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a b s t r a c t

The control of flying quantum bits (qubits) carried by traveling quantum fields is crucial for coherent
information transmission in quantum networks. In this paper, we develop a general framework for
modeling the control of flying qubits based on the quantum stochastic differential equation (QSDE)
that describes the input-output process actuated by a standing quantum system. Under the continuous
time-ordered photon-number basis, the infinite-dimensional QSDE is reduced to a low-dimensional
deterministic differential equation for the non-unitary state evolution of the standing quantum
system, and the outgoing flying-qubit states can be expressed in the form of randomly occurring
quantum jumps. This makes it possible, as demonstrated by examples of flying-qubit generation and
transformation, to analyze general cases when the number of excitations is not reserved. The proposed
framework lays the foundation for the design of flying-qubit control systems, with which advanced
control techniques can be incorporated for practical applications.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Quantum computation has been evidently demonstrated to
e surpassing its classical counterparts (Arute et al., 2019). Fur-
her into the future, the precise control of networked quantum
ystems is highly demanding (DiVincenzo, 1995) for large-scale
nd distributed quantum information processing (QIP) applica-
ions (Duan, Lukin, Cirac, & Zoller, 2001). In the past decades, the
ontrol of ‘‘standing’’ components (namely the nodes, e.g., atoms
r resonators Gu, Kockum, Miranowicz, Liu, & Nori, 2017) for on-
ite QIP had been extensively studied (D’Alessandro, 2008; Dong
Petersen, 2010; Glaser et al., 2015; Jacobs, 2014; Wiseman
Milburn, 2010). However, the control of ‘‘flying’’ components

or information transmission, as are often called flying qubits,
eceived much less attention (Lucamarini, Di Giuseppe, Vitali, &
ombesi, 2011).
In quantum networks, the transfer of quantum information

etween distant nodes is physically realized by releasing and
atching photons that encode flying qubits (Cirac, Zoller, Kimble,
Mabuchi, 1997; Duan et al., 2001; Gheri, Ellinger, Pellizzari,
Zoller, 1998), which range from optical regime (e.g., from
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quantum dots or NV-centers Eisaman, Fan, Migdall, & Polyakov,
2011; Kuhn, Hennrich, & Rempe, 2002; Kurtsiefer, Mayer, Zarda,
& Weinfurter, 2002) down to the microwave regime (e.g., from
superconducting artificial atoms Houck et al., 2007). In labora-
tories, such processes must be actuated by a standing quantum
system (e.g., an atom or a resonator Yao, Liu, & Sham, 2005) that is
accessible by control electronics, and the incoming and outgoing
flying qubits form its quantum inputs or outputs. The control of
flying qubits is thus formulated as the control of such quantum
input-output processes through the standing quantum system’s
coherent driving (Fischer, Trivedi, Ramasesh, Siddiqi, & Vučković,
2018; Pechal et al., 2013) or incoherent tunable coupling to the
waveguide (Pierre, Svensson, Sathyamoorthy, Johansson, & Dels-
ing, 2014). Alternatively, the control can be indirectly realized
by nonlocal spectral filtering using ancilla qubits (Averchenko,
Sych, Marquardt, & Leuchs, 2020) or coherent quantum feedback
loops (Dong, Cui, Zhang, & Fu, 2016; Zhang, 2020).

Roughly speaking, flying-qubit control problems can be cate-
gorized into the following three classes (see Fig. 1 for illustration).

The first class is the on-demand generation of flying qubits
for the purpose of coding and sending quantum information.
To match remote network nodes (Averchenko, Sych, Schunk,
Vogl, Marquardt, & Leuchs, 2017; Forn-Diaz, Warren, Chang,
Vadiraj, & Wilson, 2017; Pechal et al., 2013)), the generated
flying qubits should be stable (i.e., all generated flying qubits
are indistinguishable) and the frequency and shape are flexibly
tunable (Averchenko et al., 2020, 2017; Forn-Diaz et al., 2017;
Keller, Lange, Hayasaka, Lange, & Walther, 2004; Pechal et al.,
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Fig. 1. Schematics of flying-qubit control processes actuated by a standing
quantum system: (a) the generation of flying qubits; (b) the catching of flying
qubits; (c) the transformation of flying qubits.

2013; Peng, Graaf, Tsai, & Astafiev, 2016). The early studies can
be dated back to the quantum interface (Yao et al., 2005) for
quantum information transfer from a standing qubit to a flying
qubit, which physically led to the generation of shaped single-
photon pulses with a spin qubit coupled to a fiber through a
ring cavity. Such cavity-assisted schemes have low repetition
rates that are limited by the narrow bandwidth of the cavity. An
effective approach to overcome this problem is to directly couple
the standing system to the waveguide, which has been drawing
more and more attention (Kiilerich & Mølmer, 2019; Shi, Chang,
& Cirac, 2015; Trivedi, Fischer, Xu, Fan, & Vuckovic, 2018).

The second class is the catching of incoming flying qubits
or the purpose of receiving and storing quantum information.
his is usually done by the interaction with a standing sys-
em that is initialized at its ground state (Pan, Zhang, Cui, &
ames, 2015; Stobinska, Alber, & Leuchs, 2009). As an inverse pro-
ess of the flying-qubit generation, the standing system receives
lying qubits as quantum inputs and yields vacuum quantum
utputs. Theoretical analysis shows that only properly shaped
lying qubits can be completely caught, e.g., a standing qubit with
ixed coupling to a waveguide is only able to catch exponentially
ising (Aljunid, Maslennikov, Wang, Dao, Scarani, & Kurtsiefer,
013; Dao, Aljunid, Maslennikov, & Kurtsiefer, 2012; Pan et al.,
015; Pan, Zhang, & James, 2016; Yamamoto & James, 2014) or
ime-reversal symmetrized (Srinivasan et al., 2014) single-photon
ulses. For more complicated systems, the involved coherent or
ncoherent controls on the standing system need to be carefully
ptimized so as to perfectly match the incoming qubit (Nurdin,
ames, & Yamamoto, 2016; Sounas, 2020; Srinivasan et al., 2014;
enner et al., 2014).
The third class is the transformation of flying qubits for the

