
Graphs associated with matrices over finite fields
and their endomorphisms

In memory of Professor Michael Neumann and Professor Uri Rothblum

Li-Ping Huanga, Zejun Huangb , Chi-Kwong Lic,d , Nung-Sing Szeb

a School of Mathematics and Computing Science, Changsha University of Science and Technology,

Changsha, 410004, P. R. China
b Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
c Department of Mathematics, The College of William & Mary, Williamsburg, VA 23187-8795, USA
d Department of Mathematics, The University of Hong Kong, Hong Kong

Abstract. Let Fm×n be the set of m × n matrices over a field F. Consider a graph G = (Fm×n,∼)

with Fm×n as the vertex set such that two vertices A,B ∈ Fm×n are adjacent if rank(A−B) = 1. We

study graph properties of G when F is a finite field. In particular, G is a regular connected graph with

diameter equal to min{m,n}; it is always Hamiltonian. Furthermore, we determine the independence

number, chromatic number and clique number of G. These results are used to characterize the graph

endomorphisms of G, which extends Hua’s fundamental theorem of geometry on Fm×n.
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1 Introduction

Let F be a field and Fm×n the set of m× n matrices over F. Define a metric d on Fm×n by

d(A,B) = rank(A−B).

Two matrices A,B ∈ Fm×n are adjacent, denoted by A ∼ B, if d(A,B) = rank(A − B) = 1.

This metric and adjacency relation give rise to an interesting geometrical structure on Fm×n.

In mid 1940’s, Hua initiated the study of the fundamental theorem of the geometry of

matrices that concerns the characterization of maps � : Fm×n → Fm×n leaving invariant the

adjacency relation, i.e., rank(�(A)−�(B)) = 1 whenever rank(A−B) = 1. Hua also considered

the problem on matrices over a division ring, and his study generated considerable interest and

led to many interesting results; for example, see [8, 9, 11, 13, 18, 20].

Suppose F is the finite field Fq with q elements. Then the adjacency relation A ∼ B in

Fqm×n defined above, i.e., A ∼ B if rank(A − B) = 1, gives rise to a graph G = (V,∼) with

V = Fqm×n as the vertex set and there is an edge joining A,B ∈ V if and only if A ∼ B.

We call G = (Fqm×n,∼) a matrix graph, which is also called a bilinear forms graph in graph

theory. This graph has a lot of interesting properties. For example, it is easy to check that G

is a regular graph with diameter equal to min{m,n}; it is Eulerian if and only if q is odd. We
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will give an easy constructive proof to show that G is Hamiltonian. Furthermore, we determine

the independence number, chromatic number and clique number of G; see Section 2.

Note that in graph theory literature, it is common to write G = (V,E) with V as the vertex

set, and E as the edge set consisting of all the unordered pairs of vertices u and v that are

adjacent.

Recall that for two given graphs G = (V,∼) and G′ = (V ′,∼′), a map � : V → V ′ is a graph

homomorphism if

�(a) ∼′ �(b) in G′ whenever a ∼ b in G.

A graph homomorphism is called a graph endomorphism if G = G′. Thus, the fundamen-

tal theorem of geometry of Fqm×n can be formulated in terms of graph endomorphisms on

(Fqm×n,∼). In [16, 17], the author characterized the graph endomorphisms on symmetric ma-

trix graphs and hermitian matrix graphs over a finite field. In Section 3, we will characterize

graph endomorphisms on matrix graphs using results in Section 2.

It is worth pointing out that in addition to the connection to the geometry of matrices,

matrix graphs also have nice combinatorial and algebraic porperties, and are useful in the

study of the group theory, design theory, association schemes, and coding theory, etc. For

example, see [20, 21, 22, 24].

We will always assume that 2 ⩽ m ⩽ n in our discussion unless specified otherwise. For the

case m > n ⩾ 2, one can consider the transposes of matrices to get similar results. The basic

definitions and results in graph theory can be found in [1, 4, 6, 5]. We denote by Fn the set of

n× 1 vectors over F, and denote by ∣X∣ the cardinality of a set X.

2 Graph properties

A graph G = (V,∼) is connected if any two distinct vertices a, b ∈ V are connected by

a path, i.e., a sequence of vertices v0, . . . , vm such that a = v0, b = vm, and vi ∼ vi+1 for

i = 0, 1, . . . ,m − 1. The number of edges in the shortest path joining two distinct vertices

a, b ∈ V is the distance between a and b, which is denoted by d(a, b). For a connected graph,

the longest distance between two vertices is the diameter of G. The following observation are

well known (cf. [11, Lemma 3.3]).

Proposition 2.1. The graph G = (Fqm×n,∼) (m,n ⩾ 2) is connected, where A ∼ B ⇔
rank(A − B) = 1 for all A,B ∈ Fqm×n. The distance between two matrices A,B ∈ Fqm×n is

given by

d(A,B) = rank(A−B).

Consequently, the diameter of G equals min{m,n}.

The degree of a vertex v in a graph G is the number of vertices in G that are adjacent to

v, and is denoted by deg(v). A graph G is r-regular if every vertex of G has degree r. The

following result is known (cf. [2, Theorem 9.5.2]): The graph G =
(
Fqm×n,∼

)
is an r-regular

graph with r = (qm−1)(qn−1)
q−1 .
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A vertex-cut of a graph G is a set S of vertices of G such that removing the vertices in

S and the edges incident to them from G results in a disconnected graph. A vertex-cut of G

with minimum cardinality is called a minimum vertex-cut of G and this minimum cardinality

is called the connectivity of G and is denoted by �(G).

A connected graph G with diameter d is distance-regular if for any vertices u and v of G

and any integers i, j = 0, 1, . . . , d, the number of vertices at distance i from u and distance j

from v depends only on i, j, and the graph distance between u and v, and is independent of the

choice of u and v. For G = (Fqm×n,∼), It is well known that the graph G is distance-regular.

Therefore, by Theorem 1 of [3] and G is an r-regular graph with r = (qm − 1)(qn − 1)/(q − 1),

we have �(G) = (qm − 1)(qn − 1)/(q − 1).

Let G be a nontrivial connected graph. A circuit C of G that contains every edge of G

(necessarily exactly once) is an Eulerian circuit. A connected graph G is called Eulerian if

G contains an Eulerian circuit. It is well known (see for example [4, Theorem 3.1]) that a

connected graph G is Eulerian if and only if every vertex of G has even degree. Since G is an

r-regular graph with r = (qm − 1)(qn − 1)/(q− 1), G = (Fqm×n,∼) is an Eulerian graph if and

only if q is odd.

A cycle in a graph G that contains every vertex of G is called a Hamiltonian cycle of G. A

graph that contains a Hamiltonian cycle is called a Hamiltonian graph.

Theorem 2.2. The matrix graph G = (Fqm×n,∼) is Hamiltonian.

Remark 2.3. Since the graph G = (Fqm×n,∼) is connected, one can use Corollary 3.2 of [15]

to obtain this result. Here we give a constructive proof based only on the definition of the graph.

Proof. Let Fq = {0, 1, x3, . . . , xq}, and A0 = 0m,n. Keeping all other rows to be zero, we

can change the first row of A0 from (0, . . . , 0) to (xq, . . . , xq) in qn − 1 steps by adding a rank

one matrix in each step. So, in qn − 1 steps (i.e., using qn − 1 edges in the graph), we get all

the matrices with arbitrary first row and other rows equal (0, . . . , 0). In other words, we have

a path with qn − 1 edges joining qn vertices corresponding to matrices with arbitrary first row

and other rows equal (0, . . . , 0).

Now, we extend the path constructed in the preceding paragraph as follows. Change the

second row to (0, ⋅ ⋅ ⋅ , 0, 1) by adding a rank one matrix (one more edge). In the next qn−1 steps

(edges), we change the first row from (xq, . . . , xq) back to (0, . . . , 0). So, in 1 + (qn − 1) = qn

steps, we get all the matrices with arbitrary first row, second row equal (0, . . . , 0, 1), and all

other rows equal to (0, . . . , 0).

