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Abstract

Let k ∈ {1, . . . , n}. The k-numerical range of A ∈Mn is the set

Wk(A) = {(trX∗AX)/k : X is n× k, X∗X = Ik},

and the k-numerical radius of A is the quantity

wk(A) = max{|z| : z ∈ Wk(A)}.

Suppose k > 1, k′ ∈ {1, . . . , n′} and n′ < C(n, k) min{k′, n′ − k′}. It is shown that there

is a linear map φ : Mn → Mn′ satisfying Wk′(φ(A)) = Wk(A) for all A ∈ Mn if and only if

n′/n = k′/k or n′/n = k′/(n−k) is a positive integer. Moreover, if such a linear map φ exists,

then there is a unitary matrix U ∈Mn′ and nonnegative integers p, q with p+ q = n′/n such
that φ has the form

A 7→ U∗[A⊕ · · · ⊕ A︸ ︷︷ ︸
p

⊕At ⊕ · · · ⊕ At︸ ︷︷ ︸
q

]U

or
A 7→ U∗[ψ(A)⊕ · · · ⊕ ψ(A)︸ ︷︷ ︸

p

⊕ψ(A)t ⊕ · · · ⊕ ψ(A)t︸ ︷︷ ︸
q

]U,

where ψ : Mn →Mn has the form A 7→ [(trA)In − (n− k)A]/k. Linear maps φ̃ : Mn →Mn′

satisfying wk′(φ̃(A)) = wk(A) for all A ∈ Mn are also studied. Furthermore, results are
extended to triangular matrices.

AMS Classifications: 15A04, 15A60, 47A12.
Keywords: Linear transformations, numerical range, numerical radius.

1 Introduction

There has been a great deal of interest in studying linear operator φ : M→M, where M
is a matrix algebra or space, with a certain special property such as:

(a) f(φ(A)) = f(A) for all A ∈M, where f is a given function on M;

(b) φ(S) ⊆ S or φ(S) = S for a certain subset S ⊆M;

(c) φ(A) ∼ φ(B) in M whenever A ∼ B in M for a certain relation ∼ on M.

Very often, φ has nice forms such as

A 7→MAN or A 7→MAtN

for some suitable M,N ∈M. One may see [19] for a survey on the subject. Recently, there

has been research on more general problems concerning linear transformations φ : M→M′

with some special properties such as
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(a) f ′(φ(A)) = f(A) for all A ∈ M, where f and f ′ are appropriate functions on M and

M′;

(b) φ(S) ⊆ S ′ or φ(S) = S ′ for certain subsets S ⊆M and S ′ ⊆M′;

(c) φ(A) ∼′ φ(B) in M′ whenever A ∼ B in M for certain relations ∼ on M and ∼′ on

M′.

Such problems are more challenging and their study often lead to the discovery of unexpected
results and hidden structures of the matrix algebras M and M′; see [6, 10]. In this paper,
we consider these types of problems. We solve a specific problem and develop some proof
techniques that may be useful for future study in this area.

Let us first introduce some notations and definitions. Denote by Mn the algebra of n×n
complex matrices. For 1 ≤ k ≤ n, define (see Halmos [11]) the k-numerical range of A ∈Mn

as
Wk(A) = {(trX∗AX)/k : X is n× k, X∗X = Ik}.

Since Wn(A) = {trA/n}, we always assume that k < n to avoid trivial consideration. When

k = 1, we have the classical numerical range W1(A), which is useful in studying matrices

and operators; see [11]. Researchers have studied linear maps φ : Mn →Mn such that

Wk(φ(A)) = Wk(A) for all A ∈Mn. (1.1)

By a result of Pellegrini [18], a linear map φ : Mn →Mn satisfies (1.1) for k = 1 if and only
if there is a unitary U ∈Mn such that φ has the form

(S1) A 7→ U∗AU or A 7→ U∗AtU.

Pierce and Watkins [20] extended the result of Pellegrini to other values of k as long as

k 6= n/2, and raised the open problem for the case k = n/2. In [12] (see also [17]), it was

shown that for k = n/2, a linear map φ : Mn → Mn satisfies (1.1) if and only if there is a

unitary U ∈Mn such that φ has the form (S1), or

(S2) n = 2k and

A 7→ (trA/k)In − U∗AU or A 7→ (trA/k)In − U∗AtU. (1.2)

In fact, for any k ∈ {1, . . . , n− 1}, a mapping φ of the form (1.2) satisfies

(n− k)Wn−k(A) = kWk(φ(A)) for all A ∈Mn.

In [6] the authors studied linear maps φ : Mn → Mn′ such that (1.1) holds with k = 1. It

was shown that for n′ ≤ 2n − 2, a linear map φ : Mn → Mn′ satisfies (1.1) if and only if

n′ ≥ n, there exist a unitary U ∈Mn′ and a unital positive linear map f : Mn →Mn′−n such
that φ has the form

A 7→ U∗[A⊕ f(A)]U or A 7→ U∗[At ⊕ f(A)]U.
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However, for n′ > 2n − 2, there are other linear maps φ : Mn → Mn′ satisfying (1.1) with

complicated structure. The complete characterization of φ : Mn → Mn′ satisfying (1.1) is
unknown.

The purpose of this paper is to study those linear operators φ : Mn →Mn′ satisfying

Wk′(φ(A)) = Wk(A) for all A ∈Mn .

By modifying the map in [6], we can easily get a map φ : Mn → Mn′ with complicated
structure satisfying

Wk′(φ(A)) = W1(A) for all A ∈Mn .

Therefore, we will only study the case when k > 1. It turns out that we also need to impose
some conditions on n and n′ to avoid the pathetic situation described below.

Let k ∈ {1, . . . , n}, and (α, β) be a pair of length k increasing subsequences of {1, . . . , n}.
Denote by A[α, β] the submatrix of A ∈ Mn lying in rows and columns indexed by α and

β, respectively. Then the kth compound matrix of A is the C(n, k)× C(n, k) matrix Ck(A)

whose entries equal detA[α, β] arranged in lexicographic order of α and β. The kth additive
compound is defined by

∆k(A) =
d

dt
Ck(I + tA)|t=0.

It is known (e.g., see [16]) that the mapping

A 7→ ∆k(A)

from Mn to MC(n,k) is linear and satisfies

Wk(A) = W1(∆k(A)) for any A ∈Mn.

