable in the sense of Lyapunov sta-
bility theory at (exp(t67)uy, exp(t6y)uy, ..., exp(t6y)uy), where the
N scalars 6, € (—m, ] satisfy exp(t(6; +6+...+6§)) =1 with
F(uj,uy,..., uy) +G(uqg,uy, ..., uy) >0 and exp(t(6; +6y +...+
QN)) = —1 with F(uj,uy,...,uy) +G(uq,uy,...,uy) <0.

Proof. For simplicity, we assume that N=3 and o,=
(F(uy,uy,u3) + G(uyg,uy,u3))/2 > 0. We can see that
F(z1,25,23) + G(z1,23,23) >0 for all zeB(u,e) with z=
(21,2,23). For the network described by (4.3), we define the
associated Lyapunov function as

F(21,2;,23) + G(21, 23, 23)
2||z1 lI21Z21l211Z3]l2

for all nonzero vectors z; € Cln and n =1, 2, 3.

Clearly, V(z4, 25, z3) > 0, where z € B(u, €) and z; = exp(t6p)u,
with  exp(t(f; +6, +63)) =1. Meanwhile, the function
V(z1,23,23) :==V(X1,¥1.X2.¥2,X3,y3) can be viewed as a real
continuous and differentiable function with respective to its real
and imaginary parts.

We shall prove the local asymptotic stability of the point (xq,
V1, X2, V2, X3, Y3) by the Lyapunov function W(z, z,, z3) for the
network described by (4.3), that is, we deduce that the inequality

23: |:dxni|Tav(lezz,Z3) . [dYn]TaV(leZZvZ3)

V(z1.2;,23) =0, —

dt Xy, dt OYn

n=1
holds for all (z;, zy,z3) € B(uq, uy, us, €), and the equality holds if
and only if (z1,7,,23) = (uy, uy, u3).

Without of loss generality, we derive the explicit expressions
for av(zg):lz'”) and av(zg);lz‘m. According to the expression of V(z;,
Z,, 23), we obtain

Wazp2z3) _ | _C@zp23) 1 F(z],12,13)+G(zl,zz,23)71
0z, llz1l1211z2 112 1z3 112 EAHEANEAR ’
WV(@zz3) _ | Fzp.z3) 1 F(21.25.23)+G(21,2,.23)
0z, l1z1T2Mz2 12 l1z3 12 EEAHEAREAP ’

By using the fact z; = x; +ty; and Z; = x; — ty;, we have

0V (21,22, 23) _|:F(21522,Z3)1 +G(z1, 2, 23) 4
x4 B lz1ll211Z2 12 [zl
F(z1.25,23) + G(21, 25, 23)
4z [3l1z2112 012312 i
0V (z1,22,23) _l[F(Z17221 23) 1-G(21.23,23) 4
y1 B lz11l211z2 121 zs]]2
F(z1.25.25) + G(21. 25, Z3)
4llz1 3 M1z2 M2 l1zs 1l

According to the network described by (4.3) with N=3, we
present the expressions for dx,/dt and dy,/dt as follows:

(Z1 +21)

(zZ1—2z1) |.

dx1  F(21.23,23) 1+ G(21,23,23) 4
b 21,22.2) + 6@ 22.2,)
21,723,723 2,723,723 =

42,‘,{11 (zl +Z1)s

dy1 | G(z1,22,23) 1 —F(21,23,23) 4

= =

dt 2

F(21,23,23) + G(21,23, 23)
- azz, (zZ1-121) |-

Some computation gets that

dx, | 0V (z1.2,.23)
dt 8x1

" T
N (F(21, 23, 23))x
Z’;Z] 1

= _[m(F(zl,ZZ,Za)l) -
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R(F
|:-‘“(F(Z17 2,23)-1) — le} <0,
Z]Zl

or,

dx, | 0V (z1.2,.23)
dt 8x1

.

