Kurdyka-Łojasiewicz exponent for a class of Hadamard-difference-parameterized models

Ting Kei Pong Department of Applied Mathematics The Hong Kong Polytechnic University Hong Kong

The 6th Conference on Discrete Optimization & Machine Learning National Graduate Institute for Policy Studies, Tokyo July 2024 (Joint work with Yuncheng Liu, Wenqing Ouyang & Hao Wang)

Over-parameterized models

Example: Deep neural network training:

$$\underset{\substack{W_{\ell}:\mathbb{R}^{\rho_{\ell-1}}\to\mathbb{R}^{\rho_{\ell}},alfine,\\\ell=1,\ldots,L}}{\text{Minimize}} \sum_{i=1}^{m} (\varrho_{L}(W_{L}(\varrho_{L-1}(W_{L-1}(\cdots \varrho_{1}(W_{1}(x_{i}))\cdots)))) - y_{i})^{2}$$

where $\rho_{\ell} : \mathbb{R} \to \mathbb{R}$ is the activation function for the ℓ -th layer (acting entrywise on vectors), $\ell = 1, \ldots, L, p_0, \cdots, p_{L-1}$ are positive integers, $\rho_L = 1, (x_i, y_i) \in \mathbb{R}^{p_0} \times \mathbb{R}$ for $i = 1, \ldots, m$ are data points.

Over-parameterized models

Example: Deep neural network training:

$$\underset{\substack{W_{\ell}:\mathbb{R}^{\rho_{\ell-1}}\to\mathbb{R}^{\rho_{\ell}},affine,\\\ell=1,\ldots,L}}{\text{Minimize}} \sum_{i=1}^{m} (\varrho_{L}(W_{L}(\varrho_{L-1}(W_{L-1}(\cdots \varrho_{1}(W_{1}(x_{i}))\cdots)))) - y_{i})^{2}$$

where $\rho_{\ell} : \mathbb{R} \to \mathbb{R}$ is the activation function for the ℓ -th layer (acting entrywise on vectors), $\ell = 1, \ldots, L, p_0, \cdots, p_{L-1}$ are positive integers, $p_L = 1, (x_i, y_i) \in \mathbb{R}^{p_0} \times \mathbb{R}$ for $i = 1, \ldots, m$ are data points.

Over-parametrized models can have desirable properties.

- Better generalization. (Allen-Zhu, Li, Liang '19, Pandey, Kumar '23, Subramanian, Arya, Sahal '22, ...)
- Implicit bias / regularization. (Belkin, Hsu, Ma, Mandal '19, Dai, Karzand, Srebro '21, Gunasekar, Lee, Soudry, Srebro '18, Li, Nguyen, Hegde, Wong, '21, ...)

For $\mu > 0$ and $h \in C^2(\mathbb{R}^n)$, consider

 $f(x) := h(x) + \mu \|x\|_1$ and $G(u, v) := h(u \circ v) + \frac{\mu}{2}(\|u\|^2 + \|v\|^2).$

For $\mu > 0$ and $h \in C^2(\mathbb{R}^n)$, consider

 $f(x) := h(x) + \mu \|x\|_1$ and $G(u, v) := h(u \circ v) + \frac{\mu}{2}(\|u\|^2 + \|v\|^2).$

• It holds that $G(u, v) \ge f(u \circ v)$ and $\inf f = \inf G$, thanks to the AM-GM inequality.

For $\mu > 0$ and $h \in C^2(\mathbb{R}^n)$, consider

 $f(x) := h(x) + \mu \|x\|_1$ and $G(u, v) := h(u \circ v) + \frac{\mu}{2}(\|u\|^2 + \|v\|^2).$

- It holds that $G(u, v) \ge f(u \circ v)$ and $\inf f = \inf G$, thanks to the AM-GM inequality.
- *f* commonly arises in compressed sensing / variable selections, with popular choices of *h* being $h(x) = \sum_{i=1}^{m} \ln(1 + \exp(\langle y_i, x \rangle))$ or $\frac{1}{2} ||Ax z||^2$ for some $A \in \mathbb{R}^{m \times n}$, $z \in \mathbb{R}^m$ and $y_i \in \mathbb{R}^n$ for i = 1, ..., m.

