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Abstract

Let A be an n × n irreducible nonnegative matrix. We show that over the set Ωn

of all n × n doubly stochastic matrices S, the multiplicative spectral radius ρ(SA)
attains a minimum and a maximum at a permutation matrix. For the case when A
is a symmetric nonnegative matrix, a by-product of our technique of proof yields a
result allowing us to show that ρ(S1A) ≥ ρ(S2A), when S1 and S2 are two symmetric
matrices such that both S1A and S2A are nonnegative matrices and S1 − S2 is a
positive semidefinite matrix. This result has several corollaries. One corollary is that
ρ(S1A) ≥ ρ(S2A), when S1 = (1/n)J and S2 = (1/(n−1))(J−I), where J is the matrix
of all one’s. A second corollary is a comparison theorem for weak regular splittings of
two monotone matrices.

AMS classification: 15A48, 15A18
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1 Introduction

Let A be an n × n irreducible nonnegative matrix. The problem of optimizing the spectral
radius of the sum A + X, where X runs through the n × n matrices of Frobenius norm 1
or through all nonnegative diagonal matrices of a fixed trace has been considered by sev-
eral researchers, see, for example Han, Neumann, and Tsatsomeros [7], Hershkowitz, Huang,

Neumann, and Schneider [8], and Johnson, Loewy, Olesky, and van den Driessche [9]. In this
paper, we study the problem of optimizing the spectral radius of the product SA, where S
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runs through the set of all n× n doubly stochastic matrices.

Denote by Ωn and Pn the sets of the n × n doubly stochastic matrices and the n × n
permutation matrices, respectively. Recall the well known result of Birkhoff, see [2], that Ωn

is the convex hull of Pn, the extreme points in Ωn.

Since Ωn is a closed and bounded set, the extremal values, both minimal and maximal,
of ρ(SA), where ρ(·) denotes the spectral radius of a matrix, are attained on Ωn. In the
main result of this paper, cf. Theorem 2.1 in Section 2, we show that the extremal values are
always attained on Pn. From convex analysis we know that the extremum values of every
convex function defined on Ωn are attainable at the extremal points of Ωn. However, in gen-
eral the function S 7→ ρ(SA) is not a convex function on Ωn. Notice that as ρ(XY ) = ρ(Y X)

for any matrices X and Y , the optimization of ρ(SAT ), where S and T run through the set
of all doubly stochastic matrices, is also solved. We go on to provide a variation of Theorem
2.1. For example, in Theorem 2.3, we consider the case where the optimization of ρ(SA)
is taken over all n × n doubly stochastic matrices S which are a direct sum of k doubly
stochastic matrices of sizes n1, · · · , nk, with n1 + . . . + nk = n.

A by-product of an intermediate step in the proof of Theorem 2.1 leads us to consider
the special case when A is symmetric. Suppose that S1 and S2 are two symmetric matrices
such that the difference S1−S2 is a positive semidefinite matrix and such that S1A and S2A
are nonnegative matrices. In Theorem 3.1 of Section 3 we show that

ρ(S2A) ≤ ρ(S1A).

Suppose now that Ĵn is the n×n matrix of all 1’s and that Jn = (1/n)Ĵn. Set Kn = (1/(n−
1))(Ĵn − In). Then on letting S1 = Jn and S2 = Kn, we see that S1 − S2 = 1

n−1
In − 1

n−1
Jn

which is positive semidefinite. We thus obtain the corollary that for any n × n symmetric
irreducible nonnegative A,

ρ(KnA) ≤ ρ(JnA).

Theorem 3.1 has application to comparison theorems for nonnegative iteration matrices.
Recall that a splitting of an n× n matrix B into B = M −N is called regular if N ≥ 0, M

is invertible, and M−1 ≥ 0. A celebrated comparison result due to Varga [14] states that if
B = M1 −N1 = M2 −N2 are two regular splittings of B such the N1 ≥ N2, then

ρ(M−1
2 N2) ≤ ρ(M−1

1 N1).

Since Varga’s comparison theorem for regular splittings was published, many papers have
appeared in the literature in which various relaxations of the conditions for a splitting to
be regular have been considered. For example, Ortega and Rheinboldt [13] introduced the

notation of a weak regular splitting in which we require that M is invertible, M−1 ≥ 0, and

M−1N ≥ 0, while comparison theorems for weak regular splittings have been developed in
Csordas and Varga [3], Elsner [4], Elsner, Frommer, Nabben, Schneider, and Szyld [5], Neu-

mann and Miller [10], and Neumann and Plemmons [11]. Using Theorem 3.1, we are able
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to mix conditions involving symmetry of matrices with conditions involving nonnegativity
of matrices to obtain comparison theorems for weak regular splittings of matrices.

Before we proceed to the development of the results of this paper, let us mention the
results in two papers which are of some relevance to the present results and which may interest
the reader. In the 1968 paper [1], Brualdi and Wielandt show that a matrix A ∈ Rn,n is

stochastic if and only if for every permutation matrix P , ρ(PA) = 1. The second paper of

interest is [6] by Friedland, Hemasinha, Schneider, Stuart, and Weaver. Let A ∈ Rn,n be a

nonnegative and irreducible matrix with ρ(A) < 1 so that (I −A)−1 exists and is a positive
matrix. They consider the question of when the Perron vector of A and the vector of the row

sums of (I −A)−1 share the same grading, namely, that both vectors can be simultaneously
permuted to vectors whose entries are nonincreasing.

2 The Extremal Problem ρ(SA) Over the Doubly

Stochastic Matrices

Let A be an n × n nonnegative and irreducible matrix and, as before, let Ωn be the set of
all the n × n nonnegative doubly stochastic matrices. In the main result of this section we
consider the problem of the extremal values of ρ(SA) as S varies over Ωn.

Recall that Ωn is a closed and bounded set and that the spectral radius function ρ(·) is
continuous on Rn,n. Hence, for any arbitrary but fixed n × n nonnegative and irreducible
matrix A ∈ Rn,n, ρ(SA), viewed as a function on Ωn, attains its bounds on Ωn. Indeed,

since, by Birkhoff expansion, if S ∈ Ωn, then S =
∑m

i=1 aiPi, for some permutation matrices

P1, . . . , Pm and nonnegative numbers a1, . . . am, such that
∑m

i=1 ai = 1, we can write that:

ρ(SA) ≤ ‖SA‖2 = ‖
m∑

i=1

aiPiA‖2 ≤
m∑

i=1

ai‖PiA‖2 =
m∑

i=1

ai‖A‖2 = ‖A‖2.

The question is thus whether we can identify where in Ωn does ρ(SA) attains its bounds.
It is known that the specral radius function is not convex and hence, a priori, we do not
know whether ρ(SA) attains its bounds at the extreme points of Ωn, namely, in Pn, the set
of all the n× n permutation matrices. Therefore our main result is somewhat surprising.

Theorem 2.1 Let A ∈ Rn,n be a nonnegative and irreducible matrix. Then there are per-
mutation matrices P ∗ and Q∗ such that

ρ(P ∗A) = min
S∈Ωn

ρ(SA) and ρ(Q∗A) = max
S∈Ωn

ρ(SA). (2.1)

We will now proceed with some preliminaries to the proof of Theorem 2.1. First, a key
idea is to introduce a function of two arguments, both matrices. Let S1 and S2 be two
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distinct matrices such that S1A and S2A are irreducible nonnegative matrices. Define the
map fS1,S2 by

fS1,S2(α) = ρ((αS1 + (1− α)S2)A), α ∈ [0, 1]. (2.2)

Suppose, next, that xα and yα are positive right and left Perron vectors of the (irreducible

nonnegative) matrix (αS1 + (1− α)S2)A normalized in some fixed manner. Then

(β − α)yt
β(S1 − S2)Axα = yt

β[(βS1 + (1− β)S2)A− (αS1 + (1− α)S2)A]xα

= fS1,S2(β)yt
βxα − fS1,S2(α)yt

βxα.

It follows that
fS1,S2(β)− fS1,S2(α)

β − α
=

1

yt
βxα

yt
β(S1 − S2)Axα.

Note that yβ → yα, as β → α, and so

f ′S1,S2
(α) = lim

β→α

fS1,S2(β)− fS1,S2(α)

β − α
=

1

yt
αxα

yt
α(S1 − S2)Axα. (2.3)

Here, f ′S1,S2
(0) and f ′S1,S2

(1) are defined to be the corresponding usual one-sided limits.

We are now ready to present the following useful lemma:

Lemma 2.2 Suppose A, S1 and S2 are matrices in Rn,n such that both S1A and S2A are
nonnegative and irreducible and rank (S1 − S2) = 1. Then the map fS1,S2 defined by (2.2) is

either a strictly monotone function or a constant function on [0, 1]. Furthermore, if x and y
are the right and left Perron vectors of S2A, then:

(a) fS1,S2 is strictly increasing if yt(S1 − S2)Ax > 0.

(b) fS1,S2 is strictly decreasing if yt(S1 − S2)Ax < 0.

(c) fS1,S2 is a constant function if yt(S1 − S2)Ax = 0.

Proof. Suppose the map fS1,S2 is not strictly monotone on [0, 1]. Then the map must

have some local extremum in (0, 1), say at 0 < β < 1. By (2.3),

0 = f ′S1,S2
(β) =

1

yt
βxβ

yt
β(S1 − S2)Axβ.

Hence, yt
β(S1−S2)Axβ = 0. Since rank (S1−S2) = 1, we have that either yt

β(S1−S2)A = 0

or (S1 − S2)Axβ = 0.
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If yt
β(S1 − S2)A = 0, then for any α ∈ [0, 1], we have

yt
β(αS1 + (1− α)S2)A = yt

βS2A + αyt
β(S1 − S2)A = yt

βS2A + βyt
β(S1 − S2)A

= yt
β(βS1 + (1− β)S2)A = ρ((βS1 + (1− β)S2)A)yt

β.

Thus, (αS1 + (1− α)S2)A and (βS1 + (1− β)S2)A have the same spectral radius. That is,

f(α) = f(β) for all α ∈ [0, 1]. The same result holds if (S1 −S2)Axβ = 0. In both cases, the

map fS1,S2 is a constant function. The second part of the lemma can be easily verified by

considering f ′S1,S2
(0). 2

We are now ready present our proof of Theorem 2.1.

Proof of Theorem 2.1. We shall prove here only the left equality in (2.1), that is that

the minimum of ρ(SA) over Ωn is attained at a permutation matrix as the proof that the

maximum of ρ(SA) over Ωn is also attained at a permutation matrix can been proved along
similar lines.

Suppose that S∗ ∈ Ωn is a matrix such that

ρ(S∗A) = min
S∈Ωn

ρ(SA).

We claim that if S∗ has exactly q ≥ 0 entries equal one, then we can construct another

matrix S† ∈ Ωn such that S† has at least q + 1 entries equal one and ρ(S†A) = ρ(S∗A).
Thus, inductively, we can construct a matrix P ∗ in Ωn having n entries equal one, which is
in fact a permutation matrix, such that ρ(P ∗A) = ρ(S∗A). Our result will then follow.

To prove our claim, suppose S∗ = (si,j) has exactly q entries equal one. Then there are

permutation matrices P and Q in Pn such that

PS∗Q =

[
S∗

1 0
0 Iq

]
,

for some S∗
1 ∈ Ωp, with p + q = n. Without loss of generality, we may assume that

P = Q = In. Otherwise, we can replace S∗ and A by PS∗Q and QtAP t, respectively.
Note that all entries of S∗

1 , or equivalently, all si,j with 1 ≤ i, j ≤ p, must be less than one.

Let x and y = (y1, . . . , yn)t be right and left Perron vectors of S∗A, respectively, and set

w = (w1, . . . , wn)t = Ax. We can further assume that

y1 ≥ y2 ≥ · · · ≥ yp and w1 ≤ w2 ≤ · · · ≤ wp. (2.4)

This follows since we can further replace S∗, A, x, and y by PS∗Qt, QAP t, Px, and Py,
respectively, in which both P and Q have the form R⊕ Iq in Pn. Now let

u = (s1,1 − 1, s2,1, . . . , sn,1)
t = (s1,1 − 1, s2,1, . . . , sp,1, 0, . . . , 0)t
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and
v = (s1,1 − 1, s1,2, . . . , s1,n)t = (s1,1 − 1, s1,2, . . . , s1,p, 0, . . . , 0)t

and define the matrix
S† = (s†i,j) = S∗ + (1− s1,1)

−1uvt.

Now S† has the form

[
S†

1 0
0 Iq

]
with

S†
1 =


s1,1 s1,2 · · · s1,p

s2,1
... sij

sp,1

 +


1− s1,1 −s1,2 · · · − s1,p

−s2,1
...

si,1s1,j

1−s1,1

−sp,1

 =


1 0 · · · 0
0
... si,j +

si,1s1,j

1−s1,1

0

 ,

so that S† is nonnegative with at least q +1 entries equal 1. Furthermore, as all the row and

column sums of uvt equal zero, the row and columns sums of S† coincide, respectively, with

those of S∗. Hence S† is a doubly stochastic matrix.

To complete the proof it remains to be shown that ρ(S†A) = ρ(S∗A). As y and w satisfy

(2.4) we have that

ytu =
n∑

i=1

si,1yi − y1 =

p∑
i=1

si,1yi − y1 ≤
p∑

i=1

si,1y1 − y1 = y1 − y1 = 0

and

vtw =
n∑

j=1

s1,jwj − w1 =

p∑
j=1

s1,jwj − w1 ≥
p∑

j=1

s1,jw1 − w1 = w1 − w1 = 0.

Hence (ytu)(vtw) ≤ 0. Now as

rank (S† − S∗) = rank (uvt) = 1 and yt(S† − S∗)Ax = (1− s1,1)
−1ytuvtw ≤ 0,

by Lemma 2.2, the map fS†,S∗ is either a strictly decreasing function or a constant function.

But fS†,S∗ cannot be strictly decreasing as fS†,S∗(0) = ρ(S∗A) ≤ ρ(S†A) = fS†,S∗(1). Thus,

we must have that

ρ(S†A) = fS†,S∗(1) = fS†,S∗(0) = ρ(S∗A).

2

A careful consideration of the proof of Theorem 2.1 shows that the proof actually works
for a more general result. Specifically, we can verify that for any irreducible nonnegative
matrix A ∈ Rn,n, there is a k × k permutation P ∗ such that

ρ((P ∗ ⊕ In−k)A) = min
S∈Ωk

ρ((S ⊕ In−k)A).
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If we now replace A by (Ik ⊕ T )A for some (n − k) × (n − k) doubly stochastic matrix T ,
then we obtain that

ρ((P ∗ ⊕ T )A) = min
S∈Ωk

ρ((S ⊕ T )A),

for some permutation P ∗ in Pk. In other words,

ρ((P ∗ ⊕ T )A) ≤ ρ((S ⊕ T )A), for all S ∈ Ωk (2.5)

From the above developments it is readily seen that we can extend Theorem 2.1 as follows:

Theorem 2.3 For any n×n irreducible nonnegative A and positive integers n1, . . . , nk with
n1 + · · ·+ nk = n, there exist P ∗

i ∈ Pni
for i = 1, . . . , k, such that

ρ ((P ∗
1 ⊕ · · · ⊕ P ∗

k )A) = min
(S1,...,Sk)∈Ωn1×···×Ωnk

ρ ((S1 ⊕ · · · ⊕ Sk)A) . (2.6)

Similarly, there exist Q∗
i ∈ Pni

for i = 1, . . . , k, such that

ρ ((Q∗
1 ⊕ · · · ⊕Q∗

k)A) = max
(S1,...,Sk)∈Ωn1×···×Ωnk

ρ ((S1 ⊕ · · · ⊕ Sk)A) . (2.7)

Proof. Again we shall only prove here (2.6), the part of our theorem which is concerned

with minimization, as the proof of (2.7) follows along similar lines.

Suppose (S∗
1 , . . . , S

∗
k) ∈ Ωn1 × · · · × Ωnk

satisfies

ρ((S∗
i ⊕ · · · ⊕ S∗

k)A) = min
(S1,...,Sk)∈Ωn1×···×Ωnk

ρ ((S1 ⊕ · · · ⊕ Sk)A) (2.8)

By (2.5) with T = S∗
2 ⊕ · · · ⊕ S∗

k , there is P ∗
1 ∈ Pn1 such that

ρ((S∗
1 ⊕ S∗

2 ⊕ · · · ⊕ S∗
k)A) ≥ ρ((P ∗

1 ⊕ S∗
2 ⊕ · · · ⊕ S∗

k)A).

We can now proceed by an inductive argument. Suppose that (P ∗
1 , . . . , P ∗

i ) ∈ Sn1 ×· · ·×Sni

already exists. We apply (2.5) to the (i + 1)–th diagonal block. Then just as above, there is
P ∗

i+1 ∈ Pni+1
such that

ρ((P ∗
1 ⊕· · ·⊕P ∗

i ⊕S∗
i+1⊕S∗

i+2⊕· · ·⊕S∗
k)A) ≥ ρ((P ∗

1 ⊕· · ·⊕P ∗
i ⊕P ∗

i+1⊕S∗
i+2⊕· · ·⊕S∗

k)A).

In conclusion , we have found (P ∗
1 , . . . , P ∗

k ) ∈ Pn1 × · · · × Pnk
such that

ρ((S∗
1 ⊕ S∗

2 ⊕ · · · ⊕ S∗
k)A) ≥ ρ((P ∗

1 ⊕ S∗
2 ⊕ · · · ⊕ S∗

k)A) ≥ · · · ≥ ρ((P ∗
1 ⊕ · · · ⊕ P ∗

k )A).

But then (2.8) shows that the above inequalities are indeed equalities and we are done. 2
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Example 2.4 We now present an example to show that for an n×n symmetric nonnegative
and irreducible matrix A, the extremal value of the spectral radius ρ(SA), as S varies over
the n × n doubly stochastic matrices Ωn, can be attained at more than one extreme point
of the convex set Ωn of all stochastic matrices, but not necessarily on the interior of the line
joining these points. For that purpose let

A =



0.9712 1.745 0.9995 1.153 0.5299

1.745 0.3860 1.857 1.849 0.9953

0.9995 1.857 1.627 1.268 1.099

1.153 1.849 1.268 1.189 1.308

0.5299 0.9953 1.099 1.308 0.8793


.

Then for the permutation matrices

P1 =



0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

0 0 1 0 0

0 1 0 0 0


and P2 =



0 0 1 0 0

0 0 0 0 1

0 0 0 1 0

1 0 0 0 0

0 1 0 0 0


,

we find that the spectral radii of ρ(P1A) and ρ(P2A) is minimum and equals 6.0376, but for

S = (P1 + P2)/2, ρ(SA) = 6.0384.

We next provide a necessary condition for a doubly stochastic matrix S∗ to be an ex-
tremum for ρ(SA) as S varies over Ωn.

Theorem 2.5 Let A be an n×n irreducible nonnegative matrix. Suppose that S∗ is a matrix
in Ωn such that

ρ(S∗A) = min
S∈Ωn

ρ(SA). (2.9)

Then

ytS∗Ax = min
S∈Ωn

ytSAx = min
P∈Pn

ytPAx, (2.10)

where x and y are the right and left Perron vectors of S∗A. Similarly, if S† is a matrix in
Ωn such that

ρ(S†A) = max
S∈Ωn

ρ(SA),

then

ỹtS†Ax̃ = max
S∈Ωn

ỹtSAx̃ = max
P∈Pn

ỹtPAx̃, (2.11)

where x̃ and ỹ are the right and left Perron vectors of S†A.
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Proof. We note that the second equality in (2.10) always holds by virtue of Birkhoff’s
theorem which says that every doubly stochastic matrix is a linear combination of permuta-
tion matrices.

Suppose now that S∗ ∈ Ωn satisfies (2.9). Fix an element S ∈ Ωn and consider the map

fS,S∗ defined in (2.2). Then fS,S∗ attains its minimum at α = 0. Hence, by (2.3), we have

that:
1

ytx
yt(S − S∗)Ax = f ′S,S∗(0) ≥ 0,

where x and y are right and left Perron vectors of S∗A. Thus, ytSAx ≥ ytS∗Ax and hence
the first equality in (2.10) is also satisfied.

The proof of (2.11) follows along similar lines. 2

Note that in Theorem 2.5, if we write S∗ =
∑m

i=1 aiP
∗
i with permutation matrices P ∗

i and∑m
i=1 ai = 1 in which all the ai’s are positive, then we can further deduce that

ytP ∗
i Ax = min

P∈Pn

ytPAx, for all i = 1, . . . , k.

In particular, if the entries of each of the vectors y and Ax are mutually distinct, then there
exists a unique Q in Pn such that

ytQAx = min
P∈Pn

ytPAx.

Thus we have the following corollary:

Corollary 2.6 Let A ∈ Rn,n be a nonnegative and irreducible matrix. Suppose that S∗ ∈ Ωn

satisfies (2.9) and that x and y are right and left Perron vectors of S∗A. If entries of each
of the vectors y and Ax are mutually distinct, then S∗ is a permutation matrix.

We comment that condition (2.10) in Theorem 2.5 is not a sufficient condition for S∗ to
be a minimum as we show in the following example:

Example 2.7 Let A =

 4 0 5
1 6 1
2 1 8

 and Q =

 0 1 0
0 0 1
1 0 0

. Then ρ(QA) = 9.1394 and the

corresponding right and left Perron vectors are

x = (0.3163, 0.3781, 0.3056)t and y = (0.2938, 0.2166, 0.4896)t.

As QAx = (2.8905, 3.4556, 2.7932)t, we see that ytQAx = minP∈Pn ytPAx. However, on

taking P =

 0 0 1
1 0 0
0 1 0

 we have that ρ(PA) = 9.0466 < 9.1384 = ρ(QA).
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3 The Case of the Nonnegative A ∈ Rn,n Being

Symmetric

The proof of Theorem 2.1 suggests the development of a result for a symmetric matrix
A ∈ Rn,n which allows comparison under appropriate assumptions of the spectral radii of
two matrices: S1A and S2A.

Theorem 3.1 Suppose A, S1 and S2 are n × n symmetric matrices such that both S1A
and S2A are irreducible and nonnegative. If S1 − S2 is positive semidefinite, then the map
α 7→ ρ(αS1 + (1− α)S2)A) is an increasing function. In particular,

ρ(S2A) ≤ ρ(S1A).

Proof. As both S1A and S2A are irreducible and nonnegative matrices, it follows that
the matrix (αS1 + (1− α)S2)A is an irreducible nonnegative matrix, for each α ∈ [0, 1].

Suppose next that xα is a right Perron vector of (αS1 + (1− α)S2)A. Then:

[(αS1 + (1− α)S2)A]tAxα = At(αSt
1 + (1− α)St

2)Axα = A(αS1 + (1− α)S2)Axα

= A (ρ(αS1 + (1− α)S2)xα) = ρ(αS1 + (1− α)S2)A)Axα,

which implies that Axα is a left eigenvector corresponding to ρ(αS1 + (1− α)S2)A). Let rα

be the sum of the entries of Axα and take yα = 1
rα

Axα. Then yα is the left Perron vector of

(αS1 + (1− α)S2)A. Now by (2.3),

f ′S1,S2
(α) =

1

yt
αxα

yt
α(S1 − S2)Axα =

1

(Axα)txα

(Axα)t(S1 − S2)Axα ≥ 0.

Hence the map is an increasing function as claimed. 2

An interesting corollary to Theorem 3.1 is the following:

Corollary 3.2 Suppose that Ĵ is the n × n matrix of all 1’s. Set Jn = (1/n)Ĵn and Kn =

(1/(n− 1))(Ĵn − In). Let A ∈ Rn,n be a symmetric irreducible nonnegative matrix. Then:

ρ(KnA) ≤ ρ(JnA),

where ρ(JnA) equals the average of the column sums of A.

Proof. Set S1 = Jn and S2 = Kn. Then

S1 − S2 = Jn −Kn =
1

n
Ĵn −

1

n− 1
Ĵn +

1

n− 1
In =

1

n− 1
In −

1

n(n− 1)
Ĵn.
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Now it is easily determined that the distinct eigenvalues of (1/(n− 1))I − (1/(n(n− 1)))Ĵn

are 0 and 1/(n− 1). Hence the matrix S1 −S2 is positive semidefinite and the result follows
from Theorem 3.1. 2

A second consequence of Theorem 3.1 is to the iterative method for solving linear sys-
tems. Given the linear system of equations Bx = c, with B ∈ Rn,n, one way to solve the
system is by an indirect method, namely, via an iteration scheme. One begins by spliting
B into B = M − N , with M nonsingular. Then, starting from an arbitrary initial vector

x0 ∈ Rn, one carries out the iteration xi = M−1Nxi−1 + M−1c and it is well known that the
iteration scheme will converge to the unique solution to the system if and only if the spectral

radius of the iteration matrix M−1N satisfies that ρ(M−1N) < 1. Furthermore, ρ(M−1N)
determines the asymptotic rate of convergence of the scheme and hence the interest in nu-
merical analysis in being able to compare the rate of convergence of different schemes for
solving the same or even two linear systems, see [3, 4, 5, 10, 11, 12, 13, 14, 15].

Recall that according to Ortega and Rheinboldt [13], a splitting of B ∈ Rn,n into B =

M − N is called a weak regular splitting if M is invertible, M−1 ≥ 0, and M−1N ≥ 0. We
are now ready to state the second corollary to Theorem 3.1.

Corollary 3.3 Let N ∈ Rn,n be a symmetric nonnegative matrix. Suppose that B1 = M1−N
and B2 = M2 −N are two weak regular splittings of the matrices B1 and B2, respectively. If

M−1
1 −M−1

2 is positive semidefinite and both M−1
1 N and M−1

2 N are irreducible, then

ρ(M−1
2 N) ≤ ρ(M−1

1 N).

Proof. Set A = N , S1 = M−1
1 , and S2 = M−1

2 . The result now follows directly from
Theorem 3.1. 2
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