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1 Introduction and statements of results

Let Mm,n (Mn) be the linear space of m×n (n×n) complex matrices. The singular values of

A ∈Mm,n are the nonnegative square roots of the eigenvalues of A∗A, and they are denoted

by s1(A) ≥ · · · ≥ sn(A). For 1 ≤ k ≤ min{m,n}, the Ky Fan k-norm on Mm,n is defined

and denoted by

‖A‖k = s1(A) + · · · + sk(A).

The Ky Fan 1-norm reduces to the operator norm; when m = n the Ky Fan n-norm is also
known as the trace norm.

Evidently, Ky Fan k-norms are unitarily invariant norms, i.e.,

‖UAV ‖k = ‖A‖k

for any A ∈Mm,n, and unitary U ∈Mm and V ∈Mn. Actually, they form an important class

of unitarily invariant norms; see [1, Chapters 2 and 3]. For instance, given A,B ∈Mm,n,

‖A‖k ≤ ‖B‖k for all k = 1, . . . ,min{m,n}

if and only if

‖A‖ ≤ ‖B‖ for all unitarily invariant norms ‖ · ‖.

There has been considerable interest in studying isometries for Ky Fan norms on matrix

spaces. For example, by a result of Kadison [5], one easily deduces that isometries for the

operator norm on Mn has to have the from

A 7→ UAV or A 7→ UAtV (1)

for some unitary matrices U, V ∈ Mn. In [4], the authors showed that the same conclusion

holds for Ky Fan k-norm isometries for any k = 1, . . . ,min{m,n}, where the second form

in (1) can occur only when m = n. In [8], the authors considered the problem on block
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triangular matrix algebras in Mn, and showed that the isometries essentially have the same

structure except when m = n, in this case, the second form in (1) has to be replaced by

A 7→ UA+V,

where A+ is the transpose taken about the anti-diagonal so as to maintain the block tri-

angular structure. In [3], the authors studied isometries φ : (Mn, ‖ · ‖1),→ (Mp, ‖ · ‖1) for

n 6= p, and obtained a complete characterization when p ≤ 2n− 2; moreover, examples were
given to show that φ may have complicated structure for p > 2n− 2. In view of these, one

may think that isometries φ : (Mn, ‖ · ‖k),→ (Mp, ‖ · ‖k) also have complicated structure for

k > 1. It turns out that it is not the case as shown in the corollary of our main theorem,

which characterizes isometries φ : (Mm,n, ‖ · ‖k′),→ (Mp,q, ‖ · ‖k) provided k′ > 1. We need

some notations and definitions to describe our main result.
For two matrices A and B with A = (aij) denote by A ⊗ B = (aijB). An r × s matrix

X is called a partial isometry if X∗X = Is, i.e., X has orthonormal columns.

Theorem 1.1 Let 1 < k′ ≤ min{m,n} and 1 ≤ k ≤ min{p, q}. Suppose φ : Mm,n → Mp,q

satisfies

‖φ(A)‖k = ‖A‖k′ for all A ∈Mm,n. (2)

Then there exist nonnegative integers c1 and c2 with c1 + c2 > 0, and partial isometries U

and V of sizes p×(c1m+c2n) and q×(c1n+c2m), respectively, such that one of the following

holds.

(a) k′ < min{m,n}, k = k′(c1 + c2), and φ has the form

A 7→
1

c1 + c2
U [(Ic1 ⊗ A) ⊕ (Ic2 ⊗ A)t)]V ∗.

(b) k′ = min{m,n}, k′(c1 + c2) ≤ k, and there are diagonal matrices D1 ∈ Mc1 and

D2 ∈ Mc2 with positive diagonal entries with trD1 + trD2 = 1, such that φ has the

form

A 7→ U [(D1 ⊗ A) ⊕ (D2 ⊗ At)]V ∗.

If k′ = k, then either (c1, c2) = (1, 0) or (c1, c2) = (0, 1). By adding columns to U and V

to form unitary matrices, we have the following corollary.

Corollary 1.2 Let 1 < k ≤ min{m,n}. Suppose φ : Mm,n →Mp,q satisfies

‖φ(A)‖k = ‖A‖k for all A ∈Mm,n.