For $\mu > 0$ and $h \in C^2(\mathbb{R}^n)$, consider

 $f(x) := h(x) + \mu \|x\|_1$ and $G(u, v) := h(u \circ v) + \frac{\mu}{2}(\|u\|^2 + \|v\|^2).$

- It holds that $G(u, v) \ge f(u \circ v)$ and $\inf f = \inf G$, thanks to the AM-GM inequality.
- *f* commonly arises in compressed sensing / variable selections, with popular choices of *h* being $h(x) = \sum_{i=1}^{m} \ln(1 + \exp(\langle y_i, x \rangle))$ or $\frac{1}{2} ||Ax z||^2$ for some $A \in \mathbb{R}^{m \times n}$, $z \in \mathbb{R}^m$ and $y_i \in \mathbb{R}^n$ for i = 1, ..., m.
- G is called the Hadamard parametrization of f. (Hoff '17)
- The smoothness of *G* has been recently exploited for algorithmic design. (Hoff '17, Kolb, Müller, Bischl, Rügamer '23, Poon, Peyré '21, '23)

For $\mu > 0$ and $h \in C^2(\mathbb{R}^n)$, consider $f(x) := h(x) + \mu \|x\|_1$ and $G(u, v) := h(u \circ v) + \frac{\mu}{2}(\|u\|^2 + \|v\|^2)$. In view of the substitution

a = (u + v)/2 and b = (u - v)/2,

it follows that minimizing G is equivalent to minimizing F defined as

$$F(a,b) := h(a^2 - b^2) + \mu(||a||^2 + ||b||^2).$$

For $\mu > 0$ and $h \in C^2(\mathbb{R}^n)$, consider

 $f(x) := h(x) + \mu \|x\|_1$ and $G(u, v) := h(u \circ v) + \frac{\mu}{2}(\|u\|^2 + \|v\|^2).$

In view of the subsitution

a = (u + v)/2 and b = (u - v)/2,

it follows that minimizing G is equivalent to minimizing F defined as

$$F(a,b) := h(a^2 - b^2) + \mu(||a||^2 + ||b||^2).$$

Remark:

 F is called the Hadamard difference parameterization (HDP) of f. (Vaškevičius, Kanade, Rebeschini '19) We focus on F from now on.

For $\mu > 0$ and $h \in C^2(\mathbb{R}^n)$, consider

 $f(x) := h(x) + \mu \|x\|_1$ and $G(u, v) := h(u \circ v) + \frac{\mu}{2}(\|u\|^2 + \|v\|^2).$

In view of the subsitution

a = (u + v)/2 and b = (u - v)/2,

it follows that minimizing G is equivalent to minimizing F defined as

$$F(a,b) := h(a^2 - b^2) + \mu(||a||^2 + ||b||^2).$$

Remark:

• *F* is called the Hadamard difference parameterization (HDP) of *f*. (Vaškevičius, Kanade, Rebeschini '19) We focus on *F* from now on.

Questions:

• How do the stationary points of F correspond to those of f?

For $\mu > 0$ and $h \in C^2(\mathbb{R}^n)$, consider

 $f(x) := h(x) + \mu \|x\|_1$ and $G(u, v) := h(u \circ v) + \frac{\mu}{2}(\|u\|^2 + \|v\|^2).$

In view of the subsitution

a = (u + v)/2 and b = (u - v)/2,

it follows that minimizing G is equivalent to minimizing F defined as

$$F(a,b) := h(a^2 - b^2) + \mu(||a||^2 + ||b||^2).$$

Remark:

• *F* is called the Hadamard difference parameterization (HDP) of *f*. (Vaškevičius, Kanade, Rebeschini '19) We focus on *F* from now on.