So, if n′ ≥ 2C(n, k)− 1 then there is a linear map ψ : MC(n,k) →Mn′ satisfying W1(ψ(X)) =

W1(X) for all X ∈ Mn without nice structure. Thus, the linear map φ : Mn → Mn′ defined
by

A 7→ ψ(∆k(A))

satisfies Wk(A) = W1(φ(A)) for all A ∈ Mn and does not have nice structure. For larger n′

one can extend the above idea to construct φ of the form

A 7→ ψ1(∆k(A))⊕ · · · ⊕ ψk′(∆k(A))

satisfying Wk(A) = Wk′(φ(A)) for all A ∈Mn without nice structure.
By the above discussion, we see that it is reasonable to impose appropriate assumption on

n, n′, k, k′ to obtain nice characterizations of linear map φ : Mn → Mn′ satisfying Wk(A) =

Wk′(φ(A)) for all A ∈ Mn. This is done in Section 2. In fact, we show that the same
result is valid for real linear map φ : Hn → Hn′ , where Hm denotes the real linear space
of all m ×m complex Hermitian matrices. In Section 3, we extend the result to triangular
matrices. Define the k-numerical radius of A ∈Mn by

wk(A) = max{|z| : z ∈ Wk(A)}.
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In Section 4, we study those linear maps φ̃ satisfying

wk′(φ̃(A)) = wk(A) for all A ∈Mn.

Some open problems are mentioned in Section 5.
Note that recently, researchers have also considered mappings preserving the classical

numerical range and radius on more general operator algebras; see [1, 2, 4, 5, 7, 8, 14].

2 Results on Hermitian and Complex Matrices

The main theorem of this section is the following.

Theorem 2.1 Let (M,M′) = (Hn, Hn′) or (Mn,Mn′). Suppose k ∈ {2, . . . , n − 1}, k′ ∈
{1, . . . , n′} and n′ < C(n, k) min{k′, n′ − k′}. There exists a linear map φ : M→M′ such
that

Wk′(φ(A)) = Wk(A) for all A ∈M (2.1)

if and only if there is a unitary U ∈ Mn′ and nonnegative integers p, q with p + q = n′/n
such that one of the following holds:

(W1) n′/n = k′/k and φ has the form

A 7→ U∗[A⊕ · · · ⊕ A︸ ︷︷ ︸
p

⊕At ⊕ · · · ⊕ At︸ ︷︷ ︸
q

]U.

(W2) n′/n = k′/(n− k) and φ has the form

A 7→ U∗[ψ(A)⊕ · · · ⊕ ψ(A)︸ ︷︷ ︸
p

⊕ψ(A)t ⊕ · · · ⊕ ψ(A)t︸ ︷︷ ︸
q

]U,

where ψ : M→M is the mapping A 7→ [(trA)In − (n− k)A]/k.

Proof of the sufficiency part. Suppose n′/n = k′/k. Then any mapping described in (W1)

satisfies (2.1). If n′/n = k′/(n − k), then the mapping φ : M → M′ described in (W2)
satisfies

Wk′(φ(A)) = Wn−k(ψ(A)) = Wk(A) for all A ∈M.

In the following, we consider the converse. Suppose there exists a linear map φ : M→M′

such that Wk′(φ(A)) = Wk(A) for all A ∈M. We will show that n′/n is an integer and one

of conditions (W1) or (W2) holds by establishing a sequence of lemmas.
Let X ∈ Hm. Denote the eigenvalues of X by

λ1(X) ≥ · · · ≥ λm(X).
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Suppose r ∈ {1, . . . ,m− 1}. Let

Sr(X) =
r∑

j=1

λj(X) and sr(X) =
r∑

j=1

λm−j+1(X).

We have the following result concerning the r-numerical range; see [11, 12, 20] and their
references.

Lemma 2.2 Suppose r ∈ {1, . . . ,m− 1}.

(a) Wr(A) = Wr(U
∗AU) for any unitary U ∈Mm.

(b) Wr(αA+ βIm) = αWr(A) + β for any α, β ∈ C.

(c) If A ∈ Hm, then

Wr(A) = [sr(A)/r, Sr(A)/r] .

(d) A matrix B ∈Mm satisfies Wr(B) ⊆ IR if and only if B = B∗.

(e) A matrix C ∈Mm satisfies Wr(C) = {λ} if and only if C = λIm.

Lemma 2.3 The mapping φ satisfies φ(Hn) ⊆ Hn′ and φ(In) = In′.

Proof. If A ∈ Hn, then Wk′(φ(A)) = Wk(A) ⊆ IR. By Lemma 2.2 (d), φ(A) ∈ Hn′ .

Furthermore, since Wk′(φ(In)) = Wk(In) = {1}, we have φ(In) = In′ by Lemma 2.2 (e).

By the above lemma, we can focus on proving the result for the Hermitian case. Once it
is done, the result on complex matrices will follow from the fact that φ(A) = φ(H) + iφ(G)
for any complex matrix A = H + iG ∈Mn with H,G ∈ Hn.

A key step in our proof is to show that φ or φ ◦ ψ−1 will map idempotents in Hn to
idempotents in Hn′ . Two idempotents F,G ∈ Hm are said to be disjoint if FG = GF = 0m.

Lemma 2.4 Suppose A,B ∈ Hm and r ∈ {1, . . . ,m − 1}. The following conditions are
equivalent.

(a) The sum of the first r diagonal entries of A+B equals Sr(A) + Sr(B).

(b) The sum of the last m− r diagonal entries of A+B equals sm−r(A) + sm−r(B).

(c) A = A1⊕A2 and B = B1⊕B2 such that A1 has the r largest eigenvalues of A and B1

has the r largest eigenvalues of B.

Proof. Clearly, (a) and (b) are equivalent, and (c) implies (a). To prove (a) implies

(c), let dA be the sum of the first r diagonal entries of A, and dB be the sum of the first

r diagonal entries of B. Then dA ≤ Sr(A) and dB ≤ Sr(B). Now, the sum of the first r

diagonal entries of A+B equals dA + dB = Sr(A)+Sr(B). So, dA = Sr(A) and dB = Sr(B).

By [13, Lemma 4.1], A = A1 ⊕A2 and B = B1 ⊕B2 with A1, B1 ∈Mr such that A1 has the
r largest eigenvalues of A and B1 has the r largest eigenvalues of B.

By Lemma 2.4, one readily deduces the following.
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Lemma 2.5 Suppose A,B ∈ Hm and 1 < r < m. The following conditions are equivalent.

(a) Sr(A+B) = Sr(A) + Sr(B).

(b) sm−r(A+B) = sm−r(A) + sm−r(B).

(c) If V ∈ Mm is unitary such that V ∗(A + B)V = diag (c1, . . . , cm) with c1 ≥ · · · ≥
cm, then V ∗AV = A1 ⊕ A2 and V ∗BV = B1 ⊕ B2 with A1, B1 ∈ Mr such that A1

(respectively, B1) has the r largest eigenvalues of A (respectively, B).

Lemma 2.6 Suppose k < n/2 and k′ ≤ n′/2. If E ∈ Hn is a rank one idempotent, then

φ(E) is positive semidefinite.