Then there are unitary matrices U ∈Mp and V ∈Mq such that φ has the form

A 7→ U [A⊕ 0p−m,q−n]V or A 7→ U [At ⊕ 0p−n,q−m]V.
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2 Auxiliary results and proofs

Replacing φ by the mapping(s) A 7→ φ(At) and/or A 7→ [φ(A)]t, we may assume that m ≤ n

and p ≤ q. Two nonzero matrices A,B ∈ Mm,n are said to be orthogonal if AB∗ = 0 and

A∗B = 0, equivalently, there are unitary matrices U and V such that UAV =
∑r

j=1 ajEjj

and UBV =
∑r+s

j=r+1 bjEjj with a1 ≥ · · · ≥ ar > 0 and b1 ≥ · · · ≥ bs > 0 for some r, s

with r + s ≤ min{m,n}. The nonzero matrices A1, · · ·Ad ∈ Mm,n are said to be pairwise

orthogonal m × n matrices if AiA
∗
j = 0 and A∗

iAj = 0 for any distinct pair (i, j). In such

case, there are unitary U ∈ Mm and V ∈ Mn, 0 = r0 < r1 < · · · < rd ≤ min{m,n} and

positive numbers a1, · · · , ard
such that UAiV =

∑

ri−1<j≤ri
ajEjj.

We begin with the following lemma from [8, Lemma 5].

Lemma 2.1 Let A,B ∈Mm,n be nonzero. Then ‖aA+ bB‖k = |a|‖A‖k + |b|‖B‖k for every

a, b ∈ C if and only if A and B are orthogonal and rankA+ rankB ≤ k.

By Lemma 2.1 and a simple inductive argument, we have the following.

Lemma 2.2 Let φ : Mm,n → Mp,q be a map satisfying (2). Suppose the rank one matrices

A1, . . . , Ad ∈ Mm,n, d ≤ min{m,n}, are pairwise orthogonal. Then φ(A1), . . . , φ(Ad) ∈

Mp,q are nonzero and pairwise orthogonal. Furthermore, for any 1 ≤ s1 < · · · < sk′ ≤ d,
∑k′

j=1 rankφ(Asj
) ≤ k.

Proof of Theorem 1.1.

For the sufficiency part of the Theorem 1.1, one readily sees that singular values of φ(A)

has c = (c1 + c2) copies of
s1(A)

c
, . . . ,

sm(A)

c
, if φ has the form (a). On the other hand, if

k′ = m and φ has the form (b), then k ≥ ck′ and so the Ky Fan k-norm of φ(A) is just the

sum of its singular values. Let D1 ⊕D2 = diag (d1, . . . , dc). Then,

‖φ(A)‖k = d1‖A‖k′ + · · · + dc‖A‖k′ = tr(D1 ⊕D2)‖A‖k′ = ‖A‖k′ .

To prove the necessity part, let (p′, q′) = (p − c1m − c2n, q − c1n − c2m). It suffices to

prove that there are unitary matrices U ∈Mp and V ∈Mq such that φ has the form

(a) A 7→
1

c1 + c2
U [(Ic1 ⊗ A) ⊕ (Ic2 ⊗ At) ⊕ 0p′,q′ ]V

∗ if k′ < m,

(b) A 7→ U [(D1 ⊗ A) ⊕ (D2 ⊗ At) ⊕ 0p′,q′ ]V
∗ if k′ = m.

We divide the proof into three cases:

(I) k′ < m = n, (II) k′ = m = n, and (III) m < n.

First consider case (I) : k′ < m = n. For any A ∈ Mm,n with singular values 1, 0, . . . , 0,

there are unitary X and Y such that A = XE11Y . Let Aj = XEjjY for j = 1, . . . ,m.
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Then A1, . . . , Am are pairwise orthogonal. By Lemma 2.2, φ(A1), . . . , φ(Am) are pairwise

orthogonal. Thus, there exist unitary U and V , 0 = r0 < r1 < · · · < rd ≤ m and positive
numbers a1, · · · , ard

such that

Bi = Uφ(Ai)V =
∑

ri−1<j≤ri

ajEjj for any i = 1, . . . ,m.

