
MAPS PRESERVING MATRIX PAIRS WITH ZERO
JORDAN PRODUCT
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1. Preliminaries

One of the most active subjects in matrix theory during the past one hun-
dred years is the linear preserver problem which concerns characterization
of linear operators on matrix spaces that leave certain functions, subsets,
relations, etc., invariant. For surveys of the topic we refer to the papers
[18, 17, 26]. Such problems arise in most parts of mathematics. This is
not surprising since in many cases the corresponding results provide impor-
tant information on the automorphisms of the underlying structures. In the
last few decades a lot of results on linear preservers on matrix algebras as
well as on more general rings and operator algebras have been obtained (see
[23]). Besides linear preservers also a more general problem of characteriz-
ing additive preservers and related problem of characterizing multiplicative
preservers on matrix algebras were studied a lot. It is surprising that in
some cases we can get nice structural results for preservers without any al-
gebraic assumption like linearity, additivity or multiplicativity. Probably
the first fundamental attempt to attack non-linear preserver problems on
matrices and their subspaces was made by Hua [16, 15]. Later, Baribeau
and Ransford in [3] studied spectrum preserving non-linear maps of matrix
algebras under some mild differentiability condition. We refer to Guterman
and Mikhalev [12] for a nice survey of the methods and historical remarks
about preserver problems.

One among the most basic preserver problems is classifying maps that pre-
serve zeros of various products. For example, Botta, Pierce, and Watkins [4]
classified linear maps that preserve nilpotents on n × n matrices, i.e. zeros
of the product X 7→ Xn. Howard [14] (see also Li and Pierce [19]) extended
this result and classified linear bijections on matrix algebras preserving zeros
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of any fixed polynomial of degree at least two. Linear maps that preserve
commutativity on matrices, i.e. zeros of a Lie product (X,Y ) 7→ XY −Y X,
were classified by Watkins [31], while general ones were given by Šemrl [29].
Maps on matrices that preserve zeros of a fixed homogeneous multilinear
polynomial in k noncommuting variables were studied by Guterman and
the second author [11]. We refer to Chebotar, Ke, Lee and Wong [8] for
linear preservers of zero product on quite general algebras, and to Zhao
and Hou [33] for additive preservers of zeros of Jordan product on certain
operator algebras.

The aim of this article is to study maps that preserve zeros of a Jordan
product on complex Hermitian and complex symmetric matrices without
additional assumptions like linearity/additivity/. . . . In Hermitian case we
only use the assumption that the preserver does not annihilate nonzero
matrices. In symmetric case we assume more: that the map is injective
and continuous. We emphasize that in symmetric case without imposing
some additional regularity conditions, like continuity, we cannot hope for
a nice structural result (consider for example an injective map with the
image contained in square-zero nilpotents). We remark that our results
on symmetric matrices are in the spirit of Šemrl [29] who studied injective
continuous maps which preserve zeros of a Lie product.

Let us list some mostly standard notation. Throughout, n ≥ 3 will be an
integer and Mn will be the algebra of all n × n matrices over the field of
complex numbers and Mm,n will be the space of m × n complex matrices.
Let Eij be the standard basis of Mn. We denote by Hn ⊆ Mn the real
space of n × n Hermitian matrices (i.e. A∗ = A, where A∗ = A

t) and by
Sn ⊆Mn the space of n×n complex symmetric matrices (i.e. At = A). We
will study maps with the property

A ◦B = 0 =⇒ φ(A) ◦ φ(B) = 0,

where A◦B = AB+BA is a Jordan product. In case of symmetric matrices
we will further assume that a map is injective and continuous. This will en-
able us to utilize Brouwer’s theorem about the invariance of domain theorem
[10, p.344] which states that if U is an open subset of Rm and F : U → Rm

is a continuous injective map, then F (U) is open. In particular, there is no
injective continuous map from Rk into Rm whenever m < k.

Every rank one Hermitian matrix can be written as A = xx∗ for some
column vector x ∈ Cn. Similarly, every rank one symmetric matrix can be
written as A = xxt. Despite apparent similarity, there is a more profound
difference between the two classes of matrices. Namely, no Hermitian ma-
trix other than zero is nilpotent. However there are nilpotent symmetric
matrices of rank one. A typical example is given by xxt with x = e1 + ie2,
where i2 = −1 and where ek are column vectors from a standard basis of
Cn. Actually, every complex matrix is similar to a symmetric matrix [13,
Theorem 4.4.9].
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We remark that complex Hermitian and complex symmetric matrices are
used to describe different geometries on Cn. While the former are used
to describe all possible unitary geometries, the latter describe all possible
orthogonal geometries on Cn. More on different geometries can be found in
a book by Artin [2].

2. Maps on Hermitian matrices

Before stating our first main result on Hermitian matrices we recall the
following facts. Given A ∈ Hn, there exists a unitary matrix U (i.e. U∗U =
Id) such that

(1) U∗AU = diag(a1, a2, . . . , an)

where a1, a2, . . . , an are real scalars. Define a Jordan commutant of A as

A# = {X ∈ Hn : A ◦X = 0}.

Note that this is always a real vector space. It is easy to see that E#
nn =

Hn−1⊕ 0, so X ◦Enn = 0 if and only if XEnn = 0 = EnnX. From here, one
can easy deduce that rank one Hermitian matrices are linearly dependent if
and only if they have the same Jordan commutant. Note also that A = 0 if
and only if A# = Hn.

We can now state our first result.

Theorem 2.1. Let n ≥ 3. Assume a map φ : Hn → Hn preserves zeros
of Jordan product in one direction only, and assume φ(X) = 0 is possible
only if X = 0. Then φ(0) = 0 and there exists a unitary matrix U such that
either

(i) φ(A) = tAUAU
∗

for every rank one matrix A ∈ Hn, or

(ii) φ(A) = tAUA
tU∗

for every rank one matrix A ∈ Hn. Here, tA is a nonzero real number
determined by A.

It is necessary to impose the condition about φ(X) = 0. Without it
there are much more possibilities: we could map, say, E11 into E11 − E22,
and E22 into E12 + E21 and every other matrix into 0; this map preserves
zeros of Jordan product. However, when the zeros of Jordan product are
preserved in both directions no additional assumption is needed because if
φ(X) = 0 then 0 = φ(X) ◦ φ(X). This yields that 0 = X ◦ X since zeros
are preserved in both directions. Hence, X2 = 0 and in Hermitian matrices
this automatically implies X = 0. We thus record the following immediate
corollary to our Theorem.



4 A. FOŠNER, B. KUZMA, T. KUZMA, AND N.-S. SZE

Corollary 2.2. Let n ≥ 3. Assume φ : Hn → Hn is a map with the property

(2) AB +BA = 0 ⇐⇒ φ(A)φ(B) + φ(B)φ(A) = 0.

Then, (i)–(ii) of Theorem 2.1 hold.

We record one more corollary for injective maps, which we will prove at
the end of this section.

Corollary 2.3. Let n ≥ 3 and let φ : Hn → Hn be an injective map
that preserves zeros of Jordan product in one direction. Then (i)–(ii) from
Theorem 2.1 hold.

Remark 2.4. Without additional assumptions the validity of Theorem 2.1
and Corollaries 2.2 and 2.3 cannot be extended to the whole Hn, see Ex-
ample 2.11 below. However if φ posses more regularity, say if it is additive,
then φ is nice everywhere. We refer to the last section for a proof.

Let us start to prove Theorem 2.1. We will rely heavily on classifying
subsets with maximal possible number of elements in Hn that consist of
pairwise Jordan–orthogonal matrices, see Lemma 2.5. A similar idea of
using orthogonality in solving preserver problems was also considered in the
paper by Chan, Li, and the last author [7].

Given two subsets Ω1,Ω2 ⊆ Hn we write for simplicity Ω1 ∼ Ω2 if RΩ1 =
RΩ2, where RΩ = {λA : λ ∈ R, A ∈ Ω}. Observe that this happens if and
only if for each S ∈ Ω1 and each T ∈ Ω2 there exist nonzero real numbers
λS and λT such that λSS ∈ Ω2 and λTT ∈ Ω1. We also write A ∼ B for
matrices A,B if {A} ∼ {B}. Given a real number x, let bxc be the largest
integer not exceeding x. Define

Dij = Eii − Ejj , Fij = (Eij + Eji), Gij = i(Eij − Eji); (i 6= j),

and let

Fn =
n/2⋃
i=1

{D(2i−1)(2i), F(2i−1)(2i), G(2i−1)(2i)}; n ≥ 1 is even

Fn = {Enn} ∪
(n−1)/2⋃
i=1

{D(2i−1)(2i), F(2i−1)(2i), G(2i−1)(2i)}; n ≥ 1 is odd.

We remark that F1 = {1} ⊂ H1 = R. Notice that S ◦T = 0 for any distinct
S, T ∈ Fn, and notice that the cardinality of Fn satisfies |Fn| = b3n

2 c. In
the next lemma we prove the converse of this statement.

