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Over-parameterized models

Example: Deep neural network training:
m
Minimize D (o (Welor1 (Wi (- o1 (Wa (X)) ---)))) = vi)?

W, :RP¢—1 RP¢ affine, i

,,,,,

where g, : R — R is the activation function for the ¢-th layer (acting
entrywise on vectors), £ =1,...,L, po, -+, pL_1 are positive integers,
pr=1,(x,y)) € R® x Rfori=1,..., mare data points.
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Over-parameterized models

Example: Deep neural network training:
m

Minimize Wi (o _1(Wi_1(- - o1(Wy (X)) - - - —_v)2
W,:RPE—1 —RPE affine, ;:(QL( Lot (Wit er(Wa (X)) ---)))) = 1)
where g, : R — R is the activation function for the ¢-th layer (acting
entrywise on vectors), £ =1,...,L, po, -+, pL_1 are positive integers,

pr=1,(x,y)) € R® x Rfori=1,..., mare data points.

Over-parametrized models can have desirable properties.

o Better generalization. (Allen-Zhu, Li, Liang '19, Pandey, Kumar '23,
Subramanian, Arya, Sahal '22, ...)

e Implicit bias / regularization. (Belkin, Hsu, Ma, Mandal '19, Dai,
Karzand, Srebro ‘21, Gunasekar, Lee, Soudry, Srebro '18, Li, Nguyen,
Hegde, Wong, ’21, ...)
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Hadamard parametrized model

For > 0and h € C?(R"), consider

f(x) := h(x) + pl/x|ly and G(u,v) := h(uov)+ g(HuH2 + Iv]?).
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Hadamard parametrized model

For > 0and h € C?(R"), consider

f(x) := h(x) + pl/x|ly and G(u,v) := h(uov)+ g(HuH2 + Iv]?).

e It holds that G(u, v) > f(uo v) and inf f = inf G, thanks to the
AM-GM inequality.

e f commonly arises in compressed sensing / variable selections,
with popular choices of h being h(x) = >_7", In(1 + exp({y;, x)))
or 3[|Ax — z|| for some A€ R™", z € R” and y; € R" for
i=1,....,m.

e G is called the Hadamard parametrization of f. (Hoff '17)

e The smoothness of G has been recently exploited for algorithmic
design. (Hoff 17, Kolb, Mller, Bischl, Rtigamer '23, Poon, Peyré '21,
'23)
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Hadamard difference parameterization
For 1 > 0 and h € C?(RR"), consider
f(x) := h(x) + u||x|l1 and G(u,v) :=h(uov)+ g(HuH2 + |[v|?).
In view of the subsitution
a=(u+v)/2 and b= (u-v)/2,
it follows that minimizing G is equivalent to minimizing F defined as
F(a,b) := h(& — b%) + u(]|a|® + ||b][?).

3/14



Hadamard difference parameterization

For 1 > 0 and h € C?(RR"), consider
f(x) := h(x) + u||x|l1 and G(u,v) :=h(uov)+ g(HuH2 + |[v|?).
In view of the subsitution
a=(u+v)/2 and b= (u-v)/2,
it follows that minimizing G is equivalent to minimizing F defined as
F(a,b) := h(& — b%) + u(]|a|® + ||b][?).
Remark:

e Fis called the Hadamard difference parameterization (HDP) of f.
(Vaskevicius, Kanade, Rebeschini '19) We focus on F from now on.

3/14



Hadamard difference parameterization

For 1 > 0 and h € C?(RR"), consider
f(x) := h(x) + u||x|l1 and G(u,v) :=h(uov)+ g(HuH2 + |[v|?).
In view of the subsitution
a=(u+v)/2 and b= (u-v)/2,
it follows that minimizing G is equivalent to minimizing F defined as
F(a,b) := h(& — b%) + u(]|a|® + ||b][?).
Remark:

e Fis called the Hadamard difference parameterization (HDP) of f.
(Vaskevicius, Kanade, Rebeschini '19) We focus on F from now on.

Questions:
e How do the stationary points of F correspond to those of ?




Hadamard difference parameterization

For 1 > 0 and h € C?(RR"), consider
f(x) := h(x) + u||x|l1 and G(u,v) :=h(uov)+ g(HuH2 + |[v|?).
In view of the subsitution
a=(u+v)/2 and b= (u-v)/2,
it follows that minimizing G is equivalent to minimizing F defined as
F(a,b) := h(& — b%) + u(]|a|® + ||b][?).
Remark:

e Fis called the Hadamard difference parameterization (HDP) of f.
(Vaskevicius, Kanade, Rebeschini '19) We focus on F from now on.