By Lemma 2.2 again, the sum of any k′ matrices chosen from B1, . . . , Bm has rank at most
k. Let 1 ≤ t1 < · · · < tk′ ≤ m. Then

sℓ





k′

∑

j=1

Btj



 = 0, for all ℓ > k . (3)

Moreover, if t ∈ {1, . . . ,m} \ {t1, . . . , tk′}, we claim that

s1(Bt) ≤ sk





k′

∑

j=1

Btj



 . (4)

If (4) does not hold, then s1(Bt) > sk

(
∑k′

j=1Btj

)

, which gives the following contradiction:

k′ =

∥
∥
∥
∥
∥
∥

At +
k′

∑

j=1

Atj

∥
∥
∥
∥
∥
∥

k′

=

∥
∥
∥
∥
∥
∥

Bt +
k′

∑

j=1

Btj

∥
∥
∥
∥
∥
∥

k

>

∥
∥
∥
∥
∥
∥

k′

∑

j=1

Btj

∥
∥
∥
∥
∥
∥

k

=

∥
∥
∥
∥
∥
∥

k′

∑

j=1

Atj

∥
∥
∥
∥
∥
∥

k′

= k′ .

Let c = k/k′. It follows from (2), (3) and (4) that for each 1 ≤ j ≤ m, si(Bj) = 1/c for

1 ≤ i ≤ c and si(Bj) = 0 for c < i ≤ p. Thus, we see that

(i) every rank one matrix is mapped to a rank c matrix, and

(ii) every unitary matrix is mapped to a matrix with singular values 1/c, . . . , 1/c,
︸ ︷︷ ︸

cm

0, . . . , 0.

Since (i) holds, by Theorem 2.5 in [7] φ has the form

A 7→ R[(Ic1 ⊗ A) ⊕ (Ic2 ⊗ At) ⊕ 0p′,q′ ]S
∗

for some invertible R ∈ Mp and S ∈ Mq. Let R1 (respectively, S1) be obtained from R

(respectively, S) by removing its last p′ (respectively, q′) columns. Then

R[(Ic1 ⊗ A) ⊕ (Ic2 ⊗ At) ⊕ 0p′,q′ ]S
∗ = R1[(Ic1 ⊗ A) ⊕ (Ic2 ⊗ At)]S∗

1 .

By polar decomposition, there are unitary matrices U ∈ Mp, V ∈ Mq and positive definite

matrices P ∈Mc1m+c2n and Q ∈Mc1n+c2m such that

R1 = U
(

P
0p′,c1m+c2n

)

and S2 = V
(

Q
0q′,c1n+c2m

)

.
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Thus,

φ(X) = U
{

P [(Ic1 ⊗ A) ⊕ (Ic2 ⊗ At)]Q∗ ⊕ 0p′,q′

}

V ∗.

Define ψ : Mm → Mcm such that ψ(X) = cP [(Ic1 ⊗ A) ⊕ (Ic2 ⊗ At)]Q∗. By (ii), we

see that ψ maps unitary matrices to unitary matrices. By the result in [2], we see that

ψ(A) = W1[(Ic1 ⊗ A) ⊕ (Ic2 ⊗ At)]W2 for some unitary W1,W2 ∈ Mcm. Thus, condition (a)

holds.

Next, we turn to case (II) : k′ = m = n. From the first part of the proof in case (I), we

can see that for any unitary X,Y ∈ Mm and λ1, . . . , λm ∈ C,
∑m

i=1 λiφ(XEiiY ) has rank at

most k. Hence, φ(A) has rank at most k for all A ∈ Mm. We may assume that p = q by

appending q − p zero rows to φ(A) for each A ∈ Mm. So, we assume that φ : Mm → Mp

and suppose φ(Im) = D is a nonnegative diagonal matrix with diagonal entries arranged in

descending order. For any Hermitian X ∈ Mm with trace zero and spectrum in [−1, 1] and

t ∈ [−1, 1],

‖φ(Im + tX)‖k = ‖Im + tX‖k′ = k′ = ‖Im‖k′ = ‖φ(Im)‖k = trD.

Let Y = φ(X). Then trY = 0 because

|trD + ttrY | ≤ ‖φ(Im + tX)‖p = ‖φ(Im + tX)‖k = trD

for t = ±1. Moreover,

k′ = tr (D ± Y ) ≤ ‖φ(Im + tX)‖p = ‖φ(Im + tX)‖k = k′.

By [6, Corollary 3.2], we conclude that D ± Y is positive semi-definite. As a result, if

φ(Im) = D = diag (d1, . . . , dr, 0, . . . , 0) with d1 ≥ · · · ≥ dr > 0, then φ(X) has the form

Y ⊕0p−r. We may now consider ψ : Mm →Mr such that φ(A) = ψ(A)⊕0p−r. It follows from

the above argument that ψ maps Hermitian matrices to Hermitian matrices and ‖ψ(A)‖r =

‖φ(A)‖k = ‖A‖k′ . We claim that

(i) ψ maps positive semidefinite matrices to positive semidefinite matrices, and

(ii) ψ maps invertible Hermitian matrices to invertible Hermitian matrices.

