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Abstract

Let Hy be an n x n invertible Hermitian matrix, and let U(H;) be the group of n x n
Hi-unitary matrices, i.e., matrices A satisfying A*H;A = H;. Suppose Hsy is an m x m
invertible Hermitian matrix. We show that a linear transformation ¢ : M,, — M,, satisfies
¢(U(Hy)) C U(H,) if and only if there exist invertible matrices S € M,,, U,V € U(H,)
such that

S*HyS = (I, ® —1I,) ® Hy) @ [(I. © — 1) @ (H{ )Y,
and ¢ has the form
A US[(Iyy ® A) @ (Ieyg @ AN]STV,

where a, b, ¢ and d are nonnegative integers satisfying (a + b + ¢+ d)n = m. Assume H,
has inertia (p,q) and Hy has inertia (r,s). Then there is a linear transformation mapping
U(H,) into U(H,) if and only if there are nonnegative integers u and v such that (r,s) =
u(p, q) + v(q, p). These results generalize those of Marcus, Cheung and Li.

AMS Subject Classifications 15A04, 15A57, 15A63.
Keywords Linear transformations, H-unitary matrices, indefinite inner product.

1 Introduction

Let M,, be the algebra of n x n matrices. Suppose H is an invertible Hermitian matrix. A
matrix A € M, is H-unitary if A*HA = H. Let U(H) be the set of H-unitary matrices.
One readily checks that U(H) is a group, and U(],,) is the usual unitary group. The study
of H-unitary matrices arises from the study of indefinite inner product spaces. To see the
connection, let (-, -) be the usual inner product, i.e. (x,y) = y*z for z,y € C". An indefinite
inner product in C" is defined by

[z,y] = (Hz,y) for any z,y¢c C".

Then A € M, is H-Hermitian if [Az, y] = [z, Ay| for all z,y € C", equivalently, HA = A*H;
U is H-unitary if [z,y] = [Uz, Uy] for all z,y € C", equivalently, H 'U*HU = I,,. We refer
the readers to [2, 5] for general background of indefinite inner product spaces.

The purpose of this paper is to characterize linear transformations sending Hp-unitary
matrices in M,, to Hs-unitary matrices in M, for two given invertible Hermitian matrices
H, € M, and Hy € M,,. Denote by X ® Y the matrix (z;;}") for two matrices X = (z;;)
and Y. We have the following.
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Theorem 1 Let H, € M, and Hy € M, be invertible Hermitian matrices. A linear trans-
formation ¢ : M, — M, satisfies p(U(H;y)) C U(Hs) if and only if there exist invertible
matrices S € M,,, U,V € U(Hy) such that

S*HoS = (I, ® — 1) ® Hy) @ [(I. ® —1,) ® (H 1)1, (1)

and ¢ has the form
A= US[(Iavy @ A) @ (Iepa ® A)]STV, (2)

where a, b, ¢ and d are nonnegative integers satisfying (a + b+ c+ d)n = m.

Given two invertible Hermitian matrices H; € M,, and H, € M,,, there does not always
exist an invertible S € M,, satisfying (1). In such case, there will not be a linear trans-
formation ¢ : M, — M,, such that ¢(U(H;)) C U(H,). The next result show that the
existence of an invertible S € M,, satisfying (1) is equivalent to the existence of a linear
transformation ¢ : M,, — M, such that ¢(U(H;)) C U(H,). Moreover, these conditions
can be easily determined by the inertias of the matrices H; and H,. (We say that the inertia
of H; is (p,q) if H; has p positive eigenvalues and ¢ negative eigenvalues.)

Theorem 2 Let Hy € M,, and Hy € M,, be invertible Hermitian matrices such that H; has
inertia (p,q) and Hy has inertia (r,s). The following conditions are equivalent.

a) There ezists a linear transformation ¢ : M, — M, such that $(U(H,)) C U(H,).

