Kurdyka-Łojasiewicz exponent for a class of Hadamard-difference-parameterized models

Ting Kei Pong
Department of Applied Mathematics
The Hong Kong Polytechnic University
Hong Kong

One World Optimization Seminar
ESI Workshop
June 2024
(Joint work with Yuncheng Liu, Wenqing Ouyang \& Hao Wang)

Over-parameterized models

Example: Deep neural network training:
$\underset{\substack{W_{\ell}: \mathbb{R}^{\rho_{\ell}-1} \rightarrow \mathbb{R}^{\rho_{\ell}}, \text { aftine } \\ \ell=1, \ldots, L}}{\operatorname{Minimize}} \sum_{i=1}^{m}\left(\varrho_{L}\left(W_{L}\left(\varrho_{L-1}\left(W_{L-1}\left(\cdots \varrho_{1}\left(W_{1}\left(x_{i}\right)\right) \cdots\right)\right)\right)-y_{i}\right)^{2}\right.$ where $\varrho_{\ell}: \mathbb{R} \rightarrow \mathbb{R}$ is the activation function for the ℓ-th layer (acting entrywise on vectors), $\ell=1, \ldots, L, p_{0}, \cdots, p_{L-1}$ are positive integers, $p_{L}=1,\left(x_{i}, y_{i}\right) \in \mathbb{R}^{p_{0}} \times \mathbb{R}$ for $i=1, \ldots, m$ are data points.

Over-parameterized models

Example: Deep neural network training:

$$
\underset{\substack{W_{\ell}: \mathbb{R}^{\rho_{\ell}-1} \rightarrow \mathbb{R}^{R_{\ell}}, \text { affine } \\ \ell=1, \ldots, L}}{\operatorname{Minimize}} \sum_{i=1}^{m}\left(\varrho_{L}\left(W_{L}\left(\varrho_{L-1}\left(W_{L-1}\left(\cdots \varrho_{1}\left(W_{1}\left(x_{i}\right)\right) \cdots\right)\right)\right)-y_{i}\right)^{2}\right.
$$

where $\varrho_{\ell}: \mathbb{R} \rightarrow \mathbb{R}$ is the activation function for the ℓ-th layer (acting entrywise on vectors), $\ell=1, \ldots, L, p_{0}, \cdots, p_{L-1}$ are positive integers, $p_{L}=1,\left(x_{i}, y_{i}\right) \in \mathbb{R}^{p_{0}} \times \mathbb{R}$ for $i=1, \ldots, m$ are data points.

Over-parametrized models can have desirable properties.

- Better generalization. (Allen-Zhu, Li, Liang '19, Pandey, Kumar '23, Subramanian, Arya, Sahal '22, ...)
- Implicit bias / regularization. (Belkin, Hsu, Ma, Mandal '19, Dai, Karzand, Srebro '21, Gunasekar, Lee, Soudry, Srebro '18, Li, Nguyen, Hegde, Wong, '21, ...)
- ...

Hadamard parametrized model

For $\mu>0$ and $h \in C^{2}\left(\mathbb{R}^{n}\right)$, consider

$$
f(x):=h(x)+\mu\|x\|_{1} \text { and } G(u, v):=h(u \circ v)+\frac{\mu}{2}\left(\|u\|^{2}+\|v\|^{2}\right) .
$$

Hadamard parametrized model

For $\mu>0$ and $h \in C^{2}\left(\mathbb{R}^{n}\right)$, consider

$$
f(x):=h(x)+\mu\|x\|_{1} \text { and } G(u, v):=h(u \circ v)+\frac{\mu}{2}\left(\|u\|^{2}+\|v\|^{2}\right) .
$$

- It holds that $G(u, v) \geq f(u \circ v)$ and $\inf f=\inf G$, thanks to the AM-GM inequality.

