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Over-parameterized models

Example: Deep neural network training:

Minimize
Wℓ:IR

pℓ−1→IRpℓ ,affine,
ℓ=1,...,L

m∑
i=1

(ϱL(WL(ϱL−1(WL−1(· · · ϱ1(W1(xi)) · · · ))))− yi)
2

where ϱℓ : IR → IR is the activation function for the ℓ-th layer (acting
entrywise on vectors), ℓ = 1, . . . ,L, p0, · · · ,pL−1 are positive integers,
pL = 1, (xi , yi) ∈ IRp0 × IR for i = 1, . . . ,m are data points.

Over-parametrized models can have desirable properties.
• Better generalization. (Allen-Zhu, Li, Liang ’19, Pandey, Kumar ’23,

Subramanian, Arya, Sahal ’22, ...)

• Implicit bias / regularization. (Belkin, Hsu, Ma, Mandal ’19, Dai,
Karzand, Srebro ’21, Gunasekar, Lee, Soudry, Srebro ’18, Li, Nguyen,
Hegde, Wong, ’21, ...)

• ...

1 / 14



Over-parameterized models

Example: Deep neural network training:

Minimize
Wℓ:IR

pℓ−1→IRpℓ ,affine,
ℓ=1,...,L

m∑
i=1

(ϱL(WL(ϱL−1(WL−1(· · · ϱ1(W1(xi)) · · · ))))− yi)
2

where ϱℓ : IR → IR is the activation function for the ℓ-th layer (acting
entrywise on vectors), ℓ = 1, . . . ,L, p0, · · · ,pL−1 are positive integers,
pL = 1, (xi , yi) ∈ IRp0 × IR for i = 1, . . . ,m are data points.

Over-parametrized models can have desirable properties.
• Better generalization. (Allen-Zhu, Li, Liang ’19, Pandey, Kumar ’23,

Subramanian, Arya, Sahal ’22, ...)

• Implicit bias / regularization. (Belkin, Hsu, Ma, Mandal ’19, Dai,
Karzand, Srebro ’21, Gunasekar, Lee, Soudry, Srebro ’18, Li, Nguyen,
Hegde, Wong, ’21, ...)

• ...

1 / 14



Hadamard parametrized model

For µ > 0 and h ∈ C2(IRn), consider

f (x) := h(x) + µ∥x∥1 and G(u, v) := h(u ◦ v) +
µ

2
(∥u∥2 + ∥v∥2).

• It holds that G(u, v) ≥ f (u ◦ v) and inf f = inf G, thanks to the
AM-GM inequality.

• f commonly arises in compressed sensing / variable selections,
with popular choices of h being h(x) =

∑m
i=1 ln(1 + exp(⟨yi , x⟩))

or 1
2∥Ax − z∥2 for some A ∈ IRm×n, z ∈ IRm and yi ∈ IRn for

i = 1, . . . ,m.
• G is called the Hadamard parametrization of f . (Hoff ’17)

• The smoothness of G has been recently exploited for algorithmic
design. (Hoff ’17, Kolb, Müller, Bischl, Rügamer ’23, Poon, Peyré ’21,
’23)
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Hadamard difference parameterization
For µ > 0 and h ∈ C2(IRn), consider

f (x) := h(x) + µ∥x∥1 and G(u, v) := h(u ◦ v) +
µ

2
(∥u∥2 + ∥v∥2).

In view of the subsitution

a = (u + v)/2 and b = (u − v)/2,

it follows that minimizing G is equivalent to minimizing F defined as

F (a,b) := h(a2 − b2) + µ(∥a∥2 + ∥b∥2).

Remark:
• F is called the Hadamard difference parameterization (HDP) of f .

(Vaškevičius, Kanade, Rebeschini ’19) We focus on F from now on.

Questions:
• How do the stationary points of F correspond to those of f?
• (Roughly) If a stationary point of f can be found efficiently,

how about F?
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2nd-order stationary points of F

Recall that for µ > 0,

f (x) := h(x) + µ∥x∥1 and F (a,b) := h(a2 − b2) + µ(∥a∥2 + ∥b∥2).

