Isometries for Ky Fan Norms Between Matrix Spaces
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Abstract

We characterize linear maps between different rectangular matrix spaces preserving Ky
Fan norms.
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1 Introduction and statements of results

Let M,,,, (M,) be the linear space of m xn (n xn) complex matrices. The singular values of
A € M,,,, are the nonnegative square roots of the eigenvalues of A*A, and they are denoted
by s1(A) > -+ > s,(A). For 1 < k < min{m,n}, the Ky Fan k-norm on M,,, is defined
and denoted by

|Allx = s1(A) + - - - + sk (A).

The Ky Fan 1-norm reduces to the operator norm; when m = n the Ky Fan n-norm is also
known as the trace norm.
Evidently, Ky Fan k-norms are unitarily invariant norms, i.e.,

IUAV ||x = [|Allx

for any A € M,, ,, and unitary U € M,,, and V' € M,,. Actually, they form an important class
of unitarily invariant norms; see [1, Chapters 2 and 3]. For instance, given A, B € M,, ,,,

|Allx < ||Bllx forallk=1,...,min{m,n}
if and only if
|A|| < ||B]| for all unitarily invariant norms || - ||.

There has been considerable interest in studying isometries for Ky Fan norms on matrix
spaces. For example, by a result of Kadison [5], one easily deduces that isometries for the
operator norm on M, has to have the from

A—UAV or A~ UAV (1)

for some unitary matrices U,V € M,,. In [4], the authors showed that the same conclusion
holds for Ky Fan k-norm isometries for any & = 1,..., min{m,n}, where the second form
in (1) can occur only when m = n. In [8], the authors considered the problem on block
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triangular matrix algebras in M,,, and showed that the isometries essentially have the same
structure except when m = n, in this case, the second form in (1) has to be replaced by

A—UATV,

where AT is the transpose taken about the anti-diagonal so as to maintain the block tri-
angular structure. In [3], the authors studied isometries ¢ : (M, | - ||1), — (M,, || - ||1) for
n # p, and obtained a complete characterization when p < 2n — 2; moreover, examples were
given to show that ¢ may have complicated structure for p > 2n — 2. In view of these, one
may think that isometries ¢ : (M,, || - ||x), = (M,, || - ||x) also have complicated structure for
k > 1. It turns out that it is not the case as shown in the corollary of our main theorem,
which characterizes isometries ¢ : (M, || - ||&), = (Mpq, || - |x) provided & > 1. We need
some notations and definitions to describe our main result.

For two matrices A and B with A = (a;;) denote by A ® B = (a;;B). An r X s matrix
X is called a partial isometry if X*X = I, i.e., X has orthonormal columns.
Theorem 1.1 Let 1 < k' < min{m,n} and 1 < k < min{p,q}. Suppose ¢ : M, , — M,

P
satisfies

lo(A)|le = 1Al for all A€ My, . (2)

Then there exist nonnegative integers c; and co with ¢y + co > 0, and partial isometries U
and V' of sizes px (cym~+can) and g X (cyn—+com), respectively, such that one of the following
holds.

(a) k' <min{m,n}, k =k'(c1 + ¢2), and ¢ has the form

A

Ul(l, ® A) @ (I, ® A)")|V*.

Cl+02

(b) ¥ = min{m,n}, K'(c1 + c2) < k, and there are diagonal matrices Dy € M, and
Dy € M., with positive diagonal entries with tr Dy + tr Dy = 1, such that ¢ has the
form

A= U[(Dy® A) @ (Dy @ ANV

If ' = k, then either (c1,c2) = (1,0) or (¢1,¢2) = (0,1). By adding columns to U and V/
to form unitary matrices, we have the following corollary.

Corollary 1.2 Let 1 < k < min{m,n}. Suppose ¢ : M,,,, — M, , satisfies
[e(A)lle = [Allx for all A € My,
Then there are unitary matrices U € M,, and V' € M, such that ¢ has the form

A= UA® 0y mgn]V or A= U[A @0, pgm]V.