Hadamard parametrized model

For $\mu>0$ and $h \in C^{2}\left(\mathbb{R}^{n}\right)$, consider

$$
f(x):=h(x)+\mu\|x\|_{1} \text { and } G(u, v):=h(u \circ v)+\frac{\mu}{2}\left(\|u\|^{2}+\|v\|^{2}\right) .
$$

- It holds that $G(u, v) \geq f(u \circ v)$ and $\inf f=\inf G$, thanks to the AM-GM inequality.
- f commonly arises in compressed sensing / variable selections, with popular choices of h being $h(x)=\sum_{i=1}^{m} \ln \left(1+\exp \left(\left\langle y_{i}, x\right\rangle\right)\right)$ or $\frac{1}{2}\|A x-z\|^{2}$ for some $A \in \mathbb{R}^{m \times n}, z \in \mathbb{R}^{m}$ and $y_{i} \in \mathbb{R}^{n}$ for $i=1, \ldots, m$.

Hadamard parametrized model

For $\mu>0$ and $h \in C^{2}\left(\mathbb{R}^{n}\right)$, consider

$$
f(x):=h(x)+\mu\|x\|_{1} \text { and } G(u, v):=h(u \circ v)+\frac{\mu}{2}\left(\|u\|^{2}+\|v\|^{2}\right) .
$$

- It holds that $G(u, v) \geq f(u \circ v)$ and $\inf f=\inf G$, thanks to the AM-GM inequality.
- f commonly arises in compressed sensing / variable selections, with popular choices of h being $h(x)=\sum_{i=1}^{m} \ln \left(1+\exp \left(\left\langle y_{i}, x\right\rangle\right)\right)$ or $\frac{1}{2}\|A x-z\|^{2}$ for some $A \in \mathbb{R}^{m \times n}, z \in \mathbb{R}^{m}$ and $y_{i} \in \mathbb{R}^{n}$ for $i=1, \ldots, m$.
- G is called the Hadamard parametrization of f. (Hoff '17)
- The smoothness of G has been recently exploited for algorithmic design. (Hoff '17, Kolb, Müller, Bischl, Rügamer '23, Poon, Peyré '21, '23)

Hadamard difference parameterization

For $\mu>0$ and $h \in C^{2}\left(\mathbb{R}^{n}\right)$, consider

$$
f(x):=h(x)+\mu\|x\|_{1} \text { and } G(u, v):=h(u \circ v)+\frac{\mu}{2}\left(\|u\|^{2}+\|v\|^{2}\right) .
$$

In view of the subsitution

$$
a=(u+v) / 2 \text { and } b=(u-v) / 2
$$

it follows that minimizing G is equivalent to minimizing F defined as

$$
F(a, b):=h\left(a^{2}-b^{2}\right)+\mu\left(\|a\|^{2}+\|b\|^{2}\right) .
$$

Hadamard difference parameterization

For $\mu>0$ and $h \in C^{2}\left(\mathbb{R}^{n}\right)$, consider

$$
f(x):=h(x)+\mu\|x\|_{1} \text { and } G(u, v):=h(u \circ v)+\frac{\mu}{2}\left(\|u\|^{2}+\|v\|^{2}\right) .
$$

In view of the subsitution

$$
a=(u+v) / 2 \text { and } b=(u-v) / 2
$$

it follows that minimizing G is equivalent to minimizing F defined as

$$
F(a, b):=h\left(a^{2}-b^{2}\right)+\mu\left(\|a\|^{2}+\|b\|^{2}\right) .
$$

Remark:

- F is called the Hadamard difference parameterization (HDP) of f. (Vaškevičius, Kanade, Rebeschini '19) We focus on F from now on.