Questions:

- How do the stationary points of F correspond to those of f?
- (Roughly) If a stationary point of *f* can be found efficiently, how about *F*?

2nd-order stationary points of F

Recall that for $\mu > 0$,

 $f(x) := h(x) + \mu \|x\|_1$ and $F(a, b) := h(a^2 - b^2) + \mu(\|a\|^2 + \|b\|^2)$.

Theorem 1. (Ouyang, Liu, P., Wang '24) For all $(a, b) \in \mathbb{R}^n \times \mathbb{R}^n$, the following statements are equivalent: (i) The point (a, b) is a 2nd-order stationary point of *F*.

(ii) The point $s := a^2 - b^2$ is a stationary point of f, min $\{a^2, b^2\} = 0$, and

$$w^T \nabla^2 h(s) w \ge 0 \quad \forall w \in \{v : v_i = 0 \text{ when } s_i = 0\}.$$

Strict saddle property

Recall that for $\mu > 0$,

 $f(x) := h(x) + \mu \|x\|_1$ and $F(a, b) := h(a^2 - b^2) + \mu(\|a\|^2 + \|b\|^2)$.

Theorem 2. (Ouyang, Liu, P., Wang '24)

Suppose that *h* is convex. Then there exists a $\delta > 0$ such that for all $(a, b) \in \mathbb{R}^n \times \mathbb{R}^n$, the following statements are equivalent:

- (i) The point (a, b) is a stationary point of F and it holds that $\lambda_{\min}(\nabla^2 F(a, b)) > -\delta$.
- (ii) The point $a^2 b^2$ minimizes *f*, and min $\{a^2, b^2\} = 0$.

(iii) The point (a, b) minimizes F.

(iv) The point (a, b) is a 2nd-order stationary point of *F*.

Remark: The above result was established in (Poon, Peyré '21) when *h* is a convex quadratic function.

KL property & exponent

Definition: (Attouch, Bolte, Redont, Soubeyran '10) Let *g* be proper closed and $\alpha \in [0, 1)$.

 g is said to satisfy the Kurdyka-Łojasiewicz (KL) property with exponent α at x̄ ∈ dom ∂g if there exist c, ν, ε > 0 so that

 $c[g(x) - g(\bar{x})]^{lpha} \leq {\sf dist}(0, \partial g(x))$

whenever $x \in \operatorname{dom} \partial g$, $||x - \bar{x}|| \le \epsilon$ and $g(\bar{x}) < g(x) < g(\bar{x}) + \nu$.

KL property & exponent

Definition: (Attouch, Bolte, Redont, Soubeyran '10) Let *g* be proper closed and $\alpha \in [0, 1)$.

 g is said to satisfy the Kurdyka-Łojasiewicz (KL) property with exponent α at x̄ ∈ dom ∂g if there exist c, ν, ε > 0 so that

 $c[g(x) - g(\bar{x})]^{lpha} \leq {\sf dist}(0, \partial g(x))$

whenever $x \in \text{dom } \partial g$, $||x - \bar{x}|| \le \epsilon$ and $g(\bar{x}) < g(x) < g(\bar{x}) + \nu$.

 If g satisfies the KL property at any x̄ ∈ dom ∂g with the same α, then g is said to be a KL function with exponent α.

KL property & exponent

Definition: (Attouch, Bolte, Redont, Soubeyran '10) Let *g* be proper closed and $\alpha \in [0, 1)$.

 g is said to satisfy the Kurdyka-Łojasiewicz (KL) property with exponent α at x̄ ∈ dom ∂g if there exist c, ν, ε > 0 so that

 $c[g(x) - g(\bar{x})]^{lpha} \leq {\sf dist}(0, \partial g(x))$

whenever $x \in \text{dom } \partial g$, $||x - \bar{x}|| \le \epsilon$ and $g(\bar{x}) < g(x) < g(\bar{x}) + \nu$.

 If g satisfies the KL property at any x̄ ∈ dom ∂g with the same α, then g is said to be a KL function with exponent α.

