
Kurdyka-Łojasiewicz exponent for a class of
Hadamard-difference-parameterized models

Ting Kei Pong
Department of Applied Mathematics

The Hong Kong Polytechnic University
Hong Kong

One World Optimization Seminar
ESI Workshop

June 2024
(Joint work with Yuncheng Liu, Wenqing Ouyang & Hao Wang)

0 / 14



Over-parameterized models

Example: Deep neural network training:

Minimize
Wℓ:IR

pℓ−1→IRpℓ ,affine,
ℓ=1,...,L

m∑
i=1

(ϱL(WL(ϱL−1(WL−1(· · · ϱ1(W1(xi)) · · · ))))− yi)
2

where ϱℓ : IR → IR is the activation function for the ℓ-th layer (acting
entrywise on vectors), ℓ = 1, . . . ,L, p0, · · · ,pL−1 are positive integers,
pL = 1, (xi , yi) ∈ IRp0 × IR for i = 1, . . . ,m are data points.

Over-parametrized models can have desirable properties.
• Better generalization. (Allen-Zhu, Li, Liang ’19, Pandey, Kumar ’23,

Subramanian, Arya, Sahal ’22, ...)

• Implicit bias / regularization. (Belkin, Hsu, Ma, Mandal ’19, Dai,
Karzand, Srebro ’21, Gunasekar, Lee, Soudry, Srebro ’18, Li, Nguyen,
Hegde, Wong, ’21, ...)

• ...

1 / 14



Over-parameterized models

Example: Deep neural network training:

Minimize
Wℓ:IR

pℓ−1→IRpℓ ,affine,
ℓ=1,...,L

m∑
i=1

(ϱL(WL(ϱL−1(WL−1(· · · ϱ1(W1(xi)) · · · ))))− yi)
2

where ϱℓ : IR → IR is the activation function for the ℓ-th layer (acting
entrywise on vectors), ℓ = 1, . . . ,L, p0, · · · ,pL−1 are positive integers,
pL = 1, (xi , yi) ∈ IRp0 × IR for i = 1, . . . ,m are data points.

Over-parametrized models can have desirable properties.
• Better generalization. (Allen-Zhu, Li, Liang ’19, Pandey, Kumar ’23,

Subramanian, Arya, Sahal ’22, ...)

• Implicit bias / regularization. (Belkin, Hsu, Ma, Mandal ’19, Dai,
Karzand, Srebro ’21, Gunasekar, Lee, Soudry, Srebro ’18, Li, Nguyen,
Hegde, Wong, ’21, ...)

• ...

1 / 14



Hadamard parametrized model

For µ > 0 and h ∈ C2(IRn), consider

f (x) := h(x) + µ∥x∥1 and G(u, v) := h(u ◦ v) +
µ

2
(∥u∥2 + ∥v∥2).

• It holds that G(u, v) ≥ f (u ◦ v) and inf f = inf G, thanks to the
AM-GM inequality.

• f commonly arises in compressed sensing / variable selections,
with popular choices of h being h(x) =

∑m
i=1 ln(1 + exp(⟨yi , x⟩))

or 1
2∥Ax − z∥2 for some A ∈ IRm×n, z ∈ IRm and yi ∈ IRn for

i = 1, . . . ,m.
• G is called the Hadamard parametrization of f . (Hoff ’17)

• The smoothness of G has been recently exploited for algorithmic
design. (Hoff ’17, Kolb, Müller, Bischl, Rügamer ’23, Poon, Peyré ’21,
’23)
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Hadamard difference parameterization
For µ > 0 and h ∈ C2(IRn), consider

f (x) := h(x) + µ∥x∥1 and G(u, v) := h(u ◦ v) +
µ

2
(∥u∥2 + ∥v∥2).

In view of the subsitution

a = (u + v)/2 and b = (u − v)/2,

it follows that minimizing G is equivalent to minimizing F defined as

F (a,b) := h(a2 − b2) + µ(∥a∥2 + ∥b∥2).

Remark:
• F is called the Hadamard difference parameterization (HDP) of f .

(Vaškevičius, Kanade, Rebeschini ’19) We focus on F from now on.