Hadamard difference parameterization

For $\mu>0$ and $h \in C^{2}\left(\mathbb{R}^{n}\right)$, consider

$$
f(x):=h(x)+\mu\|x\|_{1} \text { and } G(u, v):=h(u \circ v)+\frac{\mu}{2}\left(\|u\|^{2}+\|v\|^{2}\right) .
$$

In view of the subsitution

$$
a=(u+v) / 2 \text { and } b=(u-v) / 2
$$

it follows that minimizing G is equivalent to minimizing F defined as

$$
F(a, b):=h\left(a^{2}-b^{2}\right)+\mu\left(\|a\|^{2}+\|b\|^{2}\right) .
$$

Remark:

- F is called the Hadamard difference parameterization (HDP) of f. (Vaškevičius, Kanade, Rebeschini '19) We focus on F from now on.

Questions:

- How do the stationary points of F correspond to those of f ?

Hadamard difference parameterization

For $\mu>0$ and $h \in C^{2}\left(\mathbb{R}^{n}\right)$, consider

$$
f(x):=h(x)+\mu\|x\|_{1} \text { and } G(u, v):=h(u \circ v)+\frac{\mu}{2}\left(\|u\|^{2}+\|v\|^{2}\right) .
$$

In view of the subsitution

$$
a=(u+v) / 2 \text { and } b=(u-v) / 2
$$

it follows that minimizing G is equivalent to minimizing F defined as

$$
F(a, b):=h\left(a^{2}-b^{2}\right)+\mu\left(\|a\|^{2}+\|b\|^{2}\right) .
$$

Remark:

- F is called the Hadamard difference parameterization (HDP) of f. (Vaškevičius, Kanade, Rebeschini '19) We focus on F from now on.

Questions:

- How do the stationary points of F correspond to those of f ?
- (Roughly) If a stationary point of f can be found efficiently, how about F ?

2nd-order stationary points of F

Recall that for $\mu>0$,

$$
f(x):=h(x)+\mu\|x\|_{1} \text { and } F(a, b):=h\left(a^{2}-b^{2}\right)+\mu\left(\|a\|^{2}+\|b\|^{2}\right) .
$$

Theorem 1. (Ouyang, Liu, P., Wang '24)
For all $(a, b) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$, the following statements are equivalent:
(i) The point (a, b) is a 2nd-order stationary point of F.
(ii) The point $s:=a^{2}-b^{2}$ is a stationary point of $f, \min \left\{a^{2}, b^{2}\right\}=0$, and

$$
w^{T} \nabla^{2} h(s) w \geq 0 \quad \forall w \in\left\{v: v_{i}=0 \text { when } s_{i}=0\right\} .
$$

Strict saddle property

Recall that for $\mu>0$,

$$
f(x):=h(x)+\mu\|x\|_{1} \text { and } F(a, b):=h\left(a^{2}-b^{2}\right)+\mu\left(\|a\|^{2}+\|b\|^{2}\right) .
$$

Theorem 2. (Ouyang, Liu, P., Wang '24)
Suppose that h is convex. Then there exists a $\delta>0$ such that for all $(a, b) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$, the following statements are equivalent:
(i) The point (a, b) is a stationary point of F and it holds that

$$
\lambda_{\min }\left(\nabla^{2} F(a, b)\right)>-\delta .
$$

(ii) The point $a^{2}-b^{2}$ minimizes f, and $\min \left\{a^{2}, b^{2}\right\}=0$.
(iii) The point (a, b) minimizes F.
(iv) The point (a, b) is a 2nd-order stationary point of F.

Remark: The above result was established in (Poon, Peyré '21) when h is a convex quadratic function.

KL property \& exponent

Definition: (Attouch, Bolte, Redont, Soubeyran '10)
Let g be proper closed and $\alpha \in[0,1)$.

- g is said to satisfy the Kurdyka-Łojasiewicz (KL) property with exponent α at $\bar{x} \in \operatorname{dom} \partial g$ if there exist $c, \nu, \epsilon>0$ so that

$$
c[g(x)-g(\bar{x})]^{\alpha} \leq \operatorname{dist}(0, \partial g(x))
$$

whenever $x \in \operatorname{dom} \partial g,\|x-\bar{x}\| \leq \epsilon$ and $g(\bar{x})<g(x)<g(\bar{x})+\nu$.

