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Abstract
Let T and T̃ = T −E be arbitrary nonnegative, irreducible, stochastic matrices corresponding to two ergodic Markov chains

on n states. A function κ is called a condition number for Markov chains with respect to the (α, β)–norm pair if ‖π − π̃‖α ≤
κ(T )‖E‖β . Here π and π̃ are the stationary distribution vectors of the two chains, respectively.

Various condition numbers, particularly with respect to the (1,∞) and (∞,∞)–norm pairs have been suggested in the

literature. They were ranked according to their size by Cho and Meyer in a paper from 2001. In this paper we first of all show

that what we call the generalized ergodicity coefficient τp(A#) = supyte=0
‖ytA#‖p
‖y‖1

, where e is the n–vector of all 1’s, is the

smallest of the condition number of Markov chains with respect to the (p,∞)–norm pair. We use this result to identify the

smallest of the condition numbers of Markov chains among the (∞,∞) and (1,∞)–norm pairs. These are, respectively, κ3 and

κ6 in the Cho–Meyer list of 8 condition numbers.

Kirkland has studied κ3(T ). He has shown that κ3(T ) ≥ n−1
2n and he has characterized transition matrices for which

equality holds. We prove here again that 2κ3(T ) ≤ κ(6) which appears in the Cho–Meyer paper and we characterize the

transition matrices T for which κ6(T ) = n−1
n

. There is actually only one such matrix: T = (Jn − I)/(n − 1), where Jn is the

n× n matrix of all 1’s.

Keywords: Markov chains, stationary distribution, stochastic matrix, group inverses, sen-
sitivity analysis, perturbation theory, condition numbers.

AMS Classification: 65F35, 60J10, 15A51, 15A12, 15A18.

1 Introduction

Recall that a homogeneous finite Markov chain is a sequence of random variablesX0, X1, X2, . . .
with the Markov property, namely, that given the present state, the future and past states
are independent. Formally, this can be expressed as follows.

Pr
(
Xk+1 = Sj

∣∣Xk = Sik , Xk−1 = Sik−1
, . . . , X0 = Si0

)
= Pr (Xk+1 = Sj |Xk = Sik) ,
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where the values of the Si’s come from a finite set {S1, . . . ,Sn}, called the state space.
Markov’s property is sometimes referred to in the literature as a memoryless process, see
Meyer [24].

Finite Markov chains arise in many applications and disciplines, for example, in physics
in the area of statistical mechanics. The probabilities are used to represent unknown or
unmodelled details of the system when it can be assumed that the dynamics of the system
are time–invariant and that no relevant history need be considered which is not already in-
cluded in the state description. Another area in which finite Markov chains commonly arise
is in queuing theory. More examples of areas in which finite Markov chains arise can be
found in Feller [8], Kemney and Snell [16] , Seneta [28, 30], Wikipidia, and many more. We
mention that the Markov process is called ergodic if there is a positive probability of reaching
any state in the system from any other state.

Given a finite homogeneous Markov chain on the n states S1, . . . ,Sn, for i, j = 1, . . . , n,
let ti,j = Pr (Xk+1 = Sj |Xk = Si) . The stochastic and nonnegative matrix T = (ti,j) ∈ Rn,n

thus obtained is called the transition matrix of the chain. If, in addition, the chain is ergodic,
then it is well known that T is (also) an irreducible matrix. For such a chain, its station-

ary distribution vector is the unique positive vector π ∈ Rn satisfying that πTT = πT and

‖π‖1 = 1. In particular π is the left Perron vector1 of T . The stationary distribution vector
is a key parameter for the chain since it gives the long term probabilities for the chain to
be in each of the various states.

There is a good deal of interest in the literature on the question of the sensitivity of π to
perturbations in the transition matrix T , see, for example, [22, 9, 23, 5, 6, 17]. Specifically,

let T̃ = T −E be the transition matrix of another finite, irreducible, homogeneous, Markov
chain with stationary distribution vector π̃. The problem is then to find an upper bound
on the difference between π and π̃, measured under some suitable vector norm. In 1968
Schweitzer [27] introduced the following error analysis for Markov chains:

πt − π̃t = πtT − π̃t(T − E) = (πt − π̃t)T + π̃tE (1.1)

and hence
(πt − π̃t)A = π̃tE ⇒ πt − π̃t = π̃tEA#, 2 (1.2)

where A = I − T and A# is the group inverse of A. The implication follows because the

fact that (πt− π̃t)e = 0 puts the vector πt− π̃t in R(At), namely, in the row space of A onto

which AA# is a projection matrix.

