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Abstract. For a positive integer k, the rank-k numerical range Λk(A) of an

operator A acting on a Hilbert space H of dimension at least k is the set of

scalars λ such that PAP = λP for some rank k orthogonal projection P . In

this paper, a close connection between low rank perturbation of an operator

A and Λk(A) is established. In particular, for 1 ≤ r < k it is shown that

Λk(A) ⊆ Λk−r(A + F ) for any operator F with rank (F ) ≤ r. In quantum

computing, this result implies that a quantum channel with a k-dimensional

error correcting code under a perturbation of rank ≤ r will still have a (k− r)-
dimensional error correcting code. Moreover, it is shown that if A is normal or

if the dimension of A is finite, then Λk(A) can be obtained as the intersection

of Λk−r(A + F ) for a collection of rank r operators F . Examples are given

to show that the result fails if A is a general operator. The closure and the

interior of the convex set Λk(A) are completely determined. Analogous results

are obtained for Λ∞(A) defined as the set of scalars λ such that PAP = λP

for an infinite rank orthogonal projection P . It is shown that Λ∞(A) is the

intersection of all Λk(A) for k = 1, 2, . . . . If A − µI is not compact for any

µ ∈ C, then the closure and the interior of Λ∞(A) coincide with those of the

essential numerical range of A. The situation for the special case when A−µI
is compact for some µ ∈ C is also studied.

1. Introduction

Let B(H) be the algebra of bounded linear operators acting on a Hilbert space
H. We identify B(H) with Mn if H has dimension n. For k ≤ dimH , define the
rank-k numerical range of A ∈ B(H) by

Λk(A) = {λ ∈ C : PAP = λP for some rank-k orthogonal projection P ∈ B(H)}.

Note that we allow k =∞ if dim H =∞. Evidently, λ ∈ Λk(A) if and only if there
is an orthogonal basis of H such that λIk is the leading principal submatrix of the
operator matrix of A with respect to the basis; equivalently, there is an isometry
X : Ck → H such that X∗AX = λIk. (For k = ∞, we take X : `2 → H.) When
k = 1, this concept reduces to the classical numerical range of A defined by

W (A) = {〈Ax, x〉 : x ∈ H, 〈x, x〉 = 1},
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which is useful in studying operators and matrices; for example see [11].
The higher rank numerical range was introduced in connection to the construc-

tion of quantum error correction code in the study of quantum information theory;
see [7]. In quantum computing, information is stored in qubits (quantum bits).
Mathematically, the state of a qubit is represented by a 2× 2 rank one Hermitian
matrix Q satisfying Q2 = Q. A state of N -qubits Q1, . . . , QN is represented by their
tensor products in Mn with n = 2N . A quantum channel for states of N -qubits cor-
responds to trace preserving completely positive linear map Φ : Mn →Mn. By the
structure theory of completely positive linear map [3], there are T1, . . . , Tm ∈ Mn

with
∑m
j=1 T

∗
j Tj = In such that

(1.1) Φ(X) =
m∑
j=1

TjXT
∗
j .

Let V be a subspace of Cn and PV the orthogonal projection of Cn onto V. Then V

is a quantum error correction code for Φ if there exists a trace preserving completely
positive linear map Ψ : Mn → Mn such that Ψ ◦ Φ(A) = A for all A ∈ PVMnPV.
This happens if and only if there are scalars γij with 1 ≤ i, j ≤ m such that

PVT
∗
i TjPV = γijPV, 1 ≤ i, j ≤ m;

see [7, 12]. It turns out that even for a single matrix A, determining Λk(A) is highly
non-trivial, and the results are useful in quantum computing, say, in constructing
binary unitary channels; see [5]. In a sequence of papers [4, 5, 6, 7, 9, 13, 14, 18],
researchers studied the set Λk(A) for A ∈ B(H). Many interesting results (see
P1-P8 below) were obtained.

In the study of operator theory and applications, it is often useful to study the
properties of an operator which are stable under different kinds of perturbation. For
example, the essential numerical range of an infinite dimensional operatorA ∈ B(H)
can be defined as

(1.2) We(A) = ∩{Cl(W (A+ F )) : F ∈ B(H) has finite rank},

which captures many important properties of A (see [1, 8, 17, 19]). Here Cl(S)
denotes the closure of the set S. In fact, one can include all compact operators F
in B(H) on the right hand side of (1.2). If K is the algebra of compact operators
in B(H) and if ψ : B(H) 7→ B(H)/K is the canonical homomorphism of B(H) onto
the Calkin algebra B(H)/K, then We(A) is the closure of the numerical range of
ψ(A). In [1, Theorem 4], it was also proven that

(1.3) Λ∞(A) = ∩{W (A+ F ) : F ∈ B(H) has finite rank}.

In this paper, we study the change of the higher rank numerical range of an
operator under low rank perturbation. For instance, we show in Theorem 3.1 that
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for 1 ≤ r < k <∞, if A,F ∈ B(H) with rank (F ) ≤ r, then

(1.4) Λk(A) ⊆ Λk−r(A+ F ).

In Theorem 5.1, we refine the set equalities (1.2) and (1.3) by using smaller sets of
operators F for the intersection on the right hand sides of the equalities.

It is worth noting that the inclusion (1.4) has the following implication in the
theory of quantum computing. Suppose A ∈Mn corresponds to a quantum channel
with a k-dimensional error correcting code (realized as a subspace of Cn), then for
any perturbation of the channel A by an operator F of rank bounded by r, the
resulting channel A+F will have a (k−r)-dimensional error correcting code. More
generally, if the matrices T1, . . . , Tm correspond to quantum channel (1.1) with a
k-dimensional error correcting code, and if Tj is changed to Tj + Fj such that the
sum of the range spaces of

(Ti + Fi)∗(Tj + Fj)− T ∗i Tj = T ∗i Fj + FiT
∗
j + FiF

∗
j , 1 ≤ i, j ≤ n,

has dimension bounded by r, then the resulting quantum channel will still have a
(k − r)-dimensional error correcting code.

Our paper is organized as follows. First, we study Λk(A) for A ∈ B(H) when k

is finite in Sections 2 – 4. In Section 2, we give a complete description of the closure
and interior of Λk(A). In Section 3, we establish inclusion (1.4) for any operators
A,F ∈ B(H) with rank(F ) ≤ r, where 1 ≤ r < k <∞. It follows that

(1.5) Λk(A) ⊆ ∩{Λk−r(A+ F ) : F ∈ B(H) has rank ≤ r} .

In particular, taking r = k − 1, we have

(1.6) Λk(A) ⊆ ∩{W (A+ F ) : F ∈ B(H) has rank < k} .

