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Abstract

For a square matrix A, let S(A) be an eigenvalue inclusion set such as the Gersh-

gorin region, the union of Cassini ovals, and the Ostrowski’s set. Characteriza-

tion is obtained for maps Φ on n×n matrices satisfying S(Φ(A)Φ(B)) = S(AB)

for all matrices A and B.
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1. Introduction

Motivated by pure and applied problems, researchers need to understand

the eigenvalues of matrices. For example, in numerical analysis or population

dynamics, a square matrix A satisfies limm→∞Am = 0 if and only if all eigen-

values have modulus less than 1; in stability theory of differential equations,

the solution of the system of differential equations x′ = Ax is stable if and only

if all the eigenvalues of A lie in the left half plane; in the study of quadratic

forms a Hermitian matrix is positive definite if and only if all the eigenvalues

lie on the positive real line; see [7]. However, sometimes there is no practical

or efficient way to compute the eigenvalues exactly, say, because the dimension
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of the matrix is too high or numerical and measuring errors in the entries, etc.

So, researchers consider eigenvalue inclusion sets; see [7, 14]. For instance, the

well known Gershgorin theorem asserts that the eigenvalues of a matrix lie in

the union of circular disks centered at the diagonal entries and radii determined

by the off-diagonal entries (see the definition in Section 2). These allow one to

estimate the location of the eigenvalues for a given matrix efficiently. To further

improve the estimate, researchers apply simple transformations such as diago-

nal similarities to a matrix to get better or easier estimates of the eigenvalue

location of the given matrix. In this connection, it is interesting to study maps

on matrices that improve or leave invariant eigenvalue inclusion sets S(A) for

matrices A ∈Mn. In this paper, we consider such problems for several types of

eigenvalue inclusion regions including the Gershgorin sets, the Ostrowski’s sets,

and the Brauer’s sets, which are unions of Cassini ovals.

In fact, there is independent interest in studying maps on matrix spaces

leaving invariant certain properties, functions or subsets. Such problems are

known as preserver problems. Early study on the subject focused on linear

preservers, i.e., linear maps having the preserving properties; see [10] and its

references. Recently, researchers work on general preservers (also referred to as

non-linear preservers); see [12] and its references.

To facilitate our discussion, we fixed some notations. Denote by Mn the set

of n × n complex matrices, and Sp(A) the set of eigenvalues of A ∈ Mn. Also

E11, E12, . . . , Enn be the standard basis in Mn.

In [11], the authors showed that a linear map Φ : Mn →Mn satisfies

Sp(Φ(A)) = Sp(A) for all A ∈Mn (1.1)

if and only if there is an invertible S ∈Mn such that Φ has the form A 7→ S−1AS

or A 7→ S−1AtS. In [5], it was shown that a multiplicative map Φ : Mn → Mn

satisfies (1.1) if and only if there is an invertible matrix S ∈ Mn such that Φ

has the form A 7→ S−1AS. By the result in [2, Theorem 1.1] (see also [8]), a

map Φ : Mn →Mn satisfies Sp(Φ(A)−Φ(B)) = Sp(A−B) for all A,B ∈Mn if

and only if there are R,S ∈Mn, where S is invertible, such that Φ has the form

A 7→ S−1AS + R or A 7→ S−1AtS + R. Also it was proven in [4] that a map

Φ : Mn → Mn satisfying Sp(Φ(A)Φ(B)) = Sp(AB) for all A,B ∈ Mn must

have the form A 7→ ±S−1AS or A 7→ ±S−1AtS with invertible S ∈Mn. Notice

that maps that preserve the spectral values of maximum modulus of products

were also studied in [13]. In this connection, it is interesting to know what

kinds of transformation on matrices will improve or leave invariant a certain

eigenvalue inclusion set S(A) for A ∈ Mn. If one just assumes that S(A) =

S(Φ(A)) for every matrix A on Φ, the structure of Φ can be quite arbitrary. For

instance, one can partition the set of matrices into equivalence classes so that

two matrices A and B belong to the same class if S(A) = S(B). If Φ sends each
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of these classes back to itself, then Φ satisfies S(A) = S(Φ(A)) for every matrix