Examples:

- Proper closed semialgebraic functions are KL functions with exponent α ∈ [0, 1). (Bolte, Daniilidis, Lewis, Shiota '07)
- If g is the maximum of m polynomials of degree at most d, then the KL exponent is 1 ¹/_{max{1,(d+1)(3d)^{n+m-2}}}. (Li, Mordukovich, Pham '15)

Prototypical local convergence results

Fact 1. (Attouch, Bolte '09)

For proximal gradient algorithm and its variants:

Let $\{x^k\}$ be a bounded sequence generated. If *g* satisfies the KL property with exponent $\alpha \in [0, 1)$ at every cluster point of $\{x^k\}$, then:

- if $\alpha = 0$, then $\{x^k\}$ converges finitely;
- if $\alpha \in (0, \frac{1}{2}]$, then $\{x^k\}$ converges locally linearly;
- if $\alpha \in (\frac{1}{2}, 1)$, then $\{x^k\}$ converges locally sublinearly.

Prototypical local convergence results

Fact 1. (Attouch, Bolte '09)

For proximal gradient algorithm and its variants:

Let $\{x^k\}$ be a bounded sequence generated. If *g* satisfies the KL property with exponent $\alpha \in [0, 1)$ at every cluster point of $\{x^k\}$, then:

- if $\alpha = 0$, then $\{x^k\}$ converges finitely;
- if $\alpha \in (0, \frac{1}{2}]$, then $\{x^k\}$ converges locally linearly;
- if $\alpha \in (\frac{1}{2}, 1)$, then $\{x^k\}$ converges locally sublinearly.

KL exponent calculus?

- The KL exponent of *f* := *h* + µ∥ ⋅ ∥₁ is known for many loss functions *h*, such as least squares loss and logistic loss.
- Can we deduce the KL exponent of the corresponding HDP model *F*?

KL exponent under strict complementarity

Recall that for $\mu > 0$,

 $f(x) := h(x) + \mu \|x\|_1$ and $F(a, b) := h(a^2 - b^2) + \mu(\|a\|^2 + \|b\|^2)$.

KL exponent under strict complementarity

Recall that for $\mu > 0$,

 $f(x) := h(x) + \mu \|x\|_1$ and $F(a, b) := h(a^2 - b^2) + \mu(\|a\|^2 + \|b\|^2)$.

Theorem 3. (Ouyang, Liu, P., Wang '24) Let (a^*, b^*) be a 2nd-order stationary point of *F* and set $s^* = (a^*)^2 - (b^*)^2$. Suppose that *f* satisfies the KL property with exponent $\alpha \in (0, 1)$ at s^* . If $0 \in \operatorname{ri} \partial f(s^*)$, then *F* satisfies the KL property at (a^*, b^*) with exponent $\max\{\alpha, \frac{1}{2}\}$.

KL exponent under strict complementarity

Recall that for $\mu > 0$,

 $f(x) := h(x) + \mu \|x\|_1$ and $F(a, b) := h(a^2 - b^2) + \mu(\|a\|^2 + \|b\|^2)$.

Theorem 3. (Ouyang, Liu, P., Wang '24) Let (a^*, b^*) be a 2nd-order stationary point of *F* and set $s^* = (a^*)^2 - (b^*)^2$. Suppose that *f* satisfies the KL property with exponent $\alpha \in (0, 1)$ at s^* . If $0 \in \operatorname{ri} \partial f(s^*)$, then *F* satisfies the KL property at (a^*, b^*) with exponent $\max\{\alpha, \frac{1}{2}\}$.

Remark:

 The condition 0 ∈ ri ∂f(s*) is typically referred to as the strict complementarity condition.

KL exponent without strict complementarity

Recall that for $\mu > 0$,

 $f(x) := h(x) + \mu \|x\|_1$ and $F(a, b) := h(a^2 - b^2) + \mu(\|a\|^2 + \|b\|^2)$.