purpose of information transformation. In this scenario, the stand-
ing quantum system yields non-empty quantum outputs in re-
sponse to incoming flying qubits as a non-empty quantum input.
For examples, an incoming flying qubit can be coherently routed
into the superposition of two paths (Xia, Jelezko, & Twamley,
2018), or be reshaped into time-reversed waveform to match
remote quantum nodes (Leong, Seidler, Steiner, Cere, & Kurt-
siefer, 2016; Srivathsan, Gulati, Cere, Chng, & Kurtsiefer, 2014).
The engineering of transformation processes can be taken as a
generalization of the generation and catching problems.

In these flying-qubit control problems, we are mainly con-
cerned with quantum input–output processes of flying qubits
steered by classical time-dependent control functions. The classi-
cal control functions may be either coherent (e.g., a semi-classical
driving field) or incoherent (e.g., tunable waveguide coupling) in
the sense that the control preserves the unitarity of the stand-
ing system’s evolution or not. The modeling of the underlying
2

control dynamics is very complicated. In particular, when flying
qubits are generated at high repetition rates, the single-mode
approximation adopted in cavity QED (quantum electrodynamics)
systems (Gu et al., 2017; Scully & Zubairy, 1997) is not viable
any more because broadband continuous modes are involved (Li,
Zhou, & Sun, 2014). Regarding this, the underlying physical pro-
cesses must be described by waveguide QED instead of cavity
QED.

To facilitate the control of single flying qubits, the standing
quantum system is often chosen to be nonlinear (e.g., a finite-
level system or an anharmonic oscillator) (Trivedi et al., 2018).
In contrast to linear quantum systems (Zhang, 2014, 2016; Zhang
& Dong, 2022; Zhang & James, 2011) that can be conveniently
described by transfer functions, analytical solutions to cases with
nonlinear standing quantum systems are usually unavailable.

Moreoever, most existing results (Shen & Fan, 2009; Trivedi
et al., 2018; Yao et al., 2005) are heavily dependent on the con-
servation of energy (or the excitation number) that enables the
analysis within a finite-dimensional subspace of quantum states.
This symmetry is usually not preserved under time-dependent
coherent driving controls, which force the analysis into infinite-
dimensional Hilbert spaces. In such cases, approximations have
to be introduced, e.g., the coarse discretization of time in the
time-resolved scattering of quantum fields by a coherently driven
atom (Fischer et al., 2018); and the adiabatic elimination in the
shaping of single photons (Hurst & Kok, 2018).

Regarding these difficulties, it is natural to introduce the
Quantum Stochastic Differential Equation (QSDE) (Gardiner &
Collett, 1985; Hudson & Parthasarathy, 1984) for the modeling of
flying-qubit input–output processes. In the literature, the QSDE
has been successful in special cases that the standing system
is linear or the number of excitations is preserved, including
the analysis and filtering of flying-qubit responses (Dong, Zhang,
& Amini, 2019; Gough, James, & Nurdin, 2014; Song, Zhang, &
Xi, 2016; Zhang, 2014, 2016, 2020, 2021; Zhang & Dong, 2022;
Zhang & James, 2011), as well as flying-qubit control applications
to the filter-based generation of non-classical quantum fields
with linear quantum systems (Gough & Zhang, 2015) and to the
catching of single flying qubits using a two-level quantum system
with tunable waveguide coupling (Nurdin et al., 2016).

In a preliminary version of this paper (Li, Zhang, & Wu, 2020),
we extended the QSDE approach to general flying-qubit gen-
eration problems that allows for nonlinear standing quantum
systems and coherent driving controls that do not preserve the
number of excitations. It is shown in Section 2 that, under the
temporal photon-number state basis, the seemingly complicated
continuous-mode stochastic different equation can be reduced
to a much simpler non-unitary Schrödinger equation, which is
fully consistent with the results obtained in Fischer et al. (2018).
In this paper, we will delve into more general problems includ-
ing the catching and transformation of flying qubits, forming a
unified framework for the analysis and design of flying-qubit
control systems. The major contributions made in this paper are
as follows. First, based on the temporal photon-number state
basis presented in Section 2, we formalize the discussions in the
preliminary version (Li et al., 2020) by introducing Theorem 3.1
and Corollary 3.1. After that we generalize the proposed QSDE
formulation (see Theorem 3.1 and Corollary 3.1) to flying-qubit
catching and transformation problems by introducing an auxiliary
system to generate the required flying-qubit inputs. Then, in the
analysis of flying-qubit generation problems, we use the derived
formulas to reproduce and generalize an existing result of gener-
ating arbitrary-shape single photons with an incoherently driven
two-level system (see Proposition 4.1), as well as the analytic
expressions of flying-qubit emissions under rectangular coherent
driving pulses. In the catching problems, we apply the formulas
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o reproduce the perfect catching condition (see Proposition 4.2).
inally, in the transformation problems, we apply the formulas to
he calculation of outgoing flying-qubit states induced by stimu-
ated emission and to the optimal reshaping of incoming flying
ubits.
The remainder of this paper is organized as follows. In

ection 2, necessary preliminaries will be provided for the state
epresentation of flying qubits and their joint system with the
tanding quantum system. In Section 3, the non-unitary
chrödinger equation is derived for calculating multi-photon wave
ackets under coherent or incoherent controls. In Section 4, we
emonstrate the theory with applications to flying-qubit genera-
ion, catching and transformation problems, respectively, with a
wo-level standing quantum system. Finally, concluding remarks
re made in Section 5.