KL property \& exponent

Definition: (Attouch, Bolte, Redont, Soubeyran '10)
Let g be proper closed and $\alpha \in[0,1)$.

- g is said to satisfy the Kurdyka-Łojasiewicz (KL) property with exponent α at $\bar{x} \in \operatorname{dom} \partial g$ if there exist $c, \nu, \epsilon>0$ so that

$$
c[g(x)-g(\bar{x})]^{\alpha} \leq \operatorname{dist}(0, \partial g(x))
$$

whenever $x \in \operatorname{dom} \partial g,\|x-\bar{x}\| \leq \epsilon$ and $g(\bar{x})<g(x)<g(\bar{x})+\nu$.

- If g satisfies the KL property at any $\bar{x} \in \operatorname{dom} \partial g$ with the same α, then g is said to be a KL function with exponent α.

KL property \& exponent

Definition: (Attouch, Bolte, Redont, Soubeyran '10)
Let g be proper closed and $\alpha \in[0,1)$.

- g is said to satisfy the Kurdyka-Łojasiewicz (KL) property with exponent α at $\bar{x} \in \operatorname{dom} \partial g$ if there exist $c, \nu, \epsilon>0$ so that

$$
c[g(x)-g(\bar{x})]^{\alpha} \leq \operatorname{dist}(0, \partial g(x))
$$

whenever $x \in \operatorname{dom} \partial g,\|x-\bar{x}\| \leq \epsilon$ and $g(\bar{x})<g(x)<g(\bar{x})+\nu$.

- If g satisfies the KL property at any $\bar{x} \in \operatorname{dom} \partial g$ with the same α, then g is said to be a KL function with exponent α.
Examples:
- Proper closed semialgebraic functions are KL functions with exponent $\alpha \in[0,1)$. (Bolte, Daniilidis, Lewis, Shiota '07)
- If g is the maximum of m polynomials of degree at most d, then the KL exponent is $1-\frac{1}{\max \left\{1,(d+1)(3 d)^{n+m-2}\right\}}$. (Li, Mordukovich, Pham '15)

Prototypical local convergence results

Fact 1. (Attouch, Bolte '09)
For proximal gradient algorithm and its variants:
Let $\left\{x^{k}\right\}$ be a bounded sequence generated. If g satisfies the KL property with exponent $\alpha \in[0,1)$ at every cluster point of $\left\{x^{k}\right\}$, then:

- if $\alpha=0$, then $\left\{x^{k}\right\}$ converges finitely;
- if $\alpha \in\left(0, \frac{1}{2}\right]$, then $\left\{x^{k}\right\}$ converges locally linearly;
- if $\alpha \in\left(\frac{1}{2}, 1\right)$, then $\left\{x^{k}\right\}$ converges locally sublinearly.

Prototypical local convergence results

Fact 1. (Attouch, Bolte '09)
For proximal gradient algorithm and its variants:
Let $\left\{x^{k}\right\}$ be a bounded sequence generated. If g satisfies the KL property with exponent $\alpha \in[0,1)$ at every cluster point of $\left\{x^{k}\right\}$, then:

- if $\alpha=0$, then $\left\{x^{k}\right\}$ converges finitely;
- if $\alpha \in\left(0, \frac{1}{2}\right]$, then $\left\{x^{k}\right\}$ converges locally linearly;
- if $\alpha \in\left(\frac{1}{2}, 1\right)$, then $\left\{x^{k}\right\}$ converges locally sublinearly.

KL exponent calculus?

- The KL exponent of $f:=h+\mu\|\cdot\|_{1}$ is known for many loss functions h, such as least squares loss and logistic loss.
- Can we deduce the KL exponent of the corresponding HDP model F ?