If there is a scalar κ = κ(T ) such that

‖π − π̃‖α ≤ κ‖E‖β,
1For more background material on nonnegative matrices and the Perron–Frobenius theory see Berman

and Plemmons [3] and Varga [32].
2It should be commented that Schweitzer derived this equation with the right hand side given by π̃tEZ,

where Z = (A+ eπt)−1 is the so called fundamental matrix of the chain.
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for some suitable compatible matrix–vector norms, then κ is called a condition number of
Markov chains for the (α, β)–norm pair.

In [6], Cho and Meyer survey most of the existing condition numbers which have been
found by researchers and determine some rankings between them. To describe these results,
we have to introduce some notations and definitions.

For a given transition matrix T ∈ Rn,n with stationary vector π, let A = I − T . Denote

by Aj ∈ Rn−1,n−1 the principal submatrix of A obtained by deleting its j–th row and column,

j = 1, . . . , n. Next, recall that the group inverse of a matrix B ∈ Rn,n, if it exists, is the

unique matrix denoted by B# satisfying

BB#B = B, B#BB# = B#, and BB# = B#B.

It is well known, see, for example, Ben–Israel and Greville [2] and Campbell and Meyer

[4], that the group inverse of a matrix exists if and only if its range and nullspaces are
complimentary subspaces in Rn, a property which is possessed by the M–matrix A obtained
as above. Another notion that we shall need is that of the mean first passage time from state
Si to state Sj which is the quantity

mi,j =
∞∑
k=1

kPr (Xk = Sj, Xµ 6= Sj, µ = 1, . . . , k − 1|X0 = Si) . (1.3)

According to Meyer [21], the mean first passage matrix is given by

M = (mi,j) =
[
I − A# + JnA

#
d

]
Π−1, (1.4)

where Jn ∈ Rn,n is the all 1’s matrix, where A#
d denotes the n × n diagonal matrix whose

diagonal entries are the corresponding diagonal entries of A#, and where Π is the diagonal
matrix whose diagonal entries are the corresponding entries of π. Finally, for a matrix
B ∈ Cn,n with a constant row sum we follow Senta [28] closely and call the quantity

τ1(B) := sup
yte=0

‖ytB‖1
‖yt‖1

the ergodicity coefficient of B, where e ∈ Rn is the vector of all ones. It is essentially a result
of Dobrushin [7] that

τ1(B) =
1

2
max
i,j

n∑
k=1

|bik − bjk| .

Following the notations in [6], we define by

3



κ1 = ‖Z‖∞, κ2 = ‖A#‖∞,

κ3 =
maxj(a

#
j,j −mini a

#
i,j)

2
, κ4 = max

i,j
|a#
ij |,

κ5 =
1

1− τ1(T )
, κ6 = τ1(A

#),

κ7 =
minj ‖A−1

j ‖∞
2

, κ8 =
1

2
max
j

(
maxi 6=jmij

mjj

)
.

(1.5)

We comment that κ1 is due to Schweitzer [27], κ2 is due to Meyer [22], κ3 is due to Haviv

and van Heyden [13] and Kirkland, Neumann, and Shader [19], κ4 is due to Funderlic and

Meyer [9], κ5 is due to Seneta [29], κ6 is due to Seneta [30], κ7 is due to Ipsen and Meyer

[15] and Kirkland, Neumann, and Shader [19], and, finally, κ8 is due to Cho and Meyer [5].

We mention that according to the above papers,

‖π − π̃‖1 ≤ κi‖E‖∞, for i = 1, 2, 5, and 6 (1.6)

and

‖π − π̃‖∞ ≤ κi‖E‖∞ for i = 3, 4, 7, and 8. (1.7)

In the paper by Cho and Meyer [6] and in references cited therein which motivated our
present work, it shown that

κ3 = κ8 ≤ κ4 < 2κ3 ≤ κ6 ≤ κi, for i = 1, 2, and 5. (1.8)

Cho and Meyer conjectured that κ3 ≤ κ7 also. Later, in [17], Kirkland proved the conjecture
and in fact showed that

n− 1

2n
≤ κ3 ≤ κ7. (1.9)

Furthermore, he showed that the left inequality is sharp on the total class of the n × n
stochastic and irreducible matrices.

