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Abstract

The inverse mean first passage time problem is given a positive
matrix M ∈ Rn,n, then when does there exist an n–state discrete–
time homogeneous ergodic Markov chain C, whose mean first passage
matrix is M? The inverse M–matrix problem is given a nonnegative
matrix A, then when is A an inverse of an M–matrix. The main thrust
of this paper is to show that the existence of a solution to one of the
problems can be characterized by the existence of a solution to the
other. In so doing we extend earlier results of Tetali and Fiedler.
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1 Introduction

In this paper a Markov chain1 shall always be taken to mean a finite–state
discrete–time homogeneous ergodic Markov chain.
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Hom, Kowloon, Hong Kong (raymond.sze@inet.polyu.edu.hk). Part of this author’s work
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1For more background material on Markov chains see the books by Feller [6], by Kemeny
and Snell [12], and by Seneta [21].
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Suppose that C is a Markov chain on n states. For 1 ≤ i, j ≤ n, the
mean first passage (MFP) time from state i to state j, denoted by mi,j, is the

expected number of time steps for reaching state j for the first time, when
initially the chain was in state i. The matrix M = (mi,j) is called the MFP

matrix of the chain. We define the inverse mean first passage matrix problem
as follows: Given an n× n matrix M = (mi,j) whose entries are all positive

numbers, then when does there exist a Markov chain C on n states such that
M is its MFP matrix?

We comment that for Markov chains, MFP times give us an idea about
the short range behavior of the chain. For example, if we arrive at a holiday
destination and the weather is rainy, we are less interested in the average
number of days per year which are rainy or sunny, respectively, but rather
we are interested in the expected time that it will take the weather to turn
sunny, given that it is now rainy. In the context of random walks, MFP
times are sometimes called mean hitting times, see Karlin, Lindqvist, and
Yao [11] and Tetali [22]. In a recent article in the journal of Nature, [4], Con-
damin, Bńichou, Tejedor, Voituriez, and Klafter, explain that MFP times
can answer such questions as how long will it take a random walker to reach

a given target?2 In view of the aforementioned applications of MFP times,
it is interesting to note that MFP times can be used for other purposes too,
such as in connection with condition numbers for Markov chains which are
uses in the estimation of the error in computing the stationary distribution
vector of the chain, see Cho and Meyer [3].

The inverse M–matrix problem is defined as follows: Suppose that A is

an n × n nonnegative matrix3. Then when is A an inverse of an M–matrix,
that is when does there exist a nonnegative matrix B and a scalar s > ρ(B),

the spectral radius of B, such that A = (sI −B)−1? We mention that there
are many papers which study the inverse M–matrix problem. Here we give
a very partial list: Elsner, Neumann, and Nabben [5], Hogben [8, 9], John-

son [10], Koltracht and Neumann [14], Lewin and Neumann [15], Markham

[16], Martinez, Michon, and Zhang [17], McDonald, Neumann, Schneider,

2We mention that methods for computing MFP times for random walks whose under-
lying graph is a tree were developed by Kirkland and Neumann in [13].

3For more background material on nonnegative matrices and M–matrices see the book
by Berman and Plemmons [1].
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and Tsatsomeros [18], and Nabben and Varga [20].

There are three papers from the 1990s by Tetali [22], by Fiedler [7], and

by Xue [24], that hint directly or indirectly on a connection between the
inverse MFP matrix problem and the inverse M–matrix problem, when the
M–matrix in question is diagonally dominant. In this paper we shall make
that connection more explicit and we shall show that the existence of a solu-
tion to one can be characterized by the existence of a solution to the other.

A word about our notation. For an n × n matrix B, Bk will denote the
(n− 1)× (n− 1) principal submatrix of B obtained by deleting its k–th row
and column. The matrices I and J will denote, respectively, the identity
matrix and the matrix of all 1’s. Their dimensions will only be indicated
when they are not clear from the context. Finally, for a matrix X ∈ Rn,n,
Xdiag is the diagonal matrix whose diagonal entries are the corresponding

diagonal entries of X.