KL exponent under strict complementarity

Recall that for $\mu>0$,

$$
f(x):=h(x)+\mu\|x\|_{1} \text { and } F(a, b):=h\left(a^{2}-b^{2}\right)+\mu\left(\|a\|^{2}+\|b\|^{2}\right) .
$$

KL exponent under strict complementarity

Recall that for $\mu>0$,

$$
f(x):=h(x)+\mu\|x\|_{1} \text { and } F(a, b):=h\left(a^{2}-b^{2}\right)+\mu\left(\|a\|^{2}+\|b\|^{2}\right) .
$$

Theorem 3. (Ouyang, Liu, P., Wang '24)
Let (a^{*}, b^{*}) be a 2nd-order stationary point of F and set $s^{*}=\left(a^{*}\right)^{2}-\left(b^{*}\right)^{2}$. Suppose that f satisfies the KL property with exponent $\alpha \in(0,1)$ at s^{*}. If $0 \in \operatorname{ri} \partial f\left(s^{*}\right)$, then F satisfies the KL property at $\left(a^{*}, b^{*}\right)$ with exponent $\max \left\{\alpha, \frac{1}{2}\right\}$.

KL exponent under strict complementarity

Recall that for $\mu>0$,

$$
f(x):=h(x)+\mu\|x\|_{1} \text { and } F(a, b):=h\left(a^{2}-b^{2}\right)+\mu\left(\|a\|^{2}+\|b\|^{2}\right) .
$$

Theorem 3. (Ouyang, Liu, P., Wang '24)
Let (a^{*}, b^{*}) be a 2nd-order stationary point of F and set $s^{*}=\left(a^{*}\right)^{2}-\left(b^{*}\right)^{2}$. Suppose that f satisfies the KL property with exponent $\alpha \in(0,1)$ at s^{*}. If $0 \in \operatorname{ri} \partial f\left(s^{*}\right)$, then F satisfies the KL property at $\left(a^{*}, b^{*}\right)$ with exponent $\max \left\{\alpha, \frac{1}{2}\right\}$.

Remark:

- The condition $0 \in \operatorname{ri} \partial f\left(s^{*}\right)$ is typically referred to as the strict complementarity condition.

KL exponent without strict complementarity

Recall that for $\mu>0$,

$$
f(x):=h(x)+\mu\|x\|_{1} \text { and } F(a, b):=h\left(a^{2}-b^{2}\right)+\mu\left(\|a\|^{2}+\|b\|^{2}\right) .
$$

Theorem 4. (Ouyang, Liu, P., Wang '24)
Let (a^{*}, b^{*}) be a 2nd-order stationary point of F and set $s^{*}=\left(a^{*}\right)^{2}-\left(b^{*}\right)^{2}$. Suppose that h is convex and $\Omega:=\operatorname{Arg} \min f$ is polyhedral. If f satisfies the KL property with exponent $\alpha \in(0,1)$ at s^{*}, then F satisfies the KL property at $\left(a^{*}, b^{*}\right)$ with exponent $(1+\alpha) / 2$.

KL exponent without strict complementarity

Recall that for $\mu>0$,

$$
f(x):=h(x)+\mu\|x\|_{1} \text { and } F(a, b):=h\left(a^{2}-b^{2}\right)+\mu\left(\|a\|^{2}+\|b\|^{2}\right)
$$

Theorem 4. (Ouyang, Liu, P., Wang '24)
Let (a^{*}, b^{*}) be a 2nd-order stationary point of F and set $s^{*}=\left(a^{*}\right)^{2}-\left(b^{*}\right)^{2}$. Suppose that h is convex and $\Omega:=\operatorname{Arg} \min f$ is polyhedral. If f satisfies the KL property with exponent $\alpha \in(0,1)$ at s^{*}, then F satisfies the KL property at $\left(a^{*}, b^{*}\right)$ with exponent $(1+\alpha) / 2$.