Notice that κ1,2,5,6 are condition numbers with respect to the (1,∞)–norm pair and κ3,4,7,8

are condition numbers with respect to the (∞,∞)–norm pair. From the above inequalities,

we see that κ3 is the smallest among all the four condition numbers satisfying (1.6), while

κ6 is the smallest among all the four condition numbers satisfying (1.7). Furthermore, we
see that κ3 is the smallest value among all the eight condition numbers. These properties
of κ3 and κ6 lead to the central questions of this paper: Determine the condition
numbers that are the smallest among the (∞,∞)–norm pair and the smallest
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among the (1,∞)–norm pair, respectively.

For any 1 ≤ p ≤ ∞ and matrix B with fixed row sum, we define

τp(B) := sup
yte=0

‖ytB‖p
‖yt‖1

(1.10)

as the generalized ergodicity coefficient of B with respect to the p–norm3 Let T ∈ Rn,n be a
transition matrix for an ergodic Markov chain and A = I −T . We shall show in Proposition

2.1 in Section 2 that τp(A
#) is actually a condition number and in Theorem 2.3 that it is

the smallest one with respect to the (p,∞)–norm pair, that is,

‖π − π̃‖p ≤ κ(T )‖E‖∞ ⇒ τp(A
#) ≤ κ(T ).

Thus as κ6(T ) = τ1(A
#), it will immediately follow that κ6 is the minimal (1,∞)–norm

pair condition number for Markov chains. Next, in Proposition 2.5 we shall show that

τ∞(A#) = κ3(T ) and so we shall be able to deduce immediately that κ3 is the minimal

(∞,∞)–norm pair condition number for Markov chains. Actually, using the vector norm

inequality that for x ∈ Rn with xte = 0,

2
1
p
−1‖x‖1 ≥ ‖x‖p ≥ 2

1
p‖x‖∞,

it will follow immediately from the definition of τp(B) that

2
1
p
−1τ1(B) ≥ τp(B) ≥ 2

1
p τ∞(B)

for matrices B with a constant row sum. Hence for such matrices, τ1(B) ≥ 2τ∞(B). Substi-

tuting A# for B in this inequality yields then another proof that 2κ3 ≤ κ6 holds as displayed
in (1.8).

Finally, we mentioned earlier that Kirkland [17] showed that κ3(T ) ≥ (n − 1)/2n. In

his paper Kirkland characterizes the properties that T has to satisfy in order for κ3(T ) =

(n − 1)/2n. From (1.8) it thus follows that for all nonnegative, stochastic, and irreducible
matrices T ∈ Rn,n,

n− 1

n
≤ κ6(T ). (1.11)

We devote Section 3 of this paper to showing that equality holds in this inequality if and
only if T = (Jn − I)/(n − 1). This is achieved by studying, in Theorem ??, the cycle

structure of a doubly stochastic matrix with a zero diagonal. From results in [17] and the

paper [20] we see that the class of stochastic matrices T for which κ3(T ) = (n − 1)/2n is

much wider than the class of stochastic matrices T for which κ6(T ) = (n− 1)/n. We make

3It should be commented that for nonnegative and stochastic matrices T ∈ Rn,n, Rothblum and Tan [26]
show that coefficients of ergodicity are upper bounds on their eigenvalues other than 1.
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some closing comments and give an example to illustrate the results of this paper in Section 4.

We close this introduction by mentioning that in a seminal paper on Markov chains Meyer
[21] has shown that the group generalized inverse of A = I − T plays an important role in
the theory and application of Markov chains and that virtually everything that one would

want to know about the chain can be either computed or deduced from A#. Algorithms

for computing A# have been suggested, among others, by Anstreicher and Rothblum [1],

Golub and Meyer [10], and by Hartwig [12]. We have found that the algorithms suggested

in [1] and [12], both of which are based on the shuffle algorithm, generally do very well
in the computation of the group inverse of a singular and irreducible M–matrix. Further
perturbation analysis for Markov chains, the use of the group inverse in such analysis, and
stability analysis for the computation of the group inverse can be found in Meyer and Shoaf
[25], Stewart [31], and Wilkinson [33].

2 Optimal Condition Numbers For Markov Chains

Let T ∈ Rn,n be a nonnegative, stochastic, and irreducible transition matrix for a finite
ergodic Markov process on n states. Put A = I − T . We begin by showing that the gener-

alized ergodicity coefficient τp(A
#), obatined by substituting A# for B in (1.10), is actually

a condition number for the chains with respect to the (p,∞)–norm pair.