The most explicit paper of the three papers hinting upon the connection
is the one by Tetali. Tetali’s most relevant result to our work here is the
following:

Theorem 1.1 (Tetali [22, Theorem 2.1]) Let T = (ti,j) ∈ Rn,n be a tran-

sition matrix for a Markov chain C whose diagonal entries are all 0, let

A = I − T , and suppose that Π = diag(π1, . . . , πn), where π = (π1, . . . , πn)t

is the stationary distribution of the chain, that is πtT = πt and ‖π‖1 = 1.

Let M = (mi,j) be the MFP matrix of the chain. Then

(ΠnAn)H(n) = In−1, (1.1)

where H(n) = (hi,j) ∈ Rn−1,n−1 is the matrix whose elements are given by:

hi,j =


mi,n +mn,i, if i = j,

mi,n +mn,j −mi,j, if i 6= j.
(1.2)

We immediately note that as An is a row diagonally dominant M–matrix

(of order (n− 1)× (n− 1)), then so is ΠnAn. Thus H(n) is an inverse of a di-
agonally dominant M–matrix and we see that Tetali’s Theorem 1.1 suggests
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a link between MFP matrices and inverses of row diagonally dominant M–
matrices and hence a connection between the inverse MFP matrix problem
and the inverse M–matrix problem.

Before we proceed, let us observe that the matrixH(n) satisfying condition
(1.1) is not only the inverse of a row diagonally dominant M–matrix, but
actually, also, the inverse of a column diagonally dominant M–matrix. To

see this partition the stationary vector π as π = [π̄t πn]t, where π̄ ∈ Rn−1,

and observe first that because πtA = 0 and A is an M–matrix, we can

write that: π̄tAn = −πn[an,1 . . . an,n−1] ≥ 0. Next, note that from (1.1),

ΠnAn =
(
H(n)

)−1
and so we can write that:

et
(
H(n)

)−1
= etΠnAn = π̄tAn ≥ 0. (1.3)

In Section 2 we study the matrix (M −Mdiag)−1 which arises when con-

sidering a necessary and sufficient condition, essentially due to Kemeny and
Snell, for an n×n positive matrix M to solve the inverse MFP problem. Our
main results are developed in Section 3. We begin by generalizing Tetali’s
Theorem 1.1 to any Markov chain C, not just one possessing a transition
matrix with a zero diagonal. We continue by finding two sets of equivalent
conditions for a matrix H to satisfy (1.2) for some Markov chain C. These
results lead us to a corollary giving necessary and sufficient conditions for a
nonnegative matrix to be the inverse of a row and column diagonally dom-
inant M–matrix. In Section 4, we show that our results here extend also
Fiedler’s characterization for a symmetric nonnegative matrix arising in re-
sistive networks to be the inverse of a diagonally dominant M–matrix.

For historical reasons the authors want to recall here Varga’s well known
paper [23] on diagonal dominance which itself pays tribute to the earlier
contributions to the subject by Ostrowski and by Olga Taussky Todd.

2 Necessary and Sufficient Conditions for the

Solution to the Inverse MFP Problem

In this section, we consider a matrix, which will be denoted by N , which
occurs in a necessary and sufficient condition, essentially due to Kemeny and

4



Snell, for a positive matrix M to be the MFP matrix of some Markov chain
C with a transition matrix T .

Suppose now that M ∈ Rn,n is a positive matrix. Let N := M−Mdiag . If

M is the MFP matrix for some Markov chain C, then according to Kemeny
and Snell [12, pp.81], N is an invertible matrix. Kemeny and Snell show

further [12, Theorem 4.4.12] that in this case the transition matrix for the
chain is given by:

T̂ = I + (Mdiag − J)N−1. (2.4)

Indeed, Meyer [19] shows that the MFP matrix is the unique solution to the
matrix equation

(I − T )X = J − TXdiag , (2.5)

where X is in Rn,n, and it is easy to check that the matrix T̂ given in (2.4)

satisfies equation (2.5).