To see (i), suppose A ∈ Mm is positive semidefinite. Let D1 = ψ(Im) = diag (d1, . . . , dr).

Choose t > 0 such that D1 + tψ(A) is positive semidefinite. Then we have

tr (D1 + tψ(A)) = ‖D1 + tψ(A)‖r = ‖Im + tA‖k′ = tr (Im) + ttr (A)

= ‖Im‖k′ + t‖A‖k′ = ‖ψ(Im)‖r + t‖ψ(A)‖r = trD1 + t‖ψ(A)‖r.

Thus, trψ(A) = ‖ψ(A)‖r, and it follows form [6, Corollary 3.2] again that ψ(A) is positive

semidefinite.
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To prove (ii), let

A = U∗





m∑

j=1

λjEjj



U

for some unitary U and λj ∈ IR \ {0} for j = 1, . . . ,m. Since φ(U∗E11U), . . . , φ(U∗EmmU)

are pairwise orthogonal and φ(Im) = D, φ(U∗EjjU) = V ∗FjV ⊕ 0p−r for j = 1, . . . ,m, such

that Fi =
∑

ri−1<s≤ri
asEss for 0 = r0 < · · · < rm = r and positive numbers a1, . . . , arm

.

Therefore, ψ(A) = V ∗
(
∑m

j=1 λj(
∑

ri−1<s≤ri
asEss)

)

V is also invertible. Thus, condition (ii)

holds.
Now, ψ(Im) is positive definite and ψ maps invertible Hermitian matrices to invertible

Hermitian matrices. By (the proof of) [7, Proposition 3.4], we see that

ψ(X) = T ∗[(Ic1 ⊗X) ⊕ (Ic2 ⊗X t)]T (5)

for some invertible T ∈Mr. In particular, we see that

(iii) ψ maps rank s matrices to rank cs matrices for s = 1, . . . ,m.

Next, we show that ψ has the form X 7→ U∗[(D1 ⊗X) ⊕ (D2 ⊗X t)]U for some unitary

matrix U and diagonal matrices D1 and D2 with positive diagonal entries such that trD1 +
trD2 = 1. Equivalently, we show that ψ has the form

A = (auv) 7−→ V ∗BV, where B = (Buv)1≤u,v≤m with Buv = auvD1 ⊕ avuD2

for some unitary V . First, by a suitable permutation, we can rewrite ψ in (5) as

A = (auv) 7−→ S∗BS, where B = (Buv)1≤u,v≤m with Buv = auvIc1 ⊕ avuIc2 (6)

for some nonsingular S ∈ Mr. By Lemma 2.2, we see that φ(E11), . . . , φ(Emm) are pairwise

orthogonal. Then for any distinct pair i and j,

[S∗(Eii ⊗ Ic)S]∗[S∗(Ejj ⊗ Ic)S] = ψ(Eii)
∗ψ(Ejj) = 0.

Thus, (Eii ⊗ Ic)SS
∗(Ejj ⊗ Ic) = 0 whenever i 6= j. It follows that SS∗ = S1 ⊕ · · ·⊕Sn where

Si ∈Mc.
Let i > 1, X = E11 + E1i and Y = Ei1 − Eii. From (6), ψ(X) = S∗(Brs)S and

ψ(Y ) = S∗(Crs)S so that

B̃ =
(
B11 B1i

Bi1 Bii

)

=
(

Ic Ic1 ⊕ 0c2

0c1 ⊕ Ic2 0c

)

, C̃ =
(
C11 C1i

Ci1 Cii

)

=
(

0c 0c1 ⊕ Ic2
Ic1 ⊕ 0c2 −Ic

)

and all other Buv and Cuv are 0c. Let J1 = Ic1 ⊕ 0c2 and J2 = 0c1 ⊕ Ic2 . Since X and Y are

orthogonal, so are ψ(X) and ψ(Y ). Hence B∗(SS∗)C = 0 and B(SS∗)C∗ = 0. Thus,

(
J2SiJ1 S1J2 − J2Si

0 J1S1J2

)

= B̃∗(S1 ⊕ Si)C̃ = 0 = B̃(S1 ⊕ Si)C̃
∗ =

(
J1SiJ2 S1J1 − J1Si

0 J2S1J1

)