Remark:

- Ω is polyhedral when $h(x)=\ell(\boldsymbol{A x})$ for some strictly convex function $\ell: \mathbb{R}^{m} \rightarrow \mathbb{R}$ and $A \in \mathbb{R}^{m \times n}$. (Zhou, So '17)

Example: tightness of exponent

Example: Let $\alpha \in\left[\frac{1}{2}, 1\right)$ and define $h: \mathbb{R} \rightarrow \mathbb{R}$ as
$h(x)=(1-\alpha)|x|^{\frac{1}{1-\alpha}}-x$. Consider

$$
f(x):=h(x)+|x| \text { and } F(a, b):=h\left(a^{2}-b^{2}\right)+\left(a^{2}+b^{2}\right) .
$$

Then $h \in C^{2}(\mathbb{R})$ is convex, $\operatorname{Arg} \min f=\{0\}$ and $(0,0) \in \operatorname{Arg} \min F$.

Example: tightness of exponent

Example: Let $\alpha \in\left[\frac{1}{2}, 1\right)$ and define $h: \mathbb{R} \rightarrow \mathbb{R}$ as
$h(x)=(1-\alpha)|x|^{\frac{1}{1-\alpha}}-x$. Consider

$$
f(x):=h(x)+|x| \text { and } F(a, b):=h\left(a^{2}-b^{2}\right)+\left(a^{2}+b^{2}\right) .
$$

Then $h \in C^{2}(\mathbb{R})$ is convex, $\operatorname{Arg} \min f=\{0\}$ and $(0,0) \in \operatorname{Arg} \min F$. Moreover,

$$
\begin{gathered}
f(x)= \begin{cases}(1-\alpha)|x|^{\frac{1}{1-\alpha}} & \text { if } x \geq 0, \\
(1-\alpha)|x|^{\frac{1}{1-\alpha}}-2 x & \text { if } x<0 .\end{cases} \\
f^{\prime}(x)= \begin{cases}|x|^{\frac{\alpha}{1-\alpha}} & \text { if } x>0, \\
-|x|^{\frac{\alpha}{1-\alpha}}-2 & \text { if } x<0 .\end{cases}
\end{gathered}
$$

Thus, the KL exponent of f at 0 is α.

Example cont.: tightness of exponent

Example cont.: On the other hand, we have

$$
\begin{aligned}
F(a, b) & =h\left(a^{2}-b^{2}\right)+a^{2}+b^{2} \\
& =(1-\alpha)\left|a^{2}-b^{2}\right|^{\frac{1}{1-\alpha}}-\left(a^{2}-b^{2}\right)+a^{2}+b^{2} \\
& =(1-\alpha)\left|a^{2}-b^{2}\right|^{\frac{1}{1-\alpha}}+2 b^{2} .
\end{aligned}
$$

Take $t>0$. Then we have

$$
\nabla F(t, 0)=\left[\begin{array}{ll}
2 t^{\frac{1+\alpha}{1-\alpha}} & 0
\end{array}\right]^{\top} \text { and } F(t, 0)=(1-\alpha) t^{\frac{2}{1-\alpha}}
$$

This implies that $\|\nabla F(t, 0)\|=2\left(\frac{1}{1-\alpha} F(t, 0)\right)^{\frac{1+\alpha}{2}}$, which shows that the KL exponent of F at 0 is no less than $\frac{1+\alpha}{2}$.

Example: new models with explicit KL exponents

Example: Consider

- $h(x):=\frac{1}{2}\|A x-z\|^{2}$ for some $A \in \mathbb{R}^{m \times n}$ and $z \in \mathbb{R}^{m}$; or
- $h(x):=\sum_{i=1}^{m} \ln \left(1+\exp \left(\left\langle y_{i}, x\right\rangle\right)\right)$ for $y_{i} \in \mathbb{R}^{n}, i=1, \ldots, m$.