Proof. Suppose Q ∈ Hn is a rank k idempotent such that QE = EQ = 0. Then Q + E
is a Hermitian idempotent with trace k + 1. Since k < n/2,

Wk′(φ(Q+ E)) = Wk(Q+ E) = [0, 1],

Wk′(φ(Q)) = Wk(Q) = [0, 1], and Wk′(φ(E)) = Wk(E) = [0, 1/k].

Then Sk′(φ(Q)) = k′, sk′(φ(Q)) = 0, Sk′(φ(E)) = k′/k, and sk′(φ(E)) = 0. So,

sk′(φ(Q) + φ(E)) = sk′(φ(Q)) + sk′(φ(E)).

Let V ∈ Mn′ be unitary such that V ∗(φ(Q + E))V = diag (c1, . . . , cn′) with c1 ≥ · · · ≥ cn′ .

By Lemma 2.5, V ∗φ(Q)V = Y1 ⊕ Y2 and V ∗φ(E)V = Z1 ⊕ Z2 with Y2, Z2 ∈ Mk′ such that

Z2 has the k′ smallest eigenvalues of φ(E). If Z2 is the zero matrix, then Z1 and hence,

φ(E) is positive semidefinite as asserted. If Z2 has a negative eigenvalue, then the largest
eigenvalue of Z2 is positive. Hence, Z1 is positive definite. Now, suppose V1 ∈ Mn′−k′ such

that V ∗
1 Y1V1 = diag (b1, . . . , bn′−k′) with b1 ≥ . . . ≥ bn′−k′ . Then

∑k′

j=1 bj = Sk′(φ(Q)) =

k′. Since Z1 is positive definite and k′ ≤ n′/2, the sum of the first k′ diagonal entries of

V ∗
1 Z1V1 = a > 0. Let X be the matrix consisting of the first k′ columns of the unitary

matrix V (V1 ⊕ Ik′). Then

1 < (k′ + a)/k′ = tr (X∗φ(Q+ E)X)/k′ ∈ Wk′(φ(Q+ E)),

which contradicts the fact that Wk′(φ(Q+ E)) = [0, 1].

Lemma 2.7 Suppose k ≤ n/2 and k′ ≤ n′/2. Let E1, . . . , En ∈ Hn be rank one idempotents
such that E1 + · · ·+ En = In.

(a) Suppose s ∈ {1, . . . , k′ − 1} such that

λn′−s(φ(E1)) > λn′−s+1(φ(E1)).
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Then there is an n′ × s matrix S whose columns are orthonormal eigenvectors of the
eigenvalues λn′−s+1(φ(E1)), . . . , λn′(φ(E1)) such that S∗φ(Ej)S = γjIs with

γ1 = 1−
n∑

j=2

γj = λn′−s+1(φ(E1)) = · · · = λn′(φ(E1)),

and
γj = λk′−s+1(φ(Ej)) = · · · = λn′−k′+s(φ(Ej)), j = 2, . . . , n.

(b) Suppose r ∈ {1, . . . , k′ − 1} such that

λr(φ(E1)) > λr+1(φ(E1)).

Then there is an n′ × r matrix R whose columns are orthonormal eigenvectors of the
eigenvalues λ1(φ(E1)), . . . , λr(φ(E1)) such that R∗φ(Ej)R = γ̃jIr with

γ̃1 = 1−
n∑

j=2

γ̃j = λ1(φ(E1)) = · · · = λr(φ(E1)),

and
γ̃j = λk′−r+1(φ(Ej)) = · · · = λn′−k′+r(φ(Ej)), j = 2, . . . , n.

Proof. Assume that φ(E1) has eigenvalues a1 ≥ · · · ≥ an′ . Since

Wk′(φ(E1)) = Wk(E1) = [0, 1/k],

an′ + · · ·+ an′−k′+1 = 0. Let B ∈ {E2, . . . , En}. Then

Wk′(φ(B)) = Wk(B) = [0, 1/k] and Wk′(φ(E1 +B)) = Wk(E1 +B) = [0, 2/k].

Suppose φ(B) has eigenvalues b1 ≥ · · · ≥ bn′ .

(a) Note that sk′(φ(E1) + φ(B)) = sk′(φ(E1)) + sk′(φ(B)). By Lemma 2.5, there is a

unitary V ∈ Mn′ such that V ∗φ(E1)V = A1 ⊕ A2 and V ∗φ(B)V = B1 ⊕ B2, where A2 has
eigenvalues an′ , . . . , an′−k′+1 and B2 has eigenvalues bn′ , . . . , bn′−k′+1. Now,

Wk′(φ(E1)− φ(B)) = Wk(E1 −B) = [−1/k, 1/k].

Then sk′(φ(E1)) + sk′(−φ(B)) = sk′(φ(E1 − B)). By Lemma 2.5, there is a unitary Ṽ ∈
Mn′ such that Ṽ ∗φ(E1)Ṽ = Ã1 ⊕ Ã2 and Ṽ ∗φ(B)Ṽ = B̃1 ⊕ B̃2, where Ã2 has eigenvalues

an′ , . . . , an′−k′+1 and B̃2 has eigenvalues b1, . . . , bk′ . Since an′−s > an′−s+1, we may assume

that the last s columns of V and Ṽ are the eigenvectors of φ(E1) corresponding to the

eigenvalues an′−s+1, . . . , an′ . So, the lower s× s principal submatrices of B2 and B̃2 are the
same, say, equal to X ∈ Hs. Suppose X has eigenvalues d1 ≥ · · · ≥ ds. Because B2 has
eigenvalues bn′−k′+1 ≥ · · · ≥ bn′ , it follows from the interlacing inequalities (see [9]) that

bn′−k′+j ≥ dj, j = 1, . . . , s. (2.2)
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Because B̃2 has eigenvalues b1 ≥ · · · ≥ bk′ , by the interlacing inequalities again, we have

dj ≥ bk′−s+j, j = 1, . . . , s. (2.3)

Since k′ ≤ n′/2, bk′−s+j ≥ bn′−k′+j for 1 ≤ j ≤ s. By (2.2) and (2.3), we see that

bk′−s+j = dj = bn′−k′+j, j = 1, . . . , s.

Thus,
d1 = · · · = ds = bk′−s+1 = · · · = bn′−k′+s. (2.4)

Use the last s columns of V to form the matrix S. Then S∗BS = d1Is.
By the above arguments, S∗φ(Ej)S = γjIs for j = 2, . . . , n, where γj = λk′−s+1(φ(Ej)) =

λn′−k′+s(φ(Ej)). By Lemma 2.3,

φ(E1 + E2 + · · ·+ En) = φ(In) = In′ .

It follows that

S∗φ(E1)S = Is −
n∑

j=2

γjIs (2.5)

is a scalar matrix, where γ1 = 1−∑n
j=2 γj. Clearly, γ1 = an′−s+1 = an′ .

(b) Note that

Wk′(φ(E1 +B)) = Wk(E1 +B) = [0, 2/k].