N(F(z1,2y,2

= —|:m(G(Z1, Z,23)_1) — ((21*1123))?(1i|
1

|:S)€(G(z1, 2;.23) 1) — 5“(1:(21’12’23))?(1i| <0;

ZTZ1
and
dy, | 9V (z1.22.23)
dt BY1

Z)lk Z

.
= [MF(zl,zZ, 23)_1) — Mlﬁ]

N(F(z1,23,2
|:‘3(F(11,12,Z3)1) - 1((1*23))3!1i| <0,
Z]Z1

or,

dl ! WV (21,25, 23)
dt 8y1

-

N(F(zq1,25, 2

= —[3(6(21722,23)—1) + ((1*23))3/1}
Z1Z1

|:3(G(Zl, Zy,73)_1) +

WE@L2.2)) ) |
zjz, =

In the above two equations, we note that the equality holds if
and only if z; = exp(tt;)u,, where the scalars t,; € (—m, ] satisfy
exp(t(ty + 72 + 13)) = 1, with n =1, 2, 3. Similarly, for the pair (x,,
y>), some algebra yields that

dX2 T aV(Z] , L, Z3)
E 8X2

m(F(z1,zz,z3)>x2T

=—|NEF(@z1.23.23)3) —
|: z;zz

|:57f(F(21, Zy,23) ) — m(F(Z]’ZZ’h))Xz} <0,

Z; Z)
or,

dﬁ ! V(z1,2,,123)
dt 8x2

.

N(F(zq,2,,2

= —|:.‘H(G(z1, 23,73) 3) — Wn}
2

.
[sn(c(z1, 22.25) o) - EEL222)) Z3”xz] <0,

Z;Zz
and
@ ! BV(Z], 7, 23)
dt 8y2

.
N(F(z1,2y, 2
- —[3<F<z1,z2, 25)_2) - MYZ]
7,7,
N(F(zq,25, 2
|:3(F(11,2213)2) - MYZ} <0,

Zz Z)

or,

dy, T3\/(21522,23)
dt 8y2

N(F(z1,22,23)) T
. 22

=—|:‘3‘(G(Z1722,Z3)2)+ 22,

N(F(z1,2y,2
|:5(G(21» 7,23) 2) + 1((]23))3’2:| <0

Z§22
For the pair (X3, y3), some tedious manipulation also leads to

dX3 ! aV(Z] , 2y, Z3)
W 8X3

.
N(F(z1, 22, 13))x
Z?Z] 3

= [m(F(Z1,Zz,Zs)_3) -
[m(F(h, 2,23)_3) —

or,

dxs "oV (21.25.23)
dt 8x3

5
\(F(z1,2,, 23))x3i| <0
Z’{Z]

.

N(F(zq,2,,2

= —[?’i(G(Z1, 2.23)_3) — ((21*1123)),(3}
1

[m(c(z1, 23.2)3) — ”“F(Z"Zz’z”)xg} -0,

Z*{Zl
and
dys TV (21,25, 25)
dt ay3

N(F (21,2, Z3))y3i|T

Z’{Zl

=_[3(F(Z1,22,23)_3)—
[%(F(Zl,lz,za)s) -

or,

dys TV 1. 25)
dt 3y3

%
V(F (24,2, 13))y3] <o
ZTZ]

N(F(z1,22,23)) T
—_—Y

:—[%(6(21,12,23)3)+ 2z,

R
|:3(G(Zlv 23,23) 3) + 7.h(F(z1*, = 23))Y3i| <0.
7,74
We note that N(F(z1,2,23)) = R(G(Z1,27,23)) and
3(F(zq,23,23)) = —3(G(z1,2Zy,23)). Then, the solution of the
network described by (4.3) is locally asymptotically stable in
the sense of Lyapunov stability theory at (u;, up, u3) with
F(uy,uy,u3) + G(uy,uy, u3) > 0.
When the scalars 6, € (-, 7] satisfy exp(¢(61 +6, +63)) =1,
we have

F(exp(t01)uy, exp(16;)uy, exp(163)us)
+G(exp(t07)uy, exp(t6y)uy, exp(t63)us) > 0.