Example: new models with explicit KL exponents

Example: Consider

- $h(x):=\frac{1}{2}\|A x-z\|^{2}$ for some $A \in \mathbb{R}^{m \times n}$ and $z \in \mathbb{R}^{m}$; or
- $h(x):=\sum_{i=1}^{m} \ln \left(1+\exp \left(\left\langle y_{i}, x\right\rangle\right)\right)$ for $y_{i} \in \mathbb{R}^{n}, i=1, \ldots, m$.

For $\mu>0$, consider

$$
f(x):=h(x)+\mu\|x\|_{1} \text { and } F(a, b):=h\left(a^{2}-b^{2}\right)+\mu\left(\|a\|^{2}+\|b\|^{2}\right) .
$$

It is known that

- Arg $\min f$ is polyhedral. (Zhou, So '17)
- KL exponent of f is $\frac{1}{2}$. (Li, P. '18)

Example: new models with explicit KL exponents

Example: Consider

- $h(x):=\frac{1}{2}\|A x-z\|^{2}$ for some $A \in \mathbb{R}^{m \times n}$ and $z \in \mathbb{R}^{m}$; or
- $h(x):=\sum_{i=1}^{m} \ln \left(1+\exp \left(\left\langle y_{i}, x\right\rangle\right)\right)$ for $y_{i} \in \mathbb{R}^{n}, i=1, \ldots, m$.

For $\mu>0$, consider

$$
f(x):=h(x)+\mu\|x\|_{1} \text { and } F(a, b):=h\left(a^{2}-b^{2}\right)+\mu\left(\|a\|^{2}+\|b\|^{2}\right) .
$$

It is known that

- Arg min f is polyhedral. (Zhou, So '17)
- KL exponent of f is $\frac{1}{2}$. (Li, P. '18)

Consequently, the KL exponent of F at a 2nd-order stationary point $\left(a^{*}, b^{*}\right)$ is $\frac{1}{2}$ or $\frac{3}{4}$ depending on whether $0 \in \operatorname{ri} \partial f\left(s^{*}\right)$, where $s^{*}:=\left(a^{*}\right)^{2}-\left(b^{*}\right)^{2}$.

Applications

How can we make use of the KL exponents at 2nd-order stationary points of F ?

Applications

How can we make use of the KL exponents at 2nd-order stationary points of F ?

Recall that for $\mu>0$,

$$
f(x):=h(x)+\mu\|x\|_{1} \text { and } F(a, b):=h\left(a^{2}-b^{2}\right)+\mu\left(\|a\|^{2}+\|b\|^{2}\right) .
$$

Theorem 5. (Ouyang, Liu, P., Wang '24)
Suppose that h is subanalytic and lower-bounded.
Consider the steepest descent with backtracking linesearch ($\mathrm{SD}_{\text {ls }}$) with initial stepsize θ_{0} and initial point $\left(a^{0}, b^{0}\right)$ for minimizing F.
Then for almost all $\theta_{0}>0$, there exists a $V \subseteq \mathbb{R}^{n} \times \mathbb{R}^{n}$ with full measure such that whenever $\left(a^{0}, b^{0}\right) \in V$, the sequence $\left\{\left(a^{k}, b^{k}\right)\right\}$ generated by $\mathrm{SD}_{\text {ls }}$ converges to a 2nd-order stationary point of F.

Conclusion

Conclusion:

- 2nd-order stationary points of the HDP model F correspond to some stationary points of f.
- The KL exponent of F at a 2nd-order stationary point can be deduced from the KL exponent at the corresponding stationary point of f, under suitable assumptions.
Reference:
- Wenqing Ouyang, Yuncheng Liu, Ting Kei Pong and Hao Wang. Kurdyka-Łojasiewicz exponent via Hadamard parametrization. Preprint. Available at https://arxiv.org/abs/2402.00377.

Thanks for coming! ¿