We show that the inclusions in (1.5) and (1.6) become inequalities if dimH is
finite. Examples are given to show that these not true for infinite dimensional
operators. Nevertheless, we show that equalities also hold in (1.5) and (1.6) for
infinite dimensional normal operators in Section 4. The set equalities in (1.5) and
(1.6) can be viewed as refinements of (1.3). Similar set equality results are given in
Corollary 3.3, which can be viewed as refinements of (1.2). In Section 5, we extend
the results in Sections 2 – 4 to Λ∞(A). In particular, we show in Theorem 5.1 and
5.2 that

(1.7) Λ∞(A) =
⋂
k≥1

Λk(A) = ∩{W (A+ F ) : F ∈ B(H) has finite rank},

and Λ∞(A) 6= ∅ if and only if the closure of Λ∞(A) is the essential numerical range
of A. Then we determine the condition under which Λ∞(A) is nonempty. The first
equality in (1.7) gives an affirmative answer to a question of Martinez-Avendano
[16].
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We close this section by listing some basic properties for the higher rank numer-
ical range; see [4, 5, 6, 7, 9, 13, 14, 18].

P1. For any a, b ∈ C, Λk(aA+ bI) = aΛk(A) + b.
P2. For any unitary U ∈ B(H), Λk(U∗AU) = Λk(A).
P3. If A0 is a compression of A on a subspace H0 of H such that dimH0 ≥ k,

then Λk(A0) ⊆ Λk(A).
P4. Suppose dimH < 2k. The set Λk(A) has at most one element.
P5. If dimH ≥ 3k− 2 then Λk(A) is non-empty. Otherwise, there is B ∈ B(H)

such that Λk(B) = ∅.
P6. Λk(A) is always convex.
P7. If dimH <∞, then Λk(A) = Ωk(A) with

Ωk(A) =
⋂

ξ∈[0,2π)

{
µ ∈ C : eiξµ+ e−iξµ̄ ≤ λk(eiξA+ e−iξA∗)

}
,

where λk(H) denotes the k-th largest eigenvalue of the Hermitian matrix
H ∈Mn.

P8. If A ∈Mn is a normal matrix with eigenvalues λ1, . . . , λn, then

Λk(A) =
⋂

1≤j1<···<jn−k+1≤n

conv {λj1 , . . . , λjn−k+1}.

2. The interior and closure of Λk(A)

First, we extend the definition of Ωk(A) to infinite dimensional operators. For a
self-adjoint operator H, let

λk(H) = sup{λk(X∗HX) : X is an isometry from Ck to H so that X∗X = Ik}.

For A ∈ B(H), let Re (A) = (A+A∗)/2 be the real part of A and

Ωk(A) =
⋂

ξ∈[0,2π)

{
µ ∈ C : Re (eiξµ) ≤ λk(Re (eiξA))

}
.

By definition, Ωk(A) is a compact convex set. It may be empty if dimH ≤ 3k−3;
see [5, Theorem 4.7]. In the finite dimensional case, we have Λk(A) = Ωk(A) as
noted in property (P7). Let A = Ik ⊕ diag (1, 1/2, . . . ). One easily checks that
Ωk(A) = [0, 1] and Λk(A) = (0, 1]. (See also Example 3.5.) Hence, property (P7)
may not hold for infinite dimensional operator A.

We continue to use Cl(S) to denote the closure of a set S in C. Let Int(S)
denote the relative interior of S. We have the following.

Theorem 2.1. Let A ∈ B(H) be an infinite dimensional operator, and let k be a
positive integer. Then

Int(Ωk(A)) ⊆ Λk(A) ⊆ Ωk(A) = Cl(Λk(A)).
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Proof. First, we establish the inclusion Λk(A) ⊆ Ωk(A). By [13, Corollary
4], Λk(A) is always non-empty. Suppose µ ∈ Λk(A). Then there is an isometry
X : Ck → H such that X∗X = Ik and X∗AX = µIk. As a result, for any t ∈ [0, 2π)
we have

Re (eitµ) ≤ λk(Re (eitA)).

Thus, µ ∈ Ωk(A).

Next, we turn to the equality Ωk(A) = Cl(Λk(A)) and the inclusion Int(Ωk(A)) ⊆
Λk(A). By Corollary 4 in [13], Λk(A) is non-empty. We consider three cases.

Case 1. Suppose Ωk(A) is a singleton. Then Λk(A) = Ωk(A) because Λk(A) is
non-empty, and Int(Λk(A)) = Int(Ωk(A)) = ∅.

Case 2. Suppose Ωk(A) has non-empty interior in C. Let µ be an interior point
of Ωk(A). We may replace A by A−µI and assume that µ = 0, i.e., 0 ∈ Int(Ωk(A)).
Therefore, there exists d > 0 such that

{µ ∈ C : |µ| ≤ d} ⊆ Ωk(A).

Thus, for all t ∈ [0, 2π), µ = deit ∈ Ωk(A). Write A = H + iG where H and G are
self-adjoint. Then

e−itA+ eitA∗ = 2(cos tH + sin tG).

Hence,

λk(e−itA+ eitA∗) ≥ e−itµ+ eitµ ⇒ λk(cos tH + sin tG) ≥ d .

Then, for each t ∈ [0, 2π) there is Xt : Ck → H with X∗tXt = Ik such that
λk(cos tX∗tHXt + sin tX∗t GXt) > d/2. Furthermore, there is δt > 0 such that for
each s ∈ (t− δt, t+ δt),

‖(cos tX∗tHXt + sin tX∗t GXt)− (cos sX∗tHXt + sin sX∗t GXt)‖ < d/4.

Note that |λk(R)− λk(S)| ≤ ‖R− S‖ for any two Hermitian matrices R and S by
the Weyl’s inequality; for example, see [2, III.2]. It follows that

|λk(cos tX∗tHXt + sin tX∗t GXt)− λk(cos sX∗tHXt + sin sX∗t GXt)| < d/4.

Consequently,

λk(cos sX∗tHXt + sin sX∗t GXt) > λk(cos tX∗tHXt + sin tX∗t GXt)− d/4 > d/4.

Since [0, 2π] is compact, there exists a finite sequence 0 ≤ t1 < · · · < tm < 2π so
that

[0, 2π] ⊆
m⋃
j=1

(tj − δtj , tj + δtj ).

Let A0 = H0 + iG0 be a compression of A onto a subspace spanned by the range
spaces of Xt1 , . . . , Xtm . Then λk(cos tH0 + sin tG0) > d/4 for all t ∈ [0, 2π) and
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so 0 ∈ Ωk(A0). Thus, 0 ∈ Λk(A0) ⊆ Λk(A) by Theorem 2..2 in [14]. Hence,
Int(Ωk(A)) ⊆ Λk(A) and thus Cl(Λk(A)) = Ωk(A).

Case 3. Suppose Ωk(A) is not a singleton and has no interior in C. Since Ωk(A)
is a compact convex set in C, if it is not a singleton and has no interior in C, then it
is a non-degenerate line segment. We will show that Λk(A) contains all the relative
interior points of Ωk(A). The result will then follow.