. The quantum state representation of flying qubits

Consider flying qubits carried by single photons in quantized
lectromagnetic fields traveling in waveguides. The field gener-
lly contains a continuum of bosonic modes with mode frequency
∈ (−∞,∞). Each annihilation and creation operators of these

ontinuous modes are defined on the entire Hilbert state spaceHF
with the identity operator on the rest modes being omitted, and
they satisfy the singular commutation relations [b(ω), b†(ω′)] =

δ(ω − ω′).
In practice, we often represent the field with the inverse

Fourier transform of b(ω) (Gardiner & Collett, 1985)

bτ =
1

√
2π

∫
∞

−∞

e−iωτb(ω)dω, (1)

which is also defined on HF . Such temporal field operator bτ
escribes the physical process of annihilating a photon at time
, and satisfies the singular commutation relation [bτ , b

†
τ ′ ] =

δ(τ−τ ′). Further, we can use it to construct the Ito-type quantum
Wiener increment

dBτ =

∫ τ+dτ

τ

bsds, dτ > 0, (2)

that obeys Ito’s rule

dBτdB†
s = δτ ,sdτ ,

dB†
τdBs = dBτdBs = dB†

τdB
†
s = 0.

(3)

Using the Ito-type increment dB†
τ , we can define the state of

an arbitrary single flying qubit as follows:

|1ξ ⟩F =

∫
∞

−∞

ξ τdB†
τ |Ω⟩F , (4)

with
∫

∞

−∞
|ξ τ |2dτ = 1, where |Ω⟩F ∈ HF is the vacuum state of

the quantum field that includes all continuous modes and |ξ τ |2dτ
indicates the probability of observing the photon between τ and

+dτ . Similarly, we can define the ℓ-photon state (Fischer et al.,
2018),

|ℓξ ⟩F =

∫
∞

−∞

∫ τℓ

−∞

· · ·

∫ τ2

−∞

ξ τ1,...,τℓdB†
τ1

· · · dB†
τℓ

|Ω⟩F , (5)

with∫
∞

−∞

∫ τℓ

−∞

· · ·

∫ τ2

−∞

|ξ τ1,...,τℓ |
2dτ1 · · · dτℓ = 1. (6)

The most general flying-qubit state can thus be expanded as
the superposition of multi-photon states:

|ξ⟩F =

∞∑∫
∞

∫ τℓ

· · ·

∫ τ2

ξ τ1,...,τℓdB†
τ1

· · · dB†
τℓ

|Ω⟩F , (7)

ℓ=0 −∞ −∞ −∞

3

with
∞∑
ℓ=0

∫
∞

−∞

∫ τℓ

−∞

· · ·

∫ τ2

−∞

|ξ τ1,...,τℓ |
2dτ1 · · · dτℓ = 1. (8)

Under this representation, each component ξ τ1,...,τℓ is unnormal-
ized, and the integral

Pℓ =

∫
∞

−∞

∫ τℓ

−∞

· · ·

∫ τ2

−∞

|ξ τ1,...,τℓ |
2dτ1 · · · dτℓ, (9)

indicates the probability of observing ℓ photons in the state |ξ⟩F .

3. Flying qubit dynamics via classical controls

Throughout this paper, we always assume that the classical
controls are imposed on the standing system from the initial time
t0 = 0, and the standing system is coupled to a chiral waveguide
in which all flying qubits propagate rightwards (Peng et al., 2016).
Let HS be the Hilbert state space of the standing quantum system.
To analyze the time evolution of the joint system, we first expand
the time-dependent joint state of the standing system and the
flying qubits in HS ⊗ HF as follows:

|Ψ (t)⟩ =

∞∑
ℓ=0

∫ t

0

∫ τℓ

0
· · ·

∫ τ2

0
|ψτ1,...,τℓ (t)⟩

⊗ dB†
τ1

· · · dB†
τℓ

|Ω⟩F ,

(10)

where |ψτ1,...,τℓ (t)⟩ ∈ HS is the standing system’s correlated
state at time t when ℓ photons are found at times τ1, . . . , τℓ
in the waveguide. Under this representation, the differential
⟨ψτ1,...,τℓ (t)|ψτ1,...,τℓ (t)⟩dτ1dτ2 · · · dτℓ indicates the probability of
sequentially generating ℓ photons in time intervals [τ1, τ1 +

dτ1), [τ2, τ1 +dτ2), . . . , [τℓ, τ1 +dτℓ) by the standing system. The
modified lower and upper bounds of the first integral indicate
that, physically, flying qubits can only be generated between time
0 and the present time t .

Under coherent driving controls, the above expansion usually
involves an infinite number of terms. However, when the stand-
ing quantum system only exchanges energy with the waveguide
(as its heat bath), the number of excitations will be preserved dur-
ing the controlled evolution. If the joint system has M excitations
in total, the standing system can only stay at its eigenstate |M−ℓ⟩

when the field contains ℓ photons, i.e., |ψτ1,...,τℓ⟩ = η
τ1,...,τℓ
ℓ |M−ℓ⟩.

For example, when M = 1 and the standing system is a two-level
atom, the joint state can be written as follows:

|Ψ (t)⟩ = η0(t)|1⟩ ⊗ |Ω⟩F +

∫ t

0
|0⟩ ⊗ ητ1 (t)dB

†
τ |Ω⟩F . (11)

When M = 2 and the system is a three-level atom, the joint state
can be written as follows

|Ψ (t)⟩ = η0(t)|2⟩ ⊗ |Ω⟩F +

∫ t

0
|1⟩ ⊗ ητ1 (t)dB

†
τ |Ω⟩F

+

∫ t

0

∫ τ2

0
|0⟩ ⊗ η

τ1,τ2
2 (t)dB†

τ2
dB†

τ1
|Ω⟩F .