According to the above procedure, we can prove that the solution
of the network described by (4.3) is locally asymptotically stable in
the sense of Lyapunov stability theory at

(exp(t61)uy, exp(16z)uy), exp(t63)us3).

Furthermore, we show that the solution of the network de-
scribed by (4.3) is locally asymptotically stable in the sense of Lya-
punov stability theory at (exp(t6;)uq, exp(t6)u,, ..., exp(tfy)uy),
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where the N scalars 6, e (—m, ] satisfy exp(t(6; +6y+...+
091\])) =1 with F(ll1, up,..., UN) + G(U], up,..., I.IN) > 0.

Now, we suppose that o, :=F(uj,uy,...,uy) +
G(uy,uy, ..., uy) < 0. According to the analysis in Section 3,
there exist N vectors v, = exp(ttp)uy, such that F(vq,vy,...,Vy) +
G(Vq,Vy,...,Vy) = —0, > 0, where exp(t(t1 + T +---+ 1y)) = —1

with t; € (-7, ] for n=1,2,...,N. For the network described
by (4.3), the associated Lyapunov function is defined as

F(21,%,...,2y) + G(21, 2>, . . ., Zy)
2||lzqll21Z2l2 - - - lznll2

For the case of F(uy,uy,...,uy) + G(uy,uy,...,uy) > 0, we can
prove that the solution of the network described by (4.3) is lo-
cally asymptotically stable in the sense of Lyapunov stability the-
ory at (exp(ttq)uq, exp(tTy)uy, ..., exp(tTy)uy). Furthermore, we
prove that the solution of the neural network described by (4.3) is
locally asymptotically stable in the sense of Lyapunov stability
theory at (exp(t6;)uq, exp(tbr)uy, ..., exp(tfy)uy), where the N
scalars 6, € (—m,m] satisfy exp(t(61 +65+---+6y)) =—1 with
F(ul,lI2,...,UN)+G(U],Uz,...,UN) <0. O

V(z1,23,....,2y) = —0, —

5.2. Case II: complex symmetric tensors

In Section 5.1, we analyzed that the solution of the network
described by (4.3) is locally asymptotically stable in the sense
of Lyapunov stability theory. The main result is summarized in
Theorem 5.1. In this subsection, we explore a special case of gen-
eral complex tensors, that is, complex symmetric tensors. The goal
is to analyze the local asymptotic stability in the sense of Lyapunov
stability theory for the neural network described by (4.2).

For a given A € CSTy,, the maximization problem (3.1) can be
reduced by

AZ" + AzN
2

under the constraint that ||z||; = 1 with z € C'. Suppose that u € C/
is a local maximizer of the maximization problem (5.1), we define
a neighborhood of the vector u as

max |f(z)|, with f(z)= (5.1)

B(u,&)={zeC':llz—ul; <&},

for all 0 < € < ¢y := min |ju — v||,, where the vector v is also a lo-
cal maximizer of (5.1) with v#u. Then, there exists 0 < € < € such
that the sign of fiz) is the same as the sign of fu) for all z ¢
B(u, €). All local maximizers of the maximization problem (5.1) are
the quantum eigenvectors of the tensor A.

The following theorem states that the solution of the network
described by (4.2) is locally asymptotically stable in the sense of
Lyapunov stability theory at any local maximizer of the maximiza-
tion problem (5.1).

Theorem 5.2. Suppose that the vector u e C' is a local maximizer
of the maximization problem (5.1) with ||ul|, = 1. If the initial value
z(0) of the neural network described by (4.2) belongs to the set
B(exp(t0)u, €), with ||z(0)||, =1, then the solution of the neural
network described by (4.2) is locally asymptotically stable in the sense
of Lyapunov stability theory at exp (16 )u, where 6 belongs to the set

{0, &7 /N, £27t)N, ... £ }.