.
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Since J2S1J1 = J1S1J2 = J2SiJ1 = J1SiJ2 = 0, each of the matrices S1 and Si is a direct sum
of a matrix inMc1 and a matrix inMc2 . Furthermore, we can conclude that S1 = Si = P1⊕P2,

where P1 ∈ Mc1 and P2 ∈ Mc2 , from S1J1 − J1Si = 0 = S1J2 − J2Si. As i is arbitrary,

SS∗ = Im ⊗ (P1 ⊕ P2) with P1 and P2 are both positive definite. Thus there exist unitary

U1 ∈ Mc1 and U2 ∈ Mc2 such that U1P1U
∗
1 = D1 and U2P2U

∗
2 = D2, where D1 and D2 are

diagonal matrices with positive diagonal entries.

Let U = Im ⊗ (U1 ⊕ U2) and S̃ = US. Then S̃S̃∗ = Im ⊗ (D1 ⊕D2). As the row vectors

of S̃ form an orthogonal basis, we may write S̃ = DV , where D = Im ⊗ (D1 ⊕D2)
1/2 and V

is unitary.

On the other hand, we have U∗BU = B for the block matrix B in (6), as

auvIc1 ⊕ avuIc2 = (U1 ⊕ U2)
∗(auvIc1 ⊕ avuIc2)(U1 ⊕ U2).

Then S∗BS = S∗U∗BUS = S̃∗BS̃ = V ∗D∗BDV . In fact, the (i, j)-th block of D∗BD is

equal to

(D1 ⊕D2)
1/2(auvIc1 ⊕ avuIc2)(D1 ⊕D2)

1/2 = auvD1 ⊕ avuD2.

Thus, φ has the asserted form. Since ‖Im ⊗ (D1 ⊕ D2)‖k′ = ‖ψ(Im)‖r = ‖Im‖k′ = m, it

follows that tr (D1 ⊕D2) = trD1 + trD2 = 1.

Finally, we consider case (III) : m < n. We prove the desired conclusion by induction

on n − m starting from n − m = 0, which follows from case (I) and (II). Suppose that

n−m = r > 0 and the result holds for the cases when n−m < r. Applying the assumption

on the restriction of φ on M0
m,n, the subspace of Mm,n which consists of matrices with zero

n-th column, we conclude that for any A ∈M0
m,n,

φ(A) = U [(D1 ⊗ Ã) ⊕ (D2 ⊗ Ãt) ⊕ 0p′,q′ ]V

where Ã denotes m× (n− 1) matrices obtained by deleted the n-th column of A, (p′, q′) =

(p− c1m− c2(n−1), q− c1(n−1)− c2m), U ∈Mp and V ∈Mq are unitary and the following

holds.

(a) If k′ < m, c = c1 + c2 = k/k′, D1 = 1

c
Ic1 and D2 = 1

c
Ic2 ;

(b) If k′ = m, c = c1 + c2 ≤ k/k′, D1 ∈ Mc1 and D2 ∈ Mc2 are diagonal matrices with

positive diagonal entries such that trD1 + trD2 = 1.

Now replacing φ by X 7→ U∗φ(X)V ∗, we may assume that U = Ip and V = Iq.

For any x ∈ Mm,1, let A be the m × n matrix with x as the n-th column and zero in

others, and X = (Xuv)1≤u,v≤c+1 = φ(A), where Xuu ∈Mm,n−1 for 1 ≤ u ≤ c1, Xuu ∈Mn−1,m

for c1 < u ≤ c and Xc+1,c+1 ∈Mp′,q′ .

Take any nonzero y ∈ Mm,1 such that x∗y = 0. (Note that 1 < k ≤ m and hence y

exists.) For any l < n, let B be the m × n matrix with y as the l-th column and zero in

others. Then Y = φ(B) = (D1 ⊗ B̃) ⊕ (D2 ⊗ (B̃)t) ⊕ 0p′,q′ .
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Since A and B are orthogonal, X∗Y = 0q and XY ∗ = 0p. It follows from the structure

of Y that

X∗
uvB̃ = 0 when 1 ≤ u ≤ c1 and 1 ≤ v ≤ c+ 1,

X∗
uvB̃

t = 0 when c1 < u ≤ c and 1 ≤ v ≤ c+ 1,

XuvB̃
∗ = 0 when 1 ≤ u ≤ c+ 1 and 1 ≤ v ≤ c1,

Xuv(B̃
t)∗ = 0 when 1 ≤ u ≤ c+ 1 and c1 < v ≤ c.