(12)

In the following, we will introduce the QSDE to model the
flying qubit control processes with vacuum or non-vacuum quan-
tum inputs, respectively.

3.1. Standing system with vacuum quantum inputs

We start from the simple case that the standing system re-
ceives vacuum quantum input, i.e., the joint system is initially
at |Ψ (0)⟩ = |ψ0⟩ ⊗ |Ω⟩F with |ψ0⟩ being the initial state of

the standing system. The controlled dynamics of the joint system
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an be described by the following QSDE (Gardiner & Zoller, 2004,
hapter 11):

U(t) = [(−iH(t) −
1
2
L†(t)L(t))dt

+ L(t)dB†
t − L†(t)dBt ]U(t),

(13)

where U(t) is the unitary propagator of the joint system whose
initial value is the identity operator I. The Hamiltonian H(t)
represents the total energy of the standing quantum system,
including the internal energy and the coherently injected energy
through classical driving fields. The operator L(t) represents the
coupling of the standing system with the flying qubits in the
waveguide.

It is straightforward to derive from Eq. (13) the stochastic
Schrödinger equation for |Ψ (t)⟩ = U(t)|Ψ (0)⟩:

d|Ψ (t)⟩ =

[
−iHeff(t)dt + L(t)dB†

t − L†(t)dBt

]
|Ψ (t)⟩, (14)

where Heff(t) = H(t) −
i
2 L

†(t)L(t) is the effective non-Hermitian
amiltonian. According to the definition of the increments dB(t)
nd dB†(t) that point to the future, we have [U(t), dB(t)] = 0,
hich implies that

Bt |Ψ (t)⟩ = dBtU(t)|Ψ (0)⟩ = U(t)|ψ0⟩ ⊗ dBt |Ω⟩F = 0 (15)

hen the waveguide is initially empty. Hence, Eq. (14) can be
implified as (Gough, James, & Nurdin, 2013; Nurdin et al., 2016)

|Ψ (t)⟩ =

[
−iHeff(t)dt + L(t)dB†

t

]
|Ψ (t)⟩. (16)

Now we present the main Theorem for the analysis of flying-
ubit control dynamics.

heorem 3.1. Let V (t) be the propagator of the differential equa-
ion
˙ (t) = −iHeff(t)V (t), V (0) = I. (17)

hen, the correlated states satisfy

ψτ1,...,τℓ (t)⟩ = V (t)L̃(τℓ) · · · L̃(τ1)|ψ0⟩, (18)

or ℓ = 0, 1, . . ., where L̃(τk) = V−1(τk)L(τk)V (τk).

roof. Differentiate both sides of Eq. (10), we have

|Ψ (t)⟩ =

∞∑
ℓ=0

∫ t

0

∫ τℓ

0
· · ·

∫ τ2

0
|ψ̇τ1,...,τℓ (t)⟩dt

⊗ dB†
τ1

· · · dB†
τℓ

|Ω⟩F

+ dB†
t

∞∑
ℓ=1

∫ t

0

∫ τℓ−1

0
· · ·

∫ τ2

0
|ψτ1,...,τℓ−1,t (t)⟩

⊗ dB†
τ1

· · · dB†
τℓ−1

|Ω⟩F ,

(19)

where the dot ‘‘·’’ represents the partial derivative with respect
to time variable t . Replacing Eqs. (10) and (19) into Eq. (16), we
can obtain

|ψ̇τ1,...,τℓ (t)⟩ = −iHeff(t)|ψτ1,...,τℓ (t)⟩, (20)

by comparing the terms with dt , where ℓ ≥ 0. The comparison
of terms with dB†

t gives the boundary condition

|ψτ1,...,τℓ−1,t (t)⟩ = L(t)|ψτ1,...,τℓ−1 (t)⟩. (21)

The transition from |ψτ1,...,τℓ−1 (t)⟩ to |ψτ1,...,τℓ−1,t (t)⟩ implies that
the number of photons in the field is increased by 1, where the
additional photon is emitted at time t from the standing system.

Observing that all functions |ψτ1,...,τℓ (t)⟩ share the same dif-
ferential Eq. (20) with respect to time t , we denote by V (t)
4

their common non-unitary propagator steered by the effective
Hamiltonian Heff(t), as in Eq. (17). Consequently, let

G(s, s′) = V (s)V−1(s′), (22)

be the state transition operator from time s′ to s. From Eqs. (17)
and (20) we have |ψ(t)⟩ = G(t, 0)|ψ0⟩ and

|ψτ1,...,τℓ (t)⟩ = G(t, τ )|ψτ1,...,τℓ (τ )⟩, (23)

for any 0 ≤ τ1 ≤ · · · ≤ τℓ ≤ τ ≤ t . Repeatedly using Eqs. (23)
and (21), we have

|ψτ1,...,τℓ (t)⟩ = G(t, τℓ)|ψτ1,...,τℓ (τℓ)⟩
= G(t, τℓ)L(τℓ)|ψτ1,...,τℓ−1 (τℓ)⟩
...

= G(t, τℓ)L(τℓ)G(τℓ, τℓ−1)L(τℓ−1)
G(τℓ−1, τℓ−2) · · · L(τ1)G(τ1, 0)|ψ0⟩. (24)

The compact form (18) is obtained from Eq. (24) by applying
Eq. (22). □

Remark 3.1. Theorem 3.1 characterizes quantum trajectories that
are well-known in the theory of open quantum systems (Wise-
man & Milburn, 2010), along which single photons are sequen-
tially released at random time instants τ1, . . . , τℓ. These quantum
jumps intervene in the non-unitary evolution (20) of |ψτ1,...,τℓ (t)⟩
by L(τ1), . . . , L(τℓ), forming stochastic and discontinuous evolu-
tion trajectories that can be numerically calculated to analyze and
design the flying qubit generation processes.