Thus, Sk′(φ(E1) + φ(B)) = Sk′(φ(E1)) + Sk′(φ(B)). Then there is a unitary W ∈ Mn′ such

that W ∗(φ(E1))W = Y1 ⊕ Y2 and W ∗(φ(B))W = Z1 ⊕ Z2 with Y1, Z1 ∈ Mk′ , where Y1 has
eigenvalues a1, . . . , ak′ and Z1 has eigenvalues b1, . . . , bk′ . Now,

Wk′(φ(E1 −B)) = Wk(E1 −B) = [−1/k, 1/k].

We see that Sk′(φ(E1) + φ(−B)) = Sk′(φ(E1)) + Sk′(φ(−B)). So there exists a unitary

W̃ ∈ Mn′ such that W̃ ∗φ(E1)W̃ = Ỹ1 ⊕ Ỹ2 and W̃ ∗φ(B)W̃ = Z̃1 ⊕ Z̃2, where Ỹ1 has

eigenvalues a1, . . . , ak′ and Z̃1 has eigenvalues bn′ , . . . , bn′−k′+1. Since ar > ar+1, we may

assume that the first r columns of W and W̃ are the eigenvectors of φ(E1) corresponding

to the eigenvalues a1, . . . , ar. So, the leading r × r submatrices of Z1 and Z̃1 are the same,
say, equal to T ∈ Hr. Suppose T has eigenvalues t1 ≥ · · · ≥ tr. Since Z1 has eigenvalues
b1 ≥ · · · ≥ bk′ , by the interlacing inequalities

tj ≥ bk′−r+j j = 1, . . . , r. (2.6)

Since Z̃1 has eigenvalues bn′−k′+1 ≥ · · · ≥ bn′ , by the interlacing inequalities

bn′−k′+j ≥ tj, j = 1, . . . , r. (2.7)

Since k′ ≤ n′/2, bk′−r+j ≥ bn′−k′+j for 1 ≤ j ≤ r. By (2.6) and (2.7), we see that

bk′−r+j = tj = bn′−k+j, j = 1, . . . , r.
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Since k′ ≤ n′/2,
t1 = · · · = tr = bk′−r+1 = · · · = bn′−k′+r.

Use the first r columns of W to form the matrix R. Then R∗TR = t1Ir. Consequently,
R∗φ(Ej)R = γ̃jIr for j = 2, . . . , n, as γ̃j = λk′−r+1(φ(Ej)) = λn′−k′+r(φ(Ej)). Moreover,

R∗φ(E1)R = Ir −
∑n

j=2 γ̃jIr, where γ̃1 = 1−∑n
j=2 γ̃j. Clearly, γ̃1 = a1 = ar.

Lemma 2.8 Suppose k = n/2 and k′ ≤ n′/2. If there is a rank one idempotent E ∈ Hn such

that φ(E) has negative eigenvalues, then k′ = n′/2 and φ ◦ ψ−1(F ) is positive semidefinite
for any rank one idempotent F ∈ Hn.

Proof. Suppose there is a rank one idempotent E such that φ(E) has negative eigenvalues.

Assume that φ(E) has eigenvalues a1 ≥ · · · ≥ an′−s ≥ 0 > an′−s+1 ≥ · · · ≥ an′ . Since

Wk′(φ(E)) = Wk(E) = [0, 1/k],

an′ + · · ·+ an′−k′+1 = 0. Thus, s < k′.
Let E1, . . . , En ∈ Hn be rank one idempotents such that E1 = E and

∑n
j=1Ej = In. By

Lemma 2.7 (a), there is an n′ × s matrix S whose columns are orthonormal eigenvectors of

the negative eigenvalues of φ(E1) such that S∗φ(Ej)S = γjIs with

γ1 = 1−
n∑

j=2

γj = an′ = · · · = an′−s+1 (2.8)

and
γj = λk′−s+1(φ(Ej)) = λn′−k′+s(φ(Ej)), j = 2, . . . , n. (2.9)

We must have
a1 = · · · = ak′ .

Otherwise, there is r < k′ such that ar > ar+1. By Lemma 2.7 (b), there is an n′ × r matrix

R whose columns are orthonormal eigenvectors of the r largest eigenvalues of φ(E1) such

that R∗φ(Ej)R = γ̃jIr with

γ̃j = λk′−r+1(φ(Ej)) = λn′−k′+r(φ(Ej)), j = 2, . . . , n. (2.10)

By (2.9) and (2.10), we have γ̃j = λk′(φ(Ej)) = γj for j = 2, . . . , n. But then, we have

R∗φ(E1)R = Ir −
∑n

j=2 γjIr, where a1 = 1 −∑n
j=2 γj = an′ , which is a contradiction. Since

Wk(E1) = Wk′(φ(E1)), we see that a1 = · · · = ak′ = 1/k.
Observe that

∑n
j=1 γj = 1 and γ1 < 0. Thus, there exists j ≥ 2 such that γj > 0. We

may assume that γ2 > 0. Since sk′(φ(E2)) = 0 and λn′−k′+s(φ(E2)) = γ2 > 0, we see that

λn′(φ(E2)) < 0. Suppose φ(E2) has t negative eigenvalues. Applying the arguments on φ(E1)

to φ(E2), we see that the last t eigenvalues of φ(E2) all equal to 1−∑j 6=2 λk′−s+1(φ(Ej)) and

1/k = λl(φ(E2)) for l = 1, . . . , k′.
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By (2.9), we have

1/k = γ2 = λk′−s+1(φ(E2)) = · · · = λn′−k′+s(φ(E2)).

Interchanging the roles of E1 and E2, we see that

1/k = λ1(φ(E1)) = · · · = λn′−k′+t(φ(E1)).

Moreover, since λk′(φ(E1)) = λk′(φ(E2)) = 1/k, we see that

λn′(φ(E1)) = 1−
n∑

j=3

λk′(φ(Ej))− 1/k = λn′(φ(E2)).

Suppose j ≥ 3 is such that φ(Ej) has negative eigenvalues. We can apply the above argu-

ments on φ(E2) to φ(Ej) to conclude that λn′(φ(Ej)) = γ1, and

1/k = λl(φ(Ej)) for l = 1, . . . , n′ − k′ + s. (2.11)

Suppose j ≥ 3 and φ(Ej) is positive semidefinite. Then λn′−k′+1(φ(Ej)) = · · · = λn′(φ(Ej)) =

0. By (2.9), we have

λk′−s+1(φ(Ej)) = λn′−k′+s(φ(Ej)) = 0. (2.12)

Relabeling E1, . . . , En if necessary, we can assume that φ(E2), . . . , φ(Em) have negative eigen-

values, and φ(Ej) is positive semidefinite for j > m. Then each one of φ(E1), . . . , φ(Em) has

smallest eigenvalue

γ1 = 1−
n∑

j=2

λk′(φ(Ej)) = 1− (m− 1)/k < 0.