The following equivalence is implicit in the book of Kemeny and Snell:

Theorem 2.1 Let M ∈ Rn,n be a positive matrix, set N := M−Mdiag . Then

M is the MFP matrix for some Markov chain C whose transition matrix is T

if and only if N is invertible and the matrix T̂ , given in (2.4), is nonnegative,

irreducible, and stochastic. In this case, T = T̂ .

Proof. The “if” part of the theorem is just the result of Kemeny and
Snell, for if M is an MFP matrix for some Markov chain C. then its transi-
tion matrix is given by (2.4).

To prove the “only if” part suppose that M is a positive matrix, N :=

M − Mdiag is an invertible matrix, and the matrix T̂ , given in (2.4), is

nonnegative, irreducible, and stochastic. Let M̂ be the MFP matrix induced

via transition matrix T̂ . Then M̂ is the unique matrix in Rn,n satisfying the
matrix equation

(I − T̂ )X = J − T̂Xdiag.

However, as can be readily checked, M too satisfies this equation and hence

M = M̂ , showing that M is an MFP matrix and the proof is complete. 2
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An immediate, but interesting, corollary of the above theorem is the
following:

Corollary 2.2 Suppose that N ∈ Rn,n is a nonnegative invertible matrix

with zero diagonal entries. Let N−1 = (pi,j). Then N = M −Mdiag for some

MFP matrix M of a Markov chain C on n states if and only if

∑n
k=1 pi,k > 0, for all i = 1, . . . , n,

pi,j ≥
∑n

k=1 pi,k

∑n
k=1 pk,j∑

1≤k,`≤n pk,`

, for all i 6= j, i, j = 1, . . . , n,

pi,i

∑
1≤k,`≤n pk,`∑n

k=1 pi,k

−
n∑

k=1

pk,i ≥ −1, for all i = 1, . . . , n,

(2.6)

and the (any) n × n matrix G = (gi,j) whose off–diagonal entries are given

by:

gi,j = pi,j −
∑n

k=1 pi,k

∑n
k=1 pk,j∑

1≤k,`≤n pk,`

, for all i 6= j, i, j = 1, . . . , n, (2.7)

is irreducible.

Proof. Suppose that (2.6) holds. Set

πi :=

∑n
k=1 pi,k∑

1≤k,`≤n pk,`

, for i = 1, . . . , n. (2.8)

Then
∑n

i=1 πi = 1. Now let D = diag (π−1
1 , . . . , π−1

n ). From (2.6) and (2.8) it

readily follows that the off–diagonal entries of (D − J)N−1 are nonnegative

while the row sums of (D−J)N−1 are all 0. Furthermore, from the third con-

dition in (2.6) and from (2.8) it follows that the diagonal entries of (D−J)N−1

are bounded below by −1. Hence the matrix T := I + (D − J)N−1 is non-
negative and its row sums are all 1 and so it is stochastic. Moreover, from
the definition of T we readily observe that ti,j = gi,j, for all i, j = 1, . . . , n

with i 6= j, showing that T is an irreducible matrix. Thus, by Theorem 2.1,
D +N is the MFP matrix induced by T .
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Now suppose that N = M − Mdiag for some MFP matrix M . Again

denote the entries of N−1 by pi,j, i, j = 1, . . . , n. Then, by Theorem 2.1,

T = I + (Mdiag −J)N−1 is an irreducible transition matrix for some Markov

chain C so that, in particular, the off–diagonal entries of T which are given
by

mi,ipi,j −
n∑

k=1

pk,j =
1

πi

pi,j −
n∑

k=1

pk,j, for all i 6= j, (2.9)

are nonnegative. Now, from the equality Te = e we have at once that

(Mdiag − J)N−1e = 0. (2.10)

A careful analysis of (2.10) together with the representation of the off–

diagonal entries of the matrix (Mdiag − J)N−1 as given in (2.9) now yield

the second inequality in (2.6) and they imply the fact that the entries the

stationary distribution vector π satisfy the equalities given in (2.8).