Proposition 2.1 Let T and T̃ = T − E be n × n nonnegative, stochastic, and irreducible,
and let π and π̃ be their stationary distribution vectors, respectively. Put A = I − T . Then

‖π − π̃‖p ≤ τp(A
#)‖E‖∞.

Hence τp(A
#) is a condition number for Markov chains with respect to the (p,∞)–norm pair.

Proof. Recall first that by (1.10),

τp(A
#) = sup

yte=0

‖ytA#‖p
‖yt‖1

. (2.12)

Combining (1.2) and (2.12) we obtain that:

‖πt − π̃t‖p = ‖π̃tEA#‖p ≤ ‖π̃tE‖1τp(A#) ≤ ‖π̃‖1‖E‖∞τp(A#) = τp(A
#)‖E‖∞.

Hence κ(T ) = τp(A
#) is a condition number. 2

Remark 2.2 Recall that we mentioned earlier that it is already known from the literature

that when p = 1, τ1(A
#) = κ6(T ) is a condition number with respect to the (1,∞)–norm

pair.
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We now present the main result of this section.

Theorem 2.3 Suppose κ is a condition number of Markov chains with respect to the (p,∞)–
norm pair, viz.,

‖π − π̃‖p ≤ κ(T )‖E‖∞. (2.13)

Then
τp(A

#) ≤ κ(T ).

Thus τp(A
#) is the smallest condition number for Markov chains with respect to the (p,∞)–

norm pair.

Proof. Suppose κ is a condition number satisfying (2.13). Then we can write that

κ(T ) ≥ sup
Ee=0

‖π − π̃‖p
‖E‖∞

= sup
Ee=0

‖π̃EA#‖p
‖E‖∞

≥ sup
yte=0

‖π̃eytA#‖p
‖eyt‖∞

= sup
yte=0

‖ytA#‖p
‖yt‖1

= τp(A
#).

2

Since τ1(A
#) = κ6(T ), we have thus arrived at the following corollary.

Corollary 2.4 The condition number κ6(T ) is the smallest among the condition numbers

for Markov chains with respect to (1,∞)–norm pair.

Now we turn to the study of the condition number τ∞(A#).

Proposition 2.5 Let T ∈ Rn,n be a nonnegative, irreducible, and stochastic matrix and put
A = I − T . Then

τ∞(A#) = κ3(T ).

Proof. By Proposition 2.1 with p = ∞, we have that τ∞(A#) ≤ κ3(T ). Consider the

expression for κ3(T ) given in (1.5) and suppose that 1 ≤ u, v ≤ n is a pair of indices for

which the value of κ3(T ) is attained, that is:

κ3(T ) =
maxj(a

#
j,j −mini a

#
i,j)

2
=

a#
v,v − a#

u,v

2
.

Then we can write that:

τ∞(A#) = sup
yte=0

‖ytA#‖∞
‖yt‖1

≥ ‖(ev − eu)
tA#‖∞

‖(ev − eu)t‖1
=

maxw |a#
vw − a#

uw|
2

≥ a#
vv − a#

uv

2
= κ3(T ).

2

Proposition 2.5 has the immediately corollary:

7



Corollary 2.6 The condition number κ3 is the smallest among the condition numbers for
Markov chains with respect to the (∞,∞)–norm pair.

Before moving to the next section we provide a further proof for the inequality within
(1.8) which says that 2κ3 ≤ κ6. The proof is immediate from (1.10), Proposition 2.1, and by

the fact that ‖xtB‖p = ‖xt(B + αJn)‖p, for any α ∈ R and x ∈ Rn with xte = 0.

Proposition 2.7 For any x ∈ Rn with xte = 0,

2
1
p
−1‖x‖1 ≥ ‖x‖p ≥ 2

1
p‖x‖∞.

Consequencely, we have that

2
1
p
−1τ1(B) ≥ τp(B) ≥ 2

1
p τ∞(B).

In particular,

κ6(T ) = τ1(A
#) ≥ 2τ∞(A#) = 2κ3(T ).

3 Investigation Of The Optimal Lower Bound For κ6

In the introduction we mentioned that Kirkland [17] has shown that for any nonnegative,
irreducible, and stochastic matrix T ∈ Rn,n,

κ3(T ) ≥ n− 1

2n
.