Since the network described by (4.2) is a special case of
the network described by (4.3), we omit a rigorous proof of
Theorem 5.2. Instead, we give the Lyapunov function, correspond-
ing to the network described by (4.2), as follows:

_ AI g f(u) > 0;
B B 20z[f = ’
V@ =V&xy) =1 .o fu <o,

* 2lzly =

6. Numerical examples

In this section, the computations are implemented in Matlab
Version 2013a and the Matlab Tensor Toolbox [6] on a laptop with
Intel Core i5-4200M CPU (2.50GHz) and 8.00GB RAM. All floating
point numbers in each example have four decimal digits. We sup-
pose that € = 1e — 10. We use functions “ttv” and “ttm” in [6] to
implement the tensor-vector operation and the tensor-matrix op-
eration.

In order to compute the mode-n quantum eigenvectors of
a given tensor Ae Chxkx-xIv we utilize the following first-
order difference equations to approximate the network described
by (4.3):

zo(k+1) = zn (k) + o (F (21 (k). 22 (k). ..., 2y (K)) n

3 F(zq(k),zy(k), ..., zy (k) + G(zq (k), zz (k), ..., z,\,(lc))Z )
2||Zn(k)”§ " '

(6.1)

where « is a learning rate, for any nonzero vectors z,(0) € Ch.

According to Lemma 4.2, we have that |z,(0)|l; =1 implies
lzn(k)||, = 1. Then, for the pair (o (k),z(k),..., zy(k)) with
o (k) = (F(z1(k), 2a(k), ..., zy(k)) + G(z1 (k), 2 (k), ..., zy (K))) /2,
we define

ERR(k) := max IF(z1 (k). 22(k). ... Zn(K)) —n — 0 (K)Za (K) 2.

If there exists a positive integer kg such that ERR(k)<e for
all k>ky, then we terminate the iteration scheme (6.1) and the
pair (o (k),z1(k),...,zy(k)) is an approximate quantum eigenpair
of the tensor A. If the number of iterations reaches 10000, we
just terminate. Meanwhile, according to Theorem 5.1, we have that
(z1(k),...,zy(k)) is a locally approximate maximizer of the maxi-
mization problem (3.1). The symbols o (k) and ERR(k) are also suit-
able for complex symmetric tensors and complex symmetric ma-
trices.

Note that all initial values are randomly selected. Alteratively,
we can also use the truncated HOSVD to generate starting points
[14].

Example 6.1. In this example, the entries of the testing complex
tensors are random variables with independent identically dis-
tributed entries, each distributed as a real Gaussian random vari-
able of zero mean and variance. Meanwhile, the number of the
testing tensors is 100.

We suppose that A e C10x10x10_ Che et al. [9] designed a higher
order power type method, denoted by Power method in this paper
for comparison, for computing the best complex rank-one approxi-
mation of the tensor 4, which is similar to Algorithm 3.1 in [14] to
derive the best rank-one approximation of any real tensor.

We compare the neural network described by (4.3) with Power
method for computing the best complex rank-one approximation
of the testing tensor on these two sides: iteration steps and CPU
times. Simulation results are shown in Fig. 1.

Example 6.2. The following symmetric pure states are considered
in [20,21],

K!(N-K)!
—Nr - X

IS(N,K)) = i

10...01...1).
— e

permutations K N_K

As the amplitudes are all positive, one can assume that the closest
separable state is of the form

l¢) = (VPI0) + /1 -pI1)) ® (v/plO) +/1-p[1)) ®...® (VPIO) + /1 - p|1))

N
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Fig. 1. Comparison for the network described by (4.3) with Power method to find the approximate maximizers of the maximization problem (3.1) with 100 random complex

tensors.

Table 1

Relative results derived by the network described by (4.2) to find the local maximizers of
the maximization problem (5.1) with K =0,1, 2, 3,4,5.