Next, the diagonal entries of (Mdiag − J)N−1 are given by:

pi,i
1

πi

−
n∑

k=1

pk,i = mi,ipi,i −
n∑

k=1

pk,i, i = 1, . . . , n.

Thus, as T = I + (Mdiag − J)N−1 is nonnegative and stochastic, we get at

once, using the fact that the entries of π satisfy the equalities in (2.8), that

the third inequality in (2.6) holds. Moreover, as T is irreducible, the matrix

G whose off–diagonal entries are given in (2.7) must also be irreducible.

Finally, from (2.10) it is also possible to deduce that:

(etN−1e)NM−1
diag e = e > 0.

Thus, in particular, etN−1e > 0 and so

N−1e = (etN−1e)M−1
diag e > 0,

from which the first inequality in (2.6) follows. 2
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Remark 2.3 The column sums of N−1 need not be nonnegative as shown
by the following example: Let

T =


0.2451 0.06011 0.0218 0.108 0.5256 0.03944
0.2038 0.02206 0.1188 0.0373 0.124 0.494
0.09678 0.1925 0.1872 0.1904 0.1184 0.2148
0.09864 0.003722 0.02683 0.01902 0.7317 0.1201
0.181 0.1096 0.1145 0.09044 0.3715 0.1329

0.03331 0.05538 0.08807 0.314 0.505 0.004243

 .

Then

N−1 =


−0.1036 0.02709 0.02377 0.02534 0.05179 0.007414
0.02385 −0.07107 0.02062 0.007651 −0.005539 0.04137
0.01701 0.02862 −0.06344 0.02291 −0.006784 0.02079
0.02216 0.01422 0.01903 −0.1111 0.0649 0.01543
0.1102 0.09263 0.1017 0.06031 −0.3385 0.05835
0.01629 0.02325 0.03003 0.05052 0.04287 −0.1349

 ,

in which case
∑6

i=1 pi,5 = −0.1912.

3 Connection to the Inverses of Row and Col-

umn Diagonally Dominant M–matrices

In this section we generalize Tetali’s Theorem 1.1 to transition matrices T
not constrained to have zero diagonal entries and connect the entries of the
inverse of (I −T )n to the entries of the MFP matrix induced by T . In terms
of notation, for an n × n matrix B, we shall continue in this section with
the notation, introduced in Section 1, that for each k = 1, . . . , n, Bk is the
(n− 1)× (n− 1) principal submatrix of B obtained by deleting its k–th row
and column.

Given a positive matrix M = (mi,j) ∈ Rn×n, define the (n− 1)× (n− 1)
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matrix H(n) = (hi,j) by

hi,j =


mi,n +mn,i, if i = j,

mi,n +mn,j −mi,j, if i 6= j,
for all i, j = 1, . . . , n− 1.

(3.11)

Next, for each k = 1, . . . , n, define the (n− 1)× n matrix by

P (k) =
[
e1 · · · ek−1 −e ek · · · en−1

]
.

Notice that P (k)e = 0, for all k = 1, . . . , n. In particular, we have that P (n) =[
In−1 −e

]
and it can be checked that the equality in (3.11) is equivalent to

H(n) = −P (n)(M −Mdiag )P (n)t. (3.12)

In [22, Theorem 2.1] Tetali shows that if M = (mi,j) is the MFP matrix

for a transition matrix T having zero diagonal entries with stationary vector

π = (π1, . . . , πn)t, then

ΠnAnH
(n) = I,

where A = I − T and Π = diag (π1, . . . , πn). The following theorem general-
izes Telatli’s Theorem 1.1 to an arbitrary transition matrix.