(c
(d

(a)

(b) There ezists an invertible matriz S € M, satisfying (1).
) There are nonnegative integers u and v such that (r,s) = u(p,q) + v(q, p).
)

FEither ) p—qg=r—s=0and (u+v)p=r, or
(ii) p # q and (u,v) = (pr — qs,ps — qr)/(p* — ¢*) is a pair of nonnegative integers.

Example 3 Suppose (m,n) = (6,3). If (r,s) = (5,1), and (p,q) = (2,1), then there
does not exists (u,v) such that (r,s) = u(p,q) + v(g,p). If we change (r,s) to (4,2), then
(u,v) = (2,0) is the unique solution for the equation (r,s) = u(p, q) + v(q, p).

When (Hy, Hs) = (I, In,), our results reduce to the following theorem in [4].

Corollary 4 There is a linear transformation ¢ : M,, — M, such that ¢(U(1,,)) C U(l,,)
if and only if m is a multiple of n, and there exist U,V € U([l,,) such that ¢ has the form
A U[(I,2A)® (1,0 A"V, where u and v are nonnegative integers satisfying (u+v)n = m.

When H, = Hy = I,,, our results reduce to that of Marcus [7], see also [3, 6].

Corollary 5 A linear transformation ¢ : M, — M, satisfies p(U(I,)) C U(I,) if and only
if there exist U,V € U(1,) such that ¢ has the form A — UAV or A — UA'V.



2 Auxiliary Results and Proofs

Proof of Theorem 1.

Let J,, = I, ® —I, for any nonnegative integers p and ¢, and let {E;; : 1 < 1,5 < n} be
the standard basis of M,,.

Consider the (<) part. Note that A € U(H,) if and only if A* € U((H;')!). Let
u=a+bandv=c+d. If Ae U(H;), then

SH U G(A)V ) Hy(U p(A)V)S

(I. @ A") ® (1, ® (A))](S*HaS)[(1, @ A) @ (I, @ A")]

(I, ® A*) @ (I, @ (A))][(Jap ® Hi) @ (Jea @ (H))[(Lu ® A) ® (I, © A)]
(Jap @ A"HLA) @ (Jea @ (A")*(H ') AY)]

(Jap @ H1) @ (Jea ® (Hy 1))

= S*H,S.

[
[
[
[

Thus, U~'¢(A)V =1 € U(H,) and hence ¢(A) € U(H,) as well.

Next, consider the (=) part. Assume that ¢ : M, — M, is a linear map satisfying

¢(U(Hy)) € U(H;y). We will establish a sequence of assertions, which allow us to impose
extra conditions on the transformation ¢, after we replace ¢ by a mapping of the form

A VO(UAU YV (3)

for suitable U € U(H;) and V' € U(H;). We always assume the extra condition once the
triggering assertion is proved.

Assertion 1 Replacing ¢ by the mapping A — &(1,,) " ¢(A), we may assume ¢(I,) = I,.
Assertion 2 We may assume that Hy = Jp 4 and Hy = J, s withp > q and r > s.

Proof. Let Si € M, be invertible such that S7H,5, = J,, for some nonnegative integers
p and ¢ satisfying p + ¢ = n. We may assume that p > ¢ because U(H;) = U(—H,).
Then X € M, is Hi-unitary if and only if S;'XS, is Jpg-unitary. Similarly, there is an
invertible Sy such that Y € M,, is Hy-unitary if and only if S;'Y'S, is Jr s-unitary. Note
that a linear map ¢ satisfies ¢(U(H;)) € U(H,) if and only if the mapping ¢ defined by

A s Sy p(S1AST)S, satisfies ¥(U(J,,)) € U(J,,). Furthermore, ¢ has the asserted form
if and only if ¥ has the same form. ]

Assertion 3 The linear map ¢ sends J, ,-Hermitian matrices to J, s-Hermitian matrices.