Lemma 2.5. Let n ≥ 1. Given a subset T of nonzero matrices in Hn,
suppose that

(3) S ◦ T = 0 for all distinct S, T ∈ T .
Then, |T | ≤ b3n

2 c. The equality holds if and only if there is a unitary matrix
U such that

T ∼ {USU∗ : S ∈ Fn}.
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Proof. We argue by induction on the size of matrices n. The case when
n = 1 can be proved easily. So assume the two assertions hold in all sizes
up to n− 1. Pick any T ⊆ Hn which satisfies (3) and consider two cases.

(i) Suppose, to start with, that there is at least one A ∈ T with two
distinct eigenvalues λ and µ such that λ 6= −µ. Then, A is unitarily similar
to A′⊕A′′ where Sp(A′) ⊆ {λ,−λ} and Sp(A′′) = Sp(A)\{λ,−λ}. So, up to
unitary similarity, A′ = λ Idn1 ⊕(−λ) Idn2 , and A′′ = µ Idn3 ⊕µ4 Idn4 ⊕ · · ·⊕
µk Idnk where we agreed that if (−λ) 6∈ Sp(A) or if λ = 0 = −λ we let n2 = 0
and omit the summand (−λ) Idn2 . Due to {λ,−λ}∩{µ, µ4, . . . , µk} = ∅, the
condition (3) easily implies that every B ∈ T takes the form B = B′⊕B′′ ∈
Hm⊕Hn−m wherem = n1+n2 ∈ {1, . . . , n−1}. By the induction hypothesis,
the sets T ′ = {B′ : B ∈ T } and T ′′ = {B′′ : B ∈ T }, which also satisfy (3),
have at most |Fm| and |Fn−m| nonzero elements. A simple argument then
gives

|T | ≤ |Fm|+ |Fn−m| = b3m
2 c+ b3(n−m)

2 c ≤ b3n
2 c.

Notice that the last inequality is strict unless m or n − m is even. Fur-
thermore, if there is some B = B′ ⊕ B′′ ∈ T such that B′ 6= 0 and
B′′ 6= 0 then |T | ≤ 1 + (|Fm| − 1) + (|Fn−m| − 1) so the first inequality,
i.e. |T | ≤ |Fm|+ |Fn−m|, is strict. Hence, the equality under (i) holds only
if T = (T ′ ⊕ 0n−m) ∪ (0m ⊕ T ′′), and m or n −m is even. With the help
of unitary similarity given by permutation matrix we can achieve that m is
even. Using the induction hypothesis the equality thus holds if and only if,
up to unitary similarity, m is even and T ∼ (Fm ⊕ 0n−m) ∪ (0m ⊕ Fn−m).
It is easy to see that (Fm ⊕ 0n−m) ∪ (0m ⊕ Fn−m) = Fn, which proves the
induction step under (i).

(ii) It remains to consider the case when each A ∈ T is either a scalar or
Sp(A) = λA{−1, 1} for some nonzero λA. Now, if T contains a scalar, then
this is its only member, giving 1 = |T | < b3n

2 c. So suppose every A ∈ T
satisfies Sp(A) = λA{−1, 1}. Clearly we can assume λA = 1, i.e., T contains
only involutions. Fix one A and assume without loss of generality that
A = Idm⊕(− Idn−m). If B ∈ T \ {A} then B ◦A = 0 and it readily follows
that B =

(
0 V
V ∗ 0

)
for some m × (n − m) matrix V . By the assumptions,

Sp(B) = λB{−1, 1} = {−1, 1} so B is invertible and B2 = Id which is
possible only if n = 2m and if V is unitary.

Fix another B1 =
(

0 V1
V ∗1 0

)
∈ T \ {A}. Using unitary similarity U1 =

V ∗1 ⊕ Idm we have U1AU
∗
1 = A and U1B1U

∗
1 =

(
0 Idm

Idm 0

)
. We may assume

that U1 = Id2m, otherwise we would apply U1 to every member of T without
affecting (3). Then, given any two B, B̂ ∈ T \ {A} an easy computation
reveals that

(4) B ◦ B̂ = 2
(

Re(V V̂ ∗)⊕ Re(V ∗V̂ )
)
,
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where ReX = (X + X∗)/2 is the real part of a square matrix X = V V̂ ∗.
Thus, for every B ∈ T \ {A,B1} we have B1 ◦B = 0 which gives

(5) Re(V ∗) = 0 = Re(V )

and the unitary V equals V = iH for some Hermitian H. Hence, every
B ∈ T \ {A,B1} takes the form

B =
(

0 iH
−iH 0

)
; H ∈ Hm, Sp(H) ⊆ {−1, 1}.

Recall B ◦ B̂ = 0 for distinct B, B̂ ∈ T \ {A,B1}, so (4) implies that
0 = (iH)(iĤ)∗ + (iĤ)(iH)∗ = H ◦ Ĥ.

By the induction hypothesis we infer that, together with A and B1, there
exist at most 2 + b3m

2 c matrices inside T under (ii). Due to n = 2m we
easily see that |T | ≤ 2 + b3m

2 c ≤ 3m = b3n
2 c. The equality holds only when

m = 1, that is, when n = 2m = 2, in which case, up to unitary similarity,

T ∼
{(

1 0
0 −1

)
, ( 0 1

1 0 ) ,
(

0 i
−i 0

)}
.

This proves the inductive step also under (ii). �

Lemma 2.6. Let {X1, X2, X3} ⊆ Fn.
(i) If {X1, X2, X3} = V {D12, F12, G12}V ∗ for some permutation matrix

V , then

(6)
⋂

H∈Fn\{X1,X2,X3}

H# = V (H2 ⊕ 0n−2)V ∗.

(ii) If X1X2 = 0 = X2X1, then

(7)
⋂

H∈Fn\{X1,X2,X3}

H# = RX1 + RX2 + RX3.

Proof. (i) We may assume that V = Id. Now, it is easy to see that D#
12 =

LinR{F12, G12} + (02 ⊕ Hn−2), wherefrom D#
12 ∩ F

#
12 ∩ G

#
12 = 02 ⊕ Hn−2.

With the help of unitary similarity given by permutation matrix we now find
that, for every i, D#

(2i−1)(2i)∩F
#
(2i−1)(2i)∩G

#
(2i−1)(2i) consists of all Hermitian

matrices that vanish on (2i − 1)-th and (2i)-th rows and columns. Noting
that Fn\{X1, X2, X3} =

⋃n/2
i=2{D(2i−1)(2i), F(2i−1)(2i), G(2i−1)(2i)} if n is even,

and Fn\{X1, X2, X3} = {Enn}∪
⋃(n−1)/2
i=2 {D(2i−1)(2i), F(2i−1)(2i), G(2i−1)(2i)}

if n is odd, we easily derive (6).
(ii) After reindexing X1, X2, X3 and applying unitary similarity given by

a permutation matrix we are facing four possibilities (a) (X1, X2, X3) =
(D12, D34, D56), (b) (X1, X2, X3) = (Enn, D34, D56), (c) (X1, X2, X3) =
(D12, F34, G34), and (d) (X1, X2, X3) = (Enn, F34, G34). Assume option (d).
As in the proof of (i) we see that each matrix from Ω =

⋂
H∈Fn\{X1,X2,X3}H

#

has all rows and columns zero except possibly the 3-rd, 4-th and n-th. We
infer that Ω ⊆ 02 ⊕ H2 ⊕ 0n−5 ⊕ H1. Since D34 ∈ Fn \ {X1, X2, X3} we
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deduce that Ω ⊆ (02 ⊕H2 ⊕ 0n−5 ⊕H1)∩D#
34 = RF34 + RG34 + REnn, and

it is easy to prove the inverse inclusion. This proves (7) under (d). Likewise
we argue in each of the remaining opinions (a)–(c). �

We acknowledge that the original idea for the proof of the next lemma
used the theory of graph coloring, and came from [25].

Lemma 2.7. Let n ≥ 3. Assume a map φ : Hn → Hn preserves zeros of
Jordan product in one direction only, and assume φ(X) = 0 is possible only
if X = 0. Then, φ(0) = 0 and φ preserves the set of rank one Hermitian
matrices.

