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Abstract

In a recent paper by Axtell, Han, Hershkowitz, and the present authors, one of
the main questions that was considered was finding n × n doubly stochastic matri-
ces P and Q which solve the multiplicative extremal spectral radius problems
minS∈Ωn ρ(SA) and maxS∈Ωn ρ(SA). Here A ∈ Rn,n is an arbitrary, but fixed, n × n

nonnegative matrix, ρ(·) is the spectral radius of a matrix, and Ωn is the set of all n×n
doubly stochastic matrices. It was shown there that the solution to both problems is
attained at some permutation matrix. In this paper we consider an additive version
of these problems, namely, of solving the additive extremal spectral radius prob-
lems minS∈Ωn ρ(S +A) and maxS∈Ωn ρ(S +A). As a by product of, actually, solutions
to more general spectral radius optimization problems, we obtain here that the solution
to both additive spectral radius optimization problems is, once again, attained at some
permutation matrix. One of the more general spectral radius optimization problems
that we consider here is that of replacing the constrains that the optimization be done
on the doubly stochastic matrices by the weaker constraint of optimizing just on the
n× n column or row stochastic matrices.

AMS Classification: 15A48, 15A18
Keywords: nonnegative matrices, spectral radius, doubly stochastic matrices, stochastic

matrices.

1 Introduction

In a recent paper [1] by Axtell, Han, Hershkowitz, Neumann, and Sze, the following multi-
plicative spectral radius optimization problems were considered: Let A ∈ Rn,n be a nonneg-
ative and irreducible matrix and let Ωn be the set of all n × n doubly stochastic matrices.
Then determine the extremal values and the matrices on which they occur of:

min
S∈Ωn

ρ(SA) and max
S∈Ωn

ρ(SA), (1)
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where ρ(·) denotes the spectral radius of a matrix. It was shown in that paper that the so-
lution to both problems is always obtained on the set Pn of the n×n permutation matrices.

The work in this paper was motivated by parallel questions concerning the additive
spectral radius optimization problems, namely, under the above notations, determine:

min
S∈Ωn

ρ(S + A) and max
S∈Ωn

ρ(S + A). (2)

We shall indeed show that the extremal value of both problems is always attained at a
permutation matrix. To us, this result was a surprise.

In fact we shall consider here optimization problems that extend the questions in both
(1) and (2). Let Cn be the set of all n×n column stochastic matrices. Let Xn be, alternately,
any one of Ωn and Cn. Then given any two arbitrary, but fixed, not necessarily irreducible
nonnegative matrices A, B ∈ Rn,n, determine

min
S∈Xn

ρ(SA + B) and max
S∈Xn

ρ(SA + B). (3)

In all the extremal problems mentioned above the pattern of solution which we will obtain
is the same. When Xn = Ωn, then as will be shown in Section 2, the solutions are always
attained at permutation matrices. When Xn = Cn, the solutions are attained at extremal
points of Cn, namely, on En, which is the set of all nonnegative matrices having in each
column exactly one nonzero entry equal to 1. This we do in Section 3. Furthermore, similar
result to those we obtained for extremal problems on the column stochastic matrices, can be
obtained for extremal problem on the row stochastic matrices.

Finally in Section 4, we shall extend the generality of the optimization problem (3) to
the consideration of following problems: Given m nonnegative matrices A1, . . . , Am ∈ Rn,n,
then find:

min
S1,...,Sm∈Xn

ρ

(
m∑

i=1

SiAi

)
and max

S1,...,Sm∈Xn

ρ

(
m∑

i=1

SiAi

)
. (4)

It should be commented that as the sets of matrices Ωn and Cn are closed and bounded
and as the spectral radius is a continuous function on Rn,n, all optimization problems here
are attained in the sets on which they are considered. However, the spectral radius is not a
convex function over these sets of matrices, yet, as we have claimed above, in all the problems
considered here, the extremal spectral values are obtained at the extreme points of the sets
on which they are considered.