Proof. Suppose A is J, ,-Hermitian. Then for any ¢ € IR,
T, (€AY ], eith = eitIpaA Inagitd — omitAgitA _ [
So, et € U(J,,). Now,
p(e™) = I, +itp(A) — 2¢(A?) /2! + - -
is J, s-unitary, i.e.,
Ly = Jrud (") T i) = Iy + it(6(A) = Jpu6(A)" Jrs) + -+

Thus, ¢(A) — J.sp(A)*J.s =0, i.e., ¢(A) is J, ,-Hermitian. |

Assertion 4 Suppose

B = (Bll BIQ

e M,
B 322)

is Jys-unitary and J, s-Hermitian, where By; € M, and By € M. Then there exists a
unitary matric X = X1 @& Xy € M, with X1 € M, and Xy € M, such that

VD7 0 D 0

— oz 0 0
ABX=1 p 0 —zyLFDE o | @

0 0 0 Z

where Z, D € My, Z1 € M,_j, and Zy € M,_y such that D is a diagonal matriz with positive
diagonal entries and Z, Zy and Zy are diagonal matrices with diagonal entries in {1,—1}.
Consequently, there is S € U(J,s) such that S™*BS is a diagonal matriz with diagonal
entries in {1,—1}.

Proof. Since B is J, ;-Hermitian, we have By, = B}, By = B3, and —By; = BJ,. Let
U, € M, and Uy € M, be unitary such that

R =U{BpU; = ( b Ok.a— ) ;

Or—kk  Or—ks—k

where D € M} is a diagonal matrix with positive diagonal entries arranged in descending
order. Set U = U; ® U, and

- .. (P R
B—JmUBU_(R* Q).
Then P = P*, Q = Q*, B € U(J,). So, P* = I, + RR*, Q> = I, + R*R and PR = RQ.

Hence, P = Pi\/I, + D?> & P, and Q = Q1vV I, + D?> ® 2, where P, (Q; € M, are unitary
such that P2 = Q? = Iy, P, € M,_;, and Qo € M,y satisfy P? = I,_, Q% = I,_;, and

4



{P1,Q1, D,/I}, + D?} is a commuting family. Since PR = RQ, we see that P; = (). Thus,
there exist unitary matrices Wy € My, Wy, € M,._; and Wy € M,_; such that WyD = DW,
and all the matrices Wy P,W;, W5QoWs, and WyPLW, = W51 W are in diagonal forms.
Let W =Wy W, ®&Wy® Wy and X = UW. Then X*BX has the asserted form.

Now, X*BX is permutationally similar to a direct sum of Z; = W} P,W;, Zy = W5 QW5
and 2 x 2 matrices of the form

(0 C:(m d ) Sl(l 0)5

—d  —VI+d& 0 -1
or
o (—VIFE  d N\ sa(-1 04
W oo=("VT are) =5 1)
where

5 (V1+ s s : AV +d® —1]/2}Y2  if (i) holds,
5= ( s V1T 32> with s = { {WTT & —1]/2}% if (ii) holds.

Assertion 5 Replacing ¢ by a mapping A — S@(A)S™! for some S € U(J,. ), we may
assume that for any diagonal matriz D = diag(dy, . .., d,),

¢(D) — dllk1 BB dn]kn ) dllkzn+1 DD dnllwn)
where ki, ..., ko, are nonnegative integers with k1 + -+ k, =1 and kyo1 + -+ + kap = s.

Proof. To get the desired conclusion, it suffices to show that there is S € U(J, ) such
that the mapping defined by A — S¢(A)S™! satisfies

Iy &0, — [k1+---+kt D 0kt+1+---+kn D [kn+1+---+kn+t D 0kn+t+1+---+k2n (5>

for any 1 < ¢ < n. We prove this claim by induction on ¢. For ¢t = 1, let A = Jy,,_1.
Since A is J, ,-Hermitian and .J, ,-unitary, by Assertions 3 and 4, ¢(A) = S;'D;S;, where
S1 € U(Jys) and Dy = Iy, @ =Ly, @ Iy, ® —Is_y,,, for some nonnegative integers k;
and k,.;. Replacing ¢ by the mapping X — S;6(X)S™!, we have ¢(Jy,-1) = D;. Since
o(I,) = I, we see that ¢([1] @ 0,,_1) has the asserted form.