Thus from (1.8) we immediately see that for any such T ,

κ6(T ) ≥ n− 1

n
. (3.1)

Continuing, in [17] the author characterized transition matrices T ∈ Rn,n for which κ3(T )

attains the lower bound (n− 1)/2n. Let us cite his result:

Theorem 3.1 (Kirkland [17, Theorem 2.9]) Suppose that T ∈ Rn,n is a nonnegative and

irreducible stochastic matrix. Then κ3(T ) = (n− 1)/2n if and only if the following hold:

(i) T is a doubly stochastic matrix with zero diagonal,

(ii) ‖A−1
i ‖∞ = n− 1 for all i = 1, . . . , n, and

(iii) the j–th entry of A−1
i e equals n− 1 whenever ti,j > 0.
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We comment that Kirkland’s characterization was somewhat condensed in the paper [20]
in which the authors, Kirkland, Neumann, and Xu, studied specific classes of transition ma-
trices for which the characterization holds.

From Theorem 3.1 and from (1.8) we see that a necessary condition for an irreducible,
nonnegative, and stochastic matrix T ∈ Rn,n to satisfy that:

κ6(T ) =
n− 1

n
(3.2)

is that T fulfills the conditions of Theorem 3.1. In the remainder of this paper we shall show
that the only stochastic matrix for which (3.2) holds is T = (Jn− I)/(n− 1). In the course
of proving this fact several results of interest in their own right will be proved. We begin
with a theorem which is in the spirit of Kirkland’s Theorem 3.1. Theorem 3.2 will include a
fresh proof of (3.1), but this will not be the main purpose of its statement.

Theorem 3.2 Let T ∈ Rn,n be a nonnegative and irreducible stochastic matrix and set
A = I − T . Then

κ6(T ) ≥ n− 1

n
. (3.3)

Moreover, equality holds in (3.3) if and only if the following three conditions hold:

(i) T is a doubly stochastic matrix with zero diagonal,

(ii) If ti,j > 0, then a#
i,k ≥ a#

j,k, whenever k 6= i, that is,

a#
j,k = min

k 6=i
a#
i,k,

(iii) If ti,j > 0, then
1

2

n∑
k=1

∣∣∣a#
i,k − a

#
j,k

∣∣∣ =
n− 1

n
.

Proof. We begin by noting that AA# = I − eπt. On equating the (i, k)–th position of
both sides of this equality we find that:

a#
i,k −

n∑
j=1

tija
#
j,k =

{
1− πi if k = i,

−πk Otherwise.

But then, for any i = 1, . . . , n,

2(1− πi) = |1− πi|+
∑
k 6=i

| − πk|

=
n∑
k=1

∣∣∣∣∣a#
i,k −

n∑
j=1

ti,ja
#
j,k

∣∣∣∣∣
9



≤
n∑
k=1

∑
j 6=i

tij

∣∣∣a#
i,k − a

#
j,k

∣∣∣
= 2

∑
j 6=i

ti,j

(
1

2

n∑
k=1

∣∣∣a#
i,k − a

#
j,k

∣∣∣)
≤ 2

∑
j 6=i

ti,jτ1(A
#) ≤ 2τ1(A

#) = 2κ6(T ).

We know that of necessity mini πi ≤ 1
n

and so from the above inequalities we can conclude

that

κ6(T ) ≥ 1−min
i
πi ≥ 1− 1

n
=

n− 1

n
.

Furthermore, the above inequalities become equalities only when

(a) min
i
πi =

1

n
and tj,j = 0, for all j = 1, . . . , n,

and if ti,j > 0, then

(b) a#
j,k ≥ a#

i,k, whenever k 6= i, and

(c)
1

2

n∑
k=1

∣∣∣a#
i,k − a

#
j,k

∣∣∣ =
n− 1

n
.

We see that (a) implies that T is a doubly stochastic matrix with zero diagonal. 2

As mentioned above, in [20] the authors investigated classes of stochastic matrices T

which satisfy the conditions of Theorem 3.1 and hence for which κ3(T ) = (n− 1)/2n holds.
Generally what can be said about the classes which have been found to date is that they
comprise of doubly stochastic matrices, with zero diagonal, and which possess some form
of a circulant or block circulant structure, but that no overall class which encompasses all
has yet been determined. In contrast, we shall now begin to show that for any n 6= 3, there
is a single stochastic matrix T for which κ6(T ) = (n − 1)/n, while when n = 3, there are
precisely three such stochastic matrices.

Theorem 3.3 An n×n nonnegative irreducible stochastic matrix T satisfying that κ6(T ) =
n−1
n

must be either the matrix 1
n−1

(Jn− I) or, when n = 3, one of the two cyclic permutation

matrices.