Theorem 3.1 Suppose that T is the transition matrix of a Markov chain C
on n states with the MFP matrix M and the stationary distribution vector

π = (π1, . . . , πn)t. Let A = I − T and set Π = diag (π1, . . . , πn). For k =
1, . . . , n, define

H(k) = −P (k)(M −Mdiag )P (k)t.

Then
ΠkAkH

(k) = I.

Proof. It suffices to prove the result for the case when k = n. Let
A = I − T . By (2.5) we have that

ΠA(M −Mdiag ) = ΠJ − I.
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If in the above matrix equality we consider the first n− 1 rows and use the
fact that the first n− 1 rows of ΠA are equal to[

ΠnAn −ΠnAne
]

= ΠnAnP
(n),

then we obtain that

ΠnAnP
(n)(M −Mdiag ) = ΠnJn−1,n −

[
I 0

]
⇒ ΠnAnP

(n)(M −Mdiag )P (n)t = Π(n)Jn−1,nP
(n)t −

[
I 0

]
P (n)t

⇒ ΠnAn(−H(n)) = −I.

Noting that P (n)Jn,n−1 = 0, the result now follows. 2

We remark that from Theorem 3.1 we have that

A−1
k = H(k)Πk = P (k)(M −Mdiag )P (k)tΠ(k), for all k = 1, . . . , n.(3.13)

Now for each k = 1, . . . , n− 1, define the (n− 1)× (n− 1) matrix:

Q(k) =
[
e1 · · · ek−1 −e ek · · · en−2

]
.

Said otherwise, Q(k) is the matrix obtained from P (k) by deleting its n–

th column. Furthermore, one can check that P (k) = Q(k)P (n), for all k =
1, . . . , n− 1. But then (3.13) implies that

A−1
k = Q(k)P (n)(M −Mdiag )P (n)tQ(k)tΠk = Q(k)A−1

n Π−1
n Q(k)tΠk.

Put R(k) := ΠkQ
(k)Π−1

n . Then:

R(k) =
[
e1 · · · ek−1 −π−1

k Πke ek · · · en−2

]
.

Furthermore we have that:

A−1
k = Q(k)A−1

n R(k)t, for all k = 1, . . . , n− 1. (3.14)

We comment that case k = 1 in (3.14) is a result of Xue in [24] and, in

essence, the entire observation (3.14) should be attributed to Xue.

We shall next find a necessary and sufficient condition for a matrix H ∈
Rn−1,n−1 to satisfy that for some positive matrix M , condition (3.12) holds.
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Theorem 3.2 Let H ∈ R(n−1),(n−1). Then the following are equivalent:

(a) H is invertible, H−1 is a row and column diagonally dominant M–
matrix, and

tr (I + J)H−1 ≤ 1.

(b) There exists a Markov chain C on n states with a transition matrix

T ∈ Rn,n and a stationary vector π = (π1, . . . , πn)t such that

ΠnAnH = I, (3.15)

where A = I − T .

(c) There exists an MFP matrix M of a Markov chain C such that

H = −P (n)(M −Mdiag )P (n)t.

is a positive matrix.

Proof. The equivalence for (b) and (c) can be easily deduced from Theo-

rem 3.1. It remains to show that (a) and (b) are equivalent.

Suppose first that (b) holds so that, by (3.15), H−1 = ΠnAn = Πn(I−T )n.
Now by arguments similar to the ones presented following Tetali’s Theorem

1.1 through (3.15) , we see that again H−1 is a row and column diagonally
dominant M–matrix. Furthermore,

trH−1 = tr Πn − tr ΠnTn ≤ tr Πn = 1− πn

and hence

tr JH−1 = etH−1e = etΠn(I − Tn)e = πn(1− tn,n) ≤ πn.

Thus, tr (I + J)H−1 ≤ 1.