Now, we assume that (5) holds for ¢ — 1. Let A = J;,—y and K = L,y ,,411. By
induction assumption and the fact that ¢(1,) = I,,, we may assume that L = ¢(K) =
ILo—1_.®L,&—I,p, wherea=k;+---+k_1and b=k, 1+ + knye. Let B=¢(A).
Since (A +iK)/v/2 € U(J,,), it follows that (B +iL)/v/2 € U(J,,). So,

2L, = J,s(B+il)*J,(B=+il) = (BFiL)(B+il) = B*+ L*+i(BL — LB).



Thus BL = LB, ie., LBL=B. Since L=1,& —1,_,® I, ® —I,_;,, B has the form

By 0 Bz 0
0 DBy 0 By

according to the block structure of L. On the other hand, both A and A — 2[[;_; & 0,,_¢41]
are Jp,-unitary. Thus, B and B = B — 2(I, ® 0,_, @ I, ® 05_p) are J,s-unitary, i.e.,
B*J.sBJ.s = I, = B*JWBJTVS. It follows that By = I,, B33 = I,, B3 and Bs; are zero,

and (Bzz 324) € U(J,_asp)- By Assertion 4, there exists

B42 B44
L 0 0 0

522 524> o O SQQ O 824

( ) €U ae) suchthar 5= | o ) | €U
0 Sz 0 Su

and
S o(A)S, =S 'BS, =1, ® L1, & —IL g p, ® L ® Iy, ® —Ls iy,

Now, we can replace ¢ by X — S;'¢(X)S; and assume that ¢(I; @ 0,_;) has the desired
form. ]

We need some more notations and definitions in the rest of our proof. We have to consider
different cases according to the following three types of ordered pair (u,v) of integers with
1<u<v<n

1 <u<p<v<n [la: 1 <u<v < p; [Ib: p<u<v<n.
For any B € M,, and C' € M, let
A = B(C; [u,v])

buu buv

bUU b’U’U
C € My, and B = (By;) € M,,, where B;; € My, and k = ky + ky + kpyu + kngo, let

be the matrix in M, obtained from B by replacing ( ) by C. Similarly, for any

A = B(C;{u,v})
be the matrix in M,, obtained from B by replacing its submatrix

Buu Buy Bu(n+u) Bu(n+v)
Bvu va Bv(n+u) Bv(n—i—v)

B(nJru)u B(nJru)v B(nJru)(nJru) B(n+u)(n+v)
B(u+v)u B(nJr'U)'U B(nJr'u)(nJru) B(n+v)(n+'u)

by C. For any 1 < u < v < w < n, we define B(C; [u,v,w]) and B(C;{u,v,w}) in a similar
way. Furthermore, we need the matrices in the following table in our proofs.
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Table

Type I IT.a II.b
Mp = ( . ) ‘/51 )1/5 same as Type Il.a
1 4+t
Mc = (@ i\}§> ( \/% _‘1/§> same as Type Il.a
T TV~

V2 5L 1 1t

M, = ( it1 :7-) < 1\/_% 2 > same as Type Il.a

J = JQO‘va EB JQﬁﬂ ISa @ [3,8 Ja,Qa EB Jg’gg

_ V3-1 —/3-1 1

\/%Ll \/32 Pl 23 2v/3 V3 V3 o1 1
X = V3-1 V341 —3-1  V3-1 1 1 \/32+1 \/32—1
i i V3 213 ig f 1 V8=l V34l

V3 V3 V3 2 2

Assertion 6 Suppose ki, ..., ka, have the meaning in Assertion 5. For any 1 <u < v < n,
let B=¢(Ey + Ev) and C = ¢(Ey, — Ey). The following conclusions hold.

1. If (u,v) is of Type I, then k, = kniy and kyy = k,. Moreover, for K = iB, C or
(iB—C)/V2, K = 0,(R; {u,v}), where

0 R 0 Ry

RE 0 Rs O

0 —-R, 0 Ry (6)
“R; 0 R, 0

R:

and R?> = —1I,.