Next, we change the second row to (0, . . . , 0, x3) if q > 2, and then change the first row

from (0, . . . , 0) to (xq, . . . , xq). So, in another qn steps, we get all the matrices with arbitrary

first row, second row equal (0, . . . , 0, x3), and all other rows equal to (0, . . . , 0).

We may keep changing the second row till we get (xq, . . . , xq) so that every change of the

second row always followed by a change of the first row from (0, . . . , 0) to (xq, . . . , xq), or a

change from (xq, . . . , xq) to (0, . . . , 0). Then in q2n − 1 steps, we will get all the matrices with

arbitrary first two rows, and other rows equal to (0, . . . , 0). Moreover, in the latest step, the first

row is either (0, . . . , 0) or (xq, . . . , xq), and the second row is (xq, . . . , xq), which is a rank one

matrix. If m = 2, we can change this matrix to the zero matrix and complete the Hamiltonian
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cycle.

Suppose m > 2. We can work on the third row, fourth row, and so forth. After qmn − 1

steps, we go through all the matrices in Fqm×n and end with a matrix A. Moreover, the last

row of A is (xq, . . . , xq), and all other rows of A have the form (0, . . . , 0) or (xq, . . . , xq). Thus,

the matrix A has rank one, and is adjacent to the zero matrix A0. So, we may change the A to

the zero matrix A0 by adding a rank one matrix.

Hence, in qmn steps, we obtain a cycle of G which contains every vertex of G. Thus G is

Hamiltonian. □

Let Kr be the complete graph of r vertices. Let G = (V,∼). A subset A ⊆ V of r vertices

is called an r-clique if the induced subgraph G[A] is a complete subgraph Kr, i.e., any two

distinct vertices in the subgraph are adjacent. A clique A is maximal if there is no clique of G

which properly contains A as a subset. A clique is maximum if there is no clique of G of larger

cardinality. In the geometry of matrices, we use the term maximal set to indicate a maximal

clique. Let !(G) be the number of vertices in a maximum clique of G, and it is called the clique

number of G.

Denote by GLn(Fq) the set of n×n invertible matrices over Fq and tA the transpose matrix

of A ∈ Fqm×n. Let Em×nij (Eij for short) be the m × n matrix whose (i, j)-entry is 1 and all

other entries are 0’s, and let ei be the i-th column of I. In Fqm×n (m,n ⩾ 2), let

ℳi =

⎧⎨⎩
n∑
j=1

xjEij : xj ∈ Fq

⎫⎬⎭ , i = 1, . . . ,m, (2.1)

Nj =

{
m∑
i=1

yiEij : yi ∈ Fq

}
, j = 1, . . . , n. (2.2)

Let S1, S2 be two subsets of Fqm×n and A ∈ Fqm×n. We denote by

S1 +A = {X +A : X ∈ S1}, AS1 = {AX : X ∈ S1}, S1A = {XA : X ∈ S1}.

We first state the following lemma; see [9, 11, 20].

Lemma 2.4. In Fqm×n (m,n ⩾ 2), all ℳi’s, Nj’s, i = 1, . . . ,m, j = 1, . . . , n, are maximal

sets (i.e. maximal cliques). Moreover, any maximal set is of one of the following forms.

Type one. ℳ = Pℳ1 +A, where P ∈ GLm(Fq) and A ∈ Fqm×n are fixed.

Type two. ℳ = N1Q+A, where Q ∈ GLn(Fq) and A ∈ Fqm×n are fixed.

Remark 2.5. When m < n (resp. m > n), every maximal set of the type one (resp. type

two) is a maximum clique of the matrix graph G =
(
Fqm×n,∼

)
while every maximal set of type

two (resp. type one) is a maximal clique but is not a maximum clique. When m = n, every

maximal set is a maximum clique.

In a graph G = (V,∼), an independent set (or stable set) of V is a subset X of vertices such

that no two of which are adjacent. Let �(G) be the number of vertices in an independent set

of maximum cardinality, and it is called the independence number (or stability number) of G.
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Theorem 2.6. When 2 ⩽ m ⩽ n, the independence number of G =
(
Fqm×n,∼

)
is

�(G) = qn(m−1). (2.3)

Moreover, let L = E21 + E32 + ⋅ ⋅ ⋅ + Em,m−1 + E1m ∈ Fqm×m, and P be a matrix in Fqn×n

such that f(x) = det(xI − P ) is an irreducible polynomial in Fq[x]. Then the set

S̃ = {LA+AP : A ∈ Fqm×n with the last row equal to 0} (2.4)

is an independent set of Fqm×n with ∣S̃∣ = qn(m−1).

Remark 2.7. It is well-known that there exists an irreducible polynomial f(x) ∈ Fq[x] with

deg(f(x)) = n (cf. [22, Theorem 7.7]), and there exists a P ∈ GLn(Fq) such that f(x) =

det(xI − P ), for example, let P be the companion matrix of f(x). Moreover, if f(x) ∈ Fq[x]

is irreducible and � is a root of f(x) in an extension field of Fq, then � is a root of another

polynomial ℎ(x) ∈ Fq[x] if and only if f(x) divides ℎ(x) (cf. [14, Lemma 2.12]).

Proof. Let S be an independent set of Fqm×n. Note that the first m− 1 rows (columns) of

those matrices in S must be distinct. Else, there are two matrices A1, A2 ∈ S such that their

first m − 1 rows are identical so that A1 ∼ A2. Thus, we have ∣S∣ ⩽ q(m−1)n. We will prove

that

(1) S̃ has q(m−1)n elements, and (2) S̃ is an independent set of Fqm×n.

To prove (1), it suffices to show that LA1 +A1P ∕= LA2 +A2P for any two matrices A1, A2 ∈
Fm×nq with zero last row. Equivalently, we need to show that LA + AP ∕= 0 for any nonzero

A ∈ Fm×nq with zero last row. Since det(xI − P ) is irreducible, P is invertible. If LA = −AP ,

then the first row of −AP is zero so that the first row of A must be zero. It follows that the

second row of LA is zero, and so is that of −AP , and hence the second row of A is zero. But

then the third row of LA is zero and so is that of −AP , and hence the third row of A is zero.

Repeating this argument, we see that A is the zero matrix. Thus, assertion (1) holds.

Next, we establish (2). Suppose there are two elements X,Y ∈ S̃ such that rank(X−Y ) = 1.

Then there is A ∈ Fqm×n with last row equal to zero such that X−Y = LA+AP. Suppose the

k-th row of A is its first nonzero row, which is denoted by w. Then the first k − 1 rows of AP

and the first k rows of LA are zero. Moreover, the first nonzero row of X − Y is its k-th row,

which is wP . Since rank(X − Y ) = 1, there exist uk+1, . . . , um ∈ Fq such that the i-th row of

X − Y is uiwP for i = k + 1, . . . ,m. Therefore,

X − Y = LA+AP = u tekAP,

where u = t[0, . . . , 0, uk, uk+1, . . . , um] with uk = 1. Multiplying tL to both sides of the

equation, and rearranging, we see that

A = tL(u tek − Im)AP.

Consequently, removing the first k − 1 zero rows and the last ℓ(≥ 1) zero rows of A to get Ã,

we have

Ã = Ũ ÃP,
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and

Ũ =

N∑
j=1

uk+jEj1 −
N−1∑
j=1

Ej,j+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

uk+1 −1 0 ⋅ ⋅ ⋅ 0

uk+2 0 −1
. . .

...
...

...
...

. . . 0

um−ℓ 0 0 ⋅ ⋅ ⋅ −1

um−ℓ+1 0 0 ⋅ ⋅ ⋅ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ FqN×N

with N = m− k − ℓ+ 1. Here we use the fact that uk = 1.