Proof. Let us start by showing that (i) if n is even then rkφ(A) = 2 for any
Hermitian A with rank two, trace-zero and (ii) if n is odd then 1 ≤ rkφ(A) ≤
2 for any Hermitian A with rank two, trace-zero or with rank one. We regard
only the very last possibility because the first one in case (ii) and case (i) can
be proved likewise. So assume n is odd and rkA = 1. There exists a unitary
similarity U and a nonzero a ∈ R such that A = aUEnnU

∗. Consider the
set

T = aUFnU∗

= a{UEnnU∗} ∪
(n−1)/2⋃
i=1

a{UD(2i−1)(2i)U
∗, UF(2i−1)(2i)U

∗, UG(2i−1)(2i)U
∗}

of b3n
2 c nonzero matrices, with pairwise zero Jordan products, which con-

tains A. By the assumptions, φ(T ) also consists of nonzero Hermitian matri-
ces with pairwise zero Jordan products. Since no nonzero Hermitian matrix
is square-zero, φ is injective on T and φ(T ) contains b3n

2 c nonzero matrices
so, by Lemma 2.5, φ(T ) ∼ V FnV ∗ for some unitary similarity V . This
shows that 1 ≤ rkφ(A) ≤ 2 whenever rkA = 1. If A is rank two, trace-zero
and n is either odd or even we would consider A = aU(E11 − E22)U∗ and
then repeat the above arguments to show once more 1 ≤ rkφ(A) ≤ 2 or
rkφ(A) = 2, respectively.

The first part of the claim in Lemma 2.7 is now easy: Since 0 ◦ X = 0
for every X ∈ T , we have φ(0) ◦ Y = 0 for every Y ∈ φ(T ) ∼ V FnV ∗.
Therefore, φ(T ) ∪ {φ(0)} contains 1 + b3n

2 c distinct matrices with pairwise
zero Jordan products, which, by Lemma 2.5, is possible only if some of them
is zero, giving φ(0) = 0.

The proof of the second part of Lemma 2.7 relies on the following claim:
Claim. For any unitary U , there is a unitary V such that{

φ(UD12U
∗) , φ(UF12U

∗) , φ(UG12U
∗)
}
∼ V {D12, F12, G12}V ∗.

Without loss of generality we assume that U = Idn. Then, there is a uni-
tary V with φ(Fn) ∼ V FnV ∗. By temporarily replacing φ with φ : X 7→
γXV

∗φ(X)V for appropriate scalars γX we may also assume V = Idn and
φ(Fn) = Fn. Denote

X = φ(D12), Y = φ(F12), Z = φ(G12).



8 A. FOŠNER, B. KUZMA, T. KUZMA, AND N.-S. SZE

Since {X,Y, Z} ⊆ Fn, the claim will hold if no two matrices from {X,Y, Z}
are orthogonal. Assume otherwise that, say X,Y are orthogonal. Then, Z
must also be orthogonal to at least one of X,Y . Without loss of generality
we assume Z is orthogonal to X. By the fact that φ(Fn \{D12, F12, G12}) =
Fn \ {X,Y, Z}, Lemma 2.6 yields

φ(RD12 + RF12 + RG12) ⊆
⋂

H∈Fn\{X,Y,Z}

H# = RX + RY + RZ.

However, every nonzero matrix A ∈ RD12 +RF12 +RG12 is rank two, trace-
zero hence rkφ(A) ≤ 2 and as X is orthogonal to Y,Z we actually have

(8) φ(RD12 + RF12 + RG12) ⊆ RX ∪ (RY + RZ).

Observe that S◦G12 = 0 for all S ∈ RD12+RF12. Therefore, φ(S)◦Z = 0 for
all S ∈ RD12 +RF12. Similarly we get φ(T )◦Y = 0 for all T ∈ RD12 +RG12.
This implies

φ(RD12 + RF12) ∈ RX ∪ RY and φ(RD12 + RG12) ∈ RX ∪ RZ.

Consequently, since (D12 +F12) ◦ (D12−F12) = 0, there is α ∈ {−1, 1} with

φ(D12 − αF12) ∼ X and φ(D12 + αF12) ∼ Y.

Similarly, there is β ∈ {−1, 1} with

φ(D12 − βG12) ∼ X and φ(D12 + βG12) ∼ Z.

Observe that

(D12 + αF12 − βG12) ∈ (D12 − αF12)# ∩ (D12 + βG12)#

and
(D12 − αF12 + βG12) ∈ (D12 + αF12)# ∩ (D12 − βG12)#.

Together with (8) it follows that

φ(D12 + αF12 − βG12) ∼ Y and φ(D12 − αF12 + βG12) ∼ Z.

Finally, (αF12 + βG12) ∈ (D12 + αF12 − βG12)# ∩ (D12 − αF12 + βG12)#

implies that
φ(αF12 + βG12) ∼ X = φ(D12).

But this is impossible as D12 ◦ (αF12 + βG12) = 0. Thus, the claim holds.

Back to the proof, we consider two cases separately.
Case n is odd. Consider an arbitrary rank one A = aUEnnU

∗; we need
to show that rkφ(A) = 1. Now, without loss of generality we may assume
that already A = Enn and that φ(Fn) ∼ Fn. Then the claim implies that
every rank two, trace-zero matrix in Fn is mapped into a rank two, trace-zero
matrix. Hence, φ(Fn \ {Enn}) ∼ Fn \ {Enn}, and so φ(A) = φ(Enn) ∼ Enn,
as claimed.
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Case n is even. Given A = aUE11U
∗, we may assume that A = E11

and that φ(Fn) ∼ Fn. Now, by the above Claim, and due to φ(Fn) ∼ Fn,
we have {φ(D12), φ(F12), φ(G12)} ∼ {D12, F12, G12}. Consequently,

(9) φ
(
Fn \ {D12, F12, G12}

)
∼ Fn \ {D12, F12, G12}.

With the help of yet another unitary similarity, given by permutation matrix
of the form Id2⊕V ′′ we may assume that in addition, φ(D34) ∼ D34. By
the Claim we then have {φ(D34), φ(F34), φ(G34)} ∼ {D34, F34, G34}.

Now, A = E11 has zero Jordan product with every matrix from Fn \
{D12, F12, G12}, so φ(E11) has zero Jordan product with every matrix from
φ
(
Fn \ {D12, F12, G12}

)
∼ Fn \ {D12, F12, G12}. In particular,

φ(E11) ∈ H2 ⊕ 0n−2.

Arguing likewise shows that

φ(E44) ∈ 02 ⊕H2 ⊕ 0n−4,

so φ(E11) is orthogonal to φ(E44). Furthermore, D23, F23, G23 have zero
Jordan product with every matrix from Fn \ {D12, F12, G12, D34, F34, G34},
so φ(D23), φ(F23), φ(G23) have zero Jordan product with every matrix from
φ
(
Fn \ {D12, F12, G12, D34, F34, G34}

)
∼ Fn \ {D12, F12, G12, D34, F34, G34}.

From here we can infer that

φ(D23), φ(F23), φ(G23) ∈ H4 ⊕ 0n−4,

and by the Claim, there is a unitary similarity V3 = V ′′′ ⊕ Idn−4 such that
{φ(D23), φ(F23), φ(G23)} ∼ V3{D12, F12, G12}V ∗3 . Now, φ(E11), φ(E44) ∈
H4 ⊕ 0n−4 = V3(H4 ⊕ 0n−4)V ∗3 have zero Jordan products with the above
three matrices. It is easy to see that they must both lie inside V3(02 ⊕
H2 ⊕ 0n−4)V ∗3 . Being orthogonal, their rank is at most one. In particular,
rkφ(E11) = 1. �

The well-known Uhlhorn’s generalization [30] of Wigner’s [32] unitary–
antiunitary theorem states that any bijection ϕ on a projective space P(H) =
{[x] = Cx : x ∈ H\{0}} of a complex Hilbert space H, which preserves
orthogonality of points (i.e., of one dimensional subspaces in Hilbert space)
in both directions is given by linear or conjugate linear bijective isometry.
Recall that orthogonality is defined by [x]⊥[y] if 〈x, y〉 = 0 for some repre-
sentatives x ∈ [x], y ∈ [y], where 〈·, ·〉 is a scalar product on H.

This result was extended by van den Broek [5] and then generalized by
Molnár [22] to bijections which preserve orthogonality on indefinite inner
product spaces. Later, Šemrl [28] showed that on finite dimensional spaces,
bijectivity can be relaxed to injectivity, while still assuming that orthog-
onality is preserved in both directions. Rodman and Šemrl [27] classified
maps on finite dimensional projective spaces over skew-fields which preserve
orthogonality in one direction only. Their results also hold in indefinite in-
ner product spaces, however because of the possible presence of isotropic
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vectors they had to assume that the map is injective when dimension is
three and bijective when dimension is greater than three. Our next series
of lemmas will show that on the projective space over finite dimensional
complex Hilbert space we can drop injectivity – any map which preserves
orthogonality in one direction only is automatically bijective.

Lemma 2.8. Let n ≥ 3. Suppose a map ϕ : P(Cn) → P(Cn) preserves
orthogonality. Then, for any set of three orthonormal vectors {x1, x2, x3} ⊆
Cn there exists a set of three orthonormal vectors {x̂1, x̂2, x̂3} ⊆ Cn such
that

(10) ϕ
(
[α1x1 + α2x2 + α3x3]

)
= [α1x̂1 + α2x̂2 + α3x̂3]

holds for every α1, α2, α3 ∈ {−1, 0, 1} except α1 = α2 = α3 = 0.