2. If (u,v) is of Type Il.a/IL.b, then k, =k, and k,1y = knyy. Moreover, for K = B, iC
or (B+i0)/v2, K = 0,(R;{u,v}), where R has the form (6) and R?> = I.

Consequently,

b= =k =knipr = =k = and kppr ==k = kg1 = - = knyp = B



Proof. Suppose (u,v) is of Type 1. Let A = I,,(M;[u,v]) with M = Mp, Mc or My,
where Mp, Mo and M, are the matrices of Type I in the Table. Then A is both J, -
unitary and J, ,-Hermitian. Write A = (a;;) and A; = diag(aiy,. .., an,). By Assertion 5,
#(Ag) = D = I,(D; {u,v}) with

D = aquku s> avv[k’v s> auu[kn+u s> avv[kzn+u' (7)

Moreover, ¢(A) = D =£ |ayy|K = D £ K are J,,-Hermitian as well as J, s-unitary with
K =iB, C or (iB — C)/v/2 depending on M = Mp, M¢ or M,. Hence,

In=Joo(D+ K)J,(D+ K) = (D+K)*=D?+ K>+ (DK + KD).

Thus DK + KD = 0; by the block structure of D = I,,,(D; {u, v}), only the following eight
blocks

Kuva Ku(n+v)7 Kmu Kv(n+u)7 K(n—l—u)v; K(n+u)(n+v)a K(n—l—v)u; K(n+v)(n+u)7
can be nonzero. As K is J, ;-Hermitian,

_ *
Kvu - Kuv7

K(n—i—v)u = _Kz(n+v)’ K(”+U)v - _K:(TLJFU)’ K(n+v)(n+u) - KEk"Jru)(nJrv).

Hence, K = 0,,(R;{u,v}), where R has the form (6). Since I, = D* + K?, it follows that
I, = D? + R?, where D is the matrix in (7) and k = k, + ky + kpiu + kniy. Since D? = 21},
we have R? = —1I,.

Suppose (u,v) is of Type ILa/ILb. Let A = I,,(M; [u,v]) € U(J,,) with M = Mpg, M¢ or
M, of Type IL.a/ILb in the Table. Then ¢(A) = D+ (K//2) with D = ¢(diag(ay, ..., anm))
and K =iB, C or (B +14C)/v/2. One can carry out a similar analysis as in the Type I case
and conclude that K = 0,,(R; {u,v}), where R has the form (6) with R? = I},. n

In the following, we always assume that «, 3, k1, ..., k2, have the meaning in Assertions
5 and 6. We show that additional assumptions can be imposed on the matrices ¢(E,, + E,.)
and ¢(Ey,, — Ey,) for 1 < u < v < n. However, it is inconvenient to use the block forms
arising from Assertions 5 and 6. Instead, we introduce the following block permutation
matrices:

I, 0 0 0 I, 0 0 0 0 0 I, 0
o 0o o 1, o 0o o 1 o 0o o 1
P=10o o0 1, o @ o o1 of ™M@=\ o 0 ol

0 Iy, 0 0 0 Is 0 0 0 Iy 0 0

where P € M,, and Q1,Q2 € Mya4p). Then, for D = diag(d,, ..., d,) € M, in Assertion 5,
we have P*¢(D)P = (D ® 1,) & (D ® I3). Moreover, with the matrix R in Assertion 6, we

have
O (QTRQ1; {u, v}) if (u,v) is of Type I,
P[0 (R; {u,v})|P = 0 (R; {u,v}) if (u,v) is of Type ILa,
0m(Q5RQo; {u,v}) if (u,v) is of Type ILb,
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where Q5R(@), also has the form (6) after relabeling the blocks Ry, ..., Ry, and Q7 RQ; has
the form

0O T 0 T
T 0 T, 0

o T; 0 T, (®)
50 -T: 0

T —

Furthermore, it is clear that R has the form (6) if iR has the form (8). Thus, Assertion 6
can be rewritten as follows.