Questions:
e How do the stationary points of F correspond to those of ?

e (Roughly) If a stationary point of f can be found efficiently,
how about F?
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2nd-order stationary points of F

Recall that for . > 0,
f(x) := h(x) + u||x|ls and F(a, b) := h(&® — b%) + u(l|all + [|b]|*).

Theorem 1. (Ouyang, Liu, P., Wang '24)
For all (a, b) € R" x R”, the following statements are equivalent:
(i) The point (a, b) is a 2nd-order stationary point of F.
(ii) The point s := a® — b? is a stationary point of f, min{a?, b?} = 0,
and

wIV2h(s)w >0 Ywe {v: v,=0whens; =0}
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Strict saddle property

Recall that for 1 > 0,
f(x) := h(x) + u||x|ls and F(a, b) := h(&® — b%) + p(||all* + [|b]|?).

Theorem 2. (Ouyang, Liu, P., Wang '24)
Suppose that his convex. Then there exists a § > 0 such that for all
(a,b) € R" x R", the following statements are equivalent:

(i) The point (a, b) is a stationary point of F and it holds that
Amin(V2F(a, b)) > —6.
(ii) The point & — b? minimizes f, and min{a?, b?} = 0.
(iii) The point (&, b) minimizes F.
(iv) The point (a, b) is a 2nd-order stationary point of F.

Remark: The above result was established in (Poon, Peyré '21) when h
is a convex quadratic function.

5/14



KL property & exponent

Definition: (Attouch, Bolte, Redont, Soubeyran *10)
Let g be proper closed and « € [0,1).

e g is said to satisfy the Kurdyka-tojasiewicz (KL) property with
exponent « at X € dom dg if there exist ¢, v, e > 0 so that

clg(x) — g(x)]* < dist(0,5g(x))
whenever x € domdg, ||x — X|| < e and g(X) < g(x) < g(X) + v.
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KL property & exponent

Definition: (Attouch, Bolte, Redont, Soubeyran *10)
Let g be proper closed and « € [0,1).
e g is said to satisfy the Kurdyka-tojasiewicz (KL) property with
exponent « at X € dom dg if there exist ¢, v, e > 0 so that

clg(x) — g(x)]* < dist(0,5g(x))

whenever x € domdg, ||x — X|| < e and g(x) < g(x) < g(X) +v.

e If g satisfies the KL property at any X € dom dg with the same «,
then g is said to be a KL function with exponent a.

Examples:
e Proper closed semialgebraic functions are KL functions with
exponent « € [0, 1). (Bolte, Daniilidis, Lewis, Shiota '07)
e If g is the maximum of m polynomials of degree at most d, then
the) KL exponent is 1 — raaimgymmzy - (Li, Mordukovich, Pham
15
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Prototypical local convergence results

Fact 1. (Attouch, Bolte '09)
For proximal gradient algorithm and its variants:
Let {x¥} be a bounded sequence generated. If g satisfies the KL

property with exponent o € [0, 1) at every cluster point of {x*}, then:

e if & = 0, then {x*} converges finitely;
o if a € (0, 3], then {xk} converges locally linearly;
o if a € ($,1), then {x*} converges locally sublinearly.
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Prototypical local convergence results

Fact 1. (Attouch, Bolte '09)

For proximal gradient algorithm and its variants:

Let {x¥} be a bounded sequence generated. If g satisfies the KL
property with exponent o € [0, 1) at every cluster point of {x*}, then:

e if & = 0, then {x*} converges finitely;
o if a € (0, 3], then {xk} converges locally linearly;
o if a € ($,1), then {x*} converges locally sublinearly.

KL exponent calculus?

e The KL exponent of f := h+ p - ||y is known for many loss
functions h, such as least squares loss and logistic loss.

e Can we deduce the KL exponent of the corresponding HDP
model F?
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KL exponent under strict complementarity

Recall that for . > 0,
f(x) := h(x) + ullx|ls and F(a, b) := h(&® — b%) + pu(l|all* + [|b]|?).
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KL exponent under strict complementarity

Recall that for . > 0,

f(x) := h(x) + plix|li and F(a, b) := h(&® — b%) + u(|all* + |[b]°).

Theorem 3. (Ouyang, Liu, P., Wang '24)

Let (a*, b*) be a 2nd-order stationary point of F and set

s* = (a*)? — (b*)?. Suppose that f satisfies the KL property with
exponent « € (0,1) at s*. If 0 € ri 9f(s*), then F satisfies the KL
property at (a*, b*) with exponent max{«, %}.

Remark:

e The condition 0 € ri9f(s*) is typically referred to as the strict
complementarity condition.
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KL exponent without strict complementarity

Recall that for . > 0,

f(x) := h(x) + ||}y and F(a,b) := h(& — b?) + u(l|al]> + [ b]2).