Theorem 4. (Ouyang, Liu, P., Wang '24)

Let (a^*, b^*) be a 2nd-order stationary point of F and set $s^* = (a^*)^2 - (b^*)^2$. Suppose that h is convex and $\Omega := \operatorname{Arg\,min} f$ is polyhedral. If f satisfies the KL property with exponent $\alpha \in (0, 1)$ at s^* , then F satisfies the KL property at (a^*, b^*) with exponent $(1 + \alpha)/2$.

KL exponent without strict complementarity

Recall that for $\mu > 0$,

 $f(x) := h(x) + \mu \|x\|_1$ and $F(a, b) := h(a^2 - b^2) + \mu(\|a\|^2 + \|b\|^2)$.

Theorem 4. (Ouyang, Liu, P., Wang '24)

Let (a^*, b^*) be a 2nd-order stationary point of *F* and set $s^* = (a^*)^2 - (b^*)^2$. Suppose that *h* is convex and $\Omega := \operatorname{Arg\,min} f$ is polyhedral. If *f* satisfies the KL property with exponent $\alpha \in (0, 1)$ at s^* , then *F* satisfies the KL property at (a^*, b^*) with exponent $(1 + \alpha)/2$.

Remark:

• Ω is polyhedral when $h(x) = \ell(Ax)$ for some strictly convex function $\ell : \mathbb{R}^m \to \mathbb{R}$ and $A \in \mathbb{R}^{m \times n}$. (Zhou, So '17)

Example: tightness of exponent

Example: Let $\alpha \in [\frac{1}{2}, 1)$ and define $h : \mathbb{R} \to \mathbb{R}$ as $h(x) = (1 - \alpha)|x|^{\frac{1}{1-\alpha}} - x$. Consider

f(x) := h(x) + |x| and $F(a,b) := h(a^2 - b^2) + (a^2 + b^2).$

Then $h \in C^2(\mathbb{R})$ is convex, Arg min $f = \{0\}$ and $(0, 0) \in$ Arg min F.

Example: tightness of exponent

Example: Let $\alpha \in [\frac{1}{2}, 1)$ and define $h : \mathbb{R} \to \mathbb{R}$ as $h(x) = (1 - \alpha)|x|^{\frac{1}{1-\alpha}} - x$. Consider

$$f(x) := h(x) + |x|$$
 and $F(a,b) := h(a^2 - b^2) + (a^2 + b^2).$

Then $h \in C^2(\mathbb{R})$ is convex, Arg min $f = \{0\}$ and $(0,0) \in \text{Arg min } F$. Moreover,

$$f(x) = \begin{cases} (1-\alpha)|x|^{\frac{1}{1-\alpha}} & \text{if } x \ge 0, \\ (1-\alpha)|x|^{\frac{1}{1-\alpha}} - 2x & \text{if } x < 0. \end{cases}$$
$$f'(x) = \begin{cases} |x|^{\frac{\alpha}{1-\alpha}} & \text{if } x > 0, \\ -|x|^{\frac{1}{1-\alpha}} - 2 & \text{if } x < 0. \end{cases}$$

Thus, the KL exponent of *f* at 0 is α .

Example cont.: tightness of exponent

Example cont.: On the other hand, we have

$$F(a,b) = h(a^2 - b^2) + a^2 + b^2$$

= $(1 - \alpha)|a^2 - b^2|^{\frac{1}{1-\alpha}} - (a^2 - b^2) + a^2 + b^2$
= $(1 - \alpha)|a^2 - b^2|^{\frac{1}{1-\alpha}} + 2b^2.$

Take t > 0. Then we have

$$abla F(t,0) = \begin{bmatrix} 2t^{\frac{1+\alpha}{1-\alpha}} & 0 \end{bmatrix}^{ op} \text{ and } F(t,0) = (1-\alpha)t^{\frac{2}{1-\alpha}}.$$

This implies that $\|\nabla F(t,0)\| = 2(\frac{1}{1-\alpha}F(t,0))^{\frac{1+\alpha}{2}}$, which shows that the KL exponent of *F* at 0 is no less than $\frac{1+\alpha}{2}$.