Theorem 3.1 provides the entire solution for the transient
process of generating flying qubits, which is reduced to Eq. (17)
on the space of the standing quantum system. To calculate the
steady-state of the outgoing flying qubits, we have the following
corollary.

Corollary 3.1. If the standing system asymptotically decays to its
ground state |0⟩, then the outgoing flying qubit state can be decom-
posed into the superposition of multi-photon states represented by
Eq. (7), where

ξ τ1,...,τℓ = ⟨0|V (∞)L̃(τℓ) · · · L̃(τ1)|ψ0⟩, (25)

for ℓ = 0, 1, 2, . . ..

Proof. The steady-state of the outgoing flying qubits can be
obtained from the asymptotic limit t → ∞ of the joint state
|Ψ (t)⟩. When the standing system decays to its ground state |0⟩,
only ground-state components in all |ψτ1,...,τℓ (t)⟩ may survive.
Hence, the asymptotic state of |Ψ (t)⟩ can be decomposed as

|Ψ (∞)⟩ = |0⟩ ⊗

∞∑
ℓ=0

∫
∞

0

∫ τℓ

0
· · ·

∫ τ2

0
ητ1,...,τℓ

dB†
τ1

· · · dB†
τℓ

|Ω⟩F ,

(26)

from which we see that ητ1,...,τℓ = ⟨0|ψτ1,...,τℓ (∞)⟩ is nothing but
the wavepacket of the outgoing ℓ-photon component. It is easy
to derive Eq. (25) from Eq. (18). □

Remark 3.2. The assumption made in Corollary 3.1, i.e., the
standing system decays to its ground state, always holds when
the system is a two-level atom that is constantly coupled to
the waveguide and is driven by a finite-duration driving pulse.
Under this circumstance, the standing system will spontaneously
decay to its ground state after the control pulse is turned off,
and eventually is disentangled from the flying qubits. It is pos-
sible that, under elaborately designed coherent and incoherent
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Fig. 2. Schematics of a flying-qubit control system B with quantum inputs
generated from an auxiliary system A.

controls, or with multi-level atoms that have non-unique ground
states (e.g., a Λ-type atom), the standing system remains entan-
gled with the flying qubits. This has many intriguing applications
in quantum networks, e.g., distributing quantum entanglements
between remote nodes in the quantum network.

3.2. Standing system with non-vacuum quantum inputs

The above analysis is well suited for the generation of fly-
ing qubits, but it is not directly applicable to the catching or
transformation problems where the quantum input of incoming
flying qubits is not initially empty. As schematically shown in
Fig. 2, we can introduce an auxiliary system A that is cascaded to
the standing system B, where the auxiliary system is engineered
to generate a flying qubit at the same state of the incoming
flying qubit (Gough & Zhang, 2015). In this way, the analysis
can be equivalently done with the joint AB system with vacuum
quantum inputs, to which Theorem 3.1 and Corollary 3.1 become
applicable.

Let HA(t) and HB(t) be the Hamiltonians of the A-system and
B-system, and LA(t) and LB(t) be their coupling operators to the
waveguide, respectively. According to the (S, L,H) formalism pre-
sented in Gough and James (2009), the series product of systems
A and B has the following equivalent Hamiltonian

H(t) = HA(t) ⊗ IB + IA ⊗ HB(t)

+
1
2i

[
LA(t) ⊗ L†B(t) − L†A(t) ⊗ LB(t)

]
,

(27)

and the equivalent coupling operator

L(t) = LA(t) ⊗ IB + IA ⊗ LB(t). (28)

The series product representation makes it possible to apply
Theorem 3.1 to analyze flying-qubit catching or transformation
problems, because the joint AB system receives vacuum quantum
inputs via the subsystem A. Note that the auxiliary system A
needs to be carefully designed so as to yield the incoming flying
qubits to be caught or transformed.

4. Examples

This section will illustrate how the proposed model is applied
to the control of flying qubits. For simplicity, the standing system
is chosen as a two-level qubit, whose controlled Hamiltonian is

H(t) = ϵ(t)σ+σ− +
u(t)
2
σ+ +

u∗(t)
2
σ−, (29)

L(t) =

√
2γ (t)σ−, (30)

here σ± are the standard Pauli raising and lowering operators.
he functions ϵ(t) and u(t) are the detuning frequency and the

envelope of the coherent driving field on the qubit. The tun-
able coupling strength γ (t) plays the role of incoherent classical
controls. In the following, we discuss the flying-qubit generation
and transformation problems, which correspond to the cases with
vacuum and non-vacuum quantum inputs, respectively.
5

4.1. The generation of flying qubits

We will first apply Theorem 3.1 to reproduce a well-known re-
sult of generating arbitrary single-photon wavepackets via the in-
coherent control of tunable waveguide coupling function (Gough
et al., 2013; Gough, James, Nurdin, & Combes, 2012; Gough &
Zhang, 2015), with a slight generalization in that a time-variant
phase is allowed in the wavepacket function.