Since the l-th column of the m×(n−1) matrix B̃ is the nonzero vector y, if XuvB̃
∗ = 0, then

the l-th row of Xuv must be the zero. Furthermore, as l can be any integer in {1, . . . , n− 1},

we conclude that Xuv = 0. Similarly, Xuv must be the zero matrix if X∗
uvB̃

t = 0.

On the other hand, if X∗
uvB̃ = 0, then all the columns of Xuv must be orthogonal to

y. Since y can be any vector orthogonal to x, all columns of Xuv must be multiples of x.

Hence, Xuv = xwt for some vector w of suitable size. Similarly, since Xuv(B̃
t)∗ = 0, we have

Xuv = zxt for some z.
By the arguments in the last two paragraphs, if 1 ≤ u ≤ c1 and c1 < v ≤ c, then

xwt = Xuv = zxt for some w and z of suitable sizes. Thus, w = λx for some constant λ in

C. That is, Xuv = λxxt.
Combining the above analysis, we know that

φ[0m,n−1 | x] =






0c1m,c1n E(x) F (x)
0c2n,c1n 0c2n,c2m 0c2n,q′

0p′,c1n G(x) H(x)






where E(x) = (λuvxxt)1≤u≤c1,1≤v≤c2 , F (x) =






xwt
1

...
xwt

c1




, G(x) = ( z1w

t · · · zc2x
t ), H(x),

λuv, wu and zv all depend on x. By linearity of φ, λuv, wu and zv must be the same for all

x, and λuv must be zero. i.e., E(x) = 0c1m,c2m.

Now we consider the orthogonal pair A = E11 +E1n and B = −E21 +E2n. Let ei be the
i-th column of Im. Then

φ(A) =






D1 ⊗ Ẽ11 0c1m,c2m F (e1)
0c2n,c1n D2 ⊗ Ẽt

11 0c2n,q′

0p′,c1n G(e1) H(e1)






and

φ(B) =






D1 ⊗−Ẽ21 0c1m,c2m F (e2)
0c2n,c1n D2 ⊗−Ẽt

21 0c2n,q′

0p′,c1n G(e2) H(e2)




 .
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Set W =






wt
1

...
wt

c1




. Since φ(A)φ(B)∗ = 0, the (1, 1)-th block equals

0c1m = (D1 ⊗ Ẽ11)(D1 ⊗−Ẽ21)
∗ + F (e1)F (e2)

∗

= −(D2

1 ⊗ E12) + (WW ∗ ⊗ E12)

= (WW ∗ −D2

1) ⊗ E12.

Thus, WW ∗ = D2
1. Let D1 = diag (d1, . . . , dc1). Hence, {w1/d1, . . . ,wc1/dc1} is a set of

orthonormal vectors. Let U ∈ Mq′ be a unitary matrix with wt
1/d1, . . . ,w

t
c1
/dc1 as the first

c1 rows. Then F ′(x) = F (x)U∗ = [D1 ⊗ x | 0c1m,q′−c1 ].

Similarly, by considering φ(A)∗φ(B) = 0, we write G′(x) = V ∗G(x) =
(
D2 ⊗ xt

0p′−c2,c2m

)

for

some unitary V . Now, we write

φ[0m,n−1 | x] = (Icn ⊕ V )






0c1m,c1n 0c1m,c2m F ′(x)
0c2n,c1n 0c2n,c2m 0c2n,q′

0p′,c1n G′(x) H ′(x)




 (Icn ⊕ U).

On the other hand, by applying the assumption on the restriction of φ on the subspace

of Mm,n which consists of matrices with zero in the (n− 1)-th column, we conclude that

rankφ[0m,n−1 |x] = rankφ[x | 0m,n−2 | x] = rankφ[x | 0m,n−1] = c.

(Note that here we use that fact that n > m ≥ 2 to ensure nontrivial consideration.)

Therefore, H ′(x) = 0 for all x. Finally, there exist permutation matrices P and Q such that

for A = [0m,n−1 |x],

φ(A) = (Icn ⊕ V )P [(D1 ⊗ A) ⊕ (D2 ⊗ At) ⊕ 0p′−c2,q′−c1 ]Q(Icn ⊕ U).

The result follows. 2
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