Finally, much background material on nonnegative matrices can be found in the book by
Berman and Plemmons [2]. Viewing some of the problems we consider here as perturbation
problems, by a matrix of constant row or column sums or, indeed, a doubly stochastic matrix,
of the spectral radius or Perron root of a nonnegative matrix, we should mention that other
types of perturbation problems for the spectral radius of nonnegative matrices have been
considered in the literature. To mention here a few we cite: Cohen [3], Deutsch and Neumann
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[4], Elsner [5], Friedland [6], Golub and Meyer [7], Han, Neumann, and Tsatsomeros [8], and

Jonson, Loewy, Olesky, and van den Driessche [9].

2 Doubly Stochastic Matrices

A key result to the developments in this paper is the following lemma which is actually a
special case of Lemma 2.2 in [1].

Lemma 2.1 Suppose T1 and T2 are irreducible nonnegative matrices in Rn,n such that
rank (T1 − T2) = 1. Then the map fT1,T2 defined by

fT1,T2(α) := ρ(αT1 + (1− α)T2), α ∈ [0, 1],

is either a strictly monotone function or a constant function on [0, 1]. Furthermore, if x and
y are right and left Perron vectors of T2, then:

(a) fT1,T2 is strictly increasing if yt(T1 − T2)x > 0.

(b) fT1,T2 is strictly decreasing if yt(T1 − T2)x < 0.

(c) fT1,T2 is a constant function if yt(T1 − T2)x = 0.

Proof. In [1, Lemma 2.2], substitute A = In, S1 = T1, and S2 = T2, respectively. 2

In our first result of this paper we consider the optimization problems (3) for the case
when Xn = Ωn.

Theorem 2.2 Let A, B ∈ Rn,n be nonnegative matrices. Then there are permutation ma-
trices P ∗ and Q∗ such that

ρ(P ∗A + B) = min
S∈Ωn

ρ(SA + B) and ρ(Q∗A + B) = max
S∈Ωn

ρ(SA + B). (5)

Proof. We shall prove here only the left equality in (5), that is that the minimum of

ρ(SA + B) over Ωn is attained at a permutation matrix, as the right equality can been
proved along similar lines.

We first consider the case when B is irreducible. Suppose that S∗ ∈ Ωn is a matrix such
that

ρ(S∗A + B) = min
S∈Ωn

ρ(SA + B)

and S∗ is chosen so that among all matrices S satisfying the above equality, S∗ has the
maximum number of entries equal one. We claim that S∗ has exactly n entires equal one
and so it is a permutation matrix.

Suppose to the contrary that S∗ = (si,j) has exactly k entries equal one, with k < n,

at the positions (i1, j1), . . . , (ik, jk). Set I = {i1, . . . , ik} and J = {j1, . . . , jk}. Let x
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and y = (y1, . . . , yn)t be right and left Perron vectors of S∗A + B, respectively, and set

w = (w1, . . . , wn)t = Ax. Take p and q in {1, . . . , n} such that

yp = max{yi : i /∈ I} and wq = min{wj : j /∈ J }. (6)

Without loss of generality, we may assume that p = q = 1 and I = J = {n− k + 1, . . . , n}.
Otherwise, we can replace S∗, A,B, x, and y by PS∗Qt, QAP t, PBP t, Px, and Py, respec-
tively. Hence, S∗ has the form S∗

1 ⊕ Ik for some S∗
1 ∈ Ωn−k. Note that all entries of S∗

1 , or
equivalently, all si,j, with 1 ≤ i, j ≤ n− k, must be smaller than one.

Now let S† = S∗ + (1− s1,1)
−1uvt with

u = (s1,1 − 1, s2,1, . . . , sn−k,1, 0, . . . , 0)t and v = (s1,1 − 1, s1,2, . . . , s1,n−k, 0, . . . , 0)t.

Then S† has the form S†
1 ⊕ Ik with

S†
1 =


s1,1 s1,2 · · · s1,n−k

s2,1
... si,j

sn−k,1

+


1− s1,1 −s1,2 · · · − s1,n−k

−s2,1
...

si,1s1,j

1−s1,1

−sn−k,1

 =


1 0 · · · 0
0
... si,j +

si,1s1,j

1−s1,1

0

 ,

so that S† is nonnegative with at least k + 1 entries equal 1. Furthermore, as all the row

and column sums of uvt equal zero, the row and column sums of S† coincide, respectively,

with those of S∗. Hence S† is a doubly stochastic matrix. As S† has k + 1 entries which are

equal to one, we must have that ρ(S†A + B) > ρ(S∗A + B).