Proposition 4.1. Given a differentiable single-photon wavepacket
ξ τ = ν(τ )e−iφ(τ ), where ν(τ ) and φ(τ ) are the amplitude and phase
unctions of ξ τ . Then, a flying qubit at state |1ξ ⟩ can be generated
ithout coherent driving u(t) when the standing qubit is initially
repared at the excited state |1⟩ and

(τ ) =
ν2(τ )

2
∫

∞

τ
ν2(s)ds

, ϵ(τ ) =
dφ(τ )
dτ

. (31)

roof. According to Theorem 3.1 and Corollary 3.1, it is straight-
forward to calculate the wavepacket of outgoing single-photon
state as follows:

ξ τ =

√
2γ (τ ) exp

[
−

∫ τ

0
γ (s)ds

]
exp

[
−i

∫ τ

0
ϵ(s)ds

]
. (32)

omparing with the shape function ξ τ = ν(τ )eiφ(τ ), we have
t
0 ϵ(τ )dτ = φ(t), which gives the phase condition in Eq. (31).
he amplitude condition can be obtained from

(τ ) =

√
2γ (τ ) exp

[
−

∫ τ

0
γ (s)ds

]
, 0 < τ < t, (33)

n combination with the normalization condition of ν(τ ). □

The proof of Proposition 4.1 is relatively simple because the
controls γ (t) and ϵ(t) preserve the number of excitations in the
joint system. Next, we consider the case with a coherent driving
pulse that does not preserve the number of excitations. Assume
that the driving control posed along the x-axis is resonant with
the qubit (i.e., ϵ(t) ≡ 0) and the coupling strength γ (t) ≡ γ .
Under a rectangular driving control pulse on 0 < t ≤ T < ∞, the
effective Hamiltonian can be written as

Heff(t) =

{
Ω
2 σx − i γ2 σ+σ−, 0 < t ≤ T
−i γ2 σ+σ−, t > T

(34)

where σx = σ+ + σ− and Ω is the power of the driving pulse.
Depending on the magnitude of the driving power Ω , we

discuss the outgoing flying-qubit states in three regimes, namely
the strong-driving regime (Ω > γ ), the balanced-driving regime
(Ω = γ ) and the weak-driving regime (Ω < γ ). According to
Theorem 3.1 and Corollary 3.1, we can obtain, for the example of
strong-driving case, that

ξ = ⟨0|V (∞)|0⟩ = e−
γ T
2 cos

(
ωT
2

− φ

)
, (35)

nd the single-photon wavepacket

τ
=

⎧⎪⎨⎪⎩
−

i
√
2γ e−

γ T
2

cos2 ϕ
sin ωτ

2 cos
(
ω(T−τ )

2 − ϕ
)
, τ ≤ T

i
√
2γ e−

γ T
2 ωT −γ (τ−T )

(36)

− cosϕ sin 2 e , τ > T
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here ϕ = arcsin γ

Ω
and ω =

√
Ω2 − γ 2. The above results can

e inductively generalized to arbitrary ℓ-photon wavepackets

τ1,...,τℓ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−i
√
2γ )ℓe−

γ T
2

cosℓ+1 ϕ
sin ωδ1

2 sin ωδ2
2 · · ·

sin ωδℓ
2 cos

(
ω(T−τℓ)

2 − ϕ

)
, τℓ ≤ T

(−i
√
2γ )ℓe−

γ T
2

cosℓ ϕ sin ωδ1
2 sin ωδ2

2 · · ·

sin ωδℓ−1
2 sin ω(T−τℓ−1)

2 e−γ (τℓ−T ), τℓ > T

(37)

where δk = τk − τk−1 with τ0 = 0 and k = 1, 2, . . . , ℓ, are the
ntervals between successively released single photons.

In the balanced-driving case, we can derive in the same way
hat

= e−
γ T
2

(
1 +

γ T
2

)
, (38)

nd general ℓ-photon wavepackets

ξ τ1,...,τℓ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(−i
√
2γ )ℓe−

γ T
2 γ ℓ

2ℓ
δ1δ2 · · ·

δℓ

(
1 +

γ (T−τℓ)
2

)
, τℓ ≤ T

(−i
√
2γ )ℓe−

γ T
2 γ ℓ

2ℓ δ1δ2 · · ·

δℓ−1e−γ τℓ . T < τℓ

(39)

imilarly, in the weak-driving regime, we have

= e−
γ T
2

(
cosh

ωT
2

+
γ

ω
sinh

ωT
2

)
, (40)

here ω =
√
γ 2 −Ω2 and ϕ = arctanh γ

ω
. The general ℓ-photon

avepackets are

τ1,...,τℓ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−i
√
2γ )ℓe−

γ T
2

coshℓ+1 ϕ
sinh ωδ1

2 · · · sinh ωδℓ
2

cosh
(
ω(T−τℓ)

2 − ϕ

)
, τℓ ≤ T

(−i
√
2γ )ℓe−

γ T
2

coshℓ+1 ϕ
sinh ωδ1

2 · · · sinh ωδℓ−1
2

sinh ω(T−τℓ−1)
2 e−γ (τℓ−T ). T < τℓ

(41)

Based on the above calculation, we display in Fig. 3(a) the
hape |ξ τ |2 of the single-photon component generated by soft π-
ulses (i.e., ΩT = π ) in the strong, balanced and weak driving
egimes, respectively. All these wavepackets gradually rise from
ero and the steepness of the rising slope is proportional to
he driving strength Ω . After the driving pulse is turned off,
hey spontaneously decay to zero. We also calculate the prob-
bilities of generating 0, 1, 2 and more photons according to
q. (9) when the pulse power Ω increases from weak- to strong-
riving regimes. As is shown in Fig. 3(b), soft π-pulses do not
enerate perfect single flying qubits due to the coexisting multi-
hoton emission processes, unless in the hard-pulse limit that Ω
pproaches infinity.
We also plot in Fig. 4(a)–(c) the dependence of probabilities

f generating 0 ∼ 2 flying qubits on the pulse area ΩT . It can be
een that more flying qubits are released when ΩT grows, while
he probabilities of observing fewer flying qubits gradually decay
o zero. In the strong driving regime (Ω = 2γ ), the probability of
bserving ℓ flying qubits reaches its peak when the pulse area is
round ℓπ (corresponding to the required energy for generating
flying qubits), but the trend is less apparent in the weak-driving
egime (Ω = 0.5γ ).
6

Fig. 3. (a) The shapes of single-photon wavepackets generated by π-pulses
in the strong, balanced and weak driving regimes; (b) the probabilities of
generating 0, 1, 2 and more flying qubits under π-pulses with driving strength
arying from weak to strong coupling regimes.