Proof. Given a set of orthonormal vectors {x1, x2, x3} we first extend it to
an orthonormal basis {x1, x2, x3, . . . , xn} of Cn. Let x̂j be a unit vector such
that

(11) [x̂j ] = ϕ([xj ]); (j = 1, . . . , n).

Since ϕ preserves orthogonality, {x̂1, . . . , x̂n} is another orthonormal basis.
Hence, it easily follows that ϕ maps every line from the subspace [x1] +
[x2] + [x3] into a line in [x̂1] + [x̂2] + [x̂3]. Therefore, ϕ([x1 + x2 + x3]) =
[β1x̂1 + β2x̂2 + β3x̂3]. Without loss of generality we assume that β1 > 0 and
β2, β3 ≥ 0, otherwise we would temporarily replace ϕ with an orthogonality
preserving map [x] 7→ V ϕ([x]) for a suitably chosen unitary V . So, we have

(12) ϕ([x1 + x2 + x3]) = [β1x̂1 + β2x̂2 + β3x̂3] = [x̂1 + βx̂2 + γx̂3],

where β = β2

β1
≥ 0 and γ = β3

β1
≥ 0. We will verify at the end of the proof

that actually β = 1 = γ. Next, by the fact that [x2]⊥[x1 − x3]⊥[x1 + x2 +
x3]⊥[x1 − x2]⊥[x3], (11) and (12) imply that

(13) ϕ([x1 − x3]) = [γx̂1 − x̂3] and ϕ([x1 − x2]) = [βx̂1 − x̂2].

Next, with [x2]⊥[x1 + x3]⊥[x1 − x3] and [x3]⊥[x1 + x2]⊥[x1 − x2], (11) and
(13) imply that

(14) ϕ([x1 + x3]) = [x̂1 + γx̂3] and ϕ([x1 + x2]) = [x̂1 + βx̂2].

Further, as [x1 − x3]⊥[x1 − x2 + x3]⊥[x1 + x2] and [x1 − x2]⊥[x1 + x2 −
x3]⊥[x1 + x3], (13) and (14) give

(15)
ϕ([x1 − x2 + x3]) = [βx̂1 − x̂2 + βγx̂3] and

ϕ([x1 + x2 − x3]) = [γx̂1 + βγx̂2 − x̂3].

Similarly, with [x1 +x2−x3]⊥[x2 +x3]⊥[x1]⊥[x2−x3]⊥[x1 +x2 +x3], (11),
(12), and (15) give

(16) ϕ([x2 + x3]) = [x̂2 + βγx̂3] and ϕ([x2 − x3]) = [γx̂2 − βx̂3].

Notice that [x2 + x3]⊥[x2 − x3]. Then, γ − β2γ = 0. On the other hand,
[x1 − x2 + x3]⊥[x2 + x3] implies from (15) and (16) that −1 + (βγ)2 = 0.
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The two equations, together with the initial assumption β, γ ≥ 0, give β =
1 = γ. Finally, as [x1 + x3]⊥[−x1 + x2 + x3]⊥[x1 + x2], by (13) we have
ϕ([−x1 + x2 + x3]) = [−x̂1 + x̂2 + x̂3]. This exhausts all 13 lines inside
Eq. (10). �

Lemma 2.9. For any orthonormal pair {w1, w2} we have ϕ([w1]) 6= ϕ([w1+
βw2]) if β >

√
2.

Proof. Suppose not. Take a unit vector w3 such that {w1, w2, w3} forms an
orthonormal set. Let ξ =

√
2
3

(
1 + 1

β2

)
− 1

β . Then β >
√

2 implies 0 < ξ < 1.
Now define

u = w1, v = w1 + βw2, and z = w1 + ξw2 +
√

1− ξ2w3.

Notice that ‖u‖ = 1, ‖v‖ =
√

1 + β2, ‖z‖ =
√

2, u∗z = 1, and v∗z =√
2(β2 + 1)/3. Then, there exist two orthonormal sets {x1, x2, x3} and

{y1, y2, y3} such that [x1] = [u], [x1 +x2] = [z], and [y1] = [v], [y1 +y2 +y3] =
[z], respectively. By Lemma 2.8,

[x̂1] = ϕ([u]) = ϕ([v]) = [ŷ1] and [x̂1 + x̂2] = ϕ([z]) = [ŷ1 + ŷ2 + ŷ3]

for some orthonormal sets {x̂1, x̂2, x̂3} and {ŷ1, ŷ2, ŷ3}, respectively. It fol-
lows that x̂1 = γŷ1 and x̂1 + x̂2 = δ(ŷ1 + ŷ2 + ŷ3) for some |γ| = 1 and some

|δ| =
√

2
3 . Then, (γ − δ)ŷ1 = δ(ŷ2 + ŷ3)− x̂2. But this is impossible as ŷ1 is

orthogonal to ŷ2, ŷ3, and also to x̂2 because ŷ1 = 1
γ x̂1. �

Lemma 2.10. Let n ≥ 3. Suppose a map ϕ : P(Cn) → P(Cn) preserves
orthogonality. Then, there exists a unitary matrix V such that

ϕ([x]) = [V x], or(i)

ϕ([x]) = [V x̄].(ii)

Proof. Let us show that ϕ is injective. Suppose otherwise. Then, there are
lines [u1] 6= [u2] with ϕ([u1]) = ϕ([u2]). Clearly, [u1] cannot be orthogonal
to [u2]. Thus, there exits an orthonormal basis x1, . . . , xn such that [u1] =
[x1] and [u2] = [x1 + βx2] for some complex β = |β|eiϕ 6= 0. Replacing
x2 with eiϕx2 we may assume that β = |β| > 0. By Lemma 2.8 there
exist orthonormal vectors {x̂1, x̂2, x̂3} such that (10) holds. In particular,
ϕ([x1 + βx2]) = ϕ([x1]) = [x̂1]. Furthermore, [βx1 − x2 + βx3]⊥[xj ], (j =
4, . . . , n) implies that ϕ([βx1 − x2 + βx3]) ∈ [x̂1] + [x̂2] + [x̂3]. Next, with
[x1 +βx2]⊥[βx1−x2 +βx3]⊥[x1−x3], combined with (10), we get ϕ([βx1−
x2 + βx3]) = [x̂2]. Now, the vectors w2 = x2 and w3 = −(x1 + x3)/

√
2 form

an orthonormal pair and

ϕ([w2 +
√

2βw3]) = ϕ([−x2 + β(x1 + x3)]) = [x̂2] = ϕ([x2]) = ϕ([w2]).

So, if ϕ([x1]) = ϕ([x1 + βx2]) we can find another orthonormal pair w2, w3

with w2 = x2 and ϕ([w2 +
√

2βw3]) = ϕ([w2]). Recursively, we define a
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sequence of vectors w2, w3, . . . , such that {wj , wj+1} forms an orthonormal
pair and

ϕ([wj + βjwj+1]) = ϕ([wj ]); βj =
√

2βj−1 and β2 =
√

2β.

Then, for sufficiently large m, βm >
√

2. But this contradicts to Lemma 2.9.
Hence, ϕ is injective.

We next show that [z] ⊆ [x] + [y] yields ϕ([z]) ⊆ ϕ([x]) + ϕ([y]). There
is nothing to prove if [x] = [y]. So, assume that x and y are linearly inde-
pendent. We can find pairwise orthogonal lines [z3], . . . , [zn] which are also
orthogonal to [x] and to [y]. It follows that [zi] are orthogonal to [z]. Thus,
the lines ϕ([x]), ϕ([y]), and ϕ([z]) are contained in the two-dimensional or-
thogonal complement of ϕ([z3]), . . . , ϕ([zn]). Since ϕ([x]) 6= ϕ([y]), we have
ϕ([z]) ⊆ ϕ([x]) + ϕ([y]), as desired. We can therefore apply [9, Theorem
4.1] to conclude that there exists a unitary or antiunitary (conjugate-linear
isometry) operator V1 : Cn → Cn such that ϕ([x]) = [V1x] for every nonzero
x ∈ Cn. If V1 is conjugate-linear then V : x 7→ V1x̄ is a linear isometry, and
ϕ([x]) = [V x̄]. �

Proof of Theorem 2.1. Let P be a rank one Hermitian matrix. It follows by
Lemma 2.7 that rkφ(P ) = 1. Now, a matrix X satisfies X ◦ E11 = 0 if and
only if its first row and column vanishes, which is equivalent to XE11 =
0 = E11X. Hence, φ preserves orthogonality among rank one Hermitian
matrices.

Write P = aUE11U
∗ for some unitary U and some scalar a 6= 0, choose

any λ ∈ R and note that P and λP are orthogonal to UE22U
∗,. . . ,UEnnU∗.

Hence, φ(λP ) and φ(P ) are orthogonal to n−1 pairwise orthogonal rank one
Hermitian matrices φ(UEiiU∗). It easily follows that there exists a uniquely
determined rank one projection Q such that φ(RP ) ⊆ RQ.