Questions:
• How do the stationary points of F correspond to those of f?
• (Roughly) If a stationary point of f can be found efficiently,

how about F?
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2nd-order stationary points of F

Recall that for µ > 0,

f (x) := h(x) + µ∥x∥1 and F (a,b) := h(a2 − b2) + µ(∥a∥2 + ∥b∥2).

Theorem 1. (Ouyang, Liu, P., Wang ’24)
For all (a,b) ∈ IRn × IRn, the following statements are equivalent:

(i) The point (a,b) is a 2nd-order stationary point of F .
(ii) The point s := a2 − b2 is a stationary point of f , min{a2,b2} = 0,

and

wT∇2h(s)w ≥ 0 ∀w ∈ {v : vi = 0 when si = 0}.
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Strict saddle property

Recall that for µ > 0,

f (x) := h(x) + µ∥x∥1 and F (a,b) := h(a2 − b2) + µ(∥a∥2 + ∥b∥2).

Theorem 2. (Ouyang, Liu, P., Wang ’24)
Suppose that h is convex. Then there exists a δ > 0 such that for all
(a,b) ∈ IRn × IRn, the following statements are equivalent:

(i) The point (a,b) is a stationary point of F and it holds that
λmin(∇2F (a,b)) > −δ.

(ii) The point a2 − b2 minimizes f , and min{a2,b2} = 0.
(iii) The point (a,b) minimizes F .
(iv) The point (a,b) is a 2nd-order stationary point of F .
Remark: The above result was established in (Poon, Peyré ’21) when h
is a convex quadratic function.
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KL property & exponent
Definition: (Attouch, Bolte, Redont, Soubeyran ’10)
Let g be proper closed and α ∈ [0,1).

• g is said to satisfy the Kurdyka-Łojasiewicz (KL) property with
exponent α at x̄ ∈ dom ∂g if there exist c, ν, ϵ > 0 so that

c[g(x)− g(x̄)]α ≤ dist(0, ∂g(x))

whenever x ∈ dom ∂g, ∥x − x̄∥ ≤ ϵ and g(x̄) < g(x) < g(x̄) + ν.

• If g satisfies the KL property at any x̄ ∈ dom ∂g with the same α,
then g is said to be a KL function with exponent α.

Examples:
• Proper closed semialgebraic functions are KL functions with

exponent α ∈ [0,1). (Bolte, Daniilidis, Lewis, Shiota ’07)

• If g is the maximum of m polynomials of degree at most d , then
the KL exponent is 1 − 1

max{1,(d+1)(3d)n+m−2} . (Li, Mordukovich, Pham
’15)
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Prototypical local convergence results

Fact 1. (Attouch, Bolte ’09)
For proximal gradient algorithm and its variants:
Let {xk} be a bounded sequence generated. If g satisfies the KL
property with exponent α ∈ [0,1) at every cluster point of {xk}, then:
• if α = 0, then {xk} converges finitely;
• if α ∈ (0, 1

2 ], then {xk} converges locally linearly;

• if α ∈ ( 1
2 ,1), then {xk} converges locally sublinearly.

KL exponent calculus?
• The KL exponent of f := h + µ∥ · ∥1 is known for many loss

functions h, such as least squares loss and logistic loss.
• Can we deduce the KL exponent of the corresponding HDP

model F?
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KL exponent under strict complementarity

Recall that for µ > 0,

f (x) := h(x) + µ∥x∥1 and F (a,b) := h(a2 − b2) + µ(∥a∥2 + ∥b∥2).

Theorem 3. (Ouyang, Liu, P., Wang ’24)
Let (a∗,b∗) be a 2nd-order stationary point of F and set
s∗ = (a∗)2 − (b∗)2. Suppose that f satisfies the KL property with
exponent α ∈ (0,1) at s∗. If 0 ∈ ri ∂f (s∗), then F satisfies the KL
property at (a∗,b∗) with exponent max{α, 1

2}.

Remark:
• The condition 0 ∈ ri ∂f (s∗) is typically referred to as the strict

complementarity condition.
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KL exponent without strict complementarity

Recall that for µ > 0,

f (x) := h(x) + µ∥x∥1 and F (a,b) := h(a2 − b2) + µ(∥a∥2 + ∥b∥2).