If m < n, then φ(En) is positive semidefinite with fewer than k′ positive eigenvalues. Since

Wk′(φ(En)) = Wk(En) = [0, 1/k], we see that λ1(En) > 1/k. By Lemma 2.7 (b), we have

1/k < λ1(φ(En)) = 1−
n∑

j=1

λk′(φ(Ej)) = 1−m/k < 1− (m− 1)/k < 0,

which is a contradiction. So, we have m = n. By (2.11), and the fact that Wk′(φ(Ej)) =

Wk(Ej) = [0, 1/k] for j = 1, . . . , n, we have

n′ = tr (In′) =
n∑

j=1

trφ(Ej)

=
n∑

j=1

Sk′(φ(Ej)) +
n′−k′∑

l=k′+1

n∑
j=1

λl(φ(Ej)) +
n∑

j=1

sk′(φ(Ej))

= n(k′/k) + n(n′ − 2k′)(1/k) = 2k′ + 2(n′ − 2k′) = 2n′ − 2k′.
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Hence, n′ = 2k′.

Suppose F ∈ Hn is a rank one idempotent. We claim that λ1(F ) = 1/k. Since n = 2k ≥
4, there is a rank one idempotent G ∈ Hn such that EG = GE = 0 and FG = GF = 0.
Moreover, there exist rank one idempotents G3, . . . , Gn ∈ Hn such that E+G+G3+· · ·Gn =
In. Applying the previous argument with (E,E2, . . . , En) replaced by (E,G,G3, . . . , Gn), we
see that G has negative eigenvalues. Now, there exist rank one idempotents F3, . . . , Fn ∈ Hn

such that G+F +F3 + · · ·+Fn = In. Applying the previous arguments with (E,E2, . . . , En)

replaced by (G,F, F3, . . . , Fn), we see that φ(F ) has largest eigenvalue 1/k.

Now, observe that ψ−1(F ) = In/k−F . Since φ(F ) has largest eigenvalue 1/k, we conclude

that φ(ψ−1(F )) = In′/k − φ(F ), is positive semidefinite as asserted.

Lemma 2.9 Suppose k ≤ n/2, 2k′ ≤ n′ < k′ ·C(n, k), and φ(E) is positive semidefinite for

any rank one idempotent E ∈ Hn. Then φ(F ) and φ(G) are disjoint idempotents in Hn′ for
any disjoint rank one idempotents F,G ∈ Hn.

Proof. Let E1, . . . , En ∈ Hn be rank one idempotents such that F = E1, G = E2, and
E1 + · · ·+ En = In. Then Yj = φ(Ej) ∈ Hn′ is positive semidefinite and

Wk′(Yj) = [0, 1/k] = [sk′(Yj)/k
′, Sk′(Yj)/k

′]

for all j = 1, . . . , n. We claim that there is j ∈ {1, . . . , n} such that the largest eigenvalue of

Yj has multiplicity r < k′. If it is not true, then for j = 1, . . . , n,

λ1(Yj) = · · · = λk′(Yj) = 1/k,

as Sk′(Yj) = k′/k. Now, for any 1 ≤ j1 < j2 < · · · < jk ≤ n,

Wk′

(
k∑

t=1

Yjt

)
= Wk

(
k∑

t=1

Ejt

)
= [0, 1].

Thus, there exists an n′ × k′ matrix U such that

k′ = Sk′

(
k∑

t=1

Yjt

)
= tr

(
U∗

(
k∑

t=1

Yjt

)
U

)
=

k∑
t=1

tr (U∗YjtU) ≤
k∑

t=1

Sk′(Yjt) = k′.

It follows that tr (U∗YjtU) = k′/k and hence U∗YjtU = (1/k)Ik′ for t = 1, . . . , k. Since

Y1 + · · ·+ Yn = In′ , we see that U∗YtU = 0k′ for any t /∈ {j1, . . . , jk}.
Now, for any other choice of 1 ≤ j̃1 < j̃2 < · · · < j̃k ≤ n, there is a corresponding

n′ × k′ matrix Ũ such that Ũ∗Ũ = Ik′ such that Ũ∗Yj̃t
Ũ = (1/k)Ik′ for t = 1, . . . , k, and

Ũ∗YtŨ = 0k′ for any t /∈ {j̃1, . . . , j̃k}. Suppose j̃p /∈ {j1, . . . , jk}. Then U∗Yj̃p
U = 0k′ and

Ũ∗Yj̃p
Ũ = (1/k)Ik′ . Thus, the columns of U belong to the kernel of Yj̃p

whereas the columns

of Ũ belong to the kernel of Yj̃p
− (1/k)Ik′ . So, U∗Ũ = 0k′ .
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Combining the above arguments, we see that there are C(n, k) matrices U ’s of size n′×k′
such that U∗U = Ik′ . Any two of such U have mutually orthogonal columns. So, there are
k′ ·C(n, k) orthonormal columns. Hence k′ ·C(n, k) ≤ n′, which contradicts our assumption.

By the above argument, we see that

min{r : λr(Yt) > λr+1(Yt) with t ∈ {1, . . . , n}} < k′.

Relabeling Y1, . . . , Yn if necessary, we may assume that

λ1(Y1) = · · · = λr(Y1) > λr+1(Y1)

and for t = 2, . . . , n,
λ1(Yt) = · · · = λr(Yt).

Note that the last k′ eigenvalues of Yj are all zeros. We claim that the first k′ eigenvalues of

Yt can contain at most two distinct values. Otherwise, there are 1 ≤ s < s′ < k′ such that
λs(Yt) > λs+1(Yt) and λs′(Yt) > λs′+1(Yt). But by Lemma 2.7 (b), λ1(Yt) = · · · = λs′(Yt),
which is impossible.

Note that the last k′ eigenvalues of Yt are all zeros. Applying Lemma 2.7(b) to Y1, we
have

λk′−r+1(Yt) = λn′−k′+r(Yt) = 0

for t = 2, . . . , n. Then there is rt < k′ − r + 1 ≤ k′ such that

λ1(Yt) = λrt(Yt) > λrt+1(Yt) = λn′(Yt) = 0,

i.e., Yt is unitarily similar to γtIrt⊕0n′−rt for t = 2, . . . , n. Interchanging the role of Y1 and Yt,

we conclude that Y1 is unitarily similar to γ1Ir1 ⊕ 0n′−r1 . Since Wk′(Yt) = Wk(Et) = [0, 1/k],

rtγt = k′/k.