Since every projection of rank one can be identified with an element of
projective space P(Cn) in a natural way, the map φ induces an orthogonality
preserving map ϕ : P(Cn)→ P(Cn) defined by ϕ([x]) = [y] if φ(xx∗) ∈ R yy∗.
By Lemma 2.10, ϕ([x]) = [V x] or ϕ([x]) = [V x̄] for some unitary V . In the
first case, for every rank one projection P = xx∗ and every nonzero real
number r there exists a nonzero t ∈ R such that φ(rP ) = tV PV ∗. In the
second case we similarly conclude φ(rP ) = tV P̄V ∗ = tV P tV ∗. �

Proof of Corollary 2.3. We only need to show that φ(0) = 0; injectivity then
implies that no other matrix is annihilated, and then Theorem 2.1 applies.

Consider two disjoint sets Fn and 2Fn. Due to injectivity, φ annihilates
at most one matrix, so either φ(Fn) does not contain a zero matrix or else
this holds for φ(2Fn). Assume the second case holds. Then, φ(2Fn) contains
b3n

2 c distinct Hermitian nonzero matrices with pairwise zero Jordan product.
By Lemma 2.5, φ(2Fn) ∼ V FnV ∗ for some unitary V . Since 0 ◦X = 0 for
every X ∈ 2Fn we deduce that φ(0)◦Y = 0 for every Y ∈ φ(2Fn) ∼ V FnV ∗.
But then, {φ(0)}∪φ(2Fn) contains 1 + b3n

2 c distinct matrices with pairwise
zero Jordan product and by Lemma 2.5 one of the members must be zero.
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Hence, φ(0) = 0, as claimed. We argue similarly if φ(Fn) does not contain
a zero matrix. �

Example 2.11. Let n ≥ 3. There exists a continuous bijective but non-
identical map φ : Hn → Hn, which fixes all rank one Hermitian matrices,
and preserves zeros of Jordan product in both directions.

To see this we will rely on the following fact: given a matrix A we define
an elementary operator TA : Mn → Mn via X 7→ AX + XA = A ◦ X.
Then, by the Lumer–Rosenblum theorem [20], its spectrum equals

Sp(TA) = Sp(A) + Sp(A) = {t+ r : t, r ∈ Sp(A)}.

In particular, if 0 /∈ Sp(A) + Sp(A) then TA is injective, i.e. A ◦ X = 0
precisely when X = 0. Now, let

Ξ = {A ∈ Hn : Sp(A) + Sp(A) 63 0}

be the set of all Hermitian matrices such that the sum of any two eigenvalues
is always nonzero. Clearly, it contains positive definite Hermitian matrices,
so Ξ is nonempty. Moreover, if Hn ⊆ Cn×n is given relative topology it
inherits from Euclidean space Cn×n, the set Ξ is open, by continuity of the
eigenvalues. And lastly, Ξ contains no rank one matrix.

Let Br(A) ⊆ Ξ be a small open ball of radius r > 0, centered at A and
such that Br(A) ⊆ Ξ. Consider the continuous map φ : Br(A) → Br(A),
defined by X 7→ A + ‖X−A‖

r (X − A). Clearly, it fixes A as well as the
boundary of Br(A), but it is not identity. Its inverse is given by φ−1 : Y 7→
A+

√
r√

‖Y−A‖
(Y −A) for Y ∈ Br(A)\{A}, and φ−1(A) = A. Then, therefore,

the piecewise defined map

φ : X 7→

{
X; X ∈ Hn \Br(A)
φ(X); X ∈ Br(A)

is well-defined, continuous bijection. It fixes rank one matrices, but is not
identity.

It only remains to show that φ preserves zeros of Jordan product in both
directions. Now, for X,Y /∈ Br(A) this is clearly the case, since φ fixes them.
On the other hand, if Y ∈ Br(A) ⊆ Ξ and X ∈ Hn is arbitrary nonzero,
then X ◦ Y is never zero, because Sp(Y ) + Sp(Y ) 63 0. But φ(Y ) remains in
the set Ξ, while bijectivity of φ forces φ(X) 6= 0. Therefore, also φ(X)◦φ(Y )
cannot be zero. We argue similarly to prove that φ(X) ◦ φ(Y ) = 0 implies
X ◦ Y = 0.

3. Maps on symmetric matrices

Before stating the main result of this section we recall the following facts.
Using a standard notation, say [13, p.209], we define the k × k symmetric
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Jordan block with an eigenvalue λ as follows

Sk(λ) = λ Id +


0 1 . . . 0

1 0
. . .

...
...

. . .
. . . 1

0 . . . 1 0

+ i


0 . . . −1 0
... . .

.
0 1

−1 . .
.

. .
. ...

0 1 . . . 0

 ∈Mk.

Note that S1(λ) = [λ] and S2(λ) =
[
λ− i 1

1 λ+ i

]
. It is well-known [13]

that Sk(λ) is similar to an elementary Jordan block with eigenvalue λ, and
that given a symmetric A ∈ Sn there exists an orthogonal matrix Q (i.e.
QQt = Id) such that

A = Q(Sn1(λ1)⊕ Sn2(λ2)⊕ · · · ⊕ Snk(λk))Qt,

where λ1, λ2, . . . , λk are eigenvalues of A and n1+n2+· · ·+nk = n. Following
the previous section, we define a Jordan commutant of a symmetric matrix
A as

A# = {X ∈ Sn : A ◦X = 0}.
Note that this is always a complex vector space and we will be in particular
interested in its dimension, dimCA

#. We emphasize that, contrary to the
previous section, here A# contains only symmetric matrices.

Though symmetric and Hermitian matrices look similar, there is a funda-
mental difference between them. Namely, a symmetric matrix can well be
nilpotent. To distinguish rank one symmetric matrices from the others, we
will require the following two lemmas.

Lemma 3.1. Suppose the m vectors x1, . . . , xm ∈ Cn are linearly indepen-
dent. Then,

⋂m
k=1(xkxtk)

# is an (n−m)(n−m+1)
2 dimensional subspace of Sn

spanned by rank one symmetric matrices.

Proof. Pick any nonzero vector x, and consider A ∈ (xxt)#. By definition,
0 = Axxt + xxtA = (Ax)xt + x(Ax)t. This is possible only when Ax and x
are linearly dependent, which further forces Ax = 0. Any symmetric matrix
can be written as A =

∑r
k=1 λkzkz

t
k, where zk are linearly independent

vectors and r = rkA. Then, Ax = 0 gives
∑
λk(ztkx)zk = 0, which, by

linearly independence of zk further forces ztkx = 0. Consequently, given
A =

∑r
k=1 λkzkz

t
k ∈

⋂m
j=1(xjxtj)

# we have ztkxj = 0 for every k, j. This
gives that each A ∈

⋂m
j=1(xjxtj)

# is spanned by rank one symmetric matrices
zkz

t
k ∈

⋂m
j=1(xjxtj)

#.
As for the dimension of

⋂m
k=1(xkxtk)

#, a rank one symmetric matrix zzt

belongs to this space if and only if xtkz = 0 for k = 1, . . . ,m. Equivalently,
if and only if z belongs to the common kernel of functionals Fxk : z 7→
xtkz. Clearly, the linear independence of xk implies linear independence of
functionals Fxk . Namely, Fx = 0 precisely when xtCn = 0, giving x = 0.
Having m linearly independent functionals, their common kernel is (n−m)
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dimensional. Since
⋂m
k=1(xkxtk)

# is spanned by rank one vectors from this
common kernel we have dimC

⋂m
k=1(xkxtk)

# = (n−m)(n−m+1)
2 , as claimed. �

Corollary 3.2. If A ∈ Sn is of rank one, then dimA# = n(n−1)
2 .

Lemma 3.3. For nonzero A ∈ Sn,

dimA# ≤ n(n− 1)
2

= dimSn − n.

Further, the equality holds if and only if A is rank one.

Proof. With the help of orthogonal similarity we may assume that

A = Sn1(λ1)⊕ Sn2(λ2)⊕ · · · ⊕ Snk(λk)⊕ 0nk+1

with n1 + n2 + · · ·+ nk + nk+1 = n and Snj (λj) 6= 0 for j = 1, . . . , k. Here,
nk+1 can possibly be zero. First we will prove that our lemma holds true
when k = 1 with n1 = n. So, let A = Sn(λ). To compute dimA# we
pick any B ∈ A# = Sn(λ)#. Recall that Sn(λ) is similar to an elementary
Jordan upper-triangular block Jn(λ) = λ Idn +Nn. If T is the similarity
among them, then BA+AB = 0 is equivalent to

(λ Idn +Nn) (T−1BT ) + (T−1BT ) (λ Idn +Nn) = 0.