Assertion 7 For any 1 <u<v <n, let B= ¢(Ey, + Ey,) and C = ¢(E,, — Eyy). Then
P*BP = 0,,(R; {u,v}), P*CP = 0,,(T; {u,v}), and P*[(B+iC)/V2]P = 0,,(R; {u,v}),
where R and R have the form (6) and T has the form (8) such that R> = R* = I, = —T?.

Assertion 8 Replacing ¢ by the mapping A — S¢p(A)S™t for some S € U(J,5), we may
assume that for any A = Ey, + Ey, with 1 <u <v <n,

P*o(A)P = (AR 1,) ® (A® Ip).
Proof. Let
0 I, 0 I
F= <]a O>@<Iﬁ Oﬁ) € Msayp)- 9)

By Assertion 7, P*¢(Ey, + Eyy) P = 0,,(R; {u,v}), where R has the form (6). Since R? = I,
it follows that

1 0 0 O

Rl RQ _ O Rl O R2
(_ 8 R4) €UMy) and U=| o 0 )| € Ulo)
0 —R, 0 R

Moreover, R = U 'FU. Set Sy, = P[I,,(U;{u,v})|P*. Then S,, is J, s-unitary and

Suwd(Buy + Ewi) Sy = PlLn(Us {u, 0})][0m (R; {u, v})][Ln(U™; {u, v})] P*
= P[0, (URU Y {u,v})]|P*
= P[0, (F;{u,v})]P".

By the block structure of S,,, one can see that for any A € M,,, all blocks of S,,AS;} are
the same as those of A except for the blocks indexed by v and n + v. Hence,

S1o P[0, (R; {1,0' )| P*S;.! = P[0, (R; {1,v'})]P* for all v # v.



Replacing ¢ by the mapping A — S¢(A)S™t with S = S5 -+ S, we may assume that the
assertion holds for (u,v) = (1,w) with 2 < w < n. Note also that the conclusion of Assertion
5 is not affected.

It remains to show that the conclusion holds for other (u,v) if n > 2. Let A =
I,(X;[1,u,v]), where X = (x;;) is defined in the Table, depending on the type of (u,v)
Assertion 7 ensures that P*¢(Ey, + Ey)P = L, (R;{u,v}), where R has the form in (6)
Together with Assertions 5 and 7, P*¢(A)P = I,,,(Y;{1,u,v}), where

rile  xi2l, T1314 0 0 0
Torly Tooly To3 Iy 0 0 To3 Ry
v — T31la w3 R 2331, 0 xR 0
0 0 0 1'1115 1’12[5 :L'lgfg
0 0 —LU23R§ 5621]5 SL’QQIg .3623R4
0 —(L’ggR; 0 133115 IgQRZ 1’3315

Since ¢(A) € U(J, ), it follows that Y is J-unitary, where J is defined in the Table depending
on the type of (u,v). Comparing the (1,3)-th, (1,5)-th, (1,6)-th and (4,6)-th blocks on
both sides of the equation Y*JY = J, we see that Ry = I,, R3 =0, Ry = 0 and Ry = I,
respectively. Hence R = F. [ ]

The next two assertions deal with ¢(Ey, — Eyy)-

Assertion 9 Replacing ¢ by the mapping A — S¢(A)S™t for some S € U(J, ), we may
further assume that

P ¢(Erg — B9y )P = [(Erg — Ea1) @ Jp, ] © [(Er2 — Ea1) @ Jyy 0],
where py, p2, q1 and gz are nonnegative integers satisfying p1 + p2s = « and q1 + qo = (.

Proof. Let

0 J, 0 J,
G — ( P1,P2> @ ( Q1,f12> c M o ) 10
_‘]P17P2 0 _‘]th 0 2ath) ( )

Suppose B = ¢(E12 + E21) and C' = ¢(E12 — Ey1). By assertion 7, we may write
P*CP =0,(T;{1,2}) and P*(B+iC)P = v2[0,,(R;{1,2})],

where T and R have the form (8) and (6) respectively, such that R?> = I, = —T?2. Since

P*BP = 0,,(F;{1,2}), we have F + T = v/2R. With F? = I}, we see that FT +TF = 0,
ie.,

0 -Tr 0 Ty 0o 1 0 T
.0 T, 0 | |0 0
o 1 o -1 | FF=-T= 0o T 0 Ty
T: 0 T, 0 T; 0 —=T; 0

So, Ty, = —T3 and both T} and T, are Hermitian.
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Now there exist unitary matrices U; € M, and Uy € My such that fg = U/hU; =
(lg 8), where D € M is a diagonal matrix with positive entries in descending order, i.e.,
D=dil, & - -&ddy, withdy; >--->dyand hy+---+hy=1. Let U=U, U, Uy B Us.
Then UTU* has the same block form as T'. Let

0 T 0 Ty

5 0 -T, 0

Then T2 = I, + TyT}; so, T} has the form

Ti=\J1+d@Xi & & \1+ X ® X,

where X; € Mj, and X1, € M,_; are unitary and Hermitian. Similarly,

Ty=\1+dY1 & @1+ Y, ® Vi,

where Y; € M;, and Yy, € Mp_; are unitary and Hermitian. Set X = X; @ --- ® X, and
Y=Y,@®- &Y, Since T\T, + TyTy = 0, it follows that X = —Y. Then

Ty =\ +D2X @ X,11, Ty= /I, + D*(~X) & Vi,

and {X, D,v/I, + D?} is a commuting family. Therefore, there exist unitary Vo € M;, V; €
M,_;and Vi € Ma_; such that Z = Vo XV, Z; = Vi X1 V) and Zy = VoY1, V' are diagonal
matrices with diagonal entries in {1,—1}. Let Wy = (V, @ V1)Uy, Wy = (Vg @ Va)U, and
W =W, W, ®W; & W,. Then

0 D, 0 D,
—-D, 0 —D, 0
0 —Ds 0 —-Dy
D, 0 D, 0

WITW* =

with Dy = (ZVI ¥ D2) @ Z1, Dy = (Zy/T, + D?) @ Z, and Dy = (lo) 8) Let

= (AWVEFTE- /2 0)

0
and
VI + LL* 0 L 0
K 0 vI+ LL* 0 L
o L* 0 VI + L*L 0
0 L 0 VI + L*L
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Then K € U(Jan95), K™' = Jan 25K Jaa 25, and

0 Z&7Z 0 0
. ol -Zez) o 0 0

WIW =K 0 0 0 —(zazm |
0 0 Z&Z 0

Now, there exist permutation matrices ()1 and @2 such that Q1(Z & Z,)Q} = J,, ,, and
Q2(Z ® Z3)Q5 = J,, 4 for some nonnegative integers py, pa, ¢1 and go satisfying p; +ps = «
and g1+ =0 Let Q=Q1 Q1 D Qa® Qs and S = QKW. Then STS™! = G.

Define W = (I, @ W) @ (I, @ Wa), Q = (I, ® Q1) @ (I, ® Qv),

- I, ® L* I, @I, + L*L

and S = QKW. Then
(PSP*)C(PSP*)™ = PS[0,(T;{1,2})]S7'P*
= P0,,(STS™{1,2})]P*
= Pl0n(G; {u,v})] P
On the other hand, we have SFS~! = F. Hence, for any 1 <u < v <mn,

(PSP*)¢(Eyy + Ey)(PSP*) ™ = P[0,,(SFS™Y; {u,v})|P* = P[0,,(F; {u,v})|P*,
Since PQP*, PKP* and PWP* are all J,. s-unitary, PSP* € U(J,s). Replacing ¢ by
A (PSP*)$(A)(PSP*)~!, we get the desired result. ]
Assertion 10 For any A = Ey, — E,, with 1 <u < v <n, we have

Pro(A)P = (A® Jpl,pz) ®(A® Jq1,q2)a
where p1, P2, q1, g2 are defined as in Assertion 9.