2 Auxiliary results and proofs

Replacing ¢ by the mapping(s) A — ¢(A") and/or A — [p(A)]*, we may assume that m <n
and p < ¢. Two nonzero matrices A, B € M,,,, are said to be orthogonal it AB* = 0 and
A*B = 0, equivalently, there are unitary matrices U and V' such that UAV = 377_; a; E};
and UBV = Z;i;fﬂbjEjj with aq > -+ > a, > 0and by > --- > by, > 0 for some r,s
with » + s < min{m,n}. The nonzero matrices A;,--- Ay € M,,,, are said to be pairwise
orthogonal m x n matrices if A;A5 = 0 and A7A; = 0 for any distinct pair (i,7). In such
case, there are unitary U € M,, and V € M,, 0 =rqg <71y < --- < rqg < min{m,n} and
positive numbers ay, - - -, a,, such that UA;V =3, ... a;Ej;.

We begin with the following lemma from [8, Lemma 5].

Lemma 2.1 Let A, B € M,,,, be nonzero. Then ||aA+bB||x = |al|||Allx + |b]|| Bl for every
a,b € Cif and only if A and B are orthogonal and rank A + rank B < k.

By Lemma 2.1 and a simple inductive argument, we have the following.

Lemma 2.2 Let ¢ : M,,,, — M,, be a map satisfying (2). Suppose the rank one matrices
Ay, ... Ay € My, d < min{m,n}, are pairwise orthogonal. Then ¢(A1),...,¢(Aqd) €
M, , are nonzero and pairwise orthogonal. Furthermore, for any 1 < s; < --- < sy < d,
S rank ¢(Ay,) < k.

Proof of Theorem 1.1.
For the sufficiency part of the Theorem 1.1, one readily sees that singular values of ¢(A)

A A
has ¢ = (¢1 + ¢2) copies of M, ce S ), if ¢ has the form (a). On the other hand, if
c c

k" = m and ¢ has the form (b), then k& > ck’ and so the Ky Fan k-norm of ¢(A) is just the
sum of its singular values. Let Dy & Dy = diag (dy, ..., d.). Then,

oAk = drl[Allgr + - - - + del| Allr = tr(Dy @ Do) [[Allr = [ Allxr-

To prove the necessity part, let (p',¢') = (p — cxm — can,q — c;n — com). It suffices to
prove that there are unitary matrices U € M, and V' € M, such that ¢ has the form

(a) Ar Ul(l,  A) @ (I, @ A @ 0, ,]V* if K <m,

1+

(b)) A—U[(DI®@A)® (D@ A) D0y |VE if K =m.
We divide the proof into three cases:
() ¥<m=n, () ¥=m=mn, and (III) m <n.

First consider case (I) : & < m = n. For any A € M,,,, with singular values 1,0,...,0,
there are unitary X and Y such that A = XE; Y. Let A; = XE;;Y for j =1,...,m.
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Then Aj,..., A, are pairwise orthogonal. By Lemma 2.2, ¢(A4;),...,¢(A,,) are pairwise
orthogonal. Thus, there exist unitary U and V, 0 =7y < 1) < --- < rg < m and positive
numbers ay, - - -, a,, such that

B, =U¢(A)V = > ajE; forany i=1,...,m.

ri—1<j<r;

By Lemma 2.2 again, the sum of any &’ matrices chosen from By, ..., B,, has rank at most
k. Let 1 <ty <--- <t <m. Then

k/
Sy (Z Btj) =0, foral¢>k. (3)
=1

Moreover, if t € {1,...,m} \ {t1,...,tx}, we claim that
k/
Sl(Bt) S Sk Z Btj . (4)
j=1
If (4) does not hold, then s1(B;) > si (Z?l:l Bt].>, which gives the following contradiction:
k/

B+ > By,

Jj=1

k/

A+ A,

Jj=1

=k
k;/

K=

>
k

K’ K’
Z Byl = Z Ay
=1 j=1

K’ k

Let ¢ = k/K'. It follows from (2), (3) and (4) that for each 1 < j < m, s;(B;) = 1/c for
1 <i<cand s;(B;) =0 for ¢ <i < p. Thus, we see that

(i) every rank one matrix is mapped to a rank ¢ matrix, and

(ii) every unitary matrix is mapped to a matrix with singular values 1/¢,...,1/¢,0,... 0.
—_——

cm

Since (i) holds, by Theorem 2.5 in [7] ¢ has the form
A Rl(I, ® A) @ (I, ® A') @ Oy o] S*

for some invertible R € M, and S € M,. Let R; (respectively, S;) be obtained from R
(respectively, S) by removing its last p’ (respectively, ¢’) columns. Then

R[(I, ® A) @ (I, ® A") @ 0y ¢]S* = Ry[(I., ® A) & (I, ® A")]ST.