Let T1 = S†A + B and T2 = S∗A + B. Clearly, T1 − T2 = (1− s1,1)
−1uvtA is a rank one

matrix. Furthermore, as y1 and w1 satisfy (6), we have that

ytu =
n−k∑
i=1

si,1yi − y1 ≤
n−k∑
i=1

si,1y1 − y1 = 0

and

vtw =
n−k∑
j=1

s1,jwj − w1 ≥
n−k∑
j=1

s1,jw1 − w1 = 0.

Thus, (ytu)(vtw) ≤ 0 and hence yt(T1 − T2)x = (1− s1,1)
−1ytuvtw ≤ 0. By Lemma 2.1, the

map fT1,T2 is either a strictly decreasing function or a constant function. But this contradicts

the fact that
fT1,T2(0) = ρ(S∗A + B) < ρ(S†A + B) = fT1,T2(1).

Therefore, the result holds when B is irreducible.
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Now suppose B is not irreducible. If there is an S∗ ∈ Ωn \ Pn such that

min
S∈Ωn

ρ(SA + B) = ρ(S∗A + B) < min
P∈Pn

ρ(PA + B),

then a positive matrix B̃ can easily be found for which

ρ(S∗A + B + B̃) < min
P∈Pn

ρ(PA + B) ≤ min
P∈Pn

ρ(PA + B + B̃).

But this contradicts the fact that for the irreducible matrix B + B̃, there is P ∗ ∈ Pn such
that

ρ(P ∗A + (B + B̃)) = min
S∈Ωn

ρ(SA + (B + B̃)).

2

By taking A = In and B = 0n, respectively, Theorem 2.2, yields two corollaries.

Corollary 2.3 ([1, Theorem 2.1]) Let A ∈ Rn,n be a nonnegative matrix. Then there are
permutation matrices P ∗ and Q∗ such that

ρ(P ∗A) = min
S∈Ωn

ρ(SA) and ρ(Q∗A) = max
S∈Ωn

ρ(SA).

Corollary 2.4 Let B ∈ Rn,n be a nonnegative matrix. Then there are permutation matrices
P ∗ and Q∗ such that

ρ(P ∗ + B) = min
S∈Ωn

ρ(S + B) and ρ(Q∗ + B) = max
S∈Ωn

ρ(S + B). (7)

Remark that in Corollary 2.3, we removed the assumption of irreducibility of A, which
was imposted in [1, Theorem 2.1].

Before continuing, we note that Corollary 2.4 establishes our claim immediately following
(2), a result which we called surprising. Let us provide here an example.

Example 2.5 Consider the matrix

B =



1 1 1 1 1

1 1 0 1 0

1 0 1 0 0

1 0 0 1 0

1 0 0 0 1


. (8)

As a point of information we find that ρ(B) ≈ 3.1149. On computing the minimum and

maximum of ρ(P + B), as P runs over all permutations in P5, we find that for

P ∗ =



0 0 0 1 0

1 0 0 0 0

0 1 0 0 0

0 0 0 0 1

0 0 1 0 0


and Q∗ =



1 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

0 0 0 0 1


,
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we have that

min
S∈S5

ρ(S + B) = min
P∈P5

ρ(P + B) = ρ(P ∗ + B) ≈ 4.0050

and that
max
S∈Ω5

ρ(S + B) = max
P∈P5

ρ(P + B) = ρ(Q∗ + B) ≈ 4.1284.

For curiosity’s sake, on generating using several Matlab commands the random doubly sto-
chastic matrix:

S =



0.3833 0.01978 0.03607 0.2559 0.3049

0.02269 0.1668 0.2534 0.3569 0.2002

0.1564 0.3096 0.4718 0.02184 0.04031

0.1003 0.4457 0.01826 0.02990 0.4058

0.3373 0.05808 0.2204 0.3355 0.04870


,

we find that
ρ(S + B) = 4.0618.