Suppose next that H−1 is a row and column diagonally dominant M–

matrix satisfying the trace inequality in (a). Note that as H−1 is column

diagonally dominant, trace(JH−1) ≥ 0. In fact, the nonsingularity of H−1
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implies that at least one diagonal entry of JH−1 must be positive and so we
can write that:

trace
(
H−1

)
< trace

(
H−1

)
+ trace

(
JH−1

)
≤ trace

(
(I + J)H−1

)
.

Let d1, . . . , dn−1 be the diagonal entries of H−1. Then, due to our assumption

that trace((I + J)H−1) ≤ 1, we see that
∑n−1

i=1 di < 1. We can now choose

positive numbers π1, . . . , πn, with
∑n

j=1 πj = 1, such that

πj ≥ dj, for j = 1, . . . , n− 1. (3.16)

Set π = (π1, . . . , πn)t, Π := diag (π1, . . . , πn), and

T := I − Π−1P (n)tH−1P (n) = I − Π−1

[
H−1 −H−1e
−etH−1 etH−1e

]
. (3.17)

One can readily check that T is nonnegative, Te = e, and πtT = πt. To see

that T is irreducible, note first that since H nonsingular, the vectors etH−1

and H−1e, which are nonnegative by virtue of H−1s being a row and column
diagonally dominant M–matrix, are (also) nonzero. Hence, for some 1 ≤ k ≤
n− 1, tn,k = (etH−1)k > 0 and, for some 1 ≤ j ≤ n− 1, tj,n = (H−1e)j > 0.

Suppose that T is reducible. Then one can find a permutation matrix of

the form P = Q ⊕ [1] such that PTP t has the form
»

T̃1,1 T̃1,2
T̃2,1 T̃2,2

–
, where at

least one of T̃1,2 or T̃1,2 is a zero block and T̃2,2 has dimension k × k, with

k ≥ 2 due to the non–zeroness of the last row and column of T . Without
loss of generality we can assume that P is the identity matrix. Partition

QH−1Qt = H−1 in the form
»
(H−1)1,1 (H−1)1,2
(H−1)2,1 (H−1)2,2

–
, where (H−1)1,1 ∈ Rn−k,n−k.

Then the zero pattern of PTP t = T now implies that either (i) (H−1)1,2 = 0

and (H−1)1,1e = 0 or (ii) (H−1)2,1 = 0 and et(H−1)1,1 = 0. Suppose that (i)

holds. Then as (H−1)1,1 is invertible, (H−1)1,1e 6= 0, which is not possible.

The same argument follows if case (ii) holds. Hence T must be irreducible.
Thus T is a transition matrix for some Markov chain C whose stationary

distribution is the vector π. Furthermore, we have that ΠnAn = H−1, where
A = I − T .

2
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Remark 3.3 A few comments on Theorem 3.2 are in place.

a) The equivalences in the theorem continues to hold if we replace An and

P (n) by Ak and P (k), for all k = 1, . . . , n− 1, respectively.

b) Given a transition matrix T for a Markov chain C, then T uniquely de-

termines an MFP matrix M and, through (3.12), M , in turn, uniquely

determines H(n) and hence it also uniquely determines (Hn)−1.

We can therefore ask the converse question: Given a matrix H = H(n)

satisfying the conditions (a) in Theorem 3.2, to what extent does it de-
termine uniquely a transition matrix T for a Markov chain C?

From the proof that (a) implies (b) in the above theorem it can be

readily seen that if tr (I + J)H−1 ≤ 1, so that the sum of the diagonal

entries of H−1, namely,
∑n−1

i=1 di < 1, then each choice of π1, . . . , πn,

satisfying πj ≥ dj, j = 1, . . . , n − 1, and
∑n

j=1 πj = 1, generates, via

(3.17), a different transition matrix T . As an example let us take:

H =


19.18 10.17 12.28 14.42
13.01 17.61 16.19 14.65
10.12 10.69 23.7 14.15
9.737 7.639 11.14 16.44

 .