K  EEE AMV |[EEE — AMV|  AIS ACT (seconds)  Occurrence
0 1.0000 1.0000 1.7764e-15 240.0000 04153 19
1 0.6400 0.6400 5.1494e-12 170.1053 0.3359 18
2 0.5879 0.5879 7.3205e-12 182.1579 0.3109 19
3 0.5879 0.5879 4.1280e-12 180.1111 0.2995 18
4 0.6400 0.6400 7.9898e-11 205.3158 0.3544 18
5 1.0000 1.0000 1.3323e-15 257.0000 0.5383 20

for which the maximal overlap (with respect to p) gives the en-
tanglement eigenvalue for |S(N, K)):

K'(N—K)! (K\ 2 /N — KN
el =y = (N) (N) '

For the given integers N and K, we use A € CSTy , to denote the
tensor corresponding to the state |S(N, K)). To compute the en-
tanglement eigenvalue of the state |S(N, K)) is to solve the max-
imization problem (5.1) with the tensor 4. When we fix N, we
implement the network described by (4.2) to find the local max-
imizers of the maximization problem (5.1) 20 times, for each K ¢
{0,1,....N}L

Set N=5. For each K € {0,1,...,5}, the approximate maximal
values (abbreviated as AMV) of the maximization problem (5.1),
the exact entanglement eigenvalue (abbreviated as EEE) of the
state |S(5, K)), the average iteration steps (abbreviated as AIS) and
the average CPU times (abbreviated as ACT) are given in Table 1.

Example 6.3. The testing state is given as [45]
IWW (s, ¢)) = V5IW) ++/1 - sexp(ip)| W),
where the states |W) and |W) are given as follows:
[W) = (|001) + |010) + [100))/+/3, |W)

= (|101) + |011) + [110))/+/3.

the t{ansforma—
WW (s, ¢)) —

The entanglement is independent of ¢:
tion {|0),]|1)} — {|0), exp(—t¢p)|1)}  induces

exp(—t¢)|WVI/(s, 0)). To compute the entanglement eigenvalue of
the state [WW (s, ¢)), we assume that the separable state is

(cos(¢)]0) +sin(¢)|1)) ® (cos(¢)|0) + sin(¢)[1))
®(cos(¢)|0) + sin(¢)|1))

and maximize its overlap with [WW s, 0)). We have 0 <s<1. The
exact entanglement eigenvalue of the state |WW (s, ¢)) can be ex-
pressed by

lo| = %[ﬁcos(@) ++/1—ssin(0)]sin(20),

where t = tan(9) € [\/1/2.+/2] is the particular root of the cubic
polynomial equation

V1 =st3+25t2 —2/1—st —/5s=0.

For a given scalar s€[0, 1], we denote A € CST3, by the ten-
sor corresponding to the state |WW (s, 0)). In order to compute
the entanglement eigenvalue of the state |WV~V(s, 0)), we need
to find the modulus largest quantum eigenvalue of the tensor A.
We implement the network described by (4.2) to find the lo-
cal maximizers of the maximization problem (5.1) 20 times, with
se{0,0.1,...,1}.

The approximate maximal values (abbreviated as AMV) of the
maximization problem (5.1), the exact entanglement eigenvalue
(abbreviated as EEE) of the state [WW (s, 0)), the average iteration
steps (abbreviated as AIS) and the average CPU times (abbreviated
as ACT) are given in Table 2, with s € {0,0.1, ..., 1}.
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Table 2
Relative results derived by the network described by (4.2) to find the local maximizers of the
maximization problem (5.1) with s € {0,0.1,...,1}.
s EEE AMV |EEE — AMV|  AIS ACT (seconds)  Occurrence
0 0.6667 0.6667 1.7764e—15 162.4211 0.3150 20
0.1 0.7933 0.7933 4.1494e-14 1.1162e+3 2.1039 20
0.2 0.8306 0.8306 7.3215e-15 854.8500 1.7117 20
03 0.8514 0.8514 4.1380e—-16 782.6500 1.5492 20
04 08625 08625  7.9093e—14 758.1000 1.3961 20
0.5 0.8660 0.8660 1.3001e-15 731.0500 14727 20
0.6 0.8625 0.8625 5.4123e-16 762.9500 14367 20
0.7 0.8514 0.8514 6.3301e—16 787.7500 1.5508 20
0.8 0.8306 0.8306 5.9822e-15 883.0500 1.6414 20
0.9 0.7933 0.7933 1.4567e—14 1.1737e+03 22773 20
1 0.6667 0.6667 2.0984e—-14 162.2632 0.4441 20