Assume γ is a (relative) interior point of the line segment. By property (P1), we
may assume that [−1, 1] ⊆ Ωk(A) ⊆ R and γ = 0. Write A = H + iG where H and
G are self-adjoint. Since −1, 1 ∈ Ωk(A), we have λk(cos tH + sin tG) ≥ | cos t| for
all t ∈ [0, 2π]. We claim that λk(G) = 0. If it is not true, then there is δ > 0 such
that λk(cos tH + sin tG) ≥ ε > 0 for each t ∈ [π/2− δ, π/2 + δ]. By decreasing ε, if
necessary, we may assume that | cos(π/2 + δ)| = | cos(π/2− δ)| ≥ ε. Therefore, we
have λk(cos tH + sin tG) ≥ ε for all t ∈ [0, π]. Let µ = iε. Then, we have

Re(µe−it) ≤

 ε ≤ λk(cos tH + sin tG) if t ∈ [0, π],

0 ≤ λk(cos tH + sin tG) if t ∈ [π, 2π].

Therefore, iε ∈ Ωk(A). This contradicts that Ωk(A) is a line segment in R. Sim-
ilarly, we can show that λk(−G) = 0. So, we may assume that G has operator
matrix D ⊕ 0 with

D = diag (d1, . . . , dp+q)

such that d1, . . . , dp > 0 and dp+1, . . . , dp+q < 0, where p < k and q < k. Let H0

and A0 be the compressions of H and A to the kernel of G, respectively.

Suppose λk(H0) > 0 and λk(−H0) > 0. Then H0 has a compression H̃0 ∈ M2k

such that H̃0 has k positive eigenvalues and k negative eigenvalues. Clearly, 0 ∈
Λk(H̃0) and H̃0 is also a compression of A. Then 0 ∈ Λk(H0) ⊆ Λk(A). So, we
assume that λk(H0) ≤ 0 without loss of generality.

Suppose the kernel of H0 has dimension at least k. Then again we have 0 ∈
Λk(H0) = Λk(A0) ⊆ Λk(A). Thus, we may assume that the kernel of H0 has
dimension < k. Then H0 has operator matrix of the form

H22 ⊕H33

so that H22 ∈ Mr with r < 2k − 1 is positive semi-definite and H33 is negative
definite such that the kernel of H33 is the zero space. Clearly, there is a negative real
number in Λk(H33) ⊆ Λk(A0) ⊆ Λk(A). We will show that Λk(A) also contains a
positive real number. By the convexity of Λk(A), it will then follow that 0 ∈ Λk(A).

Note that 0 is an interior point, and H22 is finite dimensional. We may find a

small ε > 0 such that ε ∈ Ωk(A) and H0 − εI = Ĥ22 ⊕ Ĥ33 so that Ĥ22 is positive

semi-definite and Ĥ33 is negative definite bounded above by −ε < 0. Thus, Ĥ33 is
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invertible, and there is an orthonormal basis of B(H) so that the operator matrices

of G and Ĥ = H − εI equal

D ⊕ 0 and

Ĥ11 Ĥ12 Ĥ13

Ĥ21 Ĥ22 0
Ĥ31 0 Ĥ33


for Ĥ22 ∈ Mr′ with r′ ≤ r. For notational simplicity, we rename r′ as r. Suppose
S ∈ B(H) has operator matrixIp+q 0 −Ĥ13Ĥ

−1
33

0 Ir 0
0 0 I

 .
Then SGS∗ and SĤS∗ have operator matrices

D ⊕ 0 and
[
Ĥ11 − Ĥ13Ĥ

−1
33 Ĥ31 Ĥ12

Ĥ21 Ĥ22

]
⊕ Ĥ33.

Since 0 ∈ Ωk(A−εI), we see that for each t ∈ [0, 2π), we have λk(cos tĤ+sin tG) ≥ 0

and hence λk(cos tSĤS∗ + sin tSGS∗) ≥ 0. Consequently, if we let H̃33 be the

leading k × k submatrix of Ĥ33 and let Ã = H̃ + iG̃ ∈Mp+q+r+k with

H̃ =
[
Ĥ11 − Ĥ13Ĥ

−1
33 Ĥ31 Ĥ12

Ĥ21 Ĥ22

]
⊕ H̃33 and G̃ = D ⊕ 0r+k,

then λk(cos tH̃ + sin tG̃) ≥ 0 for all t ∈ [0, 2π) and hence 0 ∈ Ωk(Ã). By Theorem
2.2 in [14], there is a (p+ q + r + k)× k matrix X such that

X∗X = Ik and X∗ÃX = 0k.

Consequently, as Ã is a finite compression of S(A−εI)S∗, there is a partial isometry
Y : Ck → H such that Y ∗S(A−εI)S∗Y = 0k. Note that S∗Y = ZT with Z∗Z = Ik

for some invertible T ∈Mk. Thus, Z∗(A− εI)Z = 0k, i.e., ε ∈ Λk(A). �

In the finite dimensional case, Λk(A) is always closed. If dimH is uncountable,
then for any bounded convex set S in C one can construct a normal operator B
using the points in S as diagonal elements so that Λk(A) = S for A = B ⊗ I. In
the following, we give examples of A acting on a separable Hilbert space such that
Λk(A) has non-empty interior with no, some or all its boundary points. It is known
that Λk(A) is a singleton if A is a scalar operator, and that Λk(A) ⊆ R if A = A∗.
We give examples different from these trivial cases.

Example 2.2. In the following examples, let B =
[
0 2
0 0

]
.

(a) Let A = B ⊗ Ik−1 ⊕ 0. Then Ωk(A) = Λk(A) = {0}.
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(b) Let A = B ⊗ Ik−1 ⊕ diag (1, 1/2, 1/3, . . . ). Then Λk(A) = (0, 1]. One can
easily modify the example so that Λk(A) = [0, 1] or Λk(A) = (0, 1).

(c) Let A = B ⊗ Ik−1 ⊕ C. If C = B ⊕ 0 then Λk(A) is the closed unit
disk; if C is the unilateral shift, then Λk(A) is the open unit disk; if
C = diag (−1, i,−i, 1/2, 2/3, 3/4, 4/5, . . . ) then Ωk(A) is the convex hull
of {−1, i,−i, 1}, and Λk(A) is the union of the interior of Ωk(A) and the
convex hull of {−1, i,−i}.

3. Low rank perturbations of general operators

For a positive integer r, let Fr be the set of operators in B(H) with rank at most
r, and let Pr be the set of rank r orthogonal projections in B(H).

Theorem 3.1. Let 1 ≤ r < k < ∞. Suppose A ∈ B(H) and F ∈ Fr. Then
Λk(A) ⊆ Λk−r(A+ F ). Consequently,

Λk(A) ⊆ ∩{Λk−r(A+ F ) : F ∈ Fr}.

Proof. Suppose λ ∈ Λk(A). Let X : Ck → H be an isometry such that X∗AX =
λIk. Then X∗FX has rank at most r. There is a unitary U ∈Mk such that

U∗X∗FXU =
[
0k−r ∗

0 ∗

]
.