Proof. Define G as in (10). We first consider (u,v) = (1,w). When w = 2, the result is
valid by Assertion 9. Consider w > 2. By Assertion 7, P*¢(Ey, — Euw1)P = 0,,(T; {1, w}),
where T has the form (8). Let A = I,((XDy);[1,2,w]), where D; = diag(—1,1,1) and
X = (z;5) is defined in the Table, depending on the type of (2,w). By Assertions 8 and 9,
P*¢(A)P = I,(Y:{1,2,w}), where

—111, :L‘IQJprQ z131y 0 0 z1315
—$21Jp17p2 $22Lx $23[o¢ 0 0 0
y — —'7531T1>k Ta2l, T13ly 1313 0 0
0 0 I13T3* —.CL'H[Q £C12Jq17q2 x13T4
0 0 0 —$21Jq17q2 $22[5 1’23]5
$13T2* 0 0 —ZL’3111ik ZE32]5 5(73315
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Since ¢(A) € U(J, ), it follows that Y is J-unitary, where J is defined in the Table depending
on the type of (u,v). Comparing the (2, 3)-th, (2, 4)-th, (2,6)-th and (5, 6)-th blocks on both
sides of Y*JY = J, we see that T = G.

For those (u,v) with 1 < u < v < n, we can apply the preceding analysis to the matrix

A= 1,((DyX); [1,u,v]) with Dy = diag(1,1,—1) to get the conclusion. n
By Assertions 5, 8-10, we see that for any 1 <1,j < n,
P'o(Ey)P = [E;®1,]® [Ey; ® 1),
P*¢(Ei; + Ep)P = [(Eij + Eji) ® 1] & [(Ei; + Eji) ® 1],
P'o(Eyy — Ei)P = [(Eij — Eji) @ Jpipo] ® [(Eij — Eji) @ Jgy g5

Thus, there exists a permutation matrix ) € M, such that for £ = Ej;, (E;; + E;;) and
(Eij — Eji),

Q*¢(E)Q = (Ip1+q1 ® E) 2 (Ip2+q2 & Et)'
Set u = p; + ¢; and v = py + ¢o. Then for any A € M,,, we have

¢(A> - Q[(Iu & A) ® (Iv ® At)]Q*
It remains to prove that () can be chosen to satisfy
Q*JT,SQ = (Ja,b & Jp,q) ©® (Jc,d & Jp,q)

for some nonnegative integers a, b, ¢ and d satisfying a + b = u and ¢+ d = v. To this end,
let
Q*JT,SQ = Jl ©---D Jta

where t = m/n = u+wv and J; € M, are diagonal matrices with diagonal entries in {1, —1}.
Note that for any A € U(J,,), the matrix Q*¢(A)Q is Q*J, ;Q-unitary. It follows that A
is Ji-unitary for all . Thus, U(J,,) € U(J;), and hence J; = +.J,,. Now, we may further
permute the blocks J; and assume that @) satisfies Q*J,Q = (Jop @ Jpq) S (Jed @ Jpq) With
a+b=wu and ¢+ d = v. The proof of Theorem 1 is complete. ]

Proof of Theorem 2.

The equivalence of (c) and (d) can be verified readily.

(a) = (c): Suppose there is a linear transformation ¢ : M,, — M, such that ¢(U(H;)) C
U(H;). By Theorem 1, we have (a + b+ ¢+ d)n = m, i.e., m is a multiple of n. Moreover,
comparing the inertias of the matrices on both side of (1), we see that (r,s) = u(p, ¢)+v(q, p),
where u = a4+ cand v = b+ d.

(¢) = (b): Suppose there are nonnegative integers u, v such that (r,s) = u(p, q) +v(q, p).
Then r + s = (u+ v)(p + q), hence m is a multiple of n. Also, Hy and (I, ® —1I,) ® H; will
have the same inertia. Thus, there exists S € M,, satisfying (1) with (a,b,c,d) = (u,v,0,0).

(b) = (a): Suppose there exists S € M,, satisfying (1). We can construct ¢ of the form
(2) with U =V = I,,, so that ¢(U(H;)) C U(Ha). n
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