Similar to the case of the state [WW (s, ¢)), we can also use the
network described by (4.2) to compute the entanglement eigen-
value of the state

ISS:k,k, (T @)) = VTIS(N, K1) + /1 —rexp(t¢)|S(N, K2)),
where the states |S(N, K;)) and [S(N, K;)) are given in Example 6.2.
Example 6.4. The testing state is given as [45]:

[V (%, y, $1, P2, P3)) = Vxexp(1¢1)|GHZ) + /Yy exp(Ld7) W)
+/T—x—yexp(up3)|W),

for all ¢; € (—m, ] with i=1,2,3, where the states |W) and
|W) are given in Example 6.3, and the state |GHZ) is (|000) +
|111))/+/2. Similar to the description in Example 6.3, the entangle-
ment eigenvalue of the state | (x, y, ¢1, ¢2, ¢3)) is equal to the
entanglement eigenvalue of the state |{(x, y)), given as:

[V (x,y)) = VXIGHZ) + JFIW) + /1 —x - y|W).

The entanglement eigenvalue of the state |{/(x, ¥)) has been calcu-
lated, and one obtains

|g|=<1+1tz>3/z{\/§“+f3>+/37f+mt2}’

where t is the (unique) nonnegative real root of the following cubic
polynomial equation:

3\/5(4“2) +/37(=32 + 1) +/3(1 —x—y)(—t3 +2t) =0.

We denote A € CST3; by the tensor corresponding to the state
[ (x, y)). When we apply the network described by (4.2) with the
tensor A, the approximate maximal values of the maximization
problem (5.1), the iteration steps and the CPU times are shown in
Fig. 2, withO0<x,y<land 0<1-x-y<1.

The testing tensors in the above three examples are complex
symmetric. In the following example we consider the entangle-
ment eigenvalue of a complex nonsymmetric tensor.

Example 6.5. The testing state is given as [1]:
|W) =+1/A1|000) + /X, exp(t¢)|100) + 1/ A5|101)
++/A4|110) + 1/ A5|111),

where ¢€[0, ] and A +Ay+---+ A5 =1 with A;>0. As we
know, we can rewrite the state |W) as

W) = /211000 +v/A2 exp(1)[100) + v/A5]101) + \/24]110)
/1= Ay == A1),

where ¢ €[0, 7] and A;>0 withi=1,2,3,4.

We denote the tensor corresponding to the state |¥) by A«
CST3 5. In order to compute the entanglement eigenvalue of the

state |V), we need to find the modulus largest quantum eigenvalue
(or the entanglement eigenvalue) of the tensor A. We implement
the network described by (4.3) to find the global maximizers of the
maximization problem (3.1) for each 6-tuple (¢, A1, A2, ..., As5).

On one hand, when the value of the 5-tuple (A1, A5, ..., A5) is
chosen from the following two 5-tuples

1 2 3 4 5 1 3 5 7 9

{(15' 15157 15° 15)’ (25’ 25’25’25’ 25)}'

the relationship between the entanglement eigenvalue of the ten-
sor A and the parameter ¢ is shown in Fig. 3. On the other
hand, for any given scalar ¢, the relationship between the en-
tanglement eigenvalue of the tensor .4 and the 3-tuple (A,, A3,
MAg4) is shown in Figs. 4 (for the case of ¢ = /4) and 5 (for the
case of ¢ =m/2), for each A; €{0.1,0.2,...,0.9} with A;>0 and
1—)\.1 —)\.2—}\.3—)\,420.

Remark 6.1. For the above numerical examples, the learning rate
in the iterative scheme (6.1) is chosen by 0.1. However, this learn-
ing rate may not be optimal.