Recall first that for an n×n nonnegative matrix T , the directed graph of T is the directed
graph D on vertices 1, . . . , n such that i→ j is an arc in D if and only if ti,j > 0. A simple

directed cycle C = {i1, . . . , ip} of D is a finite distinct sequence of indices {i1, . . . , ip} in

{1, . . . , n} such that D contains the arcs i1 → i2 → . . . → ip−1 → ip → i1. In that case, the

length of C is p.

To prove Theorem 3.3 we need to develop several auxiliary results, some of which are of
interest in their own right. We begin with the following lemma:
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Lemma 3.4 Suppose T ∈ Rn,n is a nonnegative, irreducible, and stochastic matrix for which

κ6(T ) = n−1
n

. Suppose that C = {i1, . . . , ip} is a simple directed cycle in the directed graph

of T . If r /∈ C, then

a#
i1,r

= a#
i2,r

= · · · = a#
ip,r
. (3.4)

Proof. For any permutation matrix P , PA#P t is the group inverse of PAP t and so,

clearly, κ6(PTP
t) = κ6(T ). Thus we may assume that the simple directed cycle of T con-

sists of the indices {1, . . . , p}. Under this assumption, we will focus on the first p rows of A#.

As
t1,2, t2,3, . . . , tp−1,p, tp,1 > 0,

by Theorem 3.2 (ii), if t /∈ {1, . . . , p}, then

a#
1,t ≤ a#

2,t ≤ · · · ≤ a#
p−1,t ≤ a#

p,t ≤ a#
1,t.

Thus, all inequalities are equalities which yields (3.4). 2

Our next lemma is:

Lemma 3.5 Suppose T ∈ Rn,n is a nonnegative, irreducible, and stochastic matrix for which

κ6(T ) = n−1
n

. Suppose that the directed graph of T contains a simple directed cycle of length

p ≤ n − 1, without loss of generality on vertices 1, . . . , p. Partition the first p rows and
columns of T as

T =

[
C X
Y Z

]
.

Then C has constant row sums and X can be written as evt for some nonnegative vector vt.

Proof. Partition A# conformally with T as

A# =

[
M1 M2

M3 M4

]
.

From (3.4) we find that M2 = ewt for some vector wt. Since A#(I − T ) = I − 1
n
J, we have

M1(I − C) − ewtY = I − 1
n
J, so that M1 = (I − C)−1 + eut, for some vector ut. Since

M1e + (wte)e = 0, we see that M1 has constant rows sums. We conclude that necessarily

(I − C)−1 has constant row sums, and hence so does C.

Again using the fact that A#(I − T ) = I − 1
n
J, we have −M1X + ewt(I − Z) = − 1

n
J, so

that for some vector rt, we have (I −C)−1X + eutX = ert. Thus (I −C)−1X can be written

as (I − C)−1X = est for some vector st, and since C has constant row sums, it follows that

for some vector vt, we have X = evt. 2

11



We are now ready to prove the main theorem of this section, Theorem 3.3.

Proof of Theorem 3.3. Let D be the directed graph of T . Suppose that D has a
simple directed cycle of length p and that the directed cycle contains no chords, that is, the
subgraph of D induced by the vertices of the directed cycle contains only the arcs of the
directed cycle, and no others. Without loss of generality we suppose that the directed cycle
is 1→ 2→ . . .→ p→ 1. Let C denote the principal submatrix of T on the first p rows and
columns.

If p = n, then T = C = Q, where Q is the cyclic permutation matrix corresponding to
the directed cycle of length n. It is readily verified that in that case,

A# =
n−1∑
j=0

(
n− 2j − 1

2n

)
Qj,

, from which it follows that κ6(T ) = n−1
n

only in the cases n = 2 and n = 3. In both of those

cases, T has the desired form.

Suppose now that the length p of the chord–free directed cycle satisfies p ≤ n− 1. From
Lemma 3.5, we find that for some scalar a > 0, C = aQ, where Q is the cyclic permutation
matrix corresponding to the directed cycle on indices 1, . . . , p. Hence

(I − C)−1 =
1

1− ap
(I + aQ+ a2Q2 + . . . ap−1Qp−1).