Furthermore, we can see from Lemma 2.7 (b) that for s 6= t, all eigenvectors of Ys

corresponding to the eigenvalue γs are eigenvectors of Yt corresponding to the eigenvalue 0.
Hence, YsYt = 0 for any s 6= t. Since Y1 + · · ·+Yn = In′ , γt = 1 and r1 + · · ·+rn = n′. Hence,
rt = k′/k = r for all t = 1, . . . , n and k′/k = n′/n. This shows that every Yt is unitarily

similar to Ir ⊕ 0n′−r. Hence, A 7→ φ(A) maps disjoint idempotents to disjoint idempotents.

Proof of the necessity part of Theorem 1. Suppose k < n/2 and k′ ≤ n′/2. By Lemmas 2.6

and 2.9, φ will map idempotents to idempotents. So, (see Corollary 4.3 in [10] and also [3,

Theorem 2.1]), φ has the asserted form.

Suppose k = n/2 and k′ ≤ n′/2. Apply Lemma 2.8; then apply Lemmas 2.6 and 2.9 to

φ ◦ ψ−1 to get the conclusion.

Suppose k > n/2 and k′ ≤ n′/2. Then φ ◦ ψ−1 satisfies Wn−k(A) = Wk′(φ ◦ ψ−1(A)) for

all A ∈Mn. So, φ ◦ ψ−1 has the desired form.

Suppose k > n/2 and k′ > n′/2. Replace φ by Ψ ◦ φ ◦ ψ−1 with Ψ : Mn′ → Mn′ defined

by Ψ(X) = [(trX)In′ − k′X]/(n′ − k′) for all X ∈ Mn′ . Then Wn−k(A) = Wn′−k′(φ(A)) for

all A ∈ Mn. So, Ψ ◦ φ ◦ ψ−1 has the asserted form. It follows that φ has the same form as
well.
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3 Results on Triangular Matrices

Let Tn be the set of n× n upper triangular matrices. In this section, we study those linear
maps φ : Tn → Tn′ satisfying

Wk′(φ(A)) = Wk(A) for all A ∈ Tn. (3.1)

Clearly, if a map φ has the form (W1) or (W2) in Theorem 2.1 for some unitary U such that

φ(Tn) ⊆ Tn′ , then condition (3.1) holds. The following theorem shows that the converse of

the above statement is also valid, and gives a condition on U to ensure that φ(Tn) ⊆ Tn′ .

Theorem 3.1 Suppose k ∈ {2, . . . , n−1}, k′ ∈ {1, . . . , n′} and n′ < C(n, k) min{k′, n′−k′}.
There exists a linear map φ : Tn → Tn′ such that

Wk′(φ(A)) = Wk(A) for all A ∈ Tn

if and only if there is a unitary U = (uij) ∈ Mn′ and nonnegative integers p, q with p + q =

n′/n such that
p−1∑
j=0

u(jn+a),d u(jn+b),c +
p+q−1∑

j=p

u(jn+b),d u(jn+a),c = 0 (3.2)

for all 1 ≤ a ≤ b ≤ n and 1 ≤ c < d ≤ n′, and one of the following holds:

(T1) n′/n = k′/k and φ has the form

A 7→ U∗[A⊕ · · · ⊕ A︸ ︷︷ ︸
p

⊕At ⊕ · · · ⊕ At︸ ︷︷ ︸
q

]U.

(T2) n′/n = k′/(n− k) and φ has the form

A 7→ U∗[ψ(A)⊕ · · · ⊕ ψ(A)︸ ︷︷ ︸
p

⊕ψ(A)t ⊕ · · · ⊕ ψ(A)t︸ ︷︷ ︸
q

]U,

where ψ : Tn → Tn is the mapping A 7→ [(trA)In − (n− k)A]/k.

Let us further analyze condition (3.2) in the following. For any 1 ≤ a ≤ b ≤ n and

1 ≤ c ≤ n′, define

uba
c =

(
vb

c

wa
c

)
with vb

c =

 ubc
...

u((p−1)n+b)c

 and wa
c =

 u(pn+a)c

...
u((p+q−1)n+a)c

 .
Then (3.2) reduces to

(va
d , v

b
c) + (wb

d, w
a
c ) = (uab

d , u
ba
c ) = 0 for all 1 ≤ a ≤ b ≤ n and 1 ≤ c < d ≤ n′,
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where (·, ·) denotes the usual inner product, i.e., (x, y) = y∗x. Suppose U = (uij) satisfies

(3.2). Clearly, the set {uaa
1 , . . . , u

aa
n′ } forms an orthogonal set on Cn′/n. Then at most n′/n

vectors of the set can be nonzero. Hence, at most n(n′/n) = n′ vectors of the set

{u11
1 , · · ·u11

n′} ∪ · · · ∪ {unn
1 , · · ·unn

n′ }

can be nonzero. As U is an n′ × n′ unitary matrix, exactly one vector in {u11
c , . . . u

nn
c } can

be nonzero. Otherwise, U has a zero column. Furthermore, if a 6= b, then at most one of vb
c

and wa
c can be nonzero, as only one of ubb

c and uaa
c can be nonzero. Thus, we deduce from

(3.2) that

(va
d , v

b
c) = 0 = (wb

d, w
a
c ) for all 1 ≤ a < b ≤ n and 1 ≤ c < d ≤ n′.

In conclusion, we have the following

Proposition 3.2 A unitary matrix U = (uij) ∈Mn′ satisfies (3.2) if and only if

(i) for each 1 ≤ c ≤ n′, there is a a ∈ {1, . . . , n} such that

(va
d , v

a
c ) + (wa

d, w
a
c ) = 1

and vb
c and wb

c are zero vectors for all b 6= a; and

(ii) for any 1 ≤ a < b ≤ n and 1 ≤ c < d ≤ n′,

(va
d , v

a
c ) + (wa

d, w
a
c ) = (va

d , v
b
c) = (wb

d, w
a
c ) = 0.

Example If n′ = 6, n = p = 2 and q = 1, then

U =



1/
√

2 0 0 0 1/
√

2 0
0 0 0 1/

√
2 0 1/

√
2

1/
√

2 0 0 0 −1/
√

2 0
0 0 0 1/

√
2 0 −1/

√
2

0 0 1 0 0 0
0 1 0 0 0 0


satisfies (3.2). But if U1 is the matrix obtained from U by interchanging its (4, 4)-th and

(4, 6)-th entries, then U1 does not satisfy (3.2) as (v2
4, v

1
5) = 1.

Proof of Theorem 3.1. Note that the left side of (3.2) equals the (d, c)-th entry of

U∗[Eab ⊕ · · · ⊕ Eab︸ ︷︷ ︸
p

⊕Eba ⊕ · · · ⊕ Eba︸ ︷︷ ︸
q

]U.

Hence, (3.2) holds if and only if

U∗[A⊕ · · · ⊕ A︸ ︷︷ ︸
p

⊕At ⊕ · · · ⊕ At︸ ︷︷ ︸
q

]U ∈ Tn′ for all A ∈ Tn.
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Therefore, if φ has the form (T1), φ(Tn) ⊆ Tn′ . If φ has the form (T2), since ψ(Tn) = Tn,
we have the same conclusion too. Therefore the sufficiency part holds.