A. So, it is reasonable to impose some condition on the map Φ relating the

eigenvalue value containment sets of a pair of matrices. In [6], characterizations

were obtained for maps Φ satisfying S(A − B) = S(Φ(A) − Φ(B)) for any

A,B ∈Mn. In applications, one often needs to consider the product or powers

of matrices, and estimate their eigenvalues. For example, applications in wavelet

analysis require the joint spectral radius, which is the maximum eigenvalue of

matrix products over a set of matrices [9]. Therefore, we consider Φ satisfying

S(Φ(A)Φ(B)) = S(AB) for any two matrices A and B. It is shown that such

maps have tractable structure. An important step in our study is to extract

information of the eigenvalues of Φ(A) using S(A) and S(A2) = S(Φ(A)2). To

achieve this, we use the following result in matrix theory; for example see [7,

Theorem 3.2.4.2].

Proposition 1.1. Suppose A ∈ Mn has n distinct eigenvalues and B ∈ Mn

satisfies AB = BA. Then there is a complex polynomial p(z) of degree at most

n− 1 such that B = p(A).

Though the general strategy we used to prove the results in Sections 2 and

3 are similar, the technical arguments in the proofs are quite different. Thus,

instead of just saying that “by a similar argument as in the previous case”, we

present the proofs of the results for Ostrowski sets and Brauer’s sets separately.

We would like to thank the referee for some helpful comments.

2. Gershgorin and Ostrowski sets

Given a matrix A = [aij ] ∈Mn. Define

Rk = Rk(A) =
∑
j ∕=k

∣akj ∣ and Ck = Ck(A) =
∑
j ∕=k

∣ajk∣ k = 1, . . . , n.

The Gershgorin set of A is defined by

G(A) =

n∪
k=1

Gk(A) with Gk(A) = {� ∈ ℂ : ∣�− akk∣ ≤ Rk}.

The set Gk(A) is called a Gershgorin disk of A. It is well known that the

Gershgorin set contains all the eigenvalues of A, see, e.g. [7].

Let " ∈ [0, 1]. The Ostrowski set of A is defined by

O"(A) =

n∪
k=1

O",j(A) with O",k(A) = {� ∈ ℂ : ∣�− akk∣ ≤ R"kC1−"
k }.
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Clearly, the Ostrowski set is an extension of G(A) as O1(A) = G(A) and

O0(A) = G(At). It turns out that for any " ∈ [0, 1], O"(A) also contains

all eigenvalues of A [7, Chapter 6]. We have the following result on preservers

of the Gershgorin and Ostrowski sets.

Theorem 2.1. Let " ∈ [0, 1]. A mapping Φ : Mn →Mn satisfies

O"(Φ(A)Φ(B)) = O"(AB) for all A,B ∈Mn (2.2)

if and only if there exist c = ±1, a permutation matrix P , and an invertible

diagonal matrix D, where D is unitary unless (n, ") = (2, 1/2), such that

Φ(A) = c(DP )A(DP )−1 for all A ∈Mn.

We write O(A) and Oj(A) instead of O"(A) and O",j(A), respectively, for

notational simplicity if the meaning of " is clear in the context. The following

observations will be used in our proof.

Lemma 2.2. Let " ∈ (0, 1) and A,B ∈Mn.

(a) If O"(A
2) consists of n disjoint isolated points, then

Ck(A)Rk(A) = 0 for all k = 1, . . . , n. (2.3)

(b) If A and B each satisfy (2.3) and the set O"(AB) consists of a collection

of nonzero isolated points, then

Ck(A)Rk(B) = 0 for all k = 1, . . . , n.

Proof. (a) Suppose O"(A
2) consists of n disjoint isolated points. Then for

every k, Ck(A2)Rk(A2) = 0. So either Ck(A2) = 0 or Rk(A2) = 0. On the other

hand, each disk of O"(A
2) contains at least one eigenvalue of A2 and therefore A2

has n distinct eigenvalues. By Proposition 1.1, any matrix commuting with A2

is a polynomial of A2. In particular, A is a polynomial of A2. Then Ck(A2) = 0

implies Ck(A) = 0, or Rk(A2) = 0 implies Rk(A) = 0. Thus, the result follows.