Referring to the partitioned form for A# in Lemma 3.5, we have M1 = (I − C)−1 + eut,

for some vector ut, while from (3.4) we have M2 = ewt, for some vector wt. Thus, for any
indices i, j with 1 ≤ i, j ≤ p, we see that∥∥(ei − ej)tA#

∥∥
1

=
∥∥(ei − ej)t(I − C)−1

∥∥
1
.

Since t1,2 = a > 0, we must have that

∥∥(e1 − e2)t(I − C)−1
∥∥

1
= 2

(
n− 1

n

)
and so, on employing the explicit expression for (I − C)−1, it follows that

1− ap−1

1− ap
=

n− 1

n
.

Note that if p ≥ 4, then

∥∥(e1 − e4)tA#
∥∥

1
=
∥∥(e1 − e4)t(I − C)−1

∥∥
1

= 2

(
1− ap−1 + a− ap−2

1− ap

)
> 2

(
1− ap−1

1− ap

)
= 2

(
n− 1

n

)
,
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a contradiction. We conclude that either p = 2 and a = 1
n−1

or p = 3 and a = 1+
√

4n−3
2(n−1)

≡ a0.

Next, fix an arc i→ j in D, and let ` denote the length of a shortest path from j back to
i in D (so that i→ j is an arc on a chord–free simple directed cycle of length `+ 1). From

the above considerations, we see that either: ` = 1 and ti,j = tj,i = 1
n−1

or ` = 2, ti,j = a0,

and tj,i = 0. In particular, T only has entries in {0, 1
n−1

, a0}.

Suppose that, contrary to the conclusion of Theorem 3.3, T 6= 1
n−1

(J−I), that D contains

the chord–free simple directed cycle 1→ 2→ 3→ 1 and that n ≥ 4. Since T is irreducible,
we may assume without loss of generality that 1 → 4 in D. From Lemma 3.5 we find that
in fact 1, 2, 3 → 4 in that directed graph. There are two cases to consider: either 4 → 1 in
D or the shortest path from 4 back to 1 has length 2.

Suppose first that 4 → 1. Then t1,4 = t4,1 = 1
n−1

, and hence it follows from Lemma 3.5

that ti,4 = t4,i = 1
n−1

, for i = 1, 2, 3. Thus, D contains the directed cycle 2→ 3→ 4→ 2, but

the principal submatrix of T on rows and columns 2, 3, 4 has row sums a0 + 1
n−1

, 1
n−1

, 2
n−1

,

contradicting Lemma 3.5.

Now suppose that the shortest path in D from 4 to 1 has length 2. Observe that this

shortest path cannot be 4→ 3→ 1, otherwise we have 3→ 4 and 4→ 3, so that t3,4 = 1
n−1

;

if that were the case, then by Lemma 3.5, t1,4 = 1
n−1

and hence t4,1 = 1
n−1

, so that in fact

the shortest path from 4 to 1 has length 1.

Thus, a shortest path from 4 to 1 passes through a vertex in {5, . . . , n}, and without
loss of generality, we take the path to be 4 → 5 → 1. Hence D contains the directed cycle
4→ 5→ 1→ 4, and so by Lemma 3.5, 2→ 4 as well. Observe that since t5,1 = a0, we must

have t1,5 = 0. Similarly, since t1,4 = t2,4 = a0, we have t4,1 = t4,2 = 0. Note that D contains

the directed cycle 1→ 2→ 4→ 5→ 1. Considering the corresponding principal submatrix
C of T , we see that the row sum of C corresponding to vertex 1 is 2a0, while the row sum
of C corresponding to vertex 4 is a0, contradicting Lemma 3.5. 2

4 Concluding Remarks And An Example

Let T ∈ Rn,n be a transition matrix for an ergodic homogeneous Markov chain on n states

and let E ∈ Rn,n be a zero row sums matrix such that T̂ = T − E is a transition matrix
of a second Markov chain. Finally, let π and π̂ be the stationary distribution vectors of the

Markov chains whose transition matrices are T and T̂ , respectively.

From (1.8) we know that 2κ3(T ) ≤ κ6(T ). However, κ3(T )‖E‖∞ bounds ‖π− π̂‖∞ while

κ6(T )‖E‖∞ bounds ‖π − π̂‖1 and ‖π − π̂‖∞ ≤ ‖π − π̂‖1. Thus a comparison between the
quality of these two optimal condition numbers can be not meaningful just based on their
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respective sizes. One advantage of using κ6(T ) over κ3(T ) is that κ6(T ) also furnishes us
with information on the eigenvalues of the transition matrix T . This fact is well known, but
let us describe it briefly.