For the converse, take any diagonal matrix R with real diagonal entries. Then

Wk′(φ(R)) = Wk(R) ⊆ IR.

By Lemma 2.2(d), φ(R)∗ = φ(R). As φ(R) ∈ Tn′ , φ(R) must be a diagonal matrix with real
diagonal entries.

Now for any diagonal matrix D ∈ Dn, write D1 = (D +D∗)/2 and D2 = (D−D∗)/(2i).

Then D1 and D2 are diagonal matrices with real diagonal entries. It follows that φ(D1)
∗ =

φ(D1) and φ(D2)
∗ = φ(D2). As D = D1 + iD2,

φ(D∗)∗ = (φ(D1)− iφ(D2))
∗ = φ(D1)

∗ + iφ(D2)
∗ = φ(D1) + iφ(D2) = φ(D).

Every A ∈ Mn can be expressed as T1 + T ∗
2 for some upper triangular matrices T1 and

T2. Define Φ : Mn →Mn′ by
Φ(A) = φ(T1) + φ(T2)

∗.

Clearly, Φ is linear. Suppose A can be written as U1 +U∗
2 for some U1, U2 ∈ Tn distinct from

T1 and T2. Let D = T1 − U1 = U∗
2 − T ∗

2 . Then D is a diagonal matrix. Observe that

0 = φ(D)− φ(D∗)∗

= φ(T1 − U1)− φ(U2 − T2)
∗

= φ(T1) + φ(T2)
∗ − φ(U1)− φ(U2)

∗

= Φ(T1 + T ∗
2 )− Φ(U1 + U∗

2 ).

Hence, Φ is well defined. On the other hand, we see that for any A ∈Mm and 1 ≤ r ≤ m,

Wr(A+ A∗) = {tr (X∗AX)/r + tr (X∗A∗X)/r : X is m× r, X∗X = Ir}

= {tr (X∗AX)/r + tr (X∗AX)/r : X is m× r, X∗X = Ir}
= {z + z : z ∈ Wr(A)}.

Since every matrix H ∈ Hn can be expressed as H = T + T ∗ with T ∈ Tn,

Wk′(Φ(H)) = Wk′(φ(T ) + φ(T )∗) = {z + z : z ∈ Wk′(φ(T ))}
= {z + z : z ∈ Wk(T )} = Wk(T + T ∗) = Wk(H).

Hence, Φ : Mn →Mn′ is a linear map such that

Wk′(Φ(H)) = Wk(H) for all H ∈ Hn.

By Theorem 2.1, there exist a unitary U ∈Mn′ and nonnegative integers p, q with p+q = n′/n

such that Φ satisfies (W1) or (W2) in Theorem 2.1. Since φ(A) = Φ(A) for all A ∈ Tn, φ

has the form (T1) or (T2). Finally, we check that U satisfies (3.2) as φ(Eab) ∈ Tn′ for all
a ≤ b.
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Remark 3.3 Denote by T (n1, . . . , nr) the algebra of upper block triangular matrices A =

(Aij) such that Aii ∈ Mni
for i = 1, . . . , r. One can extend Theorem 3.1 to linear map

φ : T (n1, . . . , nr) → T (m1, . . . ,ms) for n1 + · · · + nr = n, m1 + · · · + ms = n′, and n′ <

C(n, k) min{k′, n′ − k′}. The result and proofs are basically the same provided that U

satisfies (3.2) for all 1 ≤ a, b ≤ n, 1 ≤ c, d ≤ n′ such that Eab ∈ T (n1, . . . , nr) and Ecd /∈
T (m1, . . . ,ms). Since the corresponding statements are rather tedious, we omit the details.

Note also that if a linear map φ : T (n1, . . . , nr) → T (m1, . . . ,ms) satisfies Wk′(φ(A)) =

Wk(A) for all A ∈ T (n1, . . . , nk), then one can replace T (m1, . . . ,ms) by other block tri-

angular matrix algebras such as T (m1 + m2,m3 . . . ,ms) or T (m1 + m2,m3 + m4, . . . ,ms),
etc.

4 k-Numerical Radius

Theorem 4.1 Let (M,M′) = (Hn, Hn′), (Mn,Mn′) or (Tn, Tn′), k ∈ {2, . . . , n − 1}, k′ ∈
{1, . . . , n′} and n′ < C(n, k) min{k′, n′ − k′}. Then a linear operator φ̃ : M→M′ satisfies

wk′(φ̃(A)) = wk(A) for all A ∈M, (4.1)

and φ̃(X) = In′ for some X ∈ M if and only if there is a complex unit µ such that φ = µφ̃
satisfies

Wk′(φ(A)) = Wk(A) for all A ∈M,

equivalently, φ has the form in Theorem 2.1 or Theorem 3.1.

Lemma 4.2 For any T = (tij) ∈ Tn, if

1

k

∣∣∣∣∣
k∑

i=1

tnini

∣∣∣∣∣ = wk(T ) for all 1 ≤ n1 < · · · < nk ≤ n, (4.2)

then T is a diagonal matrix.

Proof. Suppose tij 6= 0 for some i < j. Denote by X[i, j] ∈M2 the submatrix of X ∈Mn

lying in the rows and columns indexed by i and j. Then W1(T [i, j]) is an elliptical disk with

the length of minor axis equal to |tij|, and foci tii and tjj; see [11]. Thus, there is a unitary

U ∈M2 such that the (1, 1) entry of U∗T [i, j]U equals tii + z and∣∣∣∣∣z + tii +
k∑

i=2

tnini

∣∣∣∣∣ >
∣∣∣∣∣tii +

k∑
i=2

tnini

∣∣∣∣∣ = kwk(T ),

where 1 ≤ n2 < · · · < nk ≤ n are chosen from {1, . . . , n} \ {i, j}. Let V ∈ Mn be obtained

from In by replacing In[i, j] with U , and V ∗TV = (t̃rs). Then

kwk(T ) = kwk(V
∗TV ) ≥

∣∣∣∣∣t̃ii +
k∑

i=2

t̃nini

∣∣∣∣∣ =
∣∣∣∣∣z + tii +

k∑
i=2

tnini

∣∣∣∣∣ > kwk(T ),

which is a contradiction.
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Lemma 4.3 Let M = Hn,Mn or Tn. Suppose k ∈ {1, . . . , n − 1}. Given any matrix

A ∈ M, A = µIn with |µ| = 1 if and only if for any B ∈ M , there is θ (depending on B)

with |θ| = 1 such that

wk(A+ θB) = wk(A) + wk(B) = 1 + wk(B),

i.e., there is an n× k matrix U (depending on B) with U∗U = Ik such that

wk(A) = |tr (U∗AU)|/k = 1 and wk(B) = |tr (U∗BU)|/k. (4.3)

Proof. Suppose A = µIn for some |µ| = 1. For any B ∈ M, if wk(B) = |tr (U∗BU)|/k
for some n× k matrix U with U∗U = Ik, then

|tr (U∗AU)|/k = |tr (U∗(µIn)U)|/k = 1 = wk(A).