By polar decomposition, there are unitary matrices U € M,,V € M, and positive definite
matrices P € M¢ mic,n and Q € M,y ycom such that

R1:U< P ) and ngV(O @ )

Oplyclm"r@n q’,cin+cam



Thus,
O(X) = U{Pl(L, ® 4) @ (I, ® ANQ" © 0y } V"

Define ¢ : M,, — M., such that ¢(X) = cP[(I, ® A) & (I, ® A")]Q*. By (ii), we
see that 1) maps unitary matrices to unitary matrices. By the result in [2], we see that
Ww(A) = Wi[(I, ® A) & (I, ® AW, for some unitary Wi, Wy € M,,,. Thus, condition (a)
holds.

Next, we turn to case (II) : ¥ = m = n. From the first part of the proof in case (I), we
can see that for any unitary X,Y € M,, and A\y,..., A\, € C, X7, \i¢(X E;Y) has rank at
most k. Hence, ¢(A) has rank at most k for all A € M,,. We may assume that p = ¢ by
appending ¢ — p zero rows to ¢(A) for each A € M,,. So, we assume that ¢ : M,,, — M,
and suppose ¢(I,,) = D is a nonnegative diagonal matrix with diagonal entries arranged in
descending order. For any Hermitian X € M,, with trace zero and spectrum in [—1,1] and
tel-1,1],

16U +tX) e = m + tX |l = &' = [[Inlle = | (L) |lx = tr D.
Let Y = ¢(X). Then trY = 0 because
tr D+ ttr Y| < [|¢(Lm + tX)[|p = [|[¢(Im + EX)|[x = tr D
for t = +1. Moreover,
K =tr(D£Y) < ||¢p(m +tX)]lp = [|(Lm + 1X)[[x = K.

By [6, Corollary 3.2], we conclude that D £ Y is positive semi-definite. As a result, if
¢(I,) = D = diag(dy,...,d,,0,...,0) with d; > --- > d, > 0, then ¢(X) has the form
Y ®0,_,. We may now consider ¢ : M,, — M, such that ¢(A) = ¢(A)B0,_,. It follows from
the above argument that 1) maps Hermitian matrices to Hermitian matrices and ||¢(A)], =
l6(A) |k = ||Allr. We claim that

(i) v maps positive semidefinite matrices to positive semidefinite matrices, and
(ii) v maps invertible Hermitian matrices to invertible Hermitian matrices.

To see (i), suppose A € M, is positive semidefinite. Let Dy = ¢(1,,) = diag (dy,...,d,).
Choose t > 0 such that Dy + t1(A) is positive semidefinite. Then we have

tr(Dy + t0(A)) = Dy + (Al = [T + tA|w = tr (In) + ttr (A)
= | Lllw + Al = [[¥(In)[l- + to(A)|lr = tr Dy + (A,

Thus, tr)(A) = [[1(A)]|-, and it follows form [6, Corollary 3.2] again that 1(A) is positive
semidefinite.



To prove (ii), let
j=1

for some unitary U and \; € R\ {0} for j = 1,...,m. Since ¢(U*E,U),...,o(U*Epn,U)
are pairwise orthogonal and ¢(I,,) = D, ¢(U*E;;U) = V*F;V & 0,_, for j =1,...,m, such
that F; = >, | cs<p asEss for 0 = 19 < -+- < rp, = 7 and positive numbers ay,...,a,,.

Therefore, ¥(A) = V* (ZT=1 N <s<r asEss)) V' is also invertible. Thus, condition (ii)

holds.
Now, ©(1,,) is positive definite and 1) maps invertible Hermitian matrices to invertible
Hermitian matrices. By (the proof of) 7, Proposition 3.4], we see that

V(X)) =T"[(L, ® X) & (I, ® X)|T (5)
for some invertible T" € M,.. In particular, we see that

(ili) ¢ maps rank s matrices to rank cs matrices for s =1,...,m.