Example: new models with explicit KL exponents

Example: Consider

•
$$h(x) := \frac{1}{2} \|Ax - z\|^2$$
 for some $A \in \mathbb{R}^{m \times n}$ and $z \in \mathbb{R}^m$; or

•
$$h(x) := \sum_{i=1}^{m} \ln(1 + \exp(\langle y_i, x \rangle))$$
 for $y_i \in \mathbb{R}^n$, $i = 1, ..., m$.

Example: new models with explicit KL exponents

Example: Consider

- $h(x) := \frac{1}{2} ||Ax z||^2$ for some $A \in \mathbb{R}^{m \times n}$ and $z \in \mathbb{R}^m$; or
- $h(x) := \sum_{i=1}^{m} \ln(1 + \exp(\langle y_i, x \rangle))$ for $y_i \in \mathbb{R}^n$, i = 1, ..., m.

For $\mu > 0$, consider

$$f(x) := h(x) + \mu \|x\|_1$$
 and $F(a, b) := h(a^2 - b^2) + \mu (\|a\|^2 + \|b\|^2)$.

It is known that

- Arg min f is polyhedral. (Zhou, So '17)
- KL exponent of f is $\frac{1}{2}$. (Li, P. '18)

Example: new models with explicit KL exponents

Example: Consider

- $h(x) := \frac{1}{2} ||Ax z||^2$ for some $A \in \mathbb{R}^{m \times n}$ and $z \in \mathbb{R}^m$; or
- $h(x) := \sum_{i=1}^{m} \ln(1 + \exp(\langle y_i, x \rangle))$ for $y_i \in \mathbb{R}^n$, i = 1, ..., m.

For $\mu > 0$, consider

$$f(x) := h(x) + \mu \|x\|_1$$
 and $F(a, b) := h(a^2 - b^2) + \mu (\|a\|^2 + \|b\|^2)$.

It is known that

- Arg min f is polyhedral. (Zhou, So '17)
- KL exponent of f is $\frac{1}{2}$. (Li, P. '18)

Consequently, the KL exponent of *F* at a 2nd-order stationary point (a^*, b^*) is $\frac{1}{2}$ or $\frac{3}{4}$ depending on whether $0 \in \operatorname{ri} \partial f(s^*)$, where $s^* := (a^*)^2 - (b^*)^2$.

Applications

How can we make use of the KL exponents at 2nd-order stationary points of *F*?

Applications

How can we make use of the KL exponents at 2nd-order stationary points of *F*?

Recall that for $\mu > 0$,

 $f(x) := h(x) + \mu \|x\|_1$ and $F(a, b) := h(a^2 - b^2) + \mu(\|a\|^2 + \|b\|^2)$.

Theorem 5. (Ouyang, Liu, P., Wang '24)

Suppose that *h* is subanalytic and lower-bounded.

Consider the steepest descent with backtracking linesearch (SD_{ls}) with initial stepsize θ_0 and initial point (a^0, b^0) for minimizing *F*.

Then for almost all $\theta_0 > 0$, there exists a $V \subseteq \mathbb{R}^n \times \mathbb{R}^n$ with full measure such that whenever $(a^0, b^0) \in V$, the sequence $\{(a^k, b^k)\}$ generated by SD_{1s} converges to a 2nd-order stationary point of *F*.

Conclusion

Conclusion:

- 2nd-order stationary points of the HDP model *F* correspond to some stationary points of *f*.
- The KL exponent of *F* at a 2nd-order stationary point can be deduced from the KL exponent at the corresponding stationary point of *f*, under suitable assumptions.

Reference:

• Wenqing Ouyang, Yuncheng Liu, Ting Kei Pong and Hao Wang. *Kurdyka-Łojasiewicz exponent via Hadamard parametrization*. Preprint. Available at https://arxiv.org/abs/2402.00377.

Thanks for coming!