For the converse, suppose for any B ∈ M, there is an n × k matrix U with U∗U = Ik
such that (4.3) holds.

Let K = Ik ⊕ 0n−k. For any n× k matrix X with X∗X = Ik, we write X =
(
X1

X2

)
with

X1 ∈Mk. Clearly, tr (X∗
1X1 +X∗

2X2) = tr (X∗X) = k. Then

(k − tr (X∗
2X2))/k = tr (X∗

1X1)/k = tr (X∗KX)/k ∈ Wk(K) = [0, 1].

It follows that tr (X∗KX)/k = 1 if and only if tr (X∗
2X2) = 0. Since X∗

2X2 is positive

semidefinite, tr (X∗
2X2) = 0 if and only if X∗

2X2 = 0k. Thus, X1 must be unitary.
Suppose M = Hn or Mn. Take any n × k matrix V with V ∗V = Ik, we extend V to

an n× n unitary matrix W = (V V ′ ) with some suitable n× (n− k) matrix V ′. Choose
B = WKW ∗. Then there is an n× k matrix U with U∗U = Ik such that

1 = wk(A) = |tr (U∗AU)|/k and wk(K) = wk(WKW ∗) = |tr (U∗WKW ∗U)|/k.

By the above argument, W ∗U = X =
(
X1

0

)
for some unitary matrix X1 ∈ Mk. Thus,

U = V X1 and

|tr (V ∗AV )|/k = |tr (X∗
1V

∗AVX1)|/k = |tr (U∗AU)| = wk(A) = 1.

It follows that all elements of Wk(A) lie on the unit circle. Since Wk(A) is convex, Wk(A)

must be a singleton set. By Lemma 2.2(e), A = µIn for some |µ| = 1.

It remains to show the case for M = Tn. For any 1 ≤ n1 < · · · < nk ≤ n, let P = (pij)

be the n× n permutation matrix with pnii = 1 for i = 1, . . . , k and B = PKP ∗ ∈ Tn. Then
there is an n× k matrix U with U∗U = Ik such that

1 = wk(T ) = |tr (U∗TU)|/k and wk(K) = wk(PKP
∗) = |tr (U∗PKP ∗U)|/k.
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By the above argument, P ∗U = X =
(
X1

0

)
for some unitary matrix X1 ∈Mk. Thus,

kwk(T ) = |tr (U∗TU)| = |tr (X∗P ∗TPX)| = |tr (X∗
1T1X1)| = |trT1| =

∣∣∣∣∣
k∑

i=1

tnini

∣∣∣∣∣ ,
where T1 is the k × k principal submatrix of P ∗TP . As n1, . . . , nk are arbitrary, T satisfies
(4.2). By Lemma 4.2, we conclude that T is a diagonal matrix.

Finally we show that the diagonal entries of T are the same. Suppose tii 6= tjj for some

i 6= j. For simplicity, we assume that t11 6= t22. Take B =
(

0 2
0 0

)
⊕ Ik−1 ⊕ 0n−k−1. Then

wk(B) = 1 and |tr (X∗BX)|/k = wk(B) if and only if the n × k matrix X has the formX1 0
0 X2

0 0

 with X1 =
(
α/
√

2
α/
√

2

)
for some |α| = 1 and unitary X2 ∈Mk−1. In this case,

∣∣∣∣∣12(t11 + t22) +
k+1∑
i=3

tii

∣∣∣∣∣ = |tr (X∗TX)| = k.

Let α = t11 +
∑k+1

i=3 tii and β = t22 +
∑k+1

i=3 tii. Since T satisfies (4.2), we see that

|(α+ β)/2| = k = |α| = |β|,

and hence t11 = t22, which is the desired contradiction.

The following lemma is a modification of [15, Lemma 2], we give the proof here for the
sake of completeness.

Lemma 4.4 Let (M,M′) = (Hn, Hn′), (Mn,Mn′) or (Tn, Tn′), k ∈ {1, . . . , n − 1} and

k′ ∈ {1, . . . , n′}. If φ̃ : M→M′ is a linear map satisfying (4.1) and φ̃(In) = In′, then

Wk′(φ̃(A)) = Wk(A) for all A ∈M.

Proof. Suppose Wk(A) 6⊆ Wk′(φ̃(A)). Let z ∈ Wk(A)\Wk′(φ̃(A)). Since Wk′(φ̃(A)) is
compact, there exists some λ ∈ C such that

|z + λ| > |z′ + λ|

for all z′ ∈ Wk′(φ̃(A)). Here,

wk(A+ λIn) > wk′(φ̃(A) + λIn′) = wk′(φ̃(A+ λIn)) = wk(A+ λIn)

which is impossible. Therefore, Wk(A) ⊆ Wk′(φ̃(A)). Similarly, we have Wk′(φ̃(A)) ⊆
Wk(A). The result follows.
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Proof of Theorem 4.1. The sufficiency part is clear. For the necessity part, suppose there

is X ∈M such that φ̃(X) = In′ . For any B ∈M, there exists some θ ∈ C with |θ| = 1 such
that

wk(X + θB) = wk′(In′ + θφ̃(B)) = wk′(In′) + wk′(φ̃(B)) = wk(X) + wk(B).

By Lemma 4.3, X = µIn for some µ ∈ C with |µ| = 1. We see that the map A 7→ µφ̃(A)

maps In to In′ and satisfies (4.3). Then the result follows by Lemma 4.4.

5 Open problems

There are many open problems deserved further study. We mention a few of them in the
following.

1. If n′ = C(n, k) min{k′, n′ − k′}, there are exceptional maps for the range preservers
have the form

A 7→ U∗∆k(A)U or A 7→ U∗∆k(A)tU

with k′ = 1. Are there other exceptional maps?

2. If n′ ≤ 2C(n, k) min{k′, n′−k′}−2, there are exceptional maps for the range preservers
have the form

A 7→ U∗[∆k(A)⊕ f(∆k(A))]U or A 7→ U∗[∆k(A)t ⊕ f(∆k(A))]U

for some unital positive linear map f : MC(n,k) → Mn′−C(n,k), here k′ = 1. Are there

other exceptional maps?

3. In Theorem 4.1, an assumption that φ̃(X) = In′ for some X ∈M is needed. For k′ = 1,

since w1(A) = w1(A ⊕ 0), the condition is clearly necessary. Can this assumption be

removed when k′ > 1?

4. How about extending the results to infinite dimensional operators, nest algebras, etc.?

5. What about other types of generalized numerical ranges and radii?
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