(b) Suppose A = [aij ] and B = [bij ] satisfy the hypothesis. Assume that

Ck(A)Rk(B) ∕= 0 for some k. Then Rk(A) = 0 and Ck(B) = 0. Write A =

P

[
A11 0
A21 A22

]
P t and B = P

[
B11 B12

0 B22

]
P t for some permutation matrix P ,

where A11 = [akk] ∈ M1, B11 = [bkk] ∈ M1, and A22, B22 ∈ Mn−1. Notice

also that A21 and B12 are nonzero (n − 1) × 1 matrix and 1 × (n − 1) matrix

respectively. Since

0 /∈ O"(AB) = O"

(
P

[
A11B11 A11B12

A21B11 A21B12 +A22B22

]
P t
)
,
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both A11 and B11 are nonzero and O"(AB) contains a non-degenerate disk cen-

tered at A11B11. But this contradicts the hypothesis. Therefore, Ck(A)Rk(B) =

0. □

Proof of Theorem 2.1. For the sufficiency part, note that O(X) = O(PXP t)

for any permutation matrix P , O(X) = O(DXD∗) for any diagonal unitary ma-

trix D, and O(X) = O(DXD−1) for any invertible diagonal matrix D if (n, ") =

(2, 1/2). If Φ(A) = ±(DP )A(DP )−1, then Φ(A)Φ(B) = DP (AB)P tD−1 and

O(AB) = O(Φ(A)Φ(B)).

For the necessity part, suppose Φ : Mn →Mn satisfies (2.2). We first prove

the case when " = 1. Recall that O1(A) = G(A), the Gershgorin set of A. The

proof is divided into Assertions 2.1–2.3.

Assertion 2.1. Let D = �diag (1, . . . , n) for � > 1. There exist a permutation

matrix P and a diagonal matrix R = diag (r1, . . . , rn) with rk ∈ {1,−1} such

that Φ(D) = PRDP t.

Proof. Since G(Φ(D)2) = G(D2) = {�2, (2�)2, . . . , (n�)2}, we see that

Φ(D)2 is a diagonal matrix with diagonal entries as in G(D2). Note that Φ(D)

commutes with Φ(D)2, so by Proposition 1.1, Φ(D) is a polynomial of Φ(D)2.

Thus, Φ(D) is a diagonal matrix with diagonal entries whose squares equal to

�2, (2�)2, . . . , (n�)2. Then there are r1, . . . , rn ∈ {−1, 1} and a permutation

matrix P such that Φ(D) = PRDP t with R = diag (r1, . . . , rn).

Assertion 2.2. Following the notation in Assertion 2.1, there are �11, . . . , �nn ∈
ℂ with ∣�ij ∣ = 1 and �ij�ji = 1 such that

Φ(Eij) = �ijPEijP
t for all 1 ≤ i, j ≤ n.

Proof. Without loss of generality, we may assume that P = In in Assertion

2.1. For every k, notice that G((RD)Φ(Ekk)) = G(DEkk) = {k�, 0}. It follows

that Φ(Ekk) is a diagonal matrix and its j-th diagonal entry must be either 0

or k/(rjj). Observe that G(Φ(Ekk)2) = G(E2
kk) = {1, 0}. Thus, only the k-th

diagonal entry of Φ(Ekk) is nonzero. Hence, Φ(Ekk) = rkEkk. Let �kk = rk.

Clearly, ∣�kk∣ = �kk�kk = 1. Then the assertion holds for i = j.

Assume i ∕= j. Since G(Φ(Eij)(�kkEkk)) = G(EijEkk) = {0} for all k ∕=
j, only the j-th column of Φ(Eij) can contain nonzero entries. Similarly,

G((�kkEkk)Φ(Eij)) = G(EkkEij) = {0} for all k ∕= i, and so only the i-

th row of Φ(Eij) can contain nonzero entries. Therefore, Φ(Eij) = �ijEij
for some �ij ∈ ℂ. Now as G((�iiEii)(�ijEij)) = G(EiiEij) is a disk cen-

tered at 0 with radius 1, we have ∣�ii�ij ∣ = 1 and hence ∣�ij ∣ = 1. Also

G(�ij�jiEijEji) = G(EijEji) = {1, 0} gives �ij�ji = 1.
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Assertion 2.3. For " = 1, the map Φ has the asserted form as in Theorem 2.1.

Proof. Assume that Assertions 2.1 and 2.2 hold with P = In. For any

A = [aij ], let B = [bij ] = Φ(A). By Assertion 2.2, G((�jiEji)B) = G(EjiA).