We finally note that in this example, the identity matrix turned out to yield neither the
minimum value nor the maximum value in (7) over all matrices in Pn.

3 Column stochastic matrices

In this section we relax our requirement of the last section that our spectral radius optimiza-
tion problems are carried out over the set of the doubly stochastic matrices. We replace this
requirement by considering the optimization problems over the set of the row stochastic or
column stochastic matrices. Since the pattern of solution over both classes of matrices is
similar, we shall consider here only the optimization problems over the column stochastic
matrices.

Recall our notation from Section 1. Let Cn be the set of n×n column stochastic matrices
and En be the set of the extreme points of Cn. The set En thus contains all n×n nonnegative
matrices such that each column consists of exactly one entry with value one and all other
entires zero.

Our first major result for this section is:

Theorem 3.1 Let A, B ∈ Rn,n be nonnegative matrices. Then there are matrices E∗ and
F ∗ in En such that

ρ(E∗A + B) = min
C∈Cn

ρ(CA + B) and ρ(F ∗A + B) = max
C∈Cn

ρ(CA + B). (9)

6



Proof. It suffices to prove the case when B is irreducible. Once this case is done, the
remaining case can be shown by a similar argument as at the end of the proof of Theorem
2.2. We will again show that one of the equalities in (9), say the right equality holds, as the
proof of the other equality is similar.

Let C∗ ∈ Cn be a matrix such that ρ(C∗A + B) = maxC∈Cn ρ(CA + B) and such that

among all maximizers of ρ(CA + B) in Cn, C∗ has maximum number of zero entries. We

claim that C∗ has exactly n(n− 1) zero entries and hence C∗ is in En.

Suppose to the contrary, namely, C∗ = (ci,j) has fewer than n(n − 1) zero entries, then

permutation matrices P and Q can be found such that the first column of PC∗Q has at least
two nonzero entries, with the (1, 1)–th entry being nonzero. Without loss of generality, we

may assume that P = Q = In by replacing C∗, A, and B with PC∗Q, QtAP t, and PBP t,
respectively.

Consider the vector c = (1−c1,1)
−1(0, c2,1, c3,1, . . . , cn,1)

t ∈ Rn. Note that c is well defined

as 0 < c1,1 < 1. Furthermore, each entries of c is nonnegative and the sum of its entries is

one. Now let C1 and C2 be the matrices obtained from C∗ by replacing its first column with

(1, 0, . . . , 0)t and c, respectively. Clearly, both C1 and C2 are column stochastic matrices
and both C1 and C2 have at least one more zero entries than C∗. But then, due to our
assumptions on C∗, we must have that

ρ(C1A + B) < ρ(C∗A + B) and ρ(C2A + B) < ρ(C∗A + B).

Let T1 = C1A + B and T2 = C2A + B. Now note that as C∗ = c1,1C1 + (1− c1,1)C2, we can

write that
C∗A + B = c1,1T1 + (1− c1,1)T2.

By the construction of C1 and C2, T1 − T2 = (C1 − C2)A is a rank one matrix and so by
Lemma 2.1, the map fT1,T2 is either strictly monotone or a constant function. But this

contradicts the fact that

max{fT1,T2(1), fT1,T2(0)} = max{ρ(C1A + B), ρ(C2A + B)} < ρ(C∗A + B) = fT1,T2(c1,1).

2

Using a similar argument to those employed in Section 2, we have the following two
corollaries.

Corollary 3.2 Let A ∈ Rn,n be a nonnegative matrix. Then there exists matrices E∗ and
F ∗ in En such that

ρ(E∗A) = min
C∈Cn

ρ(CA) and ρ(F ∗A) = max
C∈Cn

ρ(CA).