Theorem 1. (Ouyang, Liu, P., Wang ’24)
For all (a,b) ∈ IRn × IRn, the following statements are equivalent:

(i) The point (a,b) is a 2nd-order stationary point of F .
(ii) The point s := a2 − b2 is a stationary point of f , min{a2,b2} = 0,

and

wT∇2h(s)w ≥ 0 ∀w ∈ {v : vi = 0 when si = 0}.
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Strict saddle property

Recall that for µ > 0,

f (x) := h(x) + µ∥x∥1 and F (a,b) := h(a2 − b2) + µ(∥a∥2 + ∥b∥2).

Theorem 2. (Ouyang, Liu, P., Wang ’24)
Suppose that h is convex. Then there exists a δ > 0 such that for all
(a,b) ∈ IRn × IRn, the following statements are equivalent:

(i) The point (a,b) is a stationary point of F and it holds that
λmin(∇2F (a,b)) > −δ.

(ii) The point a2 − b2 minimizes f , and min{a2,b2} = 0.
(iii) The point (a,b) minimizes F .
(iv) The point (a,b) is a 2nd-order stationary point of F .
Remark: The above result was established in (Poon, Peyré ’21) when h
is a convex quadratic function.
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KL property & exponent
Definition: (Attouch, Bolte, Redont, Soubeyran ’10)
Let g be proper closed and α ∈ [0,1).

• g is said to satisfy the Kurdyka-Łojasiewicz (KL) property with
exponent α at x̄ ∈ dom ∂g if there exist c, ν, ϵ > 0 so that

c[g(x)− g(x̄)]α ≤ dist(0, ∂g(x))

whenever x ∈ dom ∂g, ∥x − x̄∥ ≤ ϵ and g(x̄) < g(x) < g(x̄) + ν.

• If g satisfies the KL property at any x̄ ∈ dom ∂g with the same α,
then g is said to be a KL function with exponent α.

Examples:
• Proper closed semialgebraic functions are KL functions with

exponent α ∈ [0,1). (Bolte, Daniilidis, Lewis, Shiota ’07)

• If g is the maximum of m polynomials of degree at most d , then
the KL exponent is 1 − 1

max{1,(d+1)(3d)n+m−2} . (Li, Mordukovich, Pham
’15)
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Prototypical local convergence results

Fact 1. (Attouch, Bolte ’09)
For proximal gradient algorithm and its variants:
Let {xk} be a bounded sequence generated. If g satisfies the KL
property with exponent α ∈ [0,1) at every cluster point of {xk}, then:
• if α = 0, then {xk} converges finitely;
• if α ∈ (0, 1

2 ], then {xk} converges locally linearly;

• if α ∈ ( 1
2 ,1), then {xk} converges locally sublinearly.

KL exponent calculus?
• The KL exponent of f := h + µ∥ · ∥1 is known for many loss

functions h, such as least squares loss and logistic loss.
• Can we deduce the KL exponent of the corresponding HDP

model F?
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KL exponent under strict complementarity

Recall that for µ > 0,

f (x) := h(x) + µ∥x∥1 and F (a,b) := h(a2 − b2) + µ(∥a∥2 + ∥b∥2).

Theorem 3. (Ouyang, Liu, P., Wang ’24)
Let (a∗,b∗) be a 2nd-order stationary point of F and set
s∗ = (a∗)2 − (b∗)2. Suppose that f satisfies the KL property with
exponent α ∈ (0,1) at s∗. If 0 ∈ ri ∂f (s∗), then F satisfies the KL
property at (a∗,b∗) with exponent max{α, 1

2}.

Remark:
• The condition 0 ∈ ri ∂f (s∗) is typically referred to as the strict

complementarity condition.
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KL exponent without strict complementarity

Recall that for µ > 0,

f (x) := h(x) + µ∥x∥1 and F (a,b) := h(a2 − b2) + µ(∥a∥2 + ∥b∥2).