Example 6.6. Consider a generic I x I x I symmetric tripartite state
[10] as

-1 -1 -1
[¥) = Zai“, i,i) + Z a;iPs (11, . j)) + aiji Z aiPs (11, j. k)),
iz0

j>i=0 k> j>i=0

where P3’s denote the set of all permutations on three parties
again. For example, P5(|i, j, j)) = |i, j, j) + |j. 1, j) + |j, j. i). In this
example, we compare the network described by (4.3) with the nu-
merical method in [10] for computing geometric measure of en-
tanglement of [y/¥!).

The main idea of the numerical method in [10] is to combine
simulated annealing [26] with fmincon (a function in MATLAB at-
tempts to find a constrained minimum of a scalar function of sev-
eral variables starting from an initial estimate) to construct an al-
gorithm for finding the global minimizer in the whole region. From
[10], when considering the case of Z§;8 la;|> =1, a;j = aj, = 0 for
all i, j,k=0,1,...,1—1, then the state |y%") is just the definition
of GHZ states and the analytical result for geometric measure sim-
ply reads min{1 — |g;|2,i=0,1,...,1— 1}. We denote A € CSTy; by
the tensor corresponding to the state |y*!). For different values of
I and qg;, we have the following results.

(@If I=3 and {ag, a;.0a,} = {0.8075 — 0.1790¢, 0.5427
—0.0203¢,0.0822 — 0.1202¢}, then geometric measure of
entanglement of |y%!), derived from the numerical method in
[10], is 0.172898. On the other hand, the largest entanglement
eigenvalue, derived from (4.3), is 0.827102 and it costs 0.976574
seconds. So geometric measure of entanglement is 0.172898.
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Approximate maximizer values

Y: 0

CPU times

lterative steps

Fig. 2. lllustrations for the network described by (4.2) to find the approximate maximizers of the maximization problem (5.1) with x,y =0,0.05,...,0.95,1 and x+y < 1.
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Fig. 3. Illustrations of the network described by (4.3) to find the approximate

(b) If I=5 and {ag,ay,ay,as, az} ={0.6378 —0.4942(, —0.5477
—0.0567¢, 0.2086 — 0.0457:, —0.0092 + 0.0041:, —0.0050 —
0.0018t}, then geometric measure of entanglement of |yr%t),
derived from the numerical method in [10], is 0.193140. On the
other hand, the largest entanglement eigenvalue, derived from
(4.3), is 0.806860 and it costs 0.994064 seconds. So geometric
measure of entanglement is 0.193140.

Next, we suppose that I = 3, ay;0 = 1/+/6 and q; = a;j = 0 for all
i,j=0,1,2. This gives a 2-qutrit symmetric state whose geometric

t,=1/25t,=3/25,t =5/25t =7/25t,=9/25
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maximizers of the maximization problem (3.1) with ¢ € {0, 7 /20, ..., m}

measure of entanglement has been derived in [45], which is

2/9 ~ 0.471405.

Geometric measure of entanglement of |y%!), derived from the
numerical method in [10], is 0.528596. On the other hand, the
largest entanglement eigenvalue, derived from (4.3), is 0.471405
and it costs 0.5890 seconds. So geometric measure of entangle-
ment is 0.528596.



M. Che et al./Neurocomputing 313 (2018) 25-38

36

=m/4.

.,0.9} and ¢

ig. 4. Illustrations of the network (4.3) to find the approximate maximizers of the maximization problem (3.1) with A; € {0.1,0.2, ..

=7/2.

.,0.9} and ¢

Fig. 5. Illustrations of the network (4.3) to find the approximate maximizers of the maximization problem (3.1) with A; € {0.1,0.2, ..
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7. Conclusion

In this paper, we consider how to compute the entangle-
ment eigenvalue of multipartite pure states by the theory of the
complex-valued neural networks. Meanwhile, we also prove that
the solutions of the neural networks described by (4.3) are lo-
cally asymptotically stable in the sense of Lyapunov stability the-
ory. Finally, we can find the global maximizers of the maximization
problem (3.1) by the neural network described by (4.3) via the nu-
merical examples with high probability. Unfortunately, we cannot
present a rigorous proof for this statement, which will be our fu-
ture research topic.
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