Now by the theory of matrix equation (cf. [7, Lemma 4.3.1]), the linear system Ã = Ũ ÃP

has a non-trivial solution Ã ∈ FqN×n implies that

I − Ũ ⊗ tP = I −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

uk+1
tP − tP 0 ⋅ ⋅ ⋅ 0

uk+2
tP 0 − tP

. . .
...

...
...

...
. . . 0

um−ℓ
tP 0 0 ⋅ ⋅ ⋅ − tP

um−ℓ+1
tP 0 0 ⋅ ⋅ ⋅ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
has determinant 0. Taking Schur complement, we see that

0 = det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
In − uk+1

tP + [ tP 0 ⋅ ⋅ ⋅ 0]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

I tP 0 ⋅ ⋅ ⋅ 0

0 I tP
. . .

...
...

...
...

. . . 0

0 0 0 ⋅ ⋅ ⋅ tP

0 0 0 ⋅ ⋅ ⋅ I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1 ⎡⎢⎢⎢⎢⎢⎢⎣
uk+2

tP
...
...

um−ℓ+1
tP

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Thus we have

0 = det

⎛⎝I − N∑
j=1

�j(
tP )j

⎞⎠
with �i = (−1)iuk+i for i = 1, . . . , N . Hence, an eigenvalue � of tP in an extension field of Fq,
which is a zero of

det(xI − tP ) = det(xI − P ) = f(x),

is a zero of the polynomial g(x) = 1 −
∑N
j=1 �jx

j of degree N = m − k − ℓ + 1 < n (because

m ≤ n and k, ℓ ≥ 1). On the other hand, f(x) is irreducible implies that f(x) divides g(x),

which is a contradiction. Then we have proved that S̃ is an independent set of Fqm×n. □

Example 2.8. Let f(x) = x3 + x2 + 1 be an irreducible polynomial in F2[x] such that f(x) =

det(xI − P ), where P =

⎡⎢⎣ 1 1 0

0 0 1

1 0 0

⎤⎥⎦. Assume L =
[

0 1

1 0

]
and

S̃ = {LA+AP : A ∈ F2
2×3 with the last row equal to 0}.
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Then

S̃ =

{
0,

[
1 0 0

0 0 1

]
,

[
0 0 1

0 1 0

]
,

[
1 0 1

0 1 1

]
,

[
1 1 0

1 0 0

]
,

[
0 1 0

1 0 1

]
,

[
1 1 1

1 1 0

]
,

[
0 1 1

1 1 1

]}

is an independent set of F2
2×3.

A c-coloring is a partition of the vertices V = X1 ∪X2 ∪ ⋅ ⋅ ⋅ ∪Xc such that Xi ∩Xj = ∅ for

all i ∕= j and each Xi is an independent set. In such a case, the members of Xi, are “painted”

with the color i and adjacent vertices will receive different colors. We say that G is c-colorable.

Let �(G) be the smallest possible c for which there exists a c-coloring of G, which is called the

chromatic number of G. It is well-known that

�(G) ⩾ !(G), and �(G) ⩾
∣V ∣
�(G)

. (2.5)

The chromatic number and the independence number of a graph are two important quan-

tities. In general, it is difficult to determine the chromatic number or the clique number of a

graph. For G =
(
Fqm×n,∼

)
these quantities can be shown to be equal to qmax{m,n}.

Theorem 2.9. Let m,n ⩾ 2 be integers and G =
(
Fqm×n,∼

)
. Then the chromatic number

and the clique number of G are the same, and

�(G) = !(G) = qk, wℎere k = max{m,n}. (2.6)

Proof. Without loss of generality, we assume that 2 ⩽ m ⩽ n (when m > n ⩾ 2, using the

transposes of matrices we can transform into the situation 2 ⩽ m < n). Then k = max{m,n} =

n. By the geometry of matrices (cf. [9, 11, 20] and Lemma 2.4), every maximum clique of G is

of the form Pℳ1 + A when n > m and is of the forms Pℳ1 + A or N1Q + A when m = n,

where P,Q ∈ GLm(Fq) and A ∈ Fqm×n are fixed. Thus !(G) = ∣ℳ1∣ = qn. By (2.5), we have

�(G) ⩾ qn.

By Theorem 2.6, let T =
{
T1, . . . , Tqn(m−1)

}
be an independent set of G which has maximum

cardinality. Then rank(Ti−Tj) ⩾ 2 for all i ∕= j. Let Si = T +Xi, where Xi ∈ℳ1, i = 1, . . . , qn.

Then S1, . . . ,Sqn are qn independent sets of G which has maximum cardinality, and Si∩Sj = ∅
for all i ∕= j. Since ∣S1 ∪ S2 ∪ ⋅ ⋅ ⋅ ∪ Sqn ∣ = qmn, {S1, . . . ,Sqn} is truly a partition of Fqm×n,

which means that the map c : Fqm×n → Fq, given by c∣Si ≡ Xi, is well defined. Therefore,

it is a qn-coloring of G. By the definition of chromatic number, we get �(G) ⩽ qn. Thus,

�(G) = !(G) = qn. □

3 Graph endomorphisms on finite matrix graphs

In this section, we characterize the graph endomorphisms of the matrix graph G =(
Fqm×n,∼

)
. For finite graphs, a bijective graph homomorphism is a graph isomorphism, and
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a bijective graph endomorphism is a graph automorphism. In the language of the geometry of

matrices or the preserver problems, we determine the adjacency preserving maps on Fqm×n.

For G =
(
Fqm×n,∼

)
, recall that a maximal set is equivalent to a maximal clique; an

adjacency preserving map (resp. adjacency preserving bijective map) on Fqm×n is the same as

a graph endomorphism (resp. graph automorphism) on G. The following result is useful in our

discussion.

Lemma 3.1. [6, Lemma 1.4.1] The chromatic number of a graph G is the smallest integer r

such that there is a graph homomorphism from G to Kr.

A finite graph G is called a core if every graph homomorphism from G to itself is a graph

automorphism. A subgraph Γ of finite graph G is called a core of G if it is a core and there

exists some graph homomorphism ' : G → Γ. Every finite graph G has a core, which is an

induced subgraph and is unique up to isomorphism (cf. [6, Lemma 6.2.2]).

Theorem 3.2. Let m,n be integers ⩾ 2 and G =
(
Fqm×n,∼

)
. Then a subgraph of G is a core

of G if and only if it is a maximum clique of G. In particular, G itself is not a core.

Proof. Let k = max{m,n}. Suppose thatℳ is a maximum clique of G. Then clearlyℳ is

a core and ∣ℳ∣ = !(G) = qk (cf. Lemma 2.4). By Theorem 2.9, �(G) = qk = !(G). Since ℳ
is a complete subgraph Kqk , Lemma 3.1 implies that there is a graph homomorphism  from

G toℳ. Thus,ℳ is a core of G, and G is not a core. On the other hand, by [6, Lemma 6.2.2],

any two cores of G are graph isomorphic. Hence every core of G is a maximum clique of G. □

Corollary 3.3. Let m,n ⩾ 2 be integers and G =
(
Fqm×n,∼

)
. If ℳ is a maximum clique of

G, then there exists a graph homomorphism (or adjacency preserving map) ' from G toℳ, and

' is a proper colouring of G, i.e., ' partitions Fqm×n into ∣ℳ∣ classes such that no adjacent

vertices are in the same class.

For A = [aij ] ∈ Fqm×n and a map � : Fq → Fq, we write A� = [a�ij ]. The Hua’s theorem

on the geometry of rectangular matrices over a division ring [8, 23, 9] can be viewed as the

algebraic description of graph automorphisms of the matrix graph G =
(
Fqm×n,∼

)
:

Hua’s Theorem Let m,n ⩾ 2 be integers and G =
(
Fqm×n,∼

)
. Then ' is a graph automor-

phism of G, i,e., ' : Fqm×n → Fqm×n is a bijective map such that rank(X − Y ) = 1 implies

that rank('(X)− '(Y )) = 1 for all X,Y ∈ Fqm×n, if and only if there is an automorphism �

of Fq, invertible matrices P ∈Mm(Fq) and Q ∈Mn(Fq) such that one of the following holds.