When λ 6= 0 the Lumer–Rosenblum theorem [20] implies that the only
solution is T−1BT = 0, giving A# = 0. Assume now that λ = 0. Then, an
easy computation gives that the solution equals

T−1BT =
∑

0≤i≤n−1
1≤j≤n−i

αi(−1)jEj(j+i)

for some scalars αi. Note however that not all choices of αi will give B sym-
metric. Therefore, dimA# ≤ n < n(n−1)

2 if n > 3. But if n = 3 it is easy to

see that dimA# = dim
[ 0 1−i 0

1−i 0 1+i
0 1+i 0

]#

= dim
{[

y−2ix 0 x
0 ix−y 0
x 0 y

]
: x, y ∈ C

}
=

2 < 3·2
2 .

Now, suppose that k > 1 or k = 1 with n1 < n. Note that λj = 0 implies
nj ≥ 2 for each j = 1, . . . , k. By the first part, dimSnj (λj)

# < dimSnj −nj
whenever nj ≥ 3. It is easy to compute that nj = 2 gives dimSnj (λj)

# <
dimSnj − nj unless rkSnj (λj) = 1. Next, given 1 ≤ i < j ≤ k + 1, define

Tij = {B ∈Mni,nj : Sni(λi)B +BSnj (λj) = 0}.

Clearly, dim Tij < dimMni,nj . Further when nk+1 > 0, dim Ti,k+1 ≤
dimMni,nk+1

− nk+1 and equality holds only if rkS(λi) = 1. Note that
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A# = {[Bij ] ∈ Sn : Bij ∈ Tij}. Then

dimA# =
∑

1≤j≤k
dimSnj (λj)

# + dimSnk+1
+

∑
1≤i<j≤k+1

dim Ti,j

≤
∑

1≤j≤k
(dimSnj − nj) + dimSnk+1

+
∑

1≤i<j≤k
dimMni,nj +

∑
1≤i≤k

(dimMni,nk+1
− nk+1)

=
∑

1≤j≤k+1

dimSnj+
∑

1≤i<j≤k+1

dimMni,nj − (k − 1)nk+1 −
∑

1≤j≤k+1

nj

≤ dimSn − 0− n = dimSn − n.

The inequality is strict unless (i) dimSnj (λj)
# = dimSnj − nj , and (ii)

dim Ti,j = dimMni,nj for all 1 ≤ i < j ≤ k, and (iii) some further conditions.
But dim Ti,j < dimMni,nj so the last condition gives k = 1. Now the first
identity imply that the block Sn1(λ1) is rank one. Hence, the equality holds
only if k = 1, n1 < n, and rkSn1(λ1) = 1, i.e., only if rkA = 1. The inverse
implication was proven in Corollary 3.2. �

We can now state the main result of this section.

Theorem 3.4. Let n ≥ 3 and let φ : Sn → Sn be an injective continuous
map that preserves zeros of Jordan product. Then φ(0) = 0 and there exists
an orthogonal matrix Q such that either

(i) φ(A) = λAQAQ
t

for every rank one matrix A ∈ Sn, or

(ii) φ(A) = λAQAQ
t

for every rank one matrix A ∈ Sn. Here, λA is a nonzero complex number
determined by A.

Remark 3.5. As in the Hermitian case we cannot expect to get a nice struc-
tural result for all symmetric matrices. As a matter of fact, Example 2.11
works also here.

In the proof of above theorem we will require the next lemma.

Lemma 3.6. Suppose a continuous and injective φ : Sn → Sn preserves
zeros of Jordan product, and also preserves the set of rank one symmetric
matrices. If x1, . . . , xk are linearly independent vectors and λi ∈ C \ {0},
then φ(λixixti) = µiziz

t
i , where µi 6= 0, and z1, . . . , zk are also independent.

Proof. We proceed by induction on k. For k = 1 there is nothing to do.
Assume Lemma 3.6 holds for some k ≥ 1. Pick now a linearly independent
k + 1 tuple x1, . . . , xk+1, and denote Pi = λixix

t
i. Therefore, φ(Pi) = µiziz

t
i

for some nonzero zi and nonzero µi. Moreover, by the inductive assumption,
z1, . . . , zk are linearly independent. Assume erroneously that zk+1 is their
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linear combination. Then, if a symmetric A annihilates all of z1, . . . , zk then
also Azk+1 = 0. Since A ◦ zzt = 0 precisely when Az = 0, this shows that

(17)
k⋂
i=1

φ(Pi)# ⊆ (µk+1zk+1z
t
k+1)# = φ(Pk+1)#.

Next, due to the assumed linear independence of z1, . . . , zk, Lemma 3.1 gives
that

Ξ =
k⋂
i=1

φ(Pi)#

is an (n−k)(n−k+1)
2 dimensional complex subspace of Sn. The same holds for

the subspace Ω =
⋂k
i=1 P

#
i , which is mapped injectively and continuously

into Ξ by a map φ. Since both subspaces have the same dimension, φ(Ω)
is an open subset of Ξ, by the invariance of domain for continuous injective
maps [10, p.344], it clearly contains φ(0) = 0. By the same argument,
φ(P#

k+1) is an open subset inside φ(Pk+1)# which contains φ(0) = 0. Now,
in view of Eq. (17),

φ(Ω) ∩ φ(P#
k+1) =

(
φ(Ω) ∩ Ξ

)
∩
(
φ(P#

k+1) ∩ Ξ
)
.

But this is the intersection of two open subsets in Ξ, both containing 0, so
it is nonempty and open in Ξ.

Now, due to linear independence of x1, . . . , xk+1, there exists an R ∈
Ω \ P#

k+1. By continuity, φ(tR) ∈ φ(Ω) ⊆ Ξ tends to φ(0) = 0 ∈ Ξ as
t→ 0. So, for small enough nonzero t, the matrix φ(tR) belongs to an open
neighborhood φ(Ω) ∩ φ(P#

k+1) of a matrix 0 ∈ Ξ. In particular, at least
some B ∈ P#

k+1 must be mapped into φ(tR). However, tR 6∈ P#
k+1, which

contradicts injectivity of φ. �

Proof of Theorem 3.4. Note that A = 0 if and only if A# = Sn. Now, since
φ preserves zeros of Jordan product it follows that for every symmetric
matrix A ∈ Sn we have φ(A#) ⊆ φ(A)#. In particular, φ(Sn) = φ(0#) ⊆
φ(0)#. Recall that φ(0)# is a subspace of Sn, and since φ is injective and
continuous, it follows by the invariance of domain theorem that φ(0)# cannot
be contained inside a proper linear subspace of Sn. This yields that φ(0)# =
Sn, and consequently, φ(0) = 0.

Let A ∈ Sn \ {0}. Then (λA)# = A# for every nonzero complex number
λ. By Lemma 3.1 (with m = 1) we see that the Jordan commutant of
every rank one symmetric matrix has dimension n(n−1)

2 . By Lemma 3.3,
dimA# = n(n−1)

2 if and only if A is a scalar multiple of a rank one symmetric
matrix. As a consequence, every rank one A ∈ Sn is mapped into a matrix
of rank one. Otherwise, φ would map A#, which is of dimension n(n−1)

2 ,
continuously and injectively into φ(A)#, whose dimension is strictly smaller
than n(n−1)

2 . But this is impossible by the invariance of domain theorem.
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We have proved that for every symmetric matrix A of rank one there exists
a rank one symmetric matrix B such that φ(A) = B. Moreover, φ(CA) ⊆
CB. Indeed, if there was a nonzero complex number λ such that φ(λA) /∈
CB, then φ would map A# = (λA)# injectively and continuously into B#∩
φ(λA)#, which would be a proper subset of B#. But this is impossible by
the invariance of domain theorem. Furthermore, by Lemma 3.6 we also have
that whenever A1, A2 are linearly independent rank one symmetric matrices,
with φ(CAi) ⊆ CBi, i = 1, 2, then B1, B2 must be linearly independent rank
one symmetric matrices as well.

We claim that φ preserves orthogonality on rank one symmetric matrices.
Indeed, recall from the proof of Lemma 3.1 that rank one symmetric matrices
A1, A2 satisfy A1 ◦ A2 = 0 if and only if they are orthogonal, i.e A1A2 =
0 = A2A1. Now, let A1, A2 ∈ Sn be two orthogonal rank one symmetric
matrices with φ(CAk) ⊆ CBk, k = 1, 2. Then, because A1 ◦A2 = 0, we have
B1 ◦B2 = 0. Thus, B1 and B2 are also orthogonal.