Theorem 4. (Ouyang, Liu, P., Wang ’24)
Let (a∗,b∗) be a 2nd-order stationary point of F and set
s∗ = (a∗)2 − (b∗)2. Suppose that h is convex and Ω := Arg min f is
polyhedral. If f satisfies the KL property with exponent α ∈ (0,1) at
s∗, then F satisfies the KL property at (a∗,b∗) with exponent
(1 + α)/2.

Remark:
• Ω is polyhedral when h(x) = ℓ(Ax) for some strictly convex

function ℓ : IRm → IR and A ∈ IRm×n. (Zhou, So ’17)
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Example: tightness of exponent

Example: Let α ∈ [ 1
2 ,1) and define h : IR → IR as

h(x) = (1 − α)|x |
1

1−α − x . Consider

f (x) := h(x) + |x | and F (a,b) := h(a2 − b2) + (a2 + b2).

Then h ∈ C2(IR) is convex, Arg min f = {0} and (0,0) ∈ Arg min F .

Moreover,

f (x) =

{
(1 − α)|x |

1
1−α if x ≥ 0,

(1 − α)|x |
1

1−α − 2x if x < 0.

f ′(x) =

{
|x |

α
1−α if x > 0,

−|x |
α

1−α − 2 if x < 0.

Thus, the KL exponent of f at 0 is α.
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Example cont.: tightness of exponent

Example cont.: On the other hand, we have

F (a,b) = h(a2 − b2) + a2 + b2

= (1 − α)|a2 − b2|
1

1−α − (a2 − b2) + a2 + b2

= (1 − α)|a2 − b2|
1

1−α + 2b2.

Take t > 0. Then we have

∇F (t ,0) =
[
2t

1+α
1−α 0

]⊤
and F (t ,0) = (1 − α)t

2
1−α .

This implies that ∥∇F (t ,0)∥ = 2( 1
1−αF (t ,0))

1+α
2 , which shows that the

KL exponent of F at 0 is no less than 1+α
2 .

11 / 14



Example: new models with explicit KL exponents

Example: Consider
• h(x) := 1

2∥Ax − z∥2 for some A ∈ IRm×n and z ∈ IRm; or

• h(x) :=
∑m

i=1 ln(1 + exp(⟨yi , x⟩)) for yi ∈ IRn, i = 1, . . . ,m.

For µ > 0, consider

f (x) := h(x) + µ∥x∥1 and F (a,b) := h(a2 − b2) + µ(∥a∥2 + ∥b∥2).

It is known that
• Arg min f is polyhedral. (Zhou, So ’17)

• KL exponent of f is 1
2 . (Li, P. ’18)

Consequently, the KL exponent of F at a 2nd-order stationary point
(a∗,b∗) is 1

2 or 3
4 depending on whether 0 ∈ ri ∂f (s∗), where

s∗ := (a∗)2 − (b∗)2.
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Applications

How can we make use of the KL exponents at 2nd-order station-
ary points of F?

Recall that for µ > 0,

f (x) := h(x) + µ∥x∥1 and F (a,b) := h(a2 − b2) + µ(∥a∥2 + ∥b∥2).

Theorem 5. (Ouyang, Liu, P., Wang ’24)
Suppose that h is subanalytic and lower-bounded.
Consider the steepest descent with backtracking linesearch (SDls)
with initial stepsize θ0 and initial point (a0,b0) for minimizing F .
Then for almost all θ0 > 0, there exists a V ⊆ IRn × IRn with full
measure such that whenever (a0,b0) ∈ V , the sequence {(ak ,bk )}
generated by SDls converges to a 2nd-order stationary point of F .
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Conclusion

Conclusion:
• 2nd-order stationary points of the HDP model F correspond to

some stationary points of f .
• The KL exponent of F at a 2nd-order stationary point can be

deduced from the KL exponent at the corresponding stationary
point of f , under suitable assumptions.

Reference:
• Wenqing Ouyang, Yuncheng Liu, Ting Kei Pong and Hao Wang.

Kurdyka-Łojasiewicz exponent via Hadamard parametrization.
Preprint. Available at https://arxiv.org/abs/2402.00377.

Thanks for coming!
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