(i) ' is of the form

'(X) = PX�Q+ '(0) for all X ∈ Fqm×n. (3.1)

(ii) m = n and ' is of the form

'(X) = P tX�Q+ '(0) for all X ∈ Fqm×n. (3.2)
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For general graph homomorphism, we will prove the following.

Theorem 3.4. Let m,n ⩾ 2 be integers and G =
(
Fqm×n,∼

)
. Then ' is a graph endomor-

phism of G if and only if one of the following holds.

(a) The image '(Fqm×n) is a maximum clique of G, and ' is a qk-coloring where k =

max{m,n}, i.e., the partition of Fqm×n

qk∪
i=1

{
'−1[Bi] : Bi ∈ '(Fqm×n)

}
,

where '−1[Bi] = {X ∈ Fqm×n : '(X) = Bi} is the inverse image of Bi.

(b) The image '(Fqm×n) is not a maximum clique of G, and ' is a graph automorphism.

In the language of the geometry of matrices, the result can be restated as follows.

Theorem 3.5. Let m,n ⩾ 2 be integers and ' : Fqm×n → Fqm×n a map. Then ' has the

property that rank(X−Y ) = 1 implies rank('(X)−'(Y )) = 1 if and only if one of the following

holds.

(a) Any two matrices in '(Fqm×n) are adjacent; there is a maximum clique ℳ of G such

that '(Fqm×n) =ℳ, and ' is a proper colouring of G =
(
Fqm×n,∼

)
.

(b) There are two non-adjacent matrices in '(Fqm×n); ' is bijective. Moreover, ' is of the

form (3.1), or ' is of the form (3.2) provided m = n.

One may see [10, 12] for other formulations of graph isomorphisms between matrix graphs.

To prove our main theorem, we establish some auxiliary results which are of independent

interest.

Remark 3.6. In [19], the author studied Hua’s fundamental theorem of geometry of matrices

on EAS division ring. Suppose that D is an EAS division ring such that D ∕= F2 and D ∕= F3,

m, p, q ⩾ n ⩾ 3. He characterizes the adjacency preserving map � : Dm×n → Dp×q under

the assumption that �(0) = 0 and there exists A0 such that rank�(A0) = n (cf. Theorem 4.2

and Corollary 4.6 of [19]). None of these assumptions is needed in our result. Moreover, the

result of [19] does not treat the degenerate case whereas ours give the complete description for

matrices over finite fields.

Lemma 3.7. Let ℳ and ℳ′ be two distinct type one (resp. type two) maximal sets of Fqm×n

(m,n ⩾ 2) as defined in Lemma 2.4 such that ℳ∩ℳ′ ∕= ∅. Then ℳ∩ℳ′ = {A} for some

A ∈ Fqm×n and there is an invertible matrix P (over Fq) such that ℳ = Pℳ1 + A and

ℳ′ = Pℳ2 +A (resp. ℳ = N1P +A and ℳ′ = N2P +A).

Proof. Supposeℳ andℳ′ are type one maximal sets and A ∈ℳ∩ℳ′. Then there exist

linearly independent vectors x1, x2 ∈ Fqm such that

ℳ = {A+ x1
ty : y ∈ Fqn} and ℳ′ = {A+ x2

ty : y ∈ Fqn}.

9



Extend {x1, x2} to a basis of Fqm, say, {x1, x2, . . . , xm}. Let P = [x1 x2 ⋅ ⋅ ⋅ xm]. Then

ℳ = Pℳ1 +A and ℳ′ = Pℳ2 +A,

which implies ℳ∩ℳ′ = {A}.

If ℳ and ℳ′ are type two maximal sets, one can get the results by considering the trans-

poses of matrices in Fqm×n. □

Corollary 3.8. [9, 11, 20] Let A and B be two adjacent matrices in Fqm×n (m,n ⩾ 2). Then

there are exactly two maximal sets that contain both A and B.

Corollary 3.9. [9, 11, 20] Let ℳ and ℳ′ be two distinct maximal sets of the same type in

Fqm×n (m,n ⩾ 2). If ℳ∩ℳ′ ∕= ∅, then ∣ℳ ∩ℳ′∣ = 1.

By Corollary 3.11 and Proposition 3.14 of [20], or by Lemma 3.7 and Corollary 3.9 of [11],

we have

Lemma 3.10. [11, 20] Let ℳ and ℳ′ be two maximal sets of different types in Fqm×n

(m,n ⩾ 2). If ℳ∩ℳ′ ∕= ∅, then ∣ℳ ∩ℳ′∣ = q.

Recall that d(A,B) = rank(A−B), and we always assume that 2 ⩽ m ⩽ n in our discussion

unless specified otherwise.

Lemma 3.11. Let ' : Fqm×n → Fqm×n be an adjacency preserving map. If ℳ is a type one

maximal set, then '(ℳ) is also a maximal set and ∣'(ℳ)∣ = ∣ℳ∣ = qn. If ℳ′ is a type two

maximal set, then there exists a unique maximal set containing '(ℳ′). Moreover, we have

d(A,B) ⩾ d('(A), '(B)) for all A,B ∈ Fqm×n. (3.3)

Lemma 3.12. Let ' : Fqm×n → Fqm×n be an adjacency preserving map. Let A ∈ Fqm×n,

P ∈ GLm(Fq) and Q ∈ GLn(Fq). Assume that there are distinct numbers r, s ∈ {1, . . . , n} such

that

'(PℳrQ+A) = '(PℳsQ+A) or '(PNrQ+A) = '(PNsQ+A).

Then there exists a maximum clique ℳ in Fqm×n such that for any P ′ ∈ GLm(Fq) and Q′ ∈
GLn(Fq),

'(P ′ℳiQ
′ +A) =ℳ and '(P ′NjQ′ +A) ⊆ℳ (3.4)

for all i = 1, . . . ,m, j = 1, . . . , n. Furthermore, the inclusion in (3.4) becomes equality when

m = n.

Proof. Case 1. There are distinct numbers r, s ∈ {1, . . . ,m} such that

'(PℳrQ+A) = '(PℳsQ+A) =:ℳ.

Recalling 2 ⩽ m ⩽ n, ℳ is a maximum clique in Fqm×n, i.e., ℳ is a maximal set with

∣ℳ∣ = qn. Without loss of generality, we assume r = 1, s = 2, A = 0, P = Im, Q = In and

'(ℳ1) =ℳ = '(ℳ2).
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For any given P ′ ∈ GLm(Fq), Q′ ∈ GLn(Fq) and j ∈ {1, . . . , n}, since P ′NjQ′ ∩ℳ1 =

{
E1jQ
′ : 
 ∈ Fq} =: S1 and P ′NjQ′ ∩ℳ2 = {
E2jQ

′ : 
 ∈ Fq} =: S2, we have

'(S1) ⊆ '(P ′NjQ′) ∩ '(ℳ1) ⊆ '(P ′NjQ′) ∩ℳ

and

'(S2) ⊆ '(P ′NjQ′) ∩ '(ℳ2) ⊆ '(P ′NjQ′) ∩ℳ.

On the other hand, for any distinct nonzero matrices X ∈ S1 and Y ∈ S2, we have rank(X −
Y ) = 1. It follows that '(X) ∕= '(Y ). Therefore,

∣'(P ′NjQ′) ∩ℳ∣ ⩾ ∣'(S1) ∪ '(S2)∣ = 2q − 1 > q. (3.5)

Applying Corollary 3.9, Lemma 3.10 and Lemma 3.11 we get

'(P ′NjQ′) ⊆ℳ, j = 1, . . . , n. (3.6)

Now replacing the roles of {ℳ1,ℳ2} with {N1,N2} and applying similar arguments as

above, we can get '(P ′ℳiQ
′) =ℳ for all i = 3, . . . ,m. Thus (3.4) holds.