Let U1 be obtained by taking the first k − r column of U , and V = XU1. Then
V ∗(A+ F )V = λIk−r so that λ ∈ Λk−r(A+ F ). �

Note that one can easily adapt the above proof to show that for A1, . . . , Am ∈
B(H), if X∗AjX = λjIk with X∗X = Ik and if F1, . . . , Fm ∈ B(H) are such that

U∗X∗FjXU =
[
0k−r ∗

0 ∗

]
j = 1, . . . ,m,

then V ∗AjV = λjIk−r for all j = 1, . . . ,m. So, the comment about a low rank
perturbation of a quantum channel in Section 1 follows.

If 1 ≤ r < k ≤ dimH and A ∈ B(H), then Ωk(A) can be written as the
intersection of Ωk−r(A+ F ) for a collection of rank r operators F as shown in the
following.

Theorem 3.2. Suppose A ∈ B(H) and 1 ≤ r < k < ∞. Let S be a subset of Fr
containing the set S0 = {2eiξ‖A‖P : P ∈ Pr and ξ ∈ [0, 2π)}. Then

Ωk(A) = ∩{Ωk−r(A+ F ) : F ∈ S}.

Proof. The inclusion (⊆) follows from Theorem 3.1 and the fact that Ωk(A) =
Cl(Λk(A)) by Theorem 2.1.
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Suppose λ /∈ Ωk(A). Then there exists t ∈ R such that λk(Re
(
eitA

)
) <

Re
(
eitλ

)
. Let eitA = H+ iG be with H = H∗ and G = G∗. Then H has an opera-

tor matrix diag (λ1, . . . , λm)⊕H2 with m ≤ k− 1 such that supσ(H2) < Re (eitλ).
Let F = −2e−it‖A‖(Im ⊕ Ik−m ⊕ 0) ∈ B(H). Then λk−r(Re (eit(A + F )) <

Re
(
eitλ

)
. Hence, λ /∈ Ωk−r(A+ F ). �

Note that for the set S in the above theorem, we can take the whole Fr or the
much smaller subset S0. We have the following corollary.

Corollary 3.3. Under the same setting as in Theorem 3.2. Each of the following
sets is equal to Ωk(A).

(a) ∩{Ωk−1(A+ 2eiξ‖A‖P ) : ξ ∈ [0, 2π), P ∈ P1}.
(b) ∩{Ω1(A+ 2eiξ‖A‖P ) : ξ ∈ [0, 2π), P ∈ Pk−1}.

With Theorem 2.1, the above result also holds if we replace Ωm(B) by Cl (Λm(B)).
Using the fact that Λk(A) = Ωk(A) when A ∈Mn, we have the following result.

Theorem 3.4. Suppose A ∈ Mn and 1 ≤ r < k ≤ n. Let S be a subset of Fr
containing the set S0 = {2eiξ‖A‖P : P ∈ Pr and ξ ∈ [0, 2π)}. Then

(a) Λk(A) = ∩{Λk−r(A+ F ) : F ∈ S}.
(b) Λk(A) = ∩{Λk−1(A+ 2eiξ‖A‖P ) : ξ ∈ [0, 2π), P ∈ P1}.
(c) Λk(A) = ∩{W (A+ 2eiξ‖A‖P ) : ξ ∈ [0, 2π), P ∈ Pk−1}.

The following example shows that Theorem 3.4 does not hold for infinite dimen-
sional operators.

Example 3.5. Let A = A1 ⊕A2, where

A1 =
[

0 i
i 2

]
and A2 = diag(b2, b̄2, b3, b̄3, · · · )⊕ diag(b2, b̄2, b3, b̄3, · · · )

with bm = −1 + eiπ/m for m = 2, . . . . Then 0 ∈ Cl(Λ2(A)) and 0 /∈ Λ2(A), but
0 ∈ ∩{W (A+ F ) : F is rank one}.

Verification. Note that every µ ∈ Λ1(A2) is an element of Λ2(A2), and hence
Λ1(A2) = Λ2(A2). Clearly, 0 ∈ Cl(Λ1(A)) = Cl(Λ2(A)).

Next, we show that 0 /∈ Λ2(A). Suppose 0 ∈ Λ2(A). Then 0 ∈ Λ2(H) for

H = (A + A∗)/2. Let U be unitary such that U∗AU =
[

02 ∗
∗ ∗

]
. Then U∗HU

has the same form. Since H has spectrum {2, 0} ∪ {−1 + cosπ/m : m = 2, . . . },
we may assume that U has the form [1] ⊕ U1 such that the (1, 1) entry of U1 is
nonzero. But then U∗GU will have non-zero (1, 2) entry for G = (A−A∗)/(2i). This
contradicts the fact that U∗AU has zero (1, 2) entry. So, we see that 0 /∈ Λ2(A).
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Now, suppose F =
[
F11 F12

F21 F22

]
is a rank one operator with F11 ∈ M2. Let

x ∈ C2 be a nonzero vector such that F11x = 0. If x is a multiple of e1, then the
(1, 1) entry of A1 + F11 equals 0 and we have 0 ∈ W (A1 + F11) ⊆ W (A+ F ). If x
is not a multiple of e1, then µ0 = x∗(A1 + F11)x = x∗A1x ∈ W (A1) has positive
real part and µ0 ∈W (A1 + F11) ⊆W (A+ F ). Since F22 has rank at most one, by
Theorem 3.1 we have

W (A2) = Λ2(A2) ⊆ Λ1(A2 + F22) = W (A2 + F22) ⊆W (A+ F ).

So there exist µ1, µ2 ∈W (A2) ⊆W (A+F ) on the different sides of the line passing
through µ0 and the origin. It follows that 0 ∈ conv {µ0, µ1, µ2} ⊆ W (A + F ) by
the convexity of W (A+ F ). Consequently, we have

0 ∈ ∩{W (A+ F ) : F has rank one}. �

4. Low rank perturbations of infinite dimensional normal operators

In the following, we prove that Theorem 3.4 is valid for (infinite dimensional)
normal operators. We first establish some auxiliary results showing that one can
refine the spectral decomposition of a normal operator using the geometrical infor-
mation of its numerical range.

Let P = {z ∈ C : Im (z) > 0} be the open upper half plane of C. For A ∈ B(H)
and k ≤ dimH, let

µk(A, t) = λk((e−itA− eitA∗)/(2i)).

Notice also that

Ωk(A) =
⋂

t∈[0,2π)

{
µ ∈ C : Im (e−itµ) ≤ µk(A, t)

}
.

Lemma 4.1. Suppose A ∈ B(H) is normal. If µm(A, t) ≤ 0 for some m ≥ 1 and

t ∈ R. Then A has a decomposition A1 ⊕A2 ⊕ Â such that dimA1 < m,

W (A1) ⊆ eitP, W (A2) ⊆ −eitP and W (Â) ⊆ eitR.