Theorem 4. (Ouyang, Liu, P., Wang ’24)
Let (a∗,b∗) be a 2nd-order stationary point of F and set
s∗ = (a∗)2 − (b∗)2. Suppose that h is convex and Ω := Arg min f is
polyhedral. If f satisfies the KL property with exponent α ∈ (0,1) at
s∗, then F satisfies the KL property at (a∗,b∗) with exponent
(1 + α)/2.

Remark:
• Ω is polyhedral when h(x) = ℓ(Ax) for some strictly convex

function ℓ : IRm → IR and A ∈ IRm×n. (Zhou, So ’17)
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Example: tightness of exponent

Example: Let α ∈ [ 1
2 ,1) and define h : IR → IR as

h(x) = (1 − α)|x |
1

1−α − x . Consider

f (x) := h(x) + |x | and F (a,b) := h(a2 − b2) + (a2 + b2).

Then h ∈ C2(IR) is convex, Arg min f = {0} and (0,0) ∈ Arg min F .

Moreover,

f (x) =

{
(1 − α)|x |

1
1−α if x ≥ 0,

(1 − α)|x |
1

1−α − 2x if x < 0.

f ′(x) =

{
|x |

α
1−α if x > 0,

−|x |
α

1−α − 2 if x < 0.

Thus, the KL exponent of f at 0 is α.
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Example cont.: tightness of exponent

Example cont.: On the other hand, we have

F (a,b) = h(a2 − b2) + a2 + b2

= (1 − α)|a2 − b2|
1

1−α − (a2 − b2) + a2 + b2

= (1 − α)|a2 − b2|
1

1−α + 2b2.

Take t > 0. Then we have

∇F (t ,0) =
[
2t

1+α
1−α 0

]⊤
and F (t ,0) = (1 − α)t

2
1−α .

This implies that ∥∇F (t ,0)∥ = 2( 1
1−αF (t ,0))

1+α
2 , which shows that the

KL exponent of F at 0 is no less than 1+α
2 .
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Example: new models with explicit KL exponents

Example: Consider
• h(x) := 1

2∥Ax − z∥2 for some A ∈ IRm×n and z ∈ IRm; or

• h(x) :=
∑m

i=1 ln(1 + exp(⟨yi , x⟩)) for yi ∈ IRn, i = 1, . . . ,m.

For µ > 0, consider

f (x) := h(x) + µ∥x∥1 and F (a,b) := h(a2 − b2) + µ(∥a∥2 + ∥b∥2).

It is known that
• Arg min f is polyhedral. (Zhou, So ’17)

• KL exponent of f is 1
2 . (Li, P. ’18)

Consequently, the KL exponent of F at a 2nd-order stationary point
(a∗,b∗) is 1

2 or 3
4 depending on whether 0 ∈ ri ∂f (s∗), where

s∗ := (a∗)2 − (b∗)2.
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Applications

How can we make use of the KL exponents at 2nd-order station-
ary points of F?

Recall that for µ > 0,

f (x) := h(x) + µ∥x∥1 and F (a,b) := h(a2 − b2) + µ(∥a∥2 + ∥b∥2).

Theorem 5. (Ouyang, Liu, P., Wang ’24)
Suppose that h is subanalytic and lower-bounded.
Consider the steepest descent with backtracking linesearch (SDls)
with initial stepsize θ0 and initial point (a0,b0) for minimizing F .
Then for almost all θ0 > 0, there exists a V ⊆ IRn × IRn with full
measure such that whenever (a0,b0) ∈ V , the sequence {(ak ,bk )}
generated by SDls converges to a 2nd-order stationary point of F .
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Conclusion

Conclusion:
• 2nd-order stationary points of the HDP model F correspond to

some stationary points of f .
• The KL exponent of F at a 2nd-order stationary point can be

deduced from the KL exponent at the corresponding stationary
point of f , under suitable assumptions.

Reference:
• Wenqing Ouyang, Yuncheng Liu, Ting Kei Pong and Hao Wang.

Kurdyka-Łojasiewicz exponent via Hadamard parametrization.
Preprint. Available at https://arxiv.org/abs/2402.00377.

Thanks for coming!
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