Next, we show that ¢ has the form X — U*[(D; ® X) & (Dy ® X")]U for some unitary
matrix U and diagonal matrices D; and Dy with positive diagonal entries such that tr D +
tr Dy = 1. Equivalently, we show that ¢ has the form

A= (CLU/U) — V*B‘/, where B = (Buv)lgu,’ugm with Buv = aule ) CLUUDQ
for some unitary V. First, by a suitable permutation, we can rewrite ¢ in (5) as
A= (aw)— S*BS, where B = (Buw)i<uv<m With By, = auwle, ® aple, (6)

for some nonsingular S € M,. By Lemma 2.2, we see that ¢(E11), ..., ¢(Emm) are pairwise
orthogonal. Then for any distinct pair ¢ and 7,

[S™(Eii © 1) S]"[S™(Ej; © 1) S] = ¢(Eii) "¢ (Ej;) = 0.

Thus, (E; ® 1.)SS*(E;; ® I.) = 0 whenever i # j. It follows that SS* = S, @--- @ S,, where
S; € M..

Let ¢ > 1, X = Ey3 + Eyy and Y = E; — E. From (6), ¢(X) = S*(B,,)S and
YY) = S*(C,s)S so that

B_ <B11 Blz) o < Ic 101@002) C«_ <Oll Olz) . < Oc Ocl @IC2>
N B'il Bn N 001 @ [CQ Oc ’ N Cz Cz N [c1 EB OCQ _Ic

and all other B,, and Cy, are 0.. Let J; = I, ® 0., and J, = 0., & I.,. Since X and Y are

orthogonal, so are ¢(X) and ¢ (Y). Hence B*(SS*)C = 0 and B(SS*)C* = 0. Thus,

(Jgsijl Sljg — JQSz

B SN — 0 B(S. @G — Sz ST — S,
0 J151J5 )_B<51@SZ>C_O—B(31€BSZ)C _( )

0 J251J1
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Since J2S1J1 = J1.51J2 = Jo.S; 1 = J1.5;J2 = 0, each of the matrices S7 and S; is a direct sum
of a matrix in M., and a matrix in M,.,. Furthermore, we can conclude that S; = S; = Pi@® P,
where P, € M., and P, € M,,, from SiJ; — J1.5; = 0 = S1Jo — Jo.5;. As ¢ is arbitrary,
SS* =1, ® (P, ® P,) with P, and P, are both positive definite. Thus there exist unitary
U, € M., and Uy € M., such that Uy P, U; = Dy and Uy U5 = D, where Dy and D, are
diagonal matrices with positive diagonal entries.

Let U = I, ® (U; & Us) and S =US. Then SS* =1, ® (D1 @ Ds). As the row vectors
of S form an orthogonal basis, we may write S = DV, where D = I,, ® (D, & D2)1/2 and V
is unitary.

On the other hand, we have U*BU = B for the block matrix B in (6), as

auvIcl ©® a”UUICQ = (Ul ©® U2)*(a/uv]cl ©® a”l}’lLICQ)(Ul s> U2)

Then S*BS = S*U*BUS = S*BS = V*D*BDV. In fact, the (i,j)-th block of D*BD is
equal to
(Dl s> DZ)l/Q(auvIcl S% avulcg)(Dl ) D2)1/2 - aule S% aqu2~

Thus, ¢ has the asserted form. Since ||I,,, ® (D1 @ Do)l = [¥(n)|lr = |l = m, it
follows that tr (D; @ D) = tr Dy + tr Dy = 1.

Finally, we consider case (III) : m < n. We prove the desired conclusion by induction
on n — m starting from n — m = 0, which follows from case (I) and (II). Suppose that
n—m =r > 0 and the result holds for the cases when n —m < r. Applying the assumption
on the restriction of ¢ on M? | the subspace of M., ,, which consists of matrices with zero

m,n’

n-th column, we conclude that for any A € M?

O(A) =U[(D; @ A) @ (D @ A) @ 0, 4]V

where A denotes m x (n — 1) matrices obtained by deleted the n-th column of A, (p/,q') =
(p—cm—cy(n—1),q—c1(n—1)—cam), U € M, and V' € M, are unitary and the following
holds.

(a) If k' <m,c=c1+co=k/K, Dy = %[cl and Dy = %ICQ;
(b) UK =m, c=c1+co < k/K, Dy € M., and Dy € M,, are diagonal matrices with
positive diagonal entries such that tr Dy 4+ tr Dy = 1.

Now replacing ¢ by X +— U*¢(X)V*, we may assume that U = [, and V = I,,.

For any x € M,, 1, let A be the m x n matrix with x as the n-th column and zero in
others, and X = (Xyy)1<upv<er1 = ¢(A), where Xy, € My, -1 for 1 <u < ey, Xy € My—1m,
for ¢y <u <cand Xeiq 41 € My 4.