Furthermore, if λ`(e−itÂ+eitÂ∗)/2 ≤ 0 for some ` ≥ 1, then Â has a decomposition
A3 ⊕A4 ⊕ 0 such that dim A3 < `,

W (A3) ⊆ eit(0,∞), and W (A4) ⊆ eit(−∞, 0).

Note that each of the summands A1, A2, Â, A3, A4 may be vacuous.

Proof. Without loss of generality, we may assume that t = 0. Let A = H + iG,
where H,G are self-adjoint. Then G = G1⊕G2⊕0 such that G1 is positive definite
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with dimension p < m and G2 is negative definite. Let

H =

H11 H12 H13

H∗12 H22 H23

H∗13 H∗23 H33


such that H12 = [D | 0], where D = diag (d1, . . . , dp) with d1 ≥ · · · ≥ dp ≥ 0. Since
GH = HG, it follows that G1[D | 0] = [D | 0]G2. Since G1 is positive definite and
G2 is negative definite, the (1, 1) entry on the left side is nonnegative, and the
(1, 1) entry on the right side is nonpositive. Thus, d1 = 0 and hence H12 = 0. Since
G1H13 = 0 and G2H23 = 0, we have H13 = 0 and H23 = 0. So, H = H11⊕H22⊕H33

and A has asserted properties, with A1 = H11+iG1, A2 = H22+iG2, and Â = H33.

If λ`(e−itÂ+ eitÂ∗)/2 ≤ 0 for some `, then we can apply the above result to Â

and get the desired decomposition for Â. �

The following result [1, Lemma 2 and Corollary] will be needed in later discussion.

Lemma 4.2. Suppose dim H is infinite. Let T ∈ B(H). Then the following are
equivalent.

(a) λ ∈We(T ).
(b) There is an orthonormal set {en} such that 〈Ten, en〉 → λ.
(c) There is a decomposition of H as H1 ⊕H2 and a sequence {λi} in C, such

that λi → λ and

T =


λ1 0

λ2 ∗

0
. . .

∗ ∗


Furthermore, if α, β ∈ We(T ), then there exist two sequences {αi} and {βi} in C,
such that αi → α, βi → β and a decomposition of H as H1 ⊕H2 such that

T =



α1

β1 0
α2 ∗

0 β2

. . .
∗ ∗


In both cases, we may take H2 to be infinite dimensional.

Lemma 4.3. Suppose T ∈ B(H) is a normal operator such that for some π ≤ s1 <
s2 ≤ 2π,

σ(T ) ⊆ {ρeit ∈ C : ρ > 0, t ∈ [s1, s2]}.

Let k be a positive integer and s3 ∈ (s1, s2),

L = {ρeit ∈ C : ρ > 0, t ∈ (s1, s3)} and R = {ρeit ∈ C : ρ > 0, t ∈ (s3, s2)}.
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We have

(a) If L ∩ σ(T ) is infinite or contains an eigenvalue of T with infinite multi-
plicity, then T has a compression T1 ∈Mk such that W (T1) ⊆ L.

(b) If R ∩ σ(T ) is infinite or contains an eigenvalue of T with infinite multi-
plicity, then T has a compression T2 ∈Mk such that W (T2) ⊆ R.

If both hypotheses in (a) and (b) hold, then T has a compression of the form T1⊕T2

such that dimT1 = dimT2 = k and

W (T1) ⊆ L and W (T2) ⊆ R.

Proof. We will prove the last assertion. The proof of (a) and (b) are similar.
Suppose both R∩σ(T ) and L∩σ(T ) contain only isolated points of σ(T ). Then we
can construct T1 (respectively, T2) from any k (counting multiplicity) eigenvalues
of T in L (respectively, in R) and the corresponding eigenvectors.

Suppose one of the sets L ∩ σ(T ) or R ∩ σ(T ), say, L ∩ σ(T ), contains only
isolated points of σ(T ), and the other set contains an accumulation point of σ(T ).
Then we can construct T1 from any k eigenvalues of T in L and the corresponding
eigenvectors. Let H1 be the k-dimensional subspace spanned by the k-eigenvectors.
Then with respect to the decomposition H = H1⊕H⊥1 , T = T1⊕S for some normal
S. Since R contains an accumulation point of σ(S) and S is normal, by Lemma
4.2, S has a k-dimensional compression T2 with W (T2) ⊆ R.

Finally, suppose both L and R contain an accumulation point of σ(T ). Then
the result follows from the last statement in Lemma 4.2. �

Theorem 4.4. Suppose A ∈ B(H) is normal. Then λ /∈ Λk(A) if and only if A can

be decomposed into Ã1⊕Ã2 such that Ã1 has dimension at most k−1, W (Ã1) ⊆ λ+S

and W (Ã2) ⊆ C \ (λ + S), where S = eit
(
P ∪ L̃

)
with P = {z ∈ C : Im (z) > 0}

and L̃ = (−∞, 0] or [0,∞) for some t ∈ R.

Proof. Suppose A has the decomposition as stated with dim Ã1 = m ≤ k − 1.
Take F ∈Mm such that W (Ã1 + F ) ⊆ C \ (λ+ S). By Theorem 3.1,

Λk(A) ⊆W (A+ (F ⊕ 0)) = W ((Ã1 + F )⊕ Ã2) ⊆ C \ (λ+ S).

Hence, λ /∈ Λk(A).
Conversely, suppose λ /∈ Λk(A). Without loss of generality, we may assume that

λ = 0.
Case 1. Suppose λ = 0 /∈ Ωk(A), then µk(A, t) < 0 for some t ∈ [0, 2π). By

Lemma 4.1, A = A1 ⊕ A2 ⊕ Â with dimA1 < k, W (A1) ⊆ eitP, W (A2) ⊆ −eitP
and W (Â) ⊆ eitR. Furthermore, as µk(A, t) < 0, we must have dimA1+dim Â < k.

Then Â = A3 ⊕A4 so that W (A3) ⊆ eit[0,∞) and W (A4) ⊆ −eit(0,∞). Then the

result follows with Ã1 = A1 ⊕A3 and Ã2 = A2 ⊕A4.
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Case 2. Suppose λ = 0 ∈ Ωk(A) and such decomposition mentioned in the
theorem does not exist. Suppose ker A, the kernel of A, has dimension p < k. We

may assume that p = 0. Otherwise, replace A by the compression of A on (ker A)⊥

and replace k by k − p. We are going to derive a contradiction by showing that A
has a finite dimensional compression B such that 0 ∈ Ωk(B) = Λk(B) ⊆ Λk(A).

To construct the matrix B, we first show that there exist s1 ≤ 0 ≤ π ≤ s2 with
s2 − s1 ≤ 2π such that A = A1 ⊕A2 ⊕A3 ⊕A4, where

(4.1) dimA1 <∞, W (A1) ⊆ {ρeit : ρ > 0, t ∈ (s1, s2)},

W (A2) ⊆ {ρeit : ρ > 0, t ∈ (s2, s1 + 2π)},

W (A3) ⊆ eis1(0,∞), and W (A4) ⊆ eis2(0,∞).