Then bij = �−1ji aij = �ijaij and so

Φ(A) = N ∘A = [�ijaij ] with N = [�ij ], (2.4)

where N ∘ A is the Schur (entrywise) product of N and A. Without loss of

generality, we may assume that �11 = 1; otherwise, replace Φ by A 7→ −Φ(A).

Let X = E11 + E1k + Ek1 + Ekk with k ∕= 1. Then X2 = 2X. By (2.4),

Φ(X) = E11 + �1kE1k + �k1Ek1 + �kkEkk and hence

Φ(X)2 = 2E11 + (1 + �kk)�1kE1k + (1 + �kk)�k1Ek1 + 2Ekk.

If �kk = −1, then Φ(X)2 = 2(E11 + Ekk). But then O(Φ(X)2) = {2, 0}, which

contradicts the fact that O(X2) = O(2X) is a non-degenerate disk centered at

2 with radius 2. Therefore, �kk = 1 for all k. For n = 2, the map has the form

Φ(A) = SAS−1 with S = diag (1, �21). Then the assertion holds when n = 2.

Suppose n ≥ 3. Let U = diag (1, �21, . . . , �n1). Then U is a unitary matrix

as ∣�ij ∣ = 1 for all i and j. By replacing Φ with the map A 7→ U−1Φ(A)U , we

may further assume that �k1 = �1k = 1 for all k. Now the assertion holds if one

can show that �ij = 1 for all 2 ≤ i, j ≤ n. To prove this, let X = E11 + E1i +

E1j +Ei1 +Eii +Eij with i ∕= j. Notice that X2 = 2X. Then G(X2) is a disk

centered at 2 with radius 4. By (2.4), Φ(X) = E11+E1i+E1j+Ei1+Eii+�ijEij
and hence

Φ(X)2 = 2(E11 + E1i + Ei1 + Eii) + (1 + �ij)(E1j + Eij).

So G(Φ(X)2) is the disk centered at 2 with radius (2 + ∣1 + �ij ∣). Then

O(Φ(X)2) = O(X2) implies �ij = 1. Thus, the assertion holds.

For " = 0, the proof is similar. We now move to the case when " ∈ (0, 1).

The proof of this case is more delicate, and we divide the proof into Assertions

2.4 – 2.6.

Assertion 2.4. Let D = �diag (1, . . . , n) with � > 1. Then there exist a

permutation matrix P and a diagonal matrix R = diag (r1, . . . , rn) with rj ∈
{1,−1} such that

Φ(D) = PRDP t and Φ(D + Eij) = P (RD + �ijEij)P
t for all i ∕= j,

where �ij’s are nonzero numbers such that �ij�ji = 1.
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Proof. Since O(Φ(D)2) = O(D2) = {�2, . . . , (n�)2}, Φ(D)2 has diagonal

entries �2, . . . , (n�)2. Moreover, by Lemma 2.2 (a), Ck(Φ(D))Rk(Φ(D)) = 0 for

all k. It follows that the diagonal entries of Φ(D)2 are squares of the diagonal

entries of Φ(D). Thus, there are r1, . . . , rn ∈ {−1, 1} and a permutation matrix

P such that the k-th diagonal entry of P tΦ(D)P is rkk�. Without loss of

generality, we may assume that P = In; otherwise, we replace Φ by the map

A 7→ P tΦ(A)P .

Let Xij = D + Eij . We claim that for distinct i and j, Φ(D) and Φ(Xij)

have the same diagonal entries. First, by a similar argument as in the first

paragraph, one sees that Ck(Φ(Xij))Rk(Φ(Xij)) = 0 for all k, and if d1, . . . , dn
are the diagonal entries of Φ(Xij), {d21, . . . , d2n} = {�2, . . . , (n�)2}. Notice also

that O(Φ(Xij)Φ(D)) = {�2, . . . , (n�)2}. By Lemma 2.2 (b),

Ck(Φ(Xij))Rk(Φ(D)) = 0 for k = 1, . . . , n. (2.5)

Then the k-th diagonal entry of Φ(D)Φ(Xij) is equal to the product of k-

th diagonal entries of Φ(D) and Φ(Xij), i.e., (rkk�)dk, which is in the set

O(Φ(D)Φ(Xij)). Then we must have dk = rkk�. Hence, the claim holds.

Observe that O(XijXkj) = O(XijXik) = {�2, . . . , (n�)2} for all k ∕= j.