Theorem 4. (Ouyang, Liu, P., Wang '24)

Let (a*, b*) be a 2nd-order stationary point of F and set

s* = (a*)? — (b*)?. Suppose that his convex and Q := Argmin f is
polyhedral. If f satisfies the KL property with exponent o € (0,1) at
s*, then F satisfies the KL property at (a*, b*) with exponent
(1+aw)/2.
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KL exponent without strict complementarity

Recall that for . > 0,
f(x) := h(x) + plx|ls and F(a, b) := h(& — b%) + u(||all® + ||b]?).

Theorem 4. (Ouyang, Liu, P., Wang '24)

Let (a*, b*) be a 2nd-order stationary point of F and set

s* = (a*)? — (b*)?. Suppose that his convex and Q := Argmin f is
polyhedral. If f satisfies the KL property with exponent o € (0,1) at
s*, then F satisfies the KL property at (a*, b*) with exponent
(1+aw)/2.

Remark:

e Q is polyhedral when h(x) = ¢(Ax) for some strictly convex
function £ : R™ — R and A € R™*". (Zhou, So ’17)
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Example: tightness of exponent

Example: Let o« € [%, 1) and define h: R — R as
h(x) = (1 — a)|x|™= — x. Consider

f(x) == h(x) + |x|] and F(a,b):= h(a® — b?) + (& + b?).

Then h € C?(R) is convex, Argmin f = {0} and (0,0) € Argmin F.
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Example: tightness of exponent

Example: Let a € [}, 1) and define h: R — R as
h(x) = (1 — a)|x|™= — x. Consider
f(x) .= h(x) +|x| and F(a,b):= h(& — b?) + (& + b?).

Then h € C?(R) is convex, Argmin f = {0} and (0,0) € Argmin F.
Moreover,

1 .
— —a >
F(x) = (1 a)|x\*1 !fx_O,
(1 —a)|x|™= —2x ifx<O.

Flx) = |x| == if x >0,
—|x|™% —2 ifx<0.

Thus, the KL exponent of f at 0 is a.
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Example cont.: tightness of exponent

Example cont.: On the other hand, we have

F(a,b) = h(a&® — b*) + & + b?
1—a)@ —b?7s — (& — b?) + & + b?
1—a)|a® — b?| ™= + 2b%.

(

=(
Take t > 0. Then we have

1+a T _2

VF(t,0) = [zt = o} and F(t,0) = (1 — a)tTs.

This implies that |V F(t,0)|| = 2(+2= F(t,0))"2*, which shows that the
KL exponent of F at 0 is no less than B,

11/14



Example: new models with explicit KL exponents

Example: Consider
e h(x) := }||Ax — z||? for some A € R™*" and z € R"; or
o h(x) =", In(1 +exp((y;, X)) fory; e R", i =1,...,m.
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Example: new models with explicit KL exponents

Example: Consider
. h(x) 3|Ax — z||? for some A € R™*" and z € R™; or

h(x) == 7 In(1 + exp((yi, x))) for y; e R, i =1,...,m
For . > 0, consider

f(x) := h(x) + plix|li and F(a, b) := h(& — b%) + (|| all* + |[b]*).

It is known that
e Argmin f is polyhedral. (Zhou, So ’17)
e KL exponent of f is 1. (Li, P.'18)

Consequently, the KL exponent of F at a 2nd-order stationary point
(a*,b*) is 2 or 2 depending on whether 0 € ri 9f(s*), where

s = (@) - (b').
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Applications

How can we make use of the KL exponents at 2nd-order station-
ary points of F?
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Applications

How can we make use of the KL exponents at 2nd-order station-
ary points of F?

Recall that for . > 0,

f(x) := h(x) + ullx|ls and F(a, b) := h(& — b%) + u(l|all + [|b]|?).
Theorem 5. (Ouyang, Liu, P., Wang '24)
Suppose that h is subanalytic and lower-bounded.
Consider the steepest descent with backtracking linesearch (SDy)
with initial stepsize 6 and initial point (a°, b°) for minimizing F.
Then for almost all g > 0, there exists a V C R"” x R" with full

measure such that whenever (a°, b°) € V, the sequence {(a*, b¥)}
generated by SDj; converges to a 2nd-order stationary point of F.
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Conclusion

Conclusion:

e 2nd-order stationary points of the HDP model F correspond to
some stationary points of f.

e The KL exponent of F at a 2nd-order stationary point can be
deduced from the KL exponent at the corresponding stationary
point of f, under suitable assumptions.

Reference:

e Wenqing Ouyang, Yuncheng Liu, Ting Kei Pong and Hao Wang.
Kurdyka-tojasiewicz exponent via Hadamard parametrization.
Preprint. Available at https://arxiv.org/abs/2402.00377.

Thanks for coming! <
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