Then we show that A2⊕A3⊕A4 has a finite dimensional compression B2⊕B3⊕B4

such that B = A1 ⊕B2 ⊕B3 ⊕B4 has 0 ∈ Ωk(B).

Since 0 ∈ Ωk(A), we have µk(A, t) ≥ 0 for all t ∈ [0, 2π). If µk(A, t) > 0 for all
t ∈ [0, 2π), then 0 lies in the interior of Ωk(A). Hence, 0 ∈ Λk(A). So, we may
assume that there is t0 ∈ [0, 2π) such that µk(A, t0) = 0. We may further assume
that t0 = 0.

As µk(A, t0) = 0, A has at most k − 1 eigenvalues in the open upper half plane.
Suppose these eigenvalues have arguments 0 < t1 ≤ t2 ≤ · · · ≤ tp < π, p < k. Take
tp+1 = π. Let g ∈ {1, . . . , p+1} be the smallest integer such that µm(A, tg−π) = 0
for some m and h ∈ {0, 1, . . . , p} be the largest integer satisfying µm(A, th) = 0 for
some m. Let s1 = tg − π and s2 = th + π. We are going to find Aj for j = 1, 2, 3, 4
satisfying (4.1).

By Lemma 4.1 with t = th, we have A = Â1 ⊕ Â2 ⊕ Â such that

dim Â1 <∞, W (Â1) ⊆ eithP, W (Â2) ⊆ −eithP, and W (Â) ⊆ eithR.

Let Ĥ =
(
e−ithÂ+ e−ithÂ∗

)
/2. If both λk(Ĥ) and λk(−Ĥ) are nonnegative,

then we have 0 ∈ Λk(Ĥ), which implies that 0 ∈ Λk(A), a contradiction. So, we

have either λk(Ĥ) or λk(−Ĥ) is negative. By Lemma 4.1 and the assumption that

ker A = 0, we have Â = Â3 ⊕ Â4 with

W (Â3) ⊆ eith(0,∞) and W (Â4) ⊆ −eith(0,∞).

If th = tg − π, we take Aj = Âj for j = 1, 2, 3, 4. Then A1, A2, A3, A4 satisfy
(4.1) with s1 = tg − π = 0 and s2 = th + π = π.
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Suppose th > tg − π. Then dim Â3 is finite. We further apply Lemma 4.1 to Â2

with t = tg − π, we have Â2 = A′1 ⊕A′2 ⊕A′3, with

dimA′1 <∞, W (A′1) ⊆ {ρeit : ρ > 0, t ∈ (tg − π, th)},

W (A′2) ⊆ {ρeit : ρ > 0, t ∈ (th − π, tg − π)}, and W (A′3) ⊆ ei(tg−π)(0,∞).

Note that A′4 is vacuous because th ≤ tg ≤ th + π. Then A1 = Â1 ⊕ Â3 ⊕ A′1,

A2 = A′2, A3 = A′3, and A4 = Â4 will satisfy (4.1) with s1 = tg−π and s2 = th+π.

Now we choose a finite dimensional compression B2 ⊕B3 ⊕B4 of A2 ⊕A3 ⊕A4

and show that µk(A1 ⊕B2 ⊕B3 ⊕B4, t) ≥ 0 for all t ∈ [0, 2π). Observe that

µk(A1, t) ≥ 0 for all tg − π < t < th.(4.2)

Let B3 be a k-dimensional compression of A3, if dimA3 is infinite and B3 = A3,
otherwise. We claim that

µk(A1 ⊕B3, t) ≥ 0 for all tg−1 − π ≤ t ≤ tg − π.(4.3)

The claim is clear if dimA3 is infinite. Suppose dimA3 is finite and µk(A1⊕A3, t) <
0 for some t ∈ [tg−1 − π, tg − π]. Since dim(A1 ⊕ A3) is finite and W (A1 ⊕ A3) ⊆
{ρeit : ρ > 0, t ∈ [tg − π, th + π)}, A1 ⊕A3 has a decomposition A′′1 ⊕A′′3 , with

dimA′′1 < k, W (A′′1) ⊆ S, and W (A′′3) ⊆ C \ S,

where S = ei(tg−π)(P ∪ [0,∞)) = {ρeit : ρ > 0, t ∈ [tg − π, tg)}. Notice also that

W (A2 ⊕ A4) ⊆ C \ S. Then if we take Ã1 = A′′1 and Ã2 = A2 ⊕ A′′3 ⊕ A4, we

have W (Ã1) ⊆ S and W (Ã2) ⊆ C \ S, which contradicts our assumption that such
decomposition does not exist.

Next, let B4 be a k-dimensional compression of A4, if dimA4 is infinite and
B4 = A4, otherwise. By a similar argument as in the previous paragraph, we can
show that

µk(A1 ⊕B4, t) ≥ 0 for all th ≤ t ≤ th+1.(4.4)

In the following, we will choose a finite dimension compression of B2 of A2 so
that

µk(B2 ⊕B3 ⊕B4, t) ≥ 0 for all th+1 ≤ t ≤ tg−1 + π.(4.5)

Suppose dimA2 is finite. Then by the definition of th and tg, both dimA3 and
dimA4 are infinite. Then µk(B3⊕B4, t) ≥ 0 for all t ∈ [th+1, tg−1 +π] and so (4.5)
holds with vacuous B2.

Now suppose dimA2 is infinite. We consider the following three cases.
Case 1. tg = th. In this case, the summand A′2⊕A′3 is vacuous and so as A2⊕A3.
Also dimA4 is infinite. Then (4.5) holds with vacuous B2 and B3.
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Case 2. tg = th+1. Let B2 be a k-dimensional compression of A2. Then
µk(B2, t) ≥ 0 for all t ∈ [th+1, tg−1 − π] and so (4.5) holds.
Case 3. tg > th+1. Because of the choice tg and th, both L∩σ(A2) and R∩σ(A2)
are infinite or contains an eigenvalue of A2 with infinite multiplicity, where

L = {ρeit : ρ > 0, t ∈ (th+π, th+1+π)} and R = {ρeit : ρ > 0, t ∈ (tg−1+π, tg+π)}.

By Lemma 4.3, we can get finite dimensional compressions T1 and T2 of A2 such
that dim(T1) = dim(T2) = k, W (T1) ⊆ L and W (T2) ⊆ R. Then µk(T1, t) ≥ 0 for
all t ∈ [th+1, th + π] and µk(T2, t) ≥ 0 for all t ∈ [tg, tg−1 + π]. Thus, B2 = T1 ⊕ T2

will satisfy (4.5).