Then as can be checked that

H−1 =


0.1082 −0.033 −0.004525 −0.06159
−0.04286 0.1245 −0.04768 −0.03233
−0.0008424 −0.03229 0.08538 −0.04396
−0.04358 −0.01642 −0.03303 0.1421


is an invertible row and column diagonally dominant matrix with trace((I+

J)H−1) = 0.5283.

Next let π1 = [0.2, 0.2, 0.2, 0.18, 0.22] and π2 = [0.2, 0.2, 0.2, 0.25, 0.15]

and we see that both vectors satisfy the condition (3.16) with respect
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to the diagonal entries of H−1. Put Π1 = diag(π1) and Π2 = diag(π2).

Then using (3.17) we obtain two stochastic matrices:

T1 =


0.4591 0.165 0.02262 0.308 0.0453
0.2143 0.3774 0.2384 0.1617 0.008151

0.004212 0.1614 0.5731 0.2198 0.04145
0.2421 0.09125 0.1835 0.2104 0.2727
0.09496 0.1945 0.0006288 0.01926 0.6906


and

T2 =


0.4591 0.165 0.02262 0.308 0.0453
0.2143 0.3774 0.2384 0.1617 0.008151

0.004212 0.1614 0.5731 0.2198 0.04145
0.1743 0.0657 0.1321 0.4315 0.1963
0.1393 0.2853 0.0009222 0.02825 0.5463

 ,

corresponding to Π1 and Π2, respectively. On computing the MFP
matrices induced by the transition matrices T1 and T2 we obtain that:

M1 =


5.0 6.363 10.89 4.276 10.92

7.251 5.0 8.052 5.125 12.0
9.586 6.366 5.0 5.078 11.45
7.184 6.635 9.767 5.556 8.663
8.258 5.611 12.25 7.777 4.545


and

M2 =


5.0 6.347 10.91 4.135 11.93

7.267 5.0 8.088 5.0 13.03
9.566 6.331 5.0 4.918 12.44
7.326 6.76 9.927 4.0 9.814
7.249 4.586 11.26 6.627 6.667

 ,

respectively. A computation now shows that

−P (5)(M1 − (M1)diag )P (5)t = −P (5)(M2 − (M2)diag )P (5)t

=


19.18 10.17 12.28 14.42
13.01 17.61 16.19 14.65
10.12 10.69 23.7 14.15
9.737 7.639 11.14 16.44

 = H.
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We further note that if trace(H−1)+etH−1e = 1 and we choose πi = di,

for i = 1, . . . , n − 1, so the necessarily πn = etH−1e, then we readily
see from (3.17), the defining equation for T , that the diagonal entries
of T must be all 0.

c) The transition matrix T in Theorem 3.2(b) comes from a reversible
Markov chain if and only if the matrix H is symmetric.

The above results lead us to a corollary providing necessary and sufficient
conditions for an n × n nonnegative matrix to be an inverse of a row and
column diagonally dominant M–matrix, thus adding to the known classes of
inverse M–matrices:

Corollary 3.4 Suppose that A = (ai,j) ∈ Rn,n. Then the following condi-

tions are equivalent:

(a) A is invertible and A−1 is a row and column diagonally dominant M–
matrix.

(b) A is a matrix whose entries are determined as follows: there exists a

Markov chain C on n + 1 states, whose MFP matrix is M = (mi,j) ∈
Rn+1,n+1, and a constant k > 0 such that

ai,j =


k (mi,n+1 +mn+1,j −mi,j) , if i 6= j,

k (mi,n+1 +mn+1,j) , if i = j,

(3.18)

for all i, j = 1, . . . , n.

4 Resistive Electrical Networks and the Re-

sults of Fiedler

Given a connected undirected graph G = (V,E) on n + 1 nodes (vertices),

i.e., |V | = n+ 1, an electrical network N (G) can be induced by G as follows.