Take any nonzero y € My, such that x*y = 0. (Note that 1 < & < m and hence y
exists.) For any [ < n, let B be the m X n matrix with y as the [-th column and zero in

others. Then Y = ¢(B) = (D; ® B) ® (D, ® (B)!) @ Opr g
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Since A and B are orthogonal, X*Y = 0, and XY™ = 0,. It follows from the structure
of Y that

szé = 0 when 1<u<cgandl<v<c+1,
XZUBt = 0 when ¢ <u<candl<ov<c+1,
XWB* = 0 when 1<u<c+1land1l<wv<g¢,
Xuv(ét)* = 0 when 1<u<c¢+lande <v<ec

Since the I-th column of the m x (n— 1) matrix B is the nonzero vector ¥, if X,,B* = 0, then
the [-th row of X, must be the zero. Furthermore, as [ can be any integer in {1,...,n—1},

we conclude that X, = 0. Similarly, X,, must be the zero matrix if X:UBt =0.

On the other hand, if X* B = 0, then all the columns of X,, must be orthogonal to
y. Since y can be any vector orthogonal to x, all columns of X, must be multiples of x.
Hence, X,, = xw! for some vector w of suitable size. Similarly, since Xuv(lg’t)* = 0, we have
X,» = zx' for some z.

By the arguments in the last two paragraphs, if 1 < u < ¢; and ¢; < v < ¢, then
xw! = X, = zx' for some w and z of suitable sizes. Thus, w = \x for some constant \ in
C. That is, X,, = A\xx!.

Combining the above analysis, we know that

Oclm,cln E(X) F(X)
Qb[om,nfl ‘ X] = OCQn,cln OCQn,CQM OCQn,q’

Oprern  G(x) H(x)

t
XW]

where F(x) = (AwXX")1<u<e 1<0<ey, F(X) = ], Gx) = (Wt - z,XY), H(x),

xw!
Auwvs Wy, and z, all depend on x. By linearity of ¢, )1\w, w,, and z, must be the same for all
x, and A, must be zero. i.e., E(X) = O¢ym.com-
Now we consider the orthogonal pair A = E1; + E1,, and B = —FEy + F5,. Let e; be the
i-th column of I,,. Then

D1 X Ell Oclm,62~m F(el)
Cb(A) = 0027170171 Dy ® Efl 062n,q'
Op’,cm G(el) H(el)

and 5
D ®—FExn  Ogmeym  Fleo)
(b(B) = OCQn,cm Dy ® _Eél Ocm,q/
Op/ c1m Gle2)  H(er)



Wi
Set W = ( : ) Since ¢(A)p(B)* = 0, the (1,1)-th block equals

Oy = (D1 ® Ell)(Dl & _E21)* + F(e1)F(es)”
= —(D?®Ep)+ (WW*® Ei)
= (WW*—-D})® Ey,.

Thus, WW* = D?. Let D, = diag(dy,...,d.,). Hence, {w;/dy,...,w. /d.} is a set of
orthonormal vectors. Let U € My be a unitary matrix with wi/dy,..., w! /d., as the first
¢ rows. Then F'(x) = F(x)U* = [D1 @ X | 0¢ym.g/—cy -

t
Similarly, by considering ¢(A)*¢(B) = 0, we write G'(x) = V*G(x) = ( D, @ x ) for

OP’—C2762m
some unitary V. Now, we write

Oc1m,c1n Oclm,cgm F,(X)
Cb[om,n—l | X] = (Icn S V) Oconein Ocagneam  Ocpnygr (Icn S” U)'
Opein  G'(x)  H'(x)

On the other hand, by applying the assumption on the restriction of ¢ on the subspace
of M,,, which consists of matrices with zero in the (n — 1)-th column, we conclude that

rank ¢[0y, -1 | x| = rank ¢[x | Oy n—2 | x| = rank ¢[x | 0, n—1] = c.

(Note that here we use that fact that n > m > 2 to ensure nontrivial consideration.)
Therefore, H'(x) = 0 for all x. Finally, there exist permutation matrices P and @ such that
for A =[0,,n—1]x],

$(A) = (I © V)P[(D1® A) & (D2 @ A') & O —cy g~ QLen B V).

The result follows. O
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