Lemma 2.2 (b) and (2.2) yield

Ck(Φ(Xij))Rk(Φ(Xkj)) = Ck(Φ(Xij))Rk(Φ(Xik)) = 0.

Suppose Ck(Φ(Xij)) ∕= 0. Then Rk(Φ(Xkj)) = Rk(Φ(Xik)) = 0 and hence

Rk(Φ(Xkj)Φ(Xik)) = 0. Moreover, the k-th diagonal entry of Φ(Xkj)Φ(Xik) is

equal to the product of the k-th diagonal entries of Φ(Xkj) and Φ(Xik), which

is (k�)2. Then the set O(Φ(Xkj)Φ(Xik)) has a degenerate disk centered at

(k�)2. But this contradicts the fact that O(XkjXik) has n disjoint disks and

the disk centered at (�k)2 is non-degenerate. Therefore, Ck(Φ(Xij)) = 0 for

all k ∕= j. Similarly, one can show that Rk(Φ(Xij)) = 0 for k ∕= i by the fact

that O(XikXij) = O(XkjXij) = {�2, . . . , (n�)2} for all k ∕= i. Therefore, only

the (i, j)-th off-diagonal entry of Φ(Xij) can be nonzero. With the above claim,

Φ(Xij) = RD + �ijEij for some �ij ∈ ℂ. Finally, since O(Φ(Xji)Φ(Xij)) =

O(XjiXij) has two non-degenerate disks centered at (i�)2 and (j�)2 + 1 with

radius ∣i�∣, one can conclude that �ij�ji = 1. Thus, the last part of the assertion

holds.

Finally, we show that Φ(D) is a diagonal matrix. Once this is proved, we

can conclude that Φ(D) = RD with R = diag (r1, . . . , rn) and the assertion

holds. Suppose Φ(D) is not diagonal. Then Cj(Φ(D)) ∕= 0 for some j. By

(2.5), Cj(Φ(Xij)) = Cj(Φ(Xji)) = 0 for all i ∕= j. Then the j-th diagonal entry

of Φ(Xij)Φ(Xji) is equal to the product of the j-th diagonal entries of Φ(Xij)
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and Φ(Xji), which is (rjj�) ⋅ (rjj�) = (j�)2. Moreover, Cj(Φ(Xij)Φ(Xji)) = 0.

Then the set O(Φ(Xij)Φ(Xji)) has a degenerate disk centered at (j�)2. But

the set O(XijXji) contains n disjoint disks and the disk centered at (j�)2 is

non-degenerate. Thus, we have derived a contradiction.

Assertion 2.5. Following the notation in Assertion 2.4 and define �kk = rk
for 1 ≤ k ≤ n, we have

Φ(Eij) = �ijPEijP
t for all 1 ≤ i, j ≤ n.

Proof. Assume that Assertion 2.4 holds with P = In. Suppose first that

i ∕= j. By the fact that O((RD)Φ(Eij)) = O(DEij) = {0}, one sees that

all diagonal entries of Φ(Eij) are zero. On the other hand, for any s ∕= t,

O((RD+�stEst)Φ(Eij)) = O(XstEij), which is equal to {0} or {1, 0} depending

on (s, t) ∕= (j, i) or (s, t) = (j, i). It follows that all entries of Φ(Eij) are zero,

except the (i, j)-th entry which is equal to �−1ji = �ij . Thus, Φ(Eij) = �ijEij
and the assertion holds for i ∕= j.

Next, for k = 1, . . . , n, O((�ijEij)Φ(Ekk)) = O(EijEkk) = {0} for all i ∕= j.

Then all off-diagonal entries of Φ(Ekk) have to be zero and hence Φ(Ekk) is

a diagonal matrix. Further, O(Φ(Ekk)2) = O(E2
kk) = {1, 0} implies that the

diagonal entries are either −1, 0, or 1. Finally, O((RD)Φ(Ekk)) = O(DEkk) =

{k, 0} implies that all diagonal entries have to be zero, except the k-th entry,

which is equal to rk, i.e., Φ(Ekk) = rkEkk.

Assertion 2.6. For " ∈ (0, 1), the map Φ has the asserted form as in Theorem

2.1.

