Kurdyka-Łojasiewicz exponent for a class of Hadamard-difference-parameterized models

Ting Kei Pong
Department of Applied Mathematics
The Hong Kong Polytechnic University
Hong Kong

The 6th Conference on Discrete Optimization \& Machine Learning National Graduate Institute for Policy Studies, Tokyo July 2024
(Joint work with Yuncheng Liu, Wenqing Ouyang \& Hao Wang)

Over-parameterized models

Example: Deep neural network training:
$\underset{\substack{W_{\ell}: \mathbb{R}^{\rho_{\ell}-1} \rightarrow \mathbb{R}^{\rho_{\ell}}, \text { aftine } \\ \ell=1, \ldots, L}}{\operatorname{Minimize}} \sum_{i=1}^{m}\left(\varrho_{L}\left(W_{L}\left(\varrho_{L-1}\left(W_{L-1}\left(\cdots \varrho_{1}\left(W_{1}\left(x_{i}\right)\right) \cdots\right)\right)\right)-y_{i}\right)^{2}\right.$ where $\varrho_{\ell}: \mathbb{R} \rightarrow \mathbb{R}$ is the activation function for the ℓ-th layer (acting entrywise on vectors), $\ell=1, \ldots, L, p_{0}, \cdots, p_{L-1}$ are positive integers, $p_{L}=1,\left(x_{i}, y_{i}\right) \in \mathbb{R}^{p_{0}} \times \mathbb{R}$ for $i=1, \ldots, m$ are data points.

Over-parameterized models

Example: Deep neural network training:

$$
\underset{\substack{W_{\ell}: \mathbb{R}^{\rho_{\ell}-1} \rightarrow \mathbb{R}^{R_{\ell}}, \text { affine } \\ \ell=1, \ldots, L}}{\operatorname{Minimize}} \sum_{i=1}^{m}\left(\varrho_{L}\left(W_{L}\left(\varrho_{L-1}\left(W_{L-1}\left(\cdots \varrho_{1}\left(W_{1}\left(x_{i}\right)\right) \cdots\right)\right)\right)-y_{i}\right)^{2}\right.
$$

where $\varrho_{\ell}: \mathbb{R} \rightarrow \mathbb{R}$ is the activation function for the ℓ-th layer (acting entrywise on vectors), $\ell=1, \ldots, L, p_{0}, \cdots, p_{L-1}$ are positive integers, $p_{L}=1,\left(x_{i}, y_{i}\right) \in \mathbb{R}^{p_{0}} \times \mathbb{R}$ for $i=1, \ldots, m$ are data points.

Over-parametrized models can have desirable properties.

- Better generalization. (Allen-Zhu, Li, Liang '19, Pandey, Kumar '23, Subramanian, Arya, Sahal '22, ...)
- Implicit bias / regularization. (Belkin, Hsu, Ma, Mandal '19, Dai, Karzand, Srebro '21, Gunasekar, Lee, Soudry, Srebro '18, Li, Nguyen, Hegde, Wong, '21, ...)
- ...

Hadamard parametrized model

For $\mu>0$ and $h \in C^{2}\left(\mathbb{R}^{n}\right)$, consider

$$
f(x):=h(x)+\mu\|x\|_{1} \text { and } G(u, v):=h(u \circ v)+\frac{\mu}{2}\left(\|u\|^{2}+\|v\|^{2}\right) .
$$

Hadamard parametrized model

For $\mu>0$ and $h \in C^{2}\left(\mathbb{R}^{n}\right)$, consider

$$
f(x):=h(x)+\mu\|x\|_{1} \text { and } G(u, v):=h(u \circ v)+\frac{\mu}{2}\left(\|u\|^{2}+\|v\|^{2}\right) .
$$

- It holds that $G(u, v) \geq f(u \circ v)$ and $\inf f=\inf G$, thanks to the AM-GM inequality.

Hadamard parametrized model

For $\mu>0$ and $h \in C^{2}\left(\mathbb{R}^{n}\right)$, consider

$$
f(x):=h(x)+\mu\|x\|_{1} \text { and } G(u, v):=h(u \circ v)+\frac{\mu}{2}\left(\|u\|^{2}+\|v\|^{2}\right) .
$$

- It holds that $G(u, v) \geq f(u \circ v)$ and $\inf f=\inf G$, thanks to the AM-GM inequality.
- f commonly arises in compressed sensing / variable selections, with popular choices of h being $h(x)=\sum_{i=1}^{m} \ln \left(1+\exp \left(\left\langle y_{i}, x\right\rangle\right)\right)$ or $\frac{1}{2}\|A x-z\|^{2}$ for some $A \in \mathbb{R}^{m \times n}, z \in \mathbb{R}^{m}$ and $y_{i} \in \mathbb{R}^{n}$ for $i=1, \ldots, m$.

Hadamard parametrized model

For $\mu>0$ and $h \in C^{2}\left(\mathbb{R}^{n}\right)$, consider

$$
f(x):=h(x)+\mu\|x\|_{1} \text { and } G(u, v):=h(u \circ v)+\frac{\mu}{2}\left(\|u\|^{2}+\|v\|^{2}\right) .
$$

- It holds that $G(u, v) \geq f(u \circ v)$ and $\inf f=\inf G$, thanks to the AM-GM inequality.
- f commonly arises in compressed sensing / variable selections, with popular choices of h being $h(x)=\sum_{i=1}^{m} \ln \left(1+\exp \left(\left\langle y_{i}, x\right\rangle\right)\right)$ or $\frac{1}{2}\|A x-z\|^{2}$ for some $A \in \mathbb{R}^{m \times n}, z \in \mathbb{R}^{m}$ and $y_{i} \in \mathbb{R}^{n}$ for $i=1, \ldots, m$.
- G is called the Hadamard parametrization of f. (Hoff '17)
- The smoothness of G has been recently exploited for algorithmic design. (Hoff '17, Kolb, Müller, Bischl, Rügamer '23, Poon, Peyré '21, '23)

Hadamard difference parameterization

For $\mu>0$ and $h \in C^{2}\left(\mathbb{R}^{n}\right)$, consider

$$
f(x):=h(x)+\mu\|x\|_{1} \text { and } G(u, v):=h(u \circ v)+\frac{\mu}{2}\left(\|u\|^{2}+\|v\|^{2}\right) .
$$

In view of the subsitution

$$
a=(u+v) / 2 \text { and } b=(u-v) / 2
$$

it follows that minimizing G is equivalent to minimizing F defined as

$$
F(a, b):=h\left(a^{2}-b^{2}\right)+\mu\left(\|a\|^{2}+\|b\|^{2}\right) .
$$

Hadamard difference parameterization

For $\mu>0$ and $h \in C^{2}\left(\mathbb{R}^{n}\right)$, consider

$$
f(x):=h(x)+\mu\|x\|_{1} \text { and } G(u, v):=h(u \circ v)+\frac{\mu}{2}\left(\|u\|^{2}+\|v\|^{2}\right) .
$$

In view of the subsitution

$$
a=(u+v) / 2 \text { and } b=(u-v) / 2
$$

it follows that minimizing G is equivalent to minimizing F defined as

$$
F(a, b):=h\left(a^{2}-b^{2}\right)+\mu\left(\|a\|^{2}+\|b\|^{2}\right) .
$$

Remark:

- F is called the Hadamard difference parameterization (HDP) of f. (Vaškevičius, Kanade, Rebeschini '19) We focus on F from now on.

Hadamard difference parameterization

For $\mu>0$ and $h \in C^{2}\left(\mathbb{R}^{n}\right)$, consider

$$
f(x):=h(x)+\mu\|x\|_{1} \text { and } G(u, v):=h(u \circ v)+\frac{\mu}{2}\left(\|u\|^{2}+\|v\|^{2}\right) .
$$

In view of the subsitution

$$
a=(u+v) / 2 \text { and } b=(u-v) / 2
$$

it follows that minimizing G is equivalent to minimizing F defined as

$$
F(a, b):=h\left(a^{2}-b^{2}\right)+\mu\left(\|a\|^{2}+\|b\|^{2}\right) .
$$

Remark:

- F is called the Hadamard difference parameterization (HDP) of f. (Vaškevičius, Kanade, Rebeschini '19) We focus on F from now on.

Questions:

- How do the stationary points of F correspond to those of f ?

Hadamard difference parameterization

For $\mu>0$ and $h \in C^{2}\left(\mathbb{R}^{n}\right)$, consider

$$
f(x):=h(x)+\mu\|x\|_{1} \text { and } G(u, v):=h(u \circ v)+\frac{\mu}{2}\left(\|u\|^{2}+\|v\|^{2}\right) .
$$

In view of the subsitution

$$
a=(u+v) / 2 \text { and } b=(u-v) / 2
$$

it follows that minimizing G is equivalent to minimizing F defined as

$$
F(a, b):=h\left(a^{2}-b^{2}\right)+\mu\left(\|a\|^{2}+\|b\|^{2}\right) .
$$

Remark:

- F is called the Hadamard difference parameterization (HDP) of f. (Vaškevičius, Kanade, Rebeschini '19) We focus on F from now on.

Questions:

- How do the stationary points of F correspond to those of f ?
- (Roughly) If a stationary point of f can be found efficiently, how about F ?

2nd-order stationary points of F

Recall that for $\mu>0$,

$$
f(x):=h(x)+\mu\|x\|_{1} \text { and } F(a, b):=h\left(a^{2}-b^{2}\right)+\mu\left(\|a\|^{2}+\|b\|^{2}\right) .
$$

Theorem 1. (Ouyang, Liu, P., Wang '24)
For all $(a, b) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$, the following statements are equivalent:
(i) The point (a, b) is a 2nd-order stationary point of F.
(ii) The point $s:=a^{2}-b^{2}$ is a stationary point of $f, \min \left\{a^{2}, b^{2}\right\}=0$, and

$$
w^{T} \nabla^{2} h(s) w \geq 0 \quad \forall w \in\left\{v: v_{i}=0 \text { when } s_{i}=0\right\} .
$$

Strict saddle property

Recall that for $\mu>0$,

$$
f(x):=h(x)+\mu\|x\|_{1} \text { and } F(a, b):=h\left(a^{2}-b^{2}\right)+\mu\left(\|a\|^{2}+\|b\|^{2}\right) .
$$

Theorem 2. (Ouyang, Liu, P., Wang '24)
Suppose that h is convex. Then there exists a $\delta>0$ such that for all $(a, b) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$, the following statements are equivalent:
(i) The point (a, b) is a stationary point of F and it holds that

$$
\lambda_{\min }\left(\nabla^{2} F(a, b)\right)>-\delta .
$$

(ii) The point $a^{2}-b^{2}$ minimizes f, and $\min \left\{a^{2}, b^{2}\right\}=0$.
(iii) The point (a, b) minimizes F.
(iv) The point (a, b) is a 2nd-order stationary point of F.

Remark: The above result was established in (Poon, Peyré '21) when h is a convex quadratic function.

KL property \& exponent

Definition: (Attouch, Bolte, Redont, Soubeyran '10)
Let g be proper closed and $\alpha \in[0,1)$.

- g is said to satisfy the Kurdyka-Łojasiewicz (KL) property with exponent α at $\bar{x} \in \operatorname{dom} \partial g$ if there exist $c, \nu, \epsilon>0$ so that

$$
c[g(x)-g(\bar{x})]^{\alpha} \leq \operatorname{dist}(0, \partial g(x))
$$

whenever $x \in \operatorname{dom} \partial g,\|x-\bar{x}\| \leq \epsilon$ and $g(\bar{x})<g(x)<g(\bar{x})+\nu$.

KL property \& exponent

Definition: (Attouch, Bolte, Redont, Soubeyran '10)
Let g be proper closed and $\alpha \in[0,1)$.

- g is said to satisfy the Kurdyka-Łojasiewicz (KL) property with exponent α at $\bar{x} \in \operatorname{dom} \partial g$ if there exist $c, \nu, \epsilon>0$ so that

$$
c[g(x)-g(\bar{x})]^{\alpha} \leq \operatorname{dist}(0, \partial g(x))
$$

whenever $x \in \operatorname{dom} \partial g,\|x-\bar{x}\| \leq \epsilon$ and $g(\bar{x})<g(x)<g(\bar{x})+\nu$.

- If g satisfies the KL property at any $\bar{x} \in \operatorname{dom} \partial g$ with the same α, then g is said to be a KL function with exponent α.

KL property \& exponent

Definition: (Attouch, Bolte, Redont, Soubeyran '10)
Let g be proper closed and $\alpha \in[0,1)$.

- g is said to satisfy the Kurdyka-Łojasiewicz (KL) property with exponent α at $\bar{x} \in \operatorname{dom} \partial g$ if there exist $c, \nu, \epsilon>0$ so that

$$
c[g(x)-g(\bar{x})]^{\alpha} \leq \operatorname{dist}(0, \partial g(x))
$$

whenever $x \in \operatorname{dom} \partial g,\|x-\bar{x}\| \leq \epsilon$ and $g(\bar{x})<g(x)<g(\bar{x})+\nu$.

- If g satisfies the KL property at any $\bar{x} \in \operatorname{dom} \partial g$ with the same α, then g is said to be a KL function with exponent α.
Examples:
- Proper closed semialgebraic functions are KL functions with exponent $\alpha \in[0,1)$. (Bolte, Daniilidis, Lewis, Shiota '07)
- If g is the maximum of m polynomials of degree at most d, then the KL exponent is $1-\frac{1}{\max \left\{1,(d+1)(3 d)^{n+m-2}\right\}}$. (Li, Mordukovich, Pham '15)

Prototypical local convergence results

Fact 1. (Attouch, Bolte '09)
For proximal gradient algorithm and its variants:
Let $\left\{x^{k}\right\}$ be a bounded sequence generated. If g satisfies the KL property with exponent $\alpha \in[0,1)$ at every cluster point of $\left\{x^{k}\right\}$, then:

- if $\alpha=0$, then $\left\{x^{k}\right\}$ converges finitely;
- if $\alpha \in\left(0, \frac{1}{2}\right]$, then $\left\{x^{k}\right\}$ converges locally linearly;
- if $\alpha \in\left(\frac{1}{2}, 1\right)$, then $\left\{x^{k}\right\}$ converges locally sublinearly.

Prototypical local convergence results

Fact 1. (Attouch, Bolte '09)
For proximal gradient algorithm and its variants:
Let $\left\{x^{k}\right\}$ be a bounded sequence generated. If g satisfies the KL property with exponent $\alpha \in[0,1)$ at every cluster point of $\left\{x^{k}\right\}$, then:

- if $\alpha=0$, then $\left\{x^{k}\right\}$ converges finitely;
- if $\alpha \in\left(0, \frac{1}{2}\right]$, then $\left\{x^{k}\right\}$ converges locally linearly;
- if $\alpha \in\left(\frac{1}{2}, 1\right)$, then $\left\{x^{k}\right\}$ converges locally sublinearly.

KL exponent calculus?

- The KL exponent of $f:=h+\mu\|\cdot\|_{1}$ is known for many loss functions h, such as least squares loss and logistic loss.
- Can we deduce the KL exponent of the corresponding HDP model F ?

KL exponent under strict complementarity

Recall that for $\mu>0$,

$$
f(x):=h(x)+\mu\|x\|_{1} \text { and } F(a, b):=h\left(a^{2}-b^{2}\right)+\mu\left(\|a\|^{2}+\|b\|^{2}\right) .
$$

KL exponent under strict complementarity

Recall that for $\mu>0$,

$$
f(x):=h(x)+\mu\|x\|_{1} \text { and } F(a, b):=h\left(a^{2}-b^{2}\right)+\mu\left(\|a\|^{2}+\|b\|^{2}\right) .
$$

Theorem 3. (Ouyang, Liu, P., Wang '24)
Let (a^{*}, b^{*}) be a 2nd-order stationary point of F and set $s^{*}=\left(a^{*}\right)^{2}-\left(b^{*}\right)^{2}$. Suppose that f satisfies the KL property with exponent $\alpha \in(0,1)$ at s^{*}. If $0 \in \operatorname{ri} \partial f\left(s^{*}\right)$, then F satisfies the KL property at $\left(a^{*}, b^{*}\right)$ with exponent $\max \left\{\alpha, \frac{1}{2}\right\}$.

KL exponent under strict complementarity

Recall that for $\mu>0$,

$$
f(x):=h(x)+\mu\|x\|_{1} \text { and } F(a, b):=h\left(a^{2}-b^{2}\right)+\mu\left(\|a\|^{2}+\|b\|^{2}\right) .
$$

Theorem 3. (Ouyang, Liu, P., Wang '24)
Let (a^{*}, b^{*}) be a 2nd-order stationary point of F and set $s^{*}=\left(a^{*}\right)^{2}-\left(b^{*}\right)^{2}$. Suppose that f satisfies the KL property with exponent $\alpha \in(0,1)$ at s^{*}. If $0 \in \operatorname{ri} \partial f\left(s^{*}\right)$, then F satisfies the KL property at $\left(a^{*}, b^{*}\right)$ with exponent $\max \left\{\alpha, \frac{1}{2}\right\}$.

Remark:

- The condition $0 \in \operatorname{ri} \partial f\left(s^{*}\right)$ is typically referred to as the strict complementarity condition.

KL exponent without strict complementarity

Recall that for $\mu>0$,

$$
f(x):=h(x)+\mu\|x\|_{1} \text { and } F(a, b):=h\left(a^{2}-b^{2}\right)+\mu\left(\|a\|^{2}+\|b\|^{2}\right) .
$$

Theorem 4. (Ouyang, Liu, P., Wang '24)
Let (a^{*}, b^{*}) be a 2nd-order stationary point of F and set $s^{*}=\left(a^{*}\right)^{2}-\left(b^{*}\right)^{2}$. Suppose that h is convex and $\Omega:=\operatorname{Arg} \min f$ is polyhedral. If f satisfies the KL property with exponent $\alpha \in(0,1)$ at s^{*}, then F satisfies the KL property at $\left(a^{*}, b^{*}\right)$ with exponent $(1+\alpha) / 2$.

KL exponent without strict complementarity

Recall that for $\mu>0$,

$$
f(x):=h(x)+\mu\|x\|_{1} \text { and } F(a, b):=h\left(a^{2}-b^{2}\right)+\mu\left(\|a\|^{2}+\|b\|^{2}\right)
$$

Theorem 4. (Ouyang, Liu, P., Wang '24)
Let (a^{*}, b^{*}) be a 2nd-order stationary point of F and set $s^{*}=\left(a^{*}\right)^{2}-\left(b^{*}\right)^{2}$. Suppose that h is convex and $\Omega:=\operatorname{Arg} \min f$ is polyhedral. If f satisfies the KL property with exponent $\alpha \in(0,1)$ at s^{*}, then F satisfies the KL property at $\left(a^{*}, b^{*}\right)$ with exponent $(1+\alpha) / 2$.

Remark:

- Ω is polyhedral when $h(x)=\ell(\boldsymbol{A x})$ for some strictly convex function $\ell: \mathbb{R}^{m} \rightarrow \mathbb{R}$ and $A \in \mathbb{R}^{m \times n}$. (Zhou, So '17)

Example: tightness of exponent

Example: Let $\alpha \in\left[\frac{1}{2}, 1\right)$ and define $h: \mathbb{R} \rightarrow \mathbb{R}$ as
$h(x)=(1-\alpha)|x|^{\frac{1}{1-\alpha}}-x$. Consider

$$
f(x):=h(x)+|x| \text { and } F(a, b):=h\left(a^{2}-b^{2}\right)+\left(a^{2}+b^{2}\right) .
$$

Then $h \in C^{2}(\mathbb{R})$ is convex, $\operatorname{Arg} \min f=\{0\}$ and $(0,0) \in \operatorname{Arg} \min F$.

Example: tightness of exponent

Example: Let $\alpha \in\left[\frac{1}{2}, 1\right)$ and define $h: \mathbb{R} \rightarrow \mathbb{R}$ as
$h(x)=(1-\alpha)|x|^{\frac{1}{1-\alpha}}-x$. Consider

$$
f(x):=h(x)+|x| \text { and } F(a, b):=h\left(a^{2}-b^{2}\right)+\left(a^{2}+b^{2}\right) .
$$

Then $h \in C^{2}(\mathbb{R})$ is convex, $\operatorname{Arg} \min f=\{0\}$ and $(0,0) \in \operatorname{Arg} \min F$. Moreover,

$$
\begin{gathered}
f(x)= \begin{cases}(1-\alpha)|x|^{\frac{1}{1-\alpha}} & \text { if } x \geq 0, \\
(1-\alpha)|x|^{\frac{1}{1-\alpha}}-2 x & \text { if } x<0 .\end{cases} \\
f^{\prime}(x)= \begin{cases}|x|^{\frac{\alpha}{1-\alpha}} & \text { if } x>0, \\
-|x|^{\frac{\alpha}{1-\alpha}}-2 & \text { if } x<0 .\end{cases}
\end{gathered}
$$

Thus, the KL exponent of f at 0 is α.

Example cont.: tightness of exponent

Example cont.: On the other hand, we have

$$
\begin{aligned}
F(a, b) & =h\left(a^{2}-b^{2}\right)+a^{2}+b^{2} \\
& =(1-\alpha)\left|a^{2}-b^{2}\right|^{\frac{1}{1-\alpha}}-\left(a^{2}-b^{2}\right)+a^{2}+b^{2} \\
& =(1-\alpha)\left|a^{2}-b^{2}\right|^{\frac{1}{1-\alpha}}+2 b^{2} .
\end{aligned}
$$

Take $t>0$. Then we have

$$
\nabla F(t, 0)=\left[\begin{array}{ll}
2 t^{\frac{1+\alpha}{1-\alpha}} & 0
\end{array}\right]^{\top} \text { and } F(t, 0)=(1-\alpha) t^{\frac{2}{1-\alpha}}
$$

This implies that $\|\nabla F(t, 0)\|=2\left(\frac{1}{1-\alpha} F(t, 0)\right)^{\frac{1+\alpha}{2}}$, which shows that the KL exponent of F at 0 is no less than $\frac{1+\alpha}{2}$.

Example: new models with explicit KL exponents

Example: Consider

- $h(x):=\frac{1}{2}\|A x-z\|^{2}$ for some $A \in \mathbb{R}^{m \times n}$ and $z \in \mathbb{R}^{m}$; or
- $h(x):=\sum_{i=1}^{m} \ln \left(1+\exp \left(\left\langle y_{i}, x\right\rangle\right)\right)$ for $y_{i} \in \mathbb{R}^{n}, i=1, \ldots, m$.

Example: new models with explicit KL exponents

Example: Consider

- $h(x):=\frac{1}{2}\|A x-z\|^{2}$ for some $A \in \mathbb{R}^{m \times n}$ and $z \in \mathbb{R}^{m}$; or
- $h(x):=\sum_{i=1}^{m} \ln \left(1+\exp \left(\left\langle y_{i}, x\right\rangle\right)\right)$ for $y_{i} \in \mathbb{R}^{n}, i=1, \ldots, m$.

For $\mu>0$, consider

$$
f(x):=h(x)+\mu\|x\|_{1} \text { and } F(a, b):=h\left(a^{2}-b^{2}\right)+\mu\left(\|a\|^{2}+\|b\|^{2}\right) .
$$

It is known that

- Arg $\min f$ is polyhedral. (Zhou, So '17)
- KL exponent of f is $\frac{1}{2}$. (Li, P. '18)

Example: new models with explicit KL exponents

Example: Consider

- $h(x):=\frac{1}{2}\|A x-z\|^{2}$ for some $A \in \mathbb{R}^{m \times n}$ and $z \in \mathbb{R}^{m}$; or
- $h(x):=\sum_{i=1}^{m} \ln \left(1+\exp \left(\left\langle y_{i}, x\right\rangle\right)\right)$ for $y_{i} \in \mathbb{R}^{n}, i=1, \ldots, m$.

For $\mu>0$, consider

$$
f(x):=h(x)+\mu\|x\|_{1} \text { and } F(a, b):=h\left(a^{2}-b^{2}\right)+\mu\left(\|a\|^{2}+\|b\|^{2}\right) .
$$

It is known that

- Arg min f is polyhedral. (Zhou, So '17)
- KL exponent of f is $\frac{1}{2}$. (Li, P. '18)

Consequently, the KL exponent of F at a 2nd-order stationary point $\left(a^{*}, b^{*}\right)$ is $\frac{1}{2}$ or $\frac{3}{4}$ depending on whether $0 \in \operatorname{ri} \partial f\left(s^{*}\right)$, where $s^{*}:=\left(a^{*}\right)^{2}-\left(b^{*}\right)^{2}$.

Applications

How can we make use of the KL exponents at 2nd-order stationary points of F ?

Applications

How can we make use of the KL exponents at 2nd-order stationary points of F ?

Recall that for $\mu>0$,

$$
f(x):=h(x)+\mu\|x\|_{1} \text { and } F(a, b):=h\left(a^{2}-b^{2}\right)+\mu\left(\|a\|^{2}+\|b\|^{2}\right) .
$$

Theorem 5. (Ouyang, Liu, P., Wang '24)
Suppose that h is subanalytic and lower-bounded.
Consider the steepest descent with backtracking linesearch ($\mathrm{SD}_{\text {ls }}$) with initial stepsize θ_{0} and initial point $\left(a^{0}, b^{0}\right)$ for minimizing F.
Then for almost all $\theta_{0}>0$, there exists a $V \subseteq \mathbb{R}^{n} \times \mathbb{R}^{n}$ with full measure such that whenever $\left(a^{0}, b^{0}\right) \in V$, the sequence $\left\{\left(a^{k}, b^{k}\right)\right\}$ generated by $\mathrm{SD}_{\text {ls }}$ converges to a 2nd-order stationary point of F.

Conclusion

Conclusion:

- 2nd-order stationary points of the HDP model F correspond to some stationary points of f.
- The KL exponent of F at a 2nd-order stationary point can be deduced from the KL exponent at the corresponding stationary point of f, under suitable assumptions.
Reference:
- Wenqing Ouyang, Yuncheng Liu, Ting Kei Pong and Hao Wang. Kurdyka-Łojasiewicz exponent via Hadamard parametrization. Preprint. Available at https://arxiv.org/abs/2402.00377.

Thanks for coming! ¿