Case 2. There are distinct numbers r, s ∈ {1, . . . , n} such that

'(PNrQ+A) = '(PNsQ+A) =:ℳ′.

Then ∣ℳ′∣ = qm since ' ∣PNrQ+A is injective. Without loss of generality, we assume r = 1, s =

2, A = 0, P = Im, Q = In and

'(N1) =ℳ′ = '(N2).

Using the same arguments as (3.5), we can get ∣'(P ′ℳiQ
′) ∩ℳ′∣ > q for all i = 1, . . . ,m.

Clearly, all '(P ′ℳiQ
′), i = 1, . . . ,m, are maximum cliques in Fqm×n. Sinceℳ′ is a qm-clique,

there is a maximal clique ℳ such that ℳ′ ⊆ ℳ. Since ∣'(P ′ℳiQ
′) ∩ℳ∣ > q, Corollary 3.9

and Lemma 3.10 imply that

'(P ′ℳiQ
′) =ℳ, i = 1, . . . ,m.

Similar to the proof of (3.6), we can prove that '(P ′NjQ′) ⊆ ℳ, j = 1, . . . , n. Hence (3.4)

holds.

When m = n, by ∣'(P ′NjQ′ + A)∣ = ∣ℳ∣ = qn, the inclusion in (3.4) becomes equality.

This completes the proof. □

Theorem 3.13. Let ' : Fqm×n → Fqm×n (m,n ⩾ 2) be an adjacency preserving map. Suppose

that there are two distinct type one maximal sets ℳ and ℳ′ such that ℳ ∩ℳ′ ∕= ∅ and

'(ℳ) = '(ℳ′). Then '(Fqm×n) is a maximum clique.

Remark 3.14. By Remark 2.5, when m < n (resp. m > n), every maximal set of the type

one (resp. type two) is a maximum clique, while every maximal set of type two (resp. type one)

is not a maximum clique. When m = n, every maximal set is a maximum clique.

We only prove the case of 2 ⩽ m ⩽ n. When m > n ⩾ 2, interchanging the roles of the rows

of matrix with the columns of the matrix, we can prove similarly the case of m > n ⩾ 2. When
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m > n ⩾ 2, another way of proof as follows. Let  (X) = t'(tX) for all X ∈ Fqm×n. Then

 is an adjacency preserving map from Fqn×m to itself. Moreover,  (Fqn×m) is a maximum

clique if and only if '(Fqm×n) is a maximum clique, and ℳ is a maximum clique (or maximal

set of type two) in Fqm×n if and only if tℳ is a maximum clique (or maximal set of type one)

in Fqn×m. Therefore, when m > n ⩾ 2 we can transform into the situation 2 ⩽ n < m.

Proof. By Remark 3.14, we only prove the case of 2 ⩽ m ⩽ n. From now on, we assume

that 2 ⩽ m ⩽ n. Then n = max{m,n}.

Let ℳ and ℳ′ be two distinct type one maximal sets such that ℳ ∩ℳ′ = {A1} ∕= ∅
and '(ℳ) = '(ℳ′). By Lemma 3.7, ℳ = P1ℳ1 + A1 and ℳ′ = P1ℳ2 + A1, where P1 is

invertible. It follows from Lemma 3.11 that '(ℳ) and '(ℳ′) are maximum cliques.

We only consider the case that '(ℳ) is a type one maximal set. Note that we can replace

'(A) with t'(A) and a similar argument works when '(ℳ) is a type two maximal set. Then

there exists P2 ∈ GLm(Fq) and A2 ∈ Fqm×n such that '(ℳ) = P2ℳ1 +A2. Replacing ' with

the adjacency preserving map

X 7−→ P−12 ['(P1X +A1)−A2] , ∀ X ∈ Fqm×n,

we have

'(ℳ1) =ℳ1 = '(ℳ2). (3.7)

Denote by ℛk = {A ∈ Fqm×n : rank(A) ⩽ k}. By Lemma 3.12, we have '(Pℳ1Q) =ℳ1

and '(PN1Q) ⊆ℳ1 for any P ∈ GLm(Fq) and Q ∈ GLn(Fq). It follows that

'(ℛ1) =ℳ1. (3.8)

We claim that

'(ℛ2) =ℳ1. (3.9)

To prove (3.9), it suffices to verify that '(T ) ∈ℳ1 for any T ∈ ℛ2 with rank (T ) = 2. Note

that T can be written as T = P (E11 + E22)Q for some nonsingular matrices P ∈ Fqm×m, Q ∈
Fqn×n. Without loss of generality, we assume P = Im and Q = In. Then

T = E11 + E22.

Since ℳ1 + E11 ⊆ ℛ1 and N1 + E11 ⊆ ℛ1, we have

'(ℳ1 + E11) =ℳ1 and '(N1 + E11) ⊆ℳ1. (3.10)

For any i ∈ {2, . . . ,m}, by

∣'(ℳi + E11) ∩ℳ1∣ ⩾ ∣'(ℳi + E11) ∩ '(N1 + E11)∣ ⩾ ∣(ℳi + E11) ∩ (N1 + E11)∣ = q

we have either

'(ℳi + E11) =ℳ1 (3.11)
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or '(ℳi + E11) is a type 2 maximal set. Similarly, for j ∈ {2, . . . , n}, by

∣'(Nj + E11) ∩ '(ℳ1 + E11)∣ ⩾ ∣(Nj + E11) ∩ (ℳ1 + E11)∣ = q

we have either

'(Nj + E11) ⊆ℳ1 (3.12)

or '(Nj + E11) is a type 2 maximal set.

Case 1. (3.11) or (3.12) holds for some i ∈ {2, . . . ,m} or j ∈ {2, . . . , n}. Then we have

'(ℳi + E11) =ℳ1 = '(ℳ1 + E11)

or

'(Nj + E11) ⊆ℳ1 with '(N1 + E11) ⊆ℳ1

respectively. If '(ℳi + E11) = ℳ1 = '(ℳ1 + E11), then applying Lemma 3.12 we have

'(ℳ2 + E11) =ℳ1. Since T ∈ℳ2 + E11, we get

'(T ) ∈ℳ1. (3.13)

Now we assume that '(Nj + E11) ⊆ℳ1 with '(N1 + E11) ⊆ℳ1. Clearly,

∣(ℳ2 + E11) ∩ (N1 + E11)∣ = ∣(ℳ2 + E11) ∩ (Nj + E11)∣ = q.

Therefore, ∣(ℳ2 + E11) ∩ [(N1 + E11) ∪ (Nj + E11)]∣ = 2q − 1 > q. It follows that

∣' ((ℳ2 + E11) ∩ [(N1 + E11) ∪ (Nj + E11)])∣ > q.

We have

' ((ℳ2 + E11) ∩ [(N1 + E11) ∪ (Nj + E11)])

⊆ '(ℳ2 + E11) ∩ ['(N1 + E11) ∪ '(Nj + E11)]

⊆ '(ℳ2 + E11) ∩ℳ1,

thus ∣'(ℳ2 + E11) ∩ℳ1∣ > q. Since '(ℳ2 + E11) is a maximum clique, Corollary 3.9 and

Lemma 3.10 imply that '(ℳ2 + E11) =ℳ1. Similarly, we have (3.13).

Case 2. '(ℳi + E11) and '(Nj + E11) are type 2 maximal sets for all i ∈ {2, . . . ,m} and

j ∈ {2, . . . , n}. Then m = n. Hence every maximal set is a maximum clique with cardinality

qn. Consequently, ' maps a maximal set onto a maximal set.

Since ∣(ℳi +E11) ∩ (Nj +E11)∣ = q, we have ∣'(ℳi +E11) ∩ '(Nj +E11)∣ ⩾ q and hence

'(ℳi + E11) = '(Nj + E11) =: N , i, j = 2, . . . , n. (3.14)

Suppose n ⩾ 3. Then (3.14) and Lemma 3.12 imply that '(ℳi + E11) = N for all

i = 1, . . . , n. Thus '(ℳ1) = '(ℳ1 + E11) = N , a contradiction to (3.7). Therefore, we must

have m = n = 2.

Note that N2 + E12,ℳ1 + E12 ⊆ ℛ1. It follows from (3.8) that

'(N2 + E12) = '(ℳ1 + E12) = '(ℳ1 + E11 + E12) =ℳ1. (3.15)
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Since ∣(ℳ2 + E11 + E12) ∩ℛ1∣ = q and ∣(ℳ2 + E11 + E12) ∩ (N2 + E11)∣ = q, we get

'(ℳ2 + E11 + E12) =ℳ1 (3.16)

or

'(ℳ2 + E11 + E12) = N . (3.17)

If (3.16) holds, then by (3.15) and Lemma 3.12 we get '(N2 +E11 +E12) =ℳ1. It follows

that '(T ) ∈ℳ1 since T ∈ N2 + E11 + E12.

From now on we suppose that (3.17) holds. We prove that there is a contradiction as follows.

Since ∣(N1 + E11 + E12) ∩ (ℳi + E11 + E12)∣ = q for i = 1, 2, we have

'(N1 + E11 + E12) =ℳ1 (3.18)

or

'(N1 + E11 + E12) = N . (3.19)

If (3.19) holds, then '(N2 + E11 + E12) = '(N2 + E11) = N and Lemma 3.12 will lead to

'(ℳ1 + E11 + E12) = N , which contradicts with (3.15). Hence we must have

'(N1 + E12) = '(N1 + E11 + E12) =ℳ1.

Thus by (3.15) and Lemma 3.12, we get

'(ℳ2 + E12) =ℳ1. (3.20)

By N1 ⊆ ℛ1 and (3.8), '(N1) =ℳ1. Since '(ℳ2 + E11) = N , ∣'(ℳ2 + E11) ∩ '(N1)∣ =
∣N ∩ℳ1∣ = q. It follows that N has the form N1Q1 +R with

R =

[
u r

0 0

]

where 0 ∕= r ∈ Fq (by (3.8)). Without loss of generality, we assume Q1 = I2. Then

N = N1 +R =

{[
x r

y 0

]
: x, y ∈ Fq

}
.

Since ∣(ℳ2 + E11) ∩N1∣ = ∣N ∩ℳ1∣ = q and ∣'(ℳ2 + E11)∣ = ∣N ∣ = q2, we have

'((ℳ2 + E11) ∩N1) = N ∩ℳ1 = (N1 +R) ∩ℳ1 = N1 ∩ℳ1 +R. (3.21)

Thus, we can suppose that

'

[
1 0

x 0

]
=

[
x� r

0 0

]
for all x ∈ Fq, (3.22)

where � : Fq → Fq is a bijection. Then by '(ℳ2 + E11) = N and (3.22), it is easy to see that

'

[
1 0

x y

]
=

[
x∗ r

y∗ 0

]
for all x, y ∈ Fq. Moreover, y ∕= 0⇔ y∗ ∕= 0. (3.23)
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We assert that

'

[
0 1

0 s

]
=

[
s� r

0 0

]
for all s ∈ Fq, (3.24)

where � : Fq → Fq is a bijective map. In fact, by (3.8) we can assume that '

[
0 1

0 s

]
=[

s� 1�

0 0

]
for all s ∈ Fq. By (3.23) we get '

[
1 0

s+ 1 −1

]
=

[
(s+ 1)∗ r

(−1)∗ 0

]
where (−1)∗ ∕=

0. Since

[
0 1

0 s

]
∼

[
1 0

s+ 1 −1

]
, so

[
s� 1�

0 0

]
∼

[
(s+ 1)∗ r

(−1)∗ 0

]
and hence 1� = r.

Thus (3.24) holds.

For any x, y ∈ Fq, by (3.20) and (3.24) we can assume that

'

[
0 1

x y

]
=

[
� z

0 0

]
. Moreover, x ∕= 0⇔ z ∕= r. (3.25)

By (3.23) and (3.25), we can let '

[
1 0

1 1

]
=

[
a r

b 0

]
where b ∕= 0, and '

[
0 1

1 1

]
=[

c z

0 0

]
where z ∕= r. Then

[
1 0

1 1

]
∼

[
0 1

1 1

]
, but

[
a r

b 0

]
and

[
c z

0 0

]
are not

adjacent, a contradiction. Therefore, (3.17) cannot happen. Thus we always have (3.13). Then

we have proved (3.9).

Now we can use a simple induction on k to verify

'(ℛk) =ℳ1 (3.26)

for 3 ⩽ k ⩽ min{m,n}. Assume (3.26) holds for k− 1 with k ⩾ 3. Then for any rank k matrix

X ∈ Fqm×n, there exist nonsingular matrices P,Q such that X = P (E11 + ⋅ ⋅ ⋅+ Ekk)Q. Since

PℳiQ+X−PEkkQ ⊆ ℛk−1 for i = 1, 2, we have '(PℳiQ+X−PEkkQ) =ℳ1 for i = 1, 2.

Applying Lemma 3.12 we have '(PℳkQ + X − PEkkQ) = ℳ1. It follows that '(X) ∈ ℳ1

since X ∈ PℳkQ+X − PEkkQ. Hence '(Fqm×n) is a maximum clique. □

Lemma 3.15. Let ' : Fqm×n → Fqm×n be an adjacency preserving map such that '(Fqm×n)

is not a maximum clique. Assume that ℳ,ℳ′ are two distinct type one maximal sets with

ℳ∩ℳ′ ∕= ∅. Then '(ℳ), '(ℳ′) are two distinct maximal sets of the same type which are

maximum cliques.

Proof. Let ℳ and ℳ′ be two distinct type one maximal sets with ℳ∩ℳ′ ∕= ∅. Then

ℳ = {x0 ty + A : y ∈ Fqn} and ℳ′ = {x1 ty + A : y ∈ Fqn} with x0, x1 ∈ Fqm being linearly

independent and A ∈ Fqm×n. Let ℳ′′ = {x2 ty + A : y ∈ Fqn}, where x2 ∈ Fqm and x0, x1, x2

are pairwise linearly independent. Then ℳ′′ ∕=ℳ, ℳ′′ ∕=ℳ′ and ℳ∩ℳ′ ∩ℳ′′ = {A} ∕= ∅.
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It follows from Lemma 3.11 and Theorem 3.13 that '(ℳ), '(ℳ′) and '(ℳ′′) are three distinct

maximal sets. Clearly, there are two of them being of the same type. Without loss of generality

we assume that '(ℳ′) and '(ℳ′′) are of the same type. We prove that '(ℳ), '(ℳ′) and

'(ℳ′′) are of the same type as follows.

Case 1. '(ℳ′) and '(ℳ′′) are type one. Assume N (1) = {x ty1 + A : x ∈ Fqm} and

N (2) = {x ty2 + A : x ∈ Fqm} with y1, y2 ∈ Fqn being linearly independent. Then N (1) and

N (2) are type two maximal sets. Suppose i ∈ {1, 2}. By Lemma 3.10 we have ∣N (i) ∩ℳ∣ =

∣N (i)∩ℳ′∣ = ∣N (i)∩ℳ′′∣ = q. Let N (i)∗ be a maximal set containing '(N (i)). It is easy to see

that ∣N (i)∗∩'(ℳ)∣ ⩾ q, ∣N (i)∗∩'(ℳ′)∣ ⩾ q and ∣N (i)∗∩'(ℳ′′)∣ ⩾ q. Since '(ℳ′) ∕= '(ℳ′′),
by Corollary 3.9, N (1)∗ and N (2)∗ must be type two. Since both N (i) and N (i)∗ are type two

maximal sets, we get ∣N (i)∣ = ∣N (i)∗∣, i = 1, 2. Since ' is an adjacency preserving map

and '(N (i)) ⊆ N (i)∗, we have ∣'(N (i))∣ = ∣N (i)∣ = ∣N (i)∗∣, and hence '(N (i)) = N (i)∗,

i = 1, 2. Now by Lemma 3.12 and Theorem 3.13, we must have N (1)∗ ∕= N (2)∗. Otherwise,

N (1)∗ = N (2)∗ implies that '(Fqm×n) is a maximum clique, a contradiction to the conditions.

By ∣N (i)∗ ∩ '(ℳ)∣ ⩾ q and Corollary 3.9, '(ℳ) must be type one. Therefore, '(ℳ), '(ℳ′)
and '(ℳ′′) are of the same type.

Case 2. '(ℳ′) and '(ℳ′′) are type two. Then Lemma 3.11 implies that m = n. Let

 (X) = t'(X). Then  is also an adjacency preserving map from Fqn×n to itself such

that  (Fqn×n) is not a maximum clique. Since  (ℳ′) and  (ℳ′′) are type one, by Case

1,  (ℳ),  (ℳ′) and  (ℳ′′) are of the same type. Consequently, '(ℳ), '(ℳ′) and '(ℳ′′)
are of the same type. □

Lemma 3.16. Let ' : Fqm×n → Fqm×n be an adjacency preserving map such that '(Fqm×n)

is not a maximum clique. Then

'(A) ∕= '(B) for any A,B ∈ Fqm×n with d(A,B) = 2. (3.27)

Proof. Without loss of generality we assume that '(0) = 0.

We first claim that '(X) ∕= 0 for all X ∈ Fqm×n with d(X, 0) = 2. To prove the claim, notice

that there exists an invertible matrix P such that X = P

[
�1

�2

0

]
with linearly independent �1

and �2 in Fqn. Let ℳ =

{
P

[
x+ �1

−x+ �2

0

]
: x ∈ Fqn

}
. Then ℳ is a type one maximal set

containing X and ℳ ∩ Pℳ1 ∕= ∅. By Lemma 3.15, '(ℳ) and '(Pℳ1) are two distinct

maximal sets of the same type such that their cardinality is qn, and '(ℳ) ∩ '(Pℳ1) ∕= ∅.

Let C = P

[
�2 + �1

0

0

]
. Since ℳ∩ Pℳ1 = {C} and X ∼ C, '(X) ∼ '(C) ∼ '(0) = 0. If

'(X) = 0, then '(ℳ) ∩ '(Pℳ1) = {'(C), '(X)}, which contradicts to Corollary 3.9. Thus,

'(X) ∕= 0 and the claim holds.

Now, let A,B ∈ Fqm×n with d(A,B) = 2. Define  (X) = '(X + A) − '(A) for all X ∈
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Fqm×n. Then  : Fqm×n → Fqm×n is also an adjacency preserving map such that  (Fqm×n) is

not any maximum clique and  (0) = 0. By the above claim, '(B) − '(A) =  (B − A) ∕= 0.

Thus (3.27) holds. □

For 2 ⩽ k ⩽ m, we let

ℒk =

{[
X

0

]
: X ∈ Fqk×n and 0 ∈ Fq(m−k)×n

}
. (3.28)

Lemma 3.17. Let ' : Fqm×n → Fqm×n be an adjacency preserving map such that '(Fqm×n)

is not a maximum clique and '(0) = 0. Then

(i) When m ∕= n, there is a P ∈ GLm(Fq) such that

'(ℳi) = Pℳi, i = 1, 2, (3.29)

and

'(ℒ2) = Pℒ2. (3.30)

(ii) When m = n, either ' or the map X 7→ t'(X) satisfies (3.29)-(3.30).

Moreover, the map ' ∣ℒ2
: ℒ2 −→ Pℒ2 or the map t' ∣ℒ2

: ℒ2 −→ Pℒ2 is bijective.

Proof. By Lemmas 3.7 and 3.15, when m ∕= n, there is P ∈ GLm(Fq) such that (3.29)

holds. When m = n, either ' or the map X 7→ t'(X) satisfies (3.29). Without loss of

generality, we assume the former case holds. It remains to show that '(ℒ2) = Pℒ2. Clearly,

'(ℳ1 ∪ℳ2) ⊆ Pℒ2.

We first claim that for any type one maximal set ℳ, if ℳ ∩ Pℒ2 contains at least two

elements, then ℳ⊆ Pℒ2. To see this, by Lemma 2.4,

ℳ = P ′ℳ1 +A =

⎧⎨⎩
P

⎡⎢⎢⎢⎢⎢⎣
p1x+ �1

p2x+ �2

...

pmx+ �m

⎤⎥⎥⎥⎥⎥⎦ : x ∈ Fqn

⎫⎬⎭
,

for some pk ∈ Fq, �k ∈ Fqn and invertible P ′ ∈ Fqm×m. Suppose there are two distinct elements

in ℳ∩ Pℒ2. Then there exist two distinct x1, x2 ∈ Fqn such that⎡⎢⎢⎣
p3x1 + �3

...

pmx1 + �m

⎤⎥⎥⎦ =

⎡⎢⎢⎣
p3x2 + �3

...

pmx2 + �m

⎤⎥⎥⎦ = 0.

It follows that p3 = ⋅ ⋅ ⋅ = pm = 0 and �3 = ⋅ ⋅ ⋅ = �m = 0. Therefore, ℳ⊆ Pℒ2.

Now let A =

[
�1

�2

0

]
∈ ℒ2 with �1 ∕= 0 and �2 ∕= 0. We prove '(A) ∈ Pℒ2 as follows.
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Case 1. Suppose rank(A) = 2. Set

ℳ =

⎧⎨⎩
⎡⎢⎢⎣

x+ �1

−x+ �2

0

⎤⎥⎥⎦ : x ∈ Fqn

⎫⎬⎭ .

Then ℳ is a type one maximal set containing A and ∣ℳ∩ℳi∣ = 1, i = 1, 2. By Lemma 3.15,

Corollary 3.9 and (3.29), '(ℳ) is a type one maximal set and ∣'(ℳ) ∩ Pℳi∣ = 1, i = 1, 2.

Suppose '(ℳ) ∩ Pℳi = {Bi} with i = 1, 2. Since 0 /∈ '(ℳ) and Pℳ1 ∩ Pℳ2 = {0}, B1

and B2 are two distinct elements in '(ℳ) ∩ Pℒ2 and by the claim, '(ℳ) ⊆ Pℒ2. Thus,

'(A) ∈ Pℒ2.

Case 2. Suppose rank(A) = 1. Set ℳ = ℳ1 + A. Then ℳ is a type one maximal set

containing A and ∣ℳ∩ℳ2∣ = 1. By Lemma 3.15, Corollary 3.9 and (3.29), '(ℳ) is a type one

maximal set and ∣'(ℳ) ∩ Pℳ2∣ = 1. Notice that ℳ contains at least two distinct rank two

matrices, say A1 and A2. By Case 1, '(A1) and '(A2) are in Pℒ2. So '(ℳ) ∩ Pℒ2 contains

at least two distinct elements. By the claim, '(ℳ) ⊆ Pℒ2, and hence, '(A) ∈ Pℒ2.

From the two cases, we conclude that '(ℒ2) ⊆ Pℒ2. By Lemma 3.16, the map ' ∣ℒ2 :

ℒ2 −→ Pℒ2 is injective, thus ∣ℒ2∣ = ∣Pℒ2∣ implies that it is bijective. Then '(ℒ2) = Pℒ2. □

Lemma 3.18. Let 3 ⩽ m ⩽ n and ' : Fqm×n → Fqm×n be an adjacency preserving map

such that '(Fqm×n) is not a maximum clique and '(0) = 0. For any i with 1 ≤ i < m, if

'(ℳi) =ℳi and '(ℳi+1) =ℳi+1, then

'(ℳi +ℳi+1) =ℳi +ℳi+1, (3.31)

where ℳi +ℳi+1 denotes the set {A+B : A ∈ℳi, B ∈ℳi+1}. Moreover, the restricted map

'∣ℳi+ℳi+1
is an adjacency preserving bijective map.