Fig. 4. The dependence of zero- to two-photon emission probabilities on the
pulse area ΩT : (a) strong driving case Ω = 2γ ; (b) balanced driving case
Ω = γ ; (c) weak driving case Ω = 0.5γ .

.2. The catching of flying qubits

The flying-qubit catching process is different from the genera-
ion process in that the waveguide is non-empty in the beginning,
ut is required to be empty by the end of the catching process.
ere, we use the proposed approach to reproduce and generalize
n existing result obtained by Nurdin et al. (2016).
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roposition 4.2. Suppose that the standing qubit is initially
repared at the ground state |0⟩, and has tunable Hamiltonian
(t) = ϵ(t)σ+σ− and coupling operator L(t) =

√
2γ (t)σ−. Then,

the standing qubit can perfectly catch an incoming flying qubit at
state |1ξ ⟩, where ξ (t) = ν(t)e−iφ(t), when

2γ (t) =
ν2(t)∫ t

0 ν
2(s)ds

, ϵ(t) =
dφ(t)
dt

. (42)

roof. We introduce the auxiliary system A shown in Fig. 2 to
enerate the incoming flying qubit, whose Hamiltonian H0(t) =

0(t)σ+σ− and coupling operator L0(t) =
√
2γ0(t)σ− are cho-

sen according to Proposition 4.1. Then the joint AB-system’s ini-
tial state is |ψAB(0)⟩ = |10⟩, which, under the ordered basis
{|00⟩, |11⟩, |10⟩, |01⟩}, has the vector form [0 0 1 0]⊤.

According to Eq. (27), the equivalent Hamiltonian

eff(t) = −i[γA(t)σ+σ− ⊗ I2 + I2 ⊗ γB(t)σ+σ−

+ 2
√
γ0(t)γ (t)σ− ⊗ σ+],

(43)

nd the coupling operator

(t) =

⎡⎢⎢⎢⎣
0 0

√
2γ0(t)

√
2γ (t)

0 0 0 0
0

√
2γ (t) 0 0

0
√
2γ0(t) 0 0

⎤⎥⎥⎥⎦ , (44)

nder the ordered basis {|00⟩, |11⟩, |10⟩, |01⟩}, where γA(t) =

0(t) + iϵ0(t) and γB(t) = γ (t) + iϵ(t). Applying Theorem 3.1 to
alculate the correlated system states |ψτ1,...,τℓ (t)⟩, we have

|ψ(t)⟩ = e−ΓA(t)|10⟩ −Ξ (t)e−ΓB(t)|01⟩, (45)

|ψτ (t)⟩ =

[√
2γ0(τ )e−ΓA(τ ) −

√
2γ (τ )e−ΓB(τ )Ξ (τ )

]
|00⟩, (46)

where

ΓA,B(t) =

∫ t

0
γA,B(s)ds,

Ξ (t) = 2
∫ t

0

√
γ0(s)γ (s)eΓB(s)−ΓA(s)ds.

(47)

he rest terms |ψτ1,...,τℓ (t)⟩ ≡ 0 vanish for all ℓ ≥ 2.
The above equations show that at most one flying qubit can

eak into the waveguide from the system B. Since we want the
flying qubit to be fully absorbed, the term |ψτ (t)⟩ corresponding
to the leakage must be kept zero, i.e.,√
2γ0(τ )e−ΓA(τ ) −

√
2γ (τ )e−ΓB(τ )Ξ (τ ) ≡ 0. (48)

his condition leaves only the term |ψ(t)⟩⊗|Ω⟩F in the joint state
|Ψ (t)⟩, which implies that |ψ(t)⟩ must be a normalized vector:

1 ≡ ⟨ψ(t)|ψ(t)⟩ = e−2Γ0(t) + |Ξ (t)|2e−2Γ (t), (49)

where Γ0(t) =
∫ t
0 γ0(s)ds and Γ (t) =

∫ t
0 γ (s)ds.

Combining (48) and (49), we can cancel the term Ξ (t) and use
(33) to obtain the following condition

2γ (t) =
2γ0(t)e−2Γ0(t)

1 − e−2Γ0(t)
=

ν2(t)∫ t
0 ν

2(s)ds
, (50)

for the coupling strength in order to completely catch the flying
qubit. Moreover, it is easy to examine that (48) and (49) hold
when ϵ(t) = ϵ0(t), from which the phase condition can be
obtained from Proposition 4.1. □

4.3. The transformation of flying qubits

Now let us see how a standing qubit responses to an incoming
τ
flying qubit at state |1ξ0⟩, where ξ0 is its wavepacket. Suppose a

7

Fig. 5. The stimulated two-photon emission from an excited standing qubit by
an incoming flying qubit: (a) the qubit decays slower than the incoming flying
qubit pulse; (b) the standing qubit decays faster than the incoming flying qubit
pulse.

that the standing qubit is prepared at the ground state |0⟩ and
is controlled by the tunable coupling γ (t) and the coherent driv-
ing u(t). We introduce the auxiliary two-level system A shown
in Fig. 2 to generate the incoming flying qubit, which is initially
excited and its Hamiltonian H0(t) = ϵ0(t)σ+σ− and coupling op-
erator L0(t) =

√
2γ0(t)σ− are chosen according to Proposition 4.1.

From Eq. (27), the effective Hamiltonian of the AB system is

Heff(t) = I2 ⊗

[
u(t)
2
σ+ +

u∗(t)
2
σ−

]
− i[γA(t)σ+σ− ⊗ I2

+ I2 ⊗ γB(t)σ+σ− + 2
√
γ0(t)γ (t)σ− ⊗ σ+],

(51)

and the coupling operator L(t) =
√
2γ0(t)σ−⊗I2+

√
2γ (t)I2⊗σ−.