Now let B = A1 ⊕ B2 ⊕ B3 ⊕ B4. By (4.2), (4.3), (4.4), and (4.5), we conclude
that µk(B, t) ≥ 0 for all t ∈ [0, 2π) and hence 0 ∈ Ωk(B) = Λk(B). �

Theorem 4.5. Suppose A ∈ B(H) is normal and 1 ≤ r < k. Let S be a subset of
Fr containing the set S0 = {2eiξ‖A‖P : P ∈ Pr and ξ ∈ [0, 2π)}. Then

Λk(A) = ∩{Λk−r(A+ F ) : F ∈ S}.

Proof. The inclusion (⊆) follows from Theorem 3.1. Suppose λ /∈ Λk(A). By
Theorem 4.4, A has a decomposition A1 ⊕ A2 with A1 ∈ Mm, W (A1) ⊆ λ + S

and W (A2) ⊆ C \ (λ + S), where m ≤ k − 1 and S is defined as in Theorem 4.4.
Let F = −2ieit‖A‖(Ir ⊕ 0) ∈ S0. Then A + F has less than k − r eigenvalues in
λ + S. Thus, A + F has a decomposition B1 ⊕ B2 with dimB1 < k − r such that
W (B1) ⊆ λ+S and W (B2) ⊆ C \ (λ+S). By Theorem 4.4, λ /∈ Λk−r(A+F ). �

If A ∈ B(H) is self-adjoint, Theorem 4.4 reduces to the following corollary.

Corollary 4.6. Suppose A ∈ B(H) is self-adjoint and 1 ≤ r ≤ k. Then λ ∈ Λk(A)

if and only if A can be decomposed into Ã1⊕ Ã2 such that dim Ã1 < k, W (Ã1) ⊆ L
and W (Ã2) ⊆ R \ L, where L = [λ,∞) or (−∞, λ].

Using a similar argument as in the proof of Theorem 4.5, an analogue result can
also be obtained for self-adjoint operators.

Theorem 4.7. Suppose A ∈ B(H) is self-adjoint and 1 ≤ r < k ≤ dimH. Let S
be a subset of Fr containing the set {±2‖A‖P : P ∈ Pr}. Then

Λk(A) = ∩{Λk−r(A+ F ) : F ∈ S}.

In [16, Proposition 2.3], the author showed that Λk(A) ⊆ ∩X∈Vk−1W (X∗AX),

where Vm is the set of X : H → H with X∗X = IH and X(H) = H⊥1 for some
subspace H1 of H satisfying dimH1 ≤ m. In general, we have the following.

Proposition 4.8. Suppose A ∈ B(H) and 1 ≤ r < k <∞. Then

Λk(A) ⊆ ∩{Λk−r(X∗AX) : X ∈ Vr}.
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Proof. Let λ ∈ Λk(A). Then there exists a rank k orthogonal projection P

such that PAP = λP . Suppose X ∈ Vr. Then there exists a subspace H1 of
H with dimH1 ≤ r satisfying X∗X = IH and X(H) = H⊥1 . Therefore, dim(
P (H) ∩H⊥1

)
≥ k − r. Choose a k − r dimensional subspace H2 of H such that

X (H2) ⊆ P (H)∩H⊥1 . Let {yi}k−ri=1 be an orthogonal basis of H2. Then {X (yi)}k−ri=1

is an orthonormal subset of P (H). So, for 1 ≤ i, j ≤ k − r, we have

〈X∗AXyi, yj〉 = 〈A (Xyi) , (Xyj) 〉 = δi jλ.

Hence, λ ∈ Λk−r(X∗AX). �

Using Theorems 3.4 and 4.5, we have

Corollary 4.9. Suppose A ∈ B(H) and 1 ≤ r < k < ∞. If dimH < ∞ or A is
normal, then

Λk(A) = ∩{Λk−r(X∗AX) : X ∈ Vr}.

Proof. For each F ∈ Fr, there is X ∈ Vr such that X∗FX = 0. Then

Λk(A) ⊆
⋂
X∈Vr

Λk−r(X∗AX) ⊆
⋂
F∈Fr

Λk−r(X∗(A+ F )X) ⊆
⋂
F∈Fr

Λk−r(A+ F ).

By Theorems 3.4 and 4.5, the inclusions are indeed equalities. �

Similarly, using Theorems 2.1 and Corollary 3.3, we have the last corollary in
this section.

Corollary 4.10. Suppose A ∈ B(H) and 1 ≤ r < k <∞. Then

Ωk(A) = ∩{Ωk−r(X∗AX) : X ∈ Vr}.

5. Results on Λ∞(A)

Suppose H is infinite dimensional and A ∈ B(H). It is clear that Λ∞(A) can
be viewed as the set of λ ∈ C for which there exists an infinite orthonormal set
{xi ∈ H : i ≥ 1} such that 〈Axi, xj〉 = δi jλ for all i, j ≥ 1. Extend the definition
of Ωk(A) to

Ω∞(A) =
⋂

ξ∈[0,2π)

{
µ ∈ C : Re (eiξµ) ≤ λk(Re (eiξA)) for all k ≥ 1

}
.

We have the following result.

Theorem 5.1. Suppose dim H is infinite and A ∈ B(H). Let S be a set of finite
rank operators on B(H) containing the set

{2eiξ‖A‖P : ξ ∈ [0, 2π), P is a finite rank orthogonal projection}.

Then we have the following equalities.

(1) Ω∞(A) =
⋂
k≥1 Ωk(A) =

⋂
{Cl(W (A+ F )) : F ∈ S} = We(A).

(2) Λ∞(A) =
⋂
k≥1 Λk(A) =

⋂
{W (A+ F ) : F ∈ S}.
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Proof. (1) By the definition of Ω∞(A), we have Ω∞(A) =
⋂
k≥1 Ωk(A). By (1.2)

and Corollary 3.3, we have

We(A) =
⋂
{Cl(W (A+ F )) : F ∈ B(H) has finite rank }

=
⋂
k≥1

⋂
{Cl(W (A+ F )) : F ∈ B(H) has rank k − 1}

=
⋂
k≥1

Ωk(A)

=
⋂
k≥1

⋂
{Cl(W (A+ F )) : F ∈ S has rank k − 1}

=
⋂
{Cl(W (A+ F )) : F ∈ S}.

So, the second and third equalities in (1) hold.
(2) By Theorem 4 in [1],we have

(5.1) Λ∞(A) =
⋂
{W (A+ F ) : F ∈ B(H) has finite rank } .

Clearly, we have the inclusion

Λ∞(A) ⊆
⋂
k≥1

Λk(A).

To prove the reverse inclusion, suppose λ ∈
⋂
k≥1 Λk(A). Let F ∈ B(H) of rank m.

Choose k ≥ m+ 1. Then λ ∈ Λk(A). By Theorem 3.1, we have

λ ∈ Λk(A) ⊆ Λ1(A+ F ) = W (A+ F ).

Hence, ⋂
k≥1

Λk(A) ⊆
⋂
{W (A+ F ) : F ∈ B(H) is of finite rank} = Λ∞(A).