We can now invoke the fundamental theorem of projective geometry as
follows. Every symmetric matrix of rank one can be written as A = xxt,
where a column vector x is uniquely determined by A up to a scalar multiple.
So, we can identify rank one symmetric matrices in a natural way with the
elements of the projective space P(Cn). By what we have proved, the map
φ induces an injective map ϕ : P(Cn) → P(Cn), defined by ϕ([x]) = [y]
if and only if A = xxt and B = yyt with φ(CA) ⊆ CB. We will show
that [z] ⊆ [x] + [y] yields ϕ([z]) ⊆ ϕ([x]) + ϕ([y]). There is nothing to
prove if [x] = [y]. So, assume that x and y are linearly independent. As in
Lemma 3.1 we denote by Fx : z 7→ xtz. Since x, y are linearly independent,
it is easy to see that Fx, Fy are linearly independent, as well. It follows that
KerFx∩KerFy is an (n−2) dimensional subspace. Let w3, . . . , wn ∈ KerFx∩
KerFy be its basis. Denote by [x̃] = ϕ([x]), [ỹ] = ϕ([y]), [z̃] = ϕ([z]), and
[w̃k] = ϕ([wk]), k = 3, . . . , n. In view of Lemma 3.6, the vectors w̃3, . . . , w̃n
are also linearly independent. Note also that (xxt) ◦ (wkwtk) = 0 implies
(x̃x̃t) ◦ (w̃kw̃tk) = 0, which further gives w̃k

tx̃ = 0. Similarly we deduce
also w̃k

tỹ = w̃k
tz̃ = 0, k = 3, . . . , n. Thus, the vectors x̃, ỹ, z̃ all belong to

two dimensional subspace KerFw̃3
∩ · · · ∩ KerFw̃n and so they are linearly

dependent. Moreover, Lemma 3.6 forces x̃, ỹ to be linearly independent, so
we easily conclude that ϕ([z]) ⊆ ϕ([x]) + ϕ([y]), as desired.

Denote by [ẽi] = ϕ([ei]), where ei is the standard basis of Cn. Again,
Lemma 3.6 forces that ẽ1, . . . , ẽn are n linearly independent vectors. As
n ≥ 3 we see that the image of ϕ is not contained in a projective line.
Moreover, it also follows that ϕ is an injective function. We can, therefore,
apply [9, Theorem 3.1], with g = ϕ, V1 = P(Cn) = V2, and with the kernel
of ϕ, P(W ) = ∅, to deduce that ϕ([x]) = [Ax] for some σ-quasilinear map
A. It only remains to show that σ is a complex conjugation or an identity
homomorphism.
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By definition of ϕ, one has φ(λxxt) = A(λx)(Ax)t = σ(λ) (Ax)(Ax)t.
Since A is nonzero, there exists a vector x with Ax 6= 0. Now, continuity
of φ forces continuity of the map λ 7→ σ(λ) (Ax)(Ax)t, which in turn implies
continuity of σ. Clearly, the only continuous field homomorphism of C is
either identity or complex conjugation. �

4. Zeros of generalized Jordan product

The results in the previous sections can be extended to other products,
say A ◦ξ B = AB + ξBA when ξ 6= ±1. Here we are facing a peculiar
phenomenon, namely, given ξ 6= ±1 then A,B ∈ Hn satisfy AB + ξBA = 0
if and only if AB = 0 = BA [6, Theorem 1.1]. As a corollary, if φ : Hn → Hn
preserves the zeros of a polynomial p(x, y) = xy + ξyx and ξ 6= ±1, then φ
preserves orthogonality.

Theorem 4.1. Let ξ 6= ±1, let n ≥ 3, and suppose that an injective map
φ : Hn → Hn satisfies

AB + ξBA = 0 =⇒ φ(A)φ(B) + ξφ(B)φ(A) = 0.

Then φ takes one of the two forms in Theorem 2.1 on rank one Hermitian
matrices.

Proof. Clearly, there exists n pairwise orthogonal nonzero Hermitian matri-
ces and up to unitary similarity every such n-tuple equals t1E11, . . . , tnEnn
(see [7, Lemma 2.2]). Now, choose any rank one projection P1. Augment
it with rank one projections P2, . . . , Pn to a maximal pairwise orthogonal
set Ξ. Since φ is injective, either φ(Ξ) does not contain a zero matrix or
else this holds for φ(2 Ξ). Whatever the case does occur, since φ preserves
orthogonality, φ(0) is orthogonal to every member from φ(Ξ) and also from
φ(2 Ξ) wherefrom φ(0) = 0. By injectivity, no other matrix is annihilated
by φ. Therefore, Qi = φ(Pi) are n distinct, nonzero and pairwise orthogonal
Hermitian matrices, so they are all of rank one. Thus, φ preserves the set of
rank one Hermitian matrices as well as their orthogonality. The result now
follows by imitating the proof of Theorem 2.1. �

Remark 4.2. A similar phenomenon holds also for symmetric matrices.
Indeed, assume ξ 6= ±1. If AB = ξBA, then, upon transposing this equality,
we get BA = ξAB = ξ2BA. Hence, BA = 0 = AB. Moreover, introducing
A#ξ = {X ∈ Sn : XA+ξAX = 0} = {X ∈ Sn : XA = 0}, it can be shown
(c.f. Lemma 3.3) that, for a nonzero A, we have dimA#ξ ≤ n(n−1)

2 and the
equality holds if and only if rkA = 1. So, if φ : Sn → Sn is a continuous
injection which preserves zeros of A ◦ξ B, it also preserves orthogonality on
symmetric matrices and it preserves the set of rank one symmetric matrices.
Adapting the proof of Theorem 3.4 one can derive the same results on rank
one symmetric matrices also in this case.
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5. Applications

At the end let us give two applications of our results. In the first applica-
tion we also refer to Zhao and Hou [34, Theorem 1.3] for additive surjections
which preserve zeros of Jordan product in both directions on self adjoint op-
erators on infinite dimensional complex Hilbert space, and we refer to Zhao
and Hou [33] for additive surjections which preserve zeros of Jordan prod-
uct on algebra B(H) of bounded operators on infinite dimensional Hilbert
space.

Proposition 5.1. Let n ≥ 3. If an additive and injective map φ : Hn → Hn
preserves zeros of Jordan product in one direction only then the results of
Theorem 2.1 hold for every Hermitian A, with tA = t independent of A.

Our final application of Corollary 2.2 will classify Jordan homomorphisms
on Hn. A Jordan homomorphism is a (possibly nonadditive) map which
satisfies

φ(AB +BA) = φ(A)φ(B) + φ(B)φ(A).
We show that even with such a limited assumptions, linearity comes for free,
except when φ is a constant. For a similar treatment with bijective φ on
standard operator algebras we refer to a work by Molnár [21].

Proposition 5.2. Let n ≥ 3 and let φ : Hn → Hn be a Jordan homomor-
phism. Then it takes one of the following forms

φ(X) = 1
2P ; (X ∈ Hn),(i)

φ(X) = UXU∗,(ii)

φ(X) = UXtU∗.(iii)

Here, P is a projection and U is unitary.

Proof of Proposition 5.1. Start with Theorem 2.1. Since unitary similarity
and transposition preserve the zeros of Jordan product we may already as-
sume φ(X) = tXX for every rank one X. It remains to show that tX is
constant.

Choose any orthogonal rank one projections P,Q and a scalar a 6= 0 to
form a rank two, trace-zero matrix X = a(P − Q). By additivity, φ(X) =
φ(aP ) − φ(aQ) = t1P − t2Q. However, it follows by Lemma 2.7 and its
proof that φ preserves the set of trace-zero matrices with rank two. So
Spφ(X) = t{−1, 0, 1} which gives t1 = t2 = t(a). If P,Q are not orthogonal
rank one projections we can easily construct another rank one projection R,
which is orthogonal to both P and Q and then repeat the above arguments
on (aP, aR) and on (aR, aQ) to find that

φ(aP ) = t(a)P ; for every P 2 = P ∈ Hn, rkP = 1.

Since φ is additive, so is t.
Next, D12 = E12 − E21 = P − Q, where P = 1

2 ( 1 1
1 1 ) ⊕ 0 and Q =

1
2

(
1 −1
−1 1

)
⊕0 are rank one projections. Hence, φ(aD12) = φ(aP )−φ(aQ) =
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t(a)(P−Q) = t(a)D12. Likewise φ(aDij) = t(a)Dij for any i 6= j. Moreover,
i(E12−E21) = P2−Q2 where P2 = 1

2

(
1 i
−i 1

)
⊕ 0 and Q2 = 1

2

(
1 −i
i 1

)
⊕ 0, and

yet again, φ(aFij) = t(a)Fij .
Given a ∈ R we derive that a rank one Hermitian R = a2E11 +aD12 +E22

is mapped into a rank one φ(R) = t(a2)E11 + t(a)D12 + t(1)E22. But this
is Hermitian only when t(a) ∈ R, and is of rank one only when t(a2)t(1) =
t(a)2. Clearly, t(1) = 0 implies φ(E11) = 0, which contradicts injectivity.
But then, f : R→ R, defined by f : x 7→ t(x)/t(1) is additive and multiplica-
tive. It is well known that R admits only one such nonzero function, namely
identity. Thus, t(a) = t(1) · a for a ∈ R, and A =

∑
aiiEii +

∑
βijDij +∑

δijFij is mapped into φ(A) =
∑
t(aii)Eii +

∑
t(βij)Dij +

∑
t(δij)Fij =

t(1)A, for any Hermitian A. �

We proceed with the proof of Proposition 5.2. We will rely on Lemma 5.3
below, which says that every A ∈ Hn can be written as a Jordan product of
a finitely many rank one Hermitian matrices.