The joint AB system is initially prepared at state |ψAB(0)⟩ = |10⟩.
Consider the simple case that the coherent driving is a hard

π pulse (i.e., u(t) = πδ(t)) under which the system B is instanta-
neously flipped from |0⟩ to |1⟩, and hence |ψAB(t)⟩ is flipped from
|10⟩ to |11⟩ at t = 0. Hence, we only need to calculate the joint
ystem’s dynamics starting from the flipped state |ψAB(0)⟩ = |11⟩.
t can be verified from Corollary 3.1 that the wavepacket functions
τ1,...,τℓ in the steady state all vanish except when ℓ = 2, and the
wo-photon wavepacket can be expressed as follows:
τ1,τ2 =2

√
γ0(τ2)γ (τ1)e−ΓA(τ2)−ΓB(τ1)

+ 2
√
γ0(τ1)γ (τ2)e−ΓA(τ1)−ΓB(τ2)

+ 2
√
γ (τ1)γ (τ2)e−ΓB(τ1)−ΓB(τ2) [Ξ (τ1) −Ξ (τ2)] ,

(52)

here ΓA,B(τ ) and Ξ (τ ) are defined by Eq. (47).
Recall that the system A is chosen to generate the desired

ingle-photon wavepacket, i.e., ξ τ0 =
√
2γ0(τ )e−ΓA(τ ). Let ξ τ1 =

2γ (τ )e−ΓB(τ ) be the wavepacket of a single photon sponta-
neously emitted from the system B driven by vacuum input. We
can rewrite Eq. (52) in a more compact form:

ξ τ1,τ2 = ξ
τ1
0 ξ

τ2
1 + ξ

τ2
0 ξ

τ1
1 + ξ

τ1
1 ξ

τ2
1

∫ τ2

τ1

ξ s0ξ
s
1

[∫ s

0
|ξα1 |

2dα
]−1

. (53)

his form indicates that the incoming single photon knocks out
n additional photon from the excited qubit, as is also called
timulated emission (Rephaeli & Fan, 2012), and the two single
hotons are entangled in a complex manner.
We display the two-photon wavepackets in Fig. 5, which are

eparameterized by independent variables δ1 = τ1 and δ2 =

2−τ1. In the case (a) that γ < γ0 (i.e., the system’s decay rate γ is
lower than that of the incoming single-photon wavepacket ξ τ0 ),
he two-photon emission probability monotonically decreases
ith both δ1 and δ2. In the case (b) that γ ≥ γ0 (i.e., the system’s
ecay rate γ is faster than that of the incoming single-photon
avepacket ξ τ0 ), and the two flying qubits are not allowed to be
eparated at certain values of δ2 (e.g., ξ τ1,τ2 = 0 when δ2 = γ−1

0
nd γ = γ ).
0
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a
n

Fig. 6. The transformation of a flying qubit: (a)–(b) optimized control pulses;
(c) the shapes of the incoming and outgoing flying qubits.

Now consider the case when soft driving control pulses are
pplied. We assume that the incoming single photon has expo-
entially decaying waveform ξ τ0 =

√
2γ0e−γ0τ (corresponding to

ϵ(t) = 0 and γ0(t) ≡ γ0 for the auxiliary system A). The coherent
driving control u(t) = ux(t) + iuy(t) on the system B is turned
on over a fixed time interval to reshape the flying qubit, and the
joint system is initially prepared at state |Ψ (0)⟩ = |10⟩.

We apply the genetic algorithm to optimize the waveform
of u(t) that maximizes the single-photon emission probability
P1. Numerical simulations show that the coherent control can
improve the single-photon generation probability to 95.22% after
200 generations, yielding the optimized control pulse displayed
in Fig. 6(a). As is shown in Fig. 6(b), the shape of the out-
going single-photon component is suppressed in the beginning
and then revives, showing the ability of the driving control on
reshaping the incoming flying qubit.

5. Conclusion

To conclude, we have developed a QSDE-based modeling
method for the control of flying qubits in networked quantum
information processing systems. Under the time-ordered photon-
number basis, the proposed model can describe most general
cases when the standing quantum system is steered by coherent
or incoherent classical controls, and the quantum inputs can be
either vacuum or non-vacuum. As illustrated by the examples,
the states of the outgoing flying qubits can be efficiently com-
puted by the derived low-dimensional non-unitary Schrödinger
equation and the associated quantum jumps. This QSDE-based
approach can be naturally applied to the analysis of flying-qubit
control dynamics in quantum networks by combining the (S, L,H)
formulation.

The established framework also lays the foundation for prac-
tical design of flying-qubit control systems, such as the precise
shaping of flying qubits, the suppression of undesired multi-
photon emissions, or robust control of flying qubits. As is ex-
emplified in the numerical example, these design problems can
be formulated as properly defined optimal control problems, and
efficient algorithms need to be developed. These problems will be
considered in our future studies.

The proposed model can be naturally extended to cases when
the standing quantum system has multiple energy levels or is
8

coupled to multiple waveguides. In principle, the analysis of
flying qubit catching and transformation problems can still be
handled by introducing multiple auxiliary systems coupled to
these waveguides. However, the resulting calculation will become
extremely hard as the equivalent system defined on the tensor
of multiple Hilbert spaces becomes much larger. Hence, a direct
method that is free of auxiliary systems is highly demanded. This
has been shown to be possible from quantum scattering the-
ory (Hurst & Kok, 2018; Trivedi et al., 2018), but the QSDE-based
approach, which is potentially advantageous in the applications
to complex networks, is still an open question. This will be also
explored in our future works.
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