Thus, we get the first equality in (2).
Next, we show that one only needs to use F ∈ S for the intersection on the right

side of (5.1). To this end, note that⋂
{W (A+ F ) : F ∈ B(H) is of finite rank} ⊆

⋂
{W (A+ F ) : F ∈ S}.

To prove the reverse inclusion, assume that

λ /∈
⋂
{W (A+ F ) : F ∈ B(H) is of finite rank}.

If λ /∈ Ω∞(A), then there is a finite rank F ∈ B(H) such that λ /∈ Cl(W (A + F ))
and hence λ /∈W (A+ F ). So, assume that

(5.2) λ ∈We(A) ⊆W (A) and thus |λ| ≤ sup{|µ| : µ ∈W (A)} ≤ ‖A‖.
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Then there is ξ ∈ [0, 2π) and a finite rank operator F ∈ B(H) such that

(5.3) eiξW (A+ F − λI) ⊆ {µ ∈ C : Im (µ) < 0} ∪ L

with L = (0,∞) or L = (−∞, 0). We may replace A by eiξA and assume that
ξ = 0. Without loss of generality, assume that L = (−∞, 0).

Let λ = a+ ib with a, b ∈ R and A = H + iG with H = H∗ and G = G∗. Since
(5.3) holds with ξ = 0 for a finite rank operator F ∈ B(H), there is r not larger
than the rank of ImF such that G has an operator matrix of the form

(5.4) diag (g1, . . . , gr)⊕ bIs ⊕G2

with g1 ≥ · · · ≥ gr > b, W (G2) ⊆ (−∞, b) and 0 ≤ s ≤ ∞. By (5.2), we have

g1 − b ≤ |g1|+ |b| ≤ 2‖G‖ ≤ 2‖A‖.

We consider two cases.
Case 1. Suppose g1 − b = 2‖A‖. Then g1 = ‖A‖ = −b. Since λ ∈We(A) and

‖A‖ = |b| ≤ |a+ ib| = |λ| ≤ ‖A‖,

it follows that

a = 0 and λ = ib = −i‖A‖

is the only element in Cl(W (A)) ∩ {µ ∈ C : Im (µ) ≤ −‖A‖}. Thus, G2 in (5.4) is
vacuous, i.e., G has operator matrix diag (g1, . . . , gr) ⊕ bIs. Using the same basis,
we let H have the operator matrix[

H11 H12

H∗12 H22

]
.

Since ‖H22 + ibI‖ ≤ ‖A‖ = |b|, we see that H22 = 0. By the fact that

|b|2 = ‖A∗A‖ = ‖(H + iG)∗(H + iG)‖,

we see that H12 is zero as well. Thus, A has operator matrix

A1 ⊕ ibIs with A1 ∈Mm.

Since (5.3) holds for a finite operator F with ξ = 0 and L = (−∞, 0), we see that
s 6=∞. But then dimH is finite, which is a contradiction.

Case 2. Suppose g1 − b < 2‖A‖. If s is finite in (5.4), then

F̃ = i2‖A‖(Ir+s ⊕ 0) ∈ S and W (A− F̃ ) ⊆ {µ ∈ C : Im (µ) < b}.

Thus, λ = a+ ib /∈W (A− F̃ ).
Next, assume that s = ∞. Suppose the compression of H on the null space of

G − bI equals H0. Then there is a positive integer m such that H0 has operator
matrix diag (h1, . . . , hm)⊕H1 such that h1 ≥ · · · ≥ hm ≥ a and W (H1) ⊆ (−∞, a).
Otherwise, (5.3) cannot hold for a finite operator F with ξ = 0 and L = (−∞, 0).

Let F̃ = i2‖A‖(Ir+m⊕0) ∈ S, and let Â = A− F̃ −λI. Then Im (Â) = (Â− Â∗)/2i
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has an operator matrix Ĝ1 ⊕ 0s−m ⊕ Ĝ2 with W (Ĝ1 ⊕ Ĝ2) ⊆ (−∞, 0). Moreover,

the compression of Re (Â) = (Â+ Â∗)/2 on the null space of Im (Â) equal H1− aI.

As a result, if µ = 〈Âx, x〉 ∈ W (Â) has imaginary part 0, then x must lie in the

null space of Im (Â), and hence the real part of µ lies in W (H1 − aI) ⊆ (−∞, 0).

Thus, 0 /∈W (Â), equivalently, λ /∈W (A− F̃ ). Consequently,⋂
{W (A+ F ) : F ∈ S} ⊆

⋂
{W (A+ F ) : F ∈ B(H) is of finite rank}. �

In [16], Martinex-Avendano asked whether Λ∞(A) =
⋂
k≥1 Λk(A). Assertion (2)

answers the question affirmatively.

Theorem 5.2. Suppose A ∈ B(H), where H is infinite dimensional. Then

Int(Ω∞(A)) ⊆ Λ∞(A) ⊆ Ω∞(A).

Moreover, Cl(Λ∞(A)) = Ω∞(A) if and only if Λ∞(A) 6= ∅.

Proof. By the Corollary after Theorem 4 in [1], we see that Int(Ω∞(A)) ⊆
Λ∞(A). The inclusion Λ∞(A) ⊆ Ω∞(A) is clear.

Note that Ω∞(A) is always a non-empty compact convex set. If Λ∞(A) = ∅
then Cl(Λ∞(A)) 6= Ω∞(A). Conversely, suppose Λ∞(A) 6= ∅. If Int(Λ∞(A)) =
Int(Ω∞(A)) is non-empty, then Cl(Λ∞(A)) = Ω∞(A). If Int(Ω∞(A)) is empty,
then Ω∞(A) = {µ} is a singleton and so is the non-empty set Λ∞(A). Hence
Cl(Λ∞(A)) = Λ∞(A) = {µ}. �

The next example show that Λ∞(A) may indeed be empty so that Cl(Λ∞(A)) 6=
Ω∞(A).

Example 5.3. Let A =
⊕

n≥2 diag
(
eiπ/n/n,−1/n

)
∈ B(H). Then Ω∞(A) = {0}

but 0 /∈ Λ1(A) so that Λ∞(A) = ∩{Λk(A) : k = 1, 2, . . . } = ∅. On the other hand,
if B = A⊕ 0H, then Λ∞(B) = {0}.

From the proof of Theorem 5.2, we see that if Λ∞(A) is a singleton, then Ω∞(A)
is also a singleton, which can happen if and only if A−µI is a compact operator for
some µ ∈ C by the corollary after Lemma 3 in [1]. In connection to this comment
and Example 5.3, we have the following.

Proposition 5.4. Let A ∈ B(H) and µ ∈ C be such that A−µI is compact. Then
the following are equivalent.

(a) Λ∞(A) is non-empty.
(b) Λ∞(A) = {µ}.
(c) µ ∈ Λk(A) for each k = 1, 2, . . . .

Proof. The implications “(a) ⇐⇒ (b)” is clear. We have “(c) ⇐⇒ (b)”
because Λ∞(A) =

⋂
k Λk(A) by Theorem 5.1. �
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