Let B ∈ Cn,n have constant row sums b so that b is an eigenvalue of B. Then it is known,
see, for example, Seneta [28, p.63, Theorem 2.10], that

γ(B) := max{|λ| | λ ∈ σ(B), λ 6= b} ≤ τ1(B).

Thus, in the context of Markov chains, τ1(T ) bounds γ(T ) which is the asymptotic conver-

gence rate of the iteration xti = xti−1T to the stationary distribution vector π of the chain.

It is further known from (1.8) or can easily be proved that:

max
λ∈σ(T ),λ 6=1

1

|1− λ|
≤ τ1(A

#)︸ ︷︷ ︸
=κ6(T )

≤ 1

1− τ1(T )︸ ︷︷ ︸
=κ5(T )

. (4.5)

We see then that 1/τ1(A
#) = 1/κ6(T ) is a lower bound on

min
λ∈σ(T ),λ 6=1

|1− λ|

In [11], Hartfiel and Meyer showed that the closer this quantity is to 0, the more nearly–

uncoupled the chain becomes. We further mention that in Kirkland and Neumann [18],

conditions are studied on T under which equality holds throughout (4.5).

As an illustration for our results here we borrow and example from Funderlic and Meyer
[9], which models mammillary systems in compartmental analysis, and which was further

discussed in Kirkland, Neumann, and Shader [19]. Let

T =



0.74 0.11 0 0 0 0 0 0.15

0 0.689 0 0 0.011 0 0 0.3

0 0 0 0.4 0 0 0 0.6

0 0 0 0.669 0.011 0 0 0.32

0 0 0 0 0.912 0 0 0.088

0 0 0 0 0 0.74 0 0.26

0 0 0 0 0 0 0.87 0.13

0.15 0 0.047 0 0 0.055 0.27 0.478


, (4.6)
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in which case,

A# =



3.276 1.003 −0.01465 −0.05851 0.02992 −0.2091 −3.952 −0.07398

−0.3289 2.943 0.005007 −0.03475 0.2754 −0.1206 −3.084 0.3443

−0.1564 −0.2113 1.019 1.191 0.03432 −0.05735 −2.462 0.6434

−0.2990 −0.2617 0.007450 2.989 0.2529 −0.1096 −2.976 0.3963

−1.392 −0.6482 −0.08156 −0.1394 11.18 −0.5102 −6.909 −1.497

−0.3603 −0.2835 0.002450 −0.03784 −0.1283 3.714 −3.196 0.2899

−0.8879 −0.4701 −0.04053 −0.08978 −0.1581 −0.3256 2.597 −0.6246

0.1673 −0.09685 0.04543 0.01410 −0.09844 0.06133 −1.297 1.204


.

Also let E be the following matrix with zero row sums:

E =



0.01 0.01 0 0 0 0 −0.005 −0.015

0 0.005 0 0 0 −0.01 0 0.005

0 0 −0.02 0.02 0 0 −0.015 0.015

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

−0.07 0 0 0 0 0 0 0.07

0.03 0 0 0 0 0.03 −0.07 0.01


.

Then ‖E‖∞ = 0.14. Next put T̂ := T − E. Then for the Markov chains whose transition

matrices are T and T̂ , the stationary distribution vectors are given by:

π =



0.1372

0.04852

0.01117

0.01350

0.007753

0.05030

0.4938

0.2378


and π̂ =



0.2093

0.06624

0.008842

0.01015

0.009548

0.02028

0.4913

0.1844


,

respectively. We next compute for T given in (4.6), the 8 condition numbers given in (1.5)
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and find that:
κ1(T ) 21.3697
κ2(T ) 22.3542
κ3(T ) 5.6676
κ4(T ) 11.1771
κ5(T ) 11.3636
κ6(T ) 11.3352
κ7(T ) 5.6818
κ8(T ) 5.6676

On checking (1.7) and (1.6), for i = 3 and i = 6, respectively, we find that

‖π − π̂‖∞ = 0.0721 < 0.7935 = ‖E‖∞κ3(T )

and
‖π − π̂‖1 = 0.1833 < 1.5869 = ‖E‖∞κ6(T ).

We further find the

1/κ6(T ) = .0882 < 0.089 = min
λ∈σ(T ),λ 6=1

|1− λ|

and so, in this example, κ6(T ) furnishes a close estimate to an upper bound on the measure

for near–uncoupling introduced by Hartfiel and Meyer in [11].
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