Denote by ∆n ⊆ Hn be the Jordan hull of rank one Hermitian matrices,
that is, the smallest subset in Hn closed under the operation (A,B) 7→ A◦B
and containing all rank one Hermitian matrices.

Lemma 5.3. ∆n = Hn.

Proof. Induction on the rank.
By its definition, if rkA = 1 then A ∈ ∆n. Also, 0 = E11 ◦ E22 ∈

∆n. So assume we have already shown that ∆n contains all Hermitian
matrices of rank at most k. If k = n we are done. If k < n, pick any
Hermitian A with rkA = k+1. Using unitary similarity we may assume A =
diag(a1, . . . , ak, ak+1)⊕ 0n−k−1 = diag(~a, ak, ak+1,0), where ai are nonzero,
~a = (a1, . . . , ak−1), and 0 is the zero vector of length n − k − 1. We first
show that

(18) diag(~c, ck, xck, 0) ∈ ∆n for any x ∈ (−1, 0) and (~c, ck) ∈ Rk.

There is nothing to do if ck = 0 since then, rk diag(~c, ck, xck, 0) ≤ k − 1.
Otherwise, let Xk−1 = diag(~c) ∈ Hk−1, let X = diag(~c, ck, 0,0) = Xk−1 ⊕
ck ( 1 0

0 0 )⊕ 0n−k−1, and define for every t ∈ (0, 1) the Hermitian matrix

Qt = (1
2 Idk−1)⊕ 1

t+
√
t

(
t

√
(1− t)t√

(1− t)t 1− t

)
⊕ 0n−k−1.

It is easy to see that rkX ≤ rkQt = k. Therefore, by the inductive hypoth-
esis, X,Qt ∈ ∆n. Since ∆n is closed under Jordan product we get

X ◦Qt = Xk−1 ⊕ ck
t+
√
t

(
2t

√
(1− t)t√

(1− t)t 0

)
⊕ 0n−k−1 ∈ ∆n.

The eigenvalues of the middle summand equal ck
t+
√
t
(t±
√
t) = ck ·(1, x) where

x = t−
√
t

t+
√
t
. As t ranges over (0, 1), x = t−

√
t

t+
√
t

takes the values from (−1, 0). So,
given any x ∈ (−1, 0) there exists a suitably chosen t ∈ (0, 1), and a unitary
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matrix of the form U = Idk−1⊕U ′ ⊕ Idn−k−1 such that diag(~c, ck, xck,0) =
(U∗XU) ◦ (U∗QtU) ∈ ∆n, as anticipated.

Next,
(

1 0
0 y

)
is unitarily equivalent to

(
y 0
0 1

)
. Therefore, it follows from

the above that also diag(1
2
~1, y, 1,0) = (1

2 Idk−1)⊕ diag(y, 1,0) ∈ ∆n for any
y ∈ (−1, 0). But then,

diag(~c, 2yck, 2xck,0) = diag(~c, ck, xck,0) ◦ diag(1
2
~1, y, 1,0) ∈ ∆n

for any x, y ∈ (−1, 0). Given arbitrary positive number z, there exists
x, y ∈ (−1, 0) such that x/y = z. We may further let ~c = ~a and choose
ck = ak

2y to get diag(~a, ak, zak,0) ∈ ∆n, for every z > 0.
From Eq. (18) we already know that diag(1

2
~1, 1

2 ,
−1
4 ,0) ∈ ∆n; combined

with the above result we find

diag(~a, ak, −z2 ak,0) = diag(~a, ak, zak,0) ◦diag(1
2
~1, 1

2 ,
−1
4 ,0) ∈ ∆n; (z > 0).

But then, diag(~a, ak, tak,0) ∈ ∆n for every nonzero t ∈ R, and in particular
also A = diag(~a, ak, ak+1,0) ∈ ∆n. �

Proof of Proposition 5.2. For brevity let us say that Hermitian matrices
A,B are Jordan–orthogonal if A ◦B = 0. We proceed in three steps.

Assertion 1. Let m ≥ 1 and let φ′ : Hn → Hm be a Jordan homo-
morphism. Then either φ′(X) = 0 for every X or else φ′(A) = 0 implies
A = 0.

Namely assume that φ′ annihilates nonzero A. Among all these matrices,
take a matrix A with maximum rank value. That is, rk(A) ≥ rk(B) for all
B with φ′(B) = 0. Suppose k = rk(A) < n. Without loss of generality,
we may assume that A = diag(a1, . . . , ak)⊕ 0n−k for some nonzero aj ∈ R.
Consider B = 2A+ ak(Ek,k+1 +Ek+1,k) = A ◦ (Id +Ek,k+1 +Ek+1,k). Then
φ′(B) = φ′(A) ◦ φ′(Id +Ek,k+1 + Ek+1,k) = 0. But rk(B) = k + 1 > rk(A),
which contradicts to the choice of A. Therefore, rk(A) = n. It follows that
φ′(1

2 Id) = φ′(A ◦ (1
4A
−1)) = 0 and hence φ′(X) = φ′(X ◦ 1

2 Id) = 0 for all
X ∈ Hn.

Assertion 2. Either φ is constant or φ(0) = 0.
Namely, if P = φ(0) = φ(0) ◦ φ(0) = 2φ(0)2, so 2P = (2P )2 is a projection.
Using unitary similarity we may assume P = 1

2 Idk⊕0n−k. Then, given
any X we have P = φ(X ◦ 0) = φ(X) ◦ P , which is possible only when
φ(X) = P ⊕ φ′(X) for some Jordan homomorphism φ′ : Hn → Hn−k, which
satisfies φ′(0) = 0. Combining with the previous step, φ′ is either zero or
else it preserves zeros of Jordan product in both directions. In the later case,
φ′ maps b3n

2 c pairwise Jordan–orthogonal matrices from Hn into the same
number of pairwise Jordan–orthogonal matrices insideHn−k. By Lemma 2.5
this is possible only when k = 0. So either φ(0) = 0 or φ(X) = P ⊕ 0n−k for
all X ∈ Hn.

Assertion 3. Assume φ is nonconstant. By Assertions 1-2 it preserves
zeros of Jordan product in both directions. So, by Corollary 2.2, it takes the
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forms (i)–(ii) of Theorem 2.1 on rank one Hermitian matrices. Replacing φ
by U∗φ(·)U or by (U∗φ(·)U)t we obtain a Jordan homomorphism which fixes
all rank one Hermitian matrices modulo scalars. We will denote the new map
again by φ. The set Ξ = {X ∈ Hn : ∃cX ∈ R\{0} such that φ(X) = cXX}
contains all rank one Hermitian matrices and is closed under Jordan product.
Hence, Lemma 5.3 gives

φ(A) = cAA; A ∈ Hn.
It remains to show that cA = 1. Firstly, given any projection P we eas-
ily deduce that (1

2P ) ◦ (1
2P ) = (1

2P ) implies φ(1
2P ) = 1

2P . Next, argu-
ing as in the proof of Lemma 5.3, we see that ( t−

√
t

4 E11 + t+
√
t

4 E22) =
(1

2V E11V
∗) ◦ (1

2V QtV
∗) ∈ ∆n for suitably chosen unitary V , where Qt =(

t
√

(1−t)t√
(1−t)t (1−t)

)
⊕ 0n−2 is a rank one projection for t ∈ (0, 1). Hence

φ( t−
√
t

4 E11 + t+
√
t

4 E22) = φ(1
2V E11V

∗) ◦ φ(1
2V QtV

∗)

= (1
2V E11V

∗) ◦ (1
2V QtV

∗) = ( t−
√
t

4 E11 + t+
√
t

4 E22); t ∈ (0, 1),

and therefore also

φ(x2E11) = φ( t−
√
t

4 E11 + t+
√
t

4 E22) ◦ φ(1
2E11)

= ( t−
√
t

4 E11 + t+
√
t

4 E22) ◦ (1
2E11) = x

2E11; x = t−
√
t

2 ∈ (−1
8 , 0).

Next, φ(c1
2 Id) = f(c)(1

2 Id) for some scalar function f : R → R. Due
to ab(1

2 Id) = a(1
2 Id) ◦ b(1

2 Id), the function f is multiplicative. However,
x
2E11 = (x1

2 Id)◦ (1
2E11) implies that x

2E11 = φ(x2E11) = f(x)(1
2 Id)◦ (1

2E11),
so f(x) = x for any x ∈ (−1

8 , 0). Being multiplicative this gives f(z) = z for
any real z. So, given any rank one projection P and any z ∈ R we have

φ(zP ) = φ(2z 1
2 Id) ◦ φ(1

2P ) = f(2z)(1
2 Id) ◦ (1

2P ) = 2z(1
2P ) = zP.

In particular, φ fixes every rank one Hermitian matrix. By Lemma 5.3 again,
φ(A) = A for every A ∈ Hn. �
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