Proof. Clearly, ℳ1 +ℳ2 = ℒ2. For 2 ⩽ i ⩽ m− 1, we have

ℳi +ℳi+1 =

⎧⎨⎩
⎡⎢⎢⎣

0i−1

X

0

⎤⎥⎥⎦ : X ∈ Fq2×n

⎫⎬⎭ ,

where 0i−1 is the (i − 1) × n zero matrix. There exists a permutation matrix Q such that

Q tQ = Im and ℳi = Qℳ1, ℳi+1 = Qℳ2 and ℳi +ℳi+1 = Qℒ2. Let  (X) = Q−1'(QX)

for all X ∈ Fqm×n. Then  is also an adjacency preserving map from Fqm×n to itself such

that  (Fqm×n) is not any maximum clique and  (0) = 0. Moreover, we have  (ℳ1) = ℳ1,

 (ℳ2) =ℳ2 and  (ℒ2) = ℒ2.

Applying similar arguments as in the proof of Lemma 3.17, we can prove that  (ℒ2) = ℒ2

and the restricted map  ∣ℒ2
: ℒ2 −→ ℒ2 is bijective. It follows that (3.31) holds and the

restricted map '∣ℳi+ℳi+1
is an adjacency preserving bijective map. □

We are now ready to present the proof of our main result.
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Proof of Theorem 3.5. Without loss of generality, we assume that 2 ⩽ m ⩽ n (by Remark

3.14, when m > n ⩾ 2, using the transposes of matrices we can transform into the situation

2 ⩽ m < n). Then n = max{m,n}.

If (a) or (b) holds, then clearly ' preserves adjacency.

Conversely, suppose ' preserves adjacency. Suppose (a) does not hold. Then '(Fqm×n) is

not a maximum clique. Replacing the map ' by X 7→ '(X) − '(0), we have '(0) = 0. By

Lemma 3.17, and further replacing the map ' by X 7→ t'(X), if necessary, we can assume that

there is P ∈ GLm(Fq) such that

'(ℳi) = Pℳi, i = 1, 2, (3.32)

'(ℒ2) = Pℒ2. (3.33)

Moreover, the map ' ∣ℒ2 : ℒ2 −→ Pℒ2 is an adjacency preserving bijective map. Thus, by

Hua’s Theorem, we have that

'

[
X

0

]
= P

[
P1X

�Q1

0

]
for all X ∈ Fq2×n, (3.34)

where P1 ∈ GL2(Fq), Q1 ∈ GLn(Fq), and � is an automorphism of Fq.

Modify the adjacency preserving map '(X) by X 7→
[
(P−11 ⊕ Im−2)P−1'(X)Q−11

]�−1

. We

obtain

'

[
X

0

]
=

[
X

0

]
(3.35)

for all X ∈ Fq2×n. If m = 2, then this proof ends. From now on we assume m > 2.

For any A =

[
x1

0

]
∈ℳ1 with tx1 ∈ Fqn, let  A(X) = '(X+A)−'(A) for all X ∈ Fqm×n.

Then  A is an adjacency preserving map such that  A(0) = 0. By (3.35), it is clear that

 A

[
X

0

]
=

[
X

0

]
, for all X ∈ Fq2×n. (3.36)

In particular,  A(ℳi) =ℳi, i = 1, 2. By (3.36) and Corollary 3.8, we have

 A(N1) = N1. (3.37)

By (3.37), let  A(E31) =
∑m
i=1 ai1Ei1. We show

∑m
i=3 ai1Ei1 ∕= 0. Otherwise,  A(E31) =

a11E11 +a21E21, but E31 ∼ a11E11 +a21E21 and hence (3.36) implies that  A(E31) ∼ a11E11 +

a21E21 =  A(E31), a contradiction. Applying appropriate elementary transformation of rows

of matrix, we can assume that (3.35)-(3.37) hold and  A(E31) = E31. By Corollary 3.8, there

are two and only two maximal sets containing E31 and 0, they are N1 andℳ3. It follows from

(3.37) and Lemma 3.15 that

 A(ℳ3) =ℳ3. (3.38)
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Therefore, by Lemma 3.18, we have

 A(ℳ2 +ℳ3) =ℳ2 +ℳ3. (3.39)

Moreover, the induced map from (3.39) is an adjacency preserving bijective map. Using Hua’s

Theorem, one has

 A

⎡⎢⎢⎣
01

X

0

⎤⎥⎥⎦ =

⎡⎢⎢⎣
01

PAX
�AQA

0

⎤⎥⎥⎦ , for all X ∈ Fq2×n, (3.40)

where 01 is the 1× n zero matrix, PA ∈ GL2(Fq), QA ∈ GLn(Fq), and �A is an automorphism

of Fq. Denote

PA =

[
a b

c d

]
.

For any X =

[
y

z

]
∈ Fq2×n, we have PAX

�AQA =

[
a b

c d

][
y�AQA

z�AQA

]
. When z = 0, it follows

from (3.36) that

PAX
�AQA =

[
a b

c d

][
y�AQA

0

]
=

[
ay�AQA

cy�AQA

]
=

[
y

0

]
for all ty ∈ Fqn. Therefore, we get c = 0 and y�AQA = a−1y for all ty ∈ Fqn. Choosing y = 0,

we have

PAX
�AQA =

[
a b

0 d

][
0

z�AQA

]
=

[
a b

0 d

][
0

a−1z

]
=

[
ba−1z

da−1z

]
for all tz ∈ Fqn. It follows from (3.38) that b = 0 and d ∕= 0. Let fA = da−1. Then

PAX
�AQA =

[
y

fAz

]
, for all X =

[
y

z

]
∈ Fq2×n.

Next we deduce that fA = fB for any distinct A =

[
x1

0

]
, B =

[
x2

0

]
∈ ℳ1 with

tx1,
tx2 ∈ Fqn. Recalling the definition of  A, for any ty, tz ∈ Fqn, we have

'

⎡⎢⎢⎢⎢⎣
x1

y

z

0

⎤⎥⎥⎥⎥⎦ =  A

⎡⎢⎢⎢⎢⎣
0

y

z

0

⎤⎥⎥⎥⎥⎦+ '(A) =

⎡⎢⎢⎢⎢⎣
x1

y

fAz

0

⎤⎥⎥⎥⎥⎦ , '

⎡⎢⎢⎢⎢⎣
x2

y

z

0

⎤⎥⎥⎥⎥⎦ =  B

⎡⎢⎢⎢⎢⎣
0

y

z

0

⎤⎥⎥⎥⎥⎦+ '(B) =

⎡⎢⎢⎢⎢⎣
x2

y

fBz

0

⎤⎥⎥⎥⎥⎦ .
Since

rank

⎛⎜⎜⎜⎜⎝'
⎡⎢⎢⎢⎢⎣
x1

y

z

0

⎤⎥⎥⎥⎥⎦− '
⎡⎢⎢⎢⎢⎣
x2

y

z

0

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠ = rank

⎛⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣
x1

y

fAz

0

⎤⎥⎥⎥⎥⎦−
⎡⎢⎢⎢⎢⎣
x2

y

fBz

0

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠ = 1
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for all tz ∈ Fqn, we must have fA = fB when x1 ∕= x2. Replacing the map '(Z) with

(I2 ⊕ f−1A ⊕ Im−3)'(Z) if necessary, we can assume fA = 1. Therefore, we obtain that

'

[
X

0

]
=

[
X

0

]
for all X ∈ Fq3×n. (3.41)

Inductively, assume that 4 ⩽ k ⩽ m and '

[
X

0

]
=

[
X

0

]
for all X ∈ Fq(k−1)×n. By the

method above and (3.3), we can prove that '

[
X

0

]
=

[
X

0

]
for all X ∈ Fqk×n. Therefore,

we can prove '(X) = X for all X ∈ Fqm×n. The proof is complete. □
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