Corollary 3.3 Let B ∈ Rn,n be a nonnegative matrix. Then there exists matrices E∗ and
F ∗ in En such that

ρ(E∗ + B) = min
C∈Cn

ρ(C + B) and ρ(F ∗ + B) = max
C∈Cn

ρ(C + B).
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Example 3.4 Let us consider the matrix B given in Example 2.5. After computing the

values of ρ(E + B), for all 55 = 3125 of the elements E in E5, we find that for

E∗ =



0 0 0 0 0

0 1 0 0 1

1 0 0 1 0

0 0 0 0 0

0 0 1 0 0


and F ∗ =



1 1 1 1 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


,

we have
min
C∈C5

ρ(C + B) = min
E∈E5

ρ(E + B) = ρ(E∗ + B) ≈ 3.8662

and
max
C∈C5

ρ(C + B) = max
E∈E5

ρ(E + B) = ρ(F ∗ + B) ≈ 4.4709.

Notice that both E∗ and F ∗ are not permutation matrices and that

ρ(E∗ + B) < ρ(P ∗ + B) < ρ(Q∗ + B) < ρ(F ∗ + B),

where P ∗ and Q∗ are the permutation matrices found in Example 2.5.

Next, consider an arbitrary but fixed positive vector d = (d1, . . . , dn)t ∈ Rn. Let Cn(d) be

the set of n× n matrix with the column sum equal to d, and let En(d) be the set of extreme

points of Cn(d). Notice that Cn(d) = {CD : C ∈ Ωn} and En(d) = {ED : E ∈ En}, with

D = diag (d1, . . . , dn). Thus, we have the following.

Corollary 3.5 Let A, B ∈ Rn,n be nonnegative matrices, and let d ∈ Rn be a positive vector.
Then there are matrices E∗ and F ∗ in En(d) such that

ρ(E∗A + B) = min
C∈Cn(d)

ρ(CA + B) and ρ(F ∗A + B) = max
C∈Cn(d)

ρ(CA + B).

Notice that results similar to Corollaries 3.2 and 3.3 can be also obtained for the set Cn(d).

4 Further Extension

In this section, we establish the claims made in display (4).

Theorem 4.1 Let Xn = Ωn or Cn and Yn = Pn or En according to Xn. Given m nonnegative
matrices A1, . . . , Am ∈ Rn,n, there exist matrices P ∗

1 , . . . , P ∗
m and Q∗

1, . . . , Q
∗
m in Yn such that

ρ

(
m∑

i=1

P ∗
i Ai

)
= min

S1,...,Sm∈Xn

ρ

(
m∑

i=1

SiAi

)
(10)
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and

ρ

(
m∑

i=1

Q∗
i Ai

)
= max

S1,...,Sm∈Xn

ρ

(
m∑

i=1

SiAi

)
. (11)

Proof. We will only prove (10), the proof of (11) is similar. Suppose there are S∗
1 , . . . , S

∗
m

in Xn such that

ρ

(
m∑

i=1

S∗
i Ai

)
= min

S1,...,Sm∈Xn

ρ

(
m∑

i=1

SiAi

)
. (12)

On applying Theorems 2.2 or 3.1 with A = A1 and B =
∑m

i=2 S∗
i Ai, we see that there is a

P ∗
1 ∈ Yn such that

ρ

(
P ∗

1 A1 +
m∑

i=2

S∗
i Ai

)
≤ ρ

(
m∑

i=1

S∗
i Ai

)
.

Now suppose that the existence of P ∗
1 , . . . , P ∗

k−1 ∈ Yn has already been established. We now

apply Theorems 2.2 or 3.1 with A = Ak and B =
∑k−1

i=1 P ∗
i Ai +

∑m
i=k+1 S∗

i Ai, and so there

is P ∗
k ∈ Yn such that

ρ

(
k∑

i=1

P ∗
i Ai +

m∑
i=k+1

S∗
i Ai

)
≤ ρ

(
k−1∑
i=1

P ∗
i Ai +

m∑
i=k

S∗
i Ai

)
.

Thus there exist P ∗
1 , . . . , P ∗

m ∈ Yn such that

ρ

(
m∑

i=1

P ∗
i Ai

)
≤ ρ

(
m∑

i=1

S∗
i Ai

)
.

But then by (12), the above inequality is indeed an equality. 2

We comment that clearly the above result also holds when Xn equals either the set of
row stochastic matrices or the set Cn(d).
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