For any edge (i, j) ∈ E, let ri,j be the resistance between the corresponding

nodes. When nodes i and j are not adjacent, the resistance between the nodes
is taken to be infinite. The graph G can then be regarded as a weighted
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graph with the weight of the edge given by the conductance ci,j = 1
ri,j

, if

nodes i and j are adjacent, and ci,j = 0, if nodes i and j are not adjacent. For

any two nodes i, j ∈ V , Ri,j will denote the effective resistance between

the corresponding nodes in N (G), namely, the potential difference we
need to impose between nodes i and j to get a current flow of 1 Volt from i
to j. Notice that in this setting, Ri,i = 0.

Next, the transition probabilities of a random walk on G are usually set
as follow:

ti,j =
ci,j∑

k∈V ci,k
.

It is easy to check that the matrix T := (ti,j) is an (n+1)× (n+1) stochastic

matrix. Let mi,j be, in the language of randomized algorithms, see Tetali

[22], the expected cost of a random walk that starts at i and ends upon first
reaching j. This is another way of saying that mi,j is the MFP time from

node i to node j.

In [7], Fiedler provided a connection between effective resistances Ri,j

and the inverses of irreducible diagonally dominant symmetric M–matrices,
see [7, Theorem 2.1(i) & (iii)]. We shall now provide an alternative proof to
Fiedler’s theorm.

Theorem 4.1 (Fiedler [7, Theorem 2.1, (i) & (iii)]) Let A = (ai,j) ∈ Rn,n.

Then the following are equivalent.

(a) A is invertible and A−1 is an irreducible diagonally dominant symmetric
M–matrix.

(b) There is a connected resistive network N (G) with n + 1 nodes, labeled
1, . . . , n+ 1, such that the effective resistances Ri,j satisfy

ai,j =
1

2
(Ri,n+1 +Rn+1,j −Ri,j) , for i, j = 1, . . . , n. (4.19)

To give our alternative proof to Fieldler’s Theorem we need the following
result which can be readily deduced from a result of Chandra, Raghavan,
Ruzzo, Smolensky, and Tiwari. [2, Theorem 2.2]:
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Proposition 4.2 ([2, Theorem 2.2]) Let Ĉ :=
∑

(i,j)∈V×V ci,j. Then for any

two distinct nodes i, j ∈ V ,

2mi,j = ĈRi,j.

Proof of Theorem 4.1. To prove the theorem, it suffices to show
that Fiedler’s assertion in Theorem 4.1 (b) is equivalent to part (b) of our
Corollary 3.4.

Suppose now that N (G) is a connected electrical network with n + 1

nodes and that A = (ai,j) ∈ Rn,n satisfies (4.19). Set T := (ti,j), with

ti,j = ci,j/
∑

1≤k≤n ci,k, i, j = 1, . . . , n + 1. Then T is a (n + 1) × (n + 1)

transition matrix for some chain. By Proposition 4.2, if M = (mi,j) is

the MFP matrix obtained from T , then Ri,j = 2mi,j/Ĉ, for i 6= j, where

Ĉ =
∑

i,j∈V×V ci,j. Note also that Ri,i = 0 for all i. Thus A satisfies (3.18)

and hence Corollary 3.4(b) follows with k = 1/Ĉ.

Conversely, suppose that M is an (n+1)×(n+1) MFP matrix induced by

a transition matrix T and A = (ai,j) ∈ Rn,n satisfies (3.18). We now proceed

to construct an resistive electrical networkN (G), where G is a weighted graph

with the conductances ci,j = ti,j/k(n+ 1). By proposition 4.2, for any i 6= j,

kmi,j =
1

2
kĈRi,j =

1

2
Ri,j

(∑
r,s∈V

kcr,s

)
=

1

2
Ri,j

(∑
r,s∈V

tr,s
n+ 1

)
=

1

2
Ri,j.

Thus A satisfies (4.19) and so assertion (b) of Theorem 4.1 holds. Our proof
is done. 2
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