Proof. Assume that Assertions 2.4 and 2.5 hold with P = In. By a similar

argument as in the first part of Assertion 2.3, one can assume that �kk = 1 for

all k and for any A = [aij ] ∈Mn,

Φ(A) = N ∘A = [�ijaij ] with N = [�ij ]. (2.6)

For (n, ") = (2, 1/2), the map has the form Φ(A) = SAS−1 with S =

diag (1, �21). Therefore, the result follows in this case. In the following, we

assume that (n, ") ∕= (2, 1/2).

We first claim that ∣�ij ∣ = 1 for all i ∕= j. Once the claim holds, then

the assertion holds for n = 2. For the case " ∕= 1/2, by (2.6), O(�ijEij +

�jiEji) = O(Eij + Eji) is a disk centered at origin with radius 1. Then

max{∣�ij ∣�∣�ji∣1−", ∣�ji∣�∣�ij ∣1−"} = 1, and therefore ∣�ij ∣ = 1. For the case

" = 1/2 and n ≥ 3, let X = Eii+2Eij+Eik+Eji and Y = Eii+Eij+2Eik+Eji
with k ∕= i, j. Notice that Φ(In) = In. Then

O(InΦ(X)) = O(InX) = O(InY ) = O(InΦ(Y ))
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yields ∣�ji∣(2∣�ij ∣+ ∣�ik∣) = ∣�ji∣(∣�ij ∣+ 2∣�ik∣) and hence ∣�ij ∣ = ∣�ik∣. Similarly,

one can show that ∣�ji∣ = ∣�jk∣ and ∣�ki∣ = ∣�kj ∣. Then

∣�ij ∣ = ∣�ik∣ = ∣�ki∣−1 = ∣�kj ∣−1 = ∣�jk∣ = ∣�ji∣ = ∣�ij ∣−1,

and therefore ∣�ij ∣ = 1. Thus, the claim holds.

Now assume n ≥ 3. Let U = diag (1, �21, . . . , �n1), which is a unitary matrix.

By replacing Φ with the map A 7→ U−1Φ(A)U , we may assume that �1k = �k1 =

1 for all k. It remains to show that �ij = 1 for all 2 ≤ i, j ≤ n. To see this,

consider X = E11 + E1i + E1j + Ei1 + Eii + Eij with i ∕= j. Notice that

X2 = 2X. By (2.6), Φ(X) = E11 + E1i + E1j + Ei1 + Eii + �ijEij and hence

Φ(X)2 = 2(E11+E1i+Ei1+Eii)+(1+�ij)(E1j+Eij). Since O(Φ(X)2) = O(X2)

is a disk centered at 2 with radius 21+�. One can conclude that �ij = 1. Thus,

the result follows. □

3. Brauer’s Set

In this section, we consider another eigenvalue inclusion set, the Brauer’s

Set [1] of a matrix A = [aij ] ∈Mn which is defined by

C(A) =
∪

1≤i<j≤n

Cij(A),

where Cij(A), the (i, j)-th Cassini oval of A with i ∕= j, is defined by

Cij(A) = {� ∈ ℂ : ∣(�− aii)(�− ajj)∣ ≤ Ri(A)Rj(A)}.

There are discussions of the Cassini oval in the standard references. We have a

similar result for a map that preserves the Brauer’s set of product of matrices.

Theorem 3.1. A mapping Φ : Mn →Mn satisfies

C(Φ(A)Φ(B)) = C(AB) for all A,B ∈Mn (3.7)

if and only if there exist c = ±1, a permutation matrix P and an invertible

diagonal matrix D, where D is unitary if n ≥ 3, such that

�(A) = c(DP )A(DP )−1 for all A ∈Mn.

The following results about Cassini ovals will be used in the proof.

Lemma 3.2. Let A = [aij ] and B = [bij ] in Mn.

(a) The set C(A) consists of a collection of isolated points if and only if A

has at most one row with nonzero off-diagonal entries.
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(b) If C(A2) consists of n isolated points, then C(A2) contains squares of the

diagonal entries of A and at most one row of A has nonzero off-diagonal

entries.

(c) If each of the sets C(A2), C(B2), and C(AB) consists of n nonzero isolated

points, then A and B can have nonzero off-diagonal entries in one common

row only.

Proof. Part (a) is trivial by definition. To show part (b), suppose C(A2)

consists of n isolated points. Then A2 must have n distinct eigenvalues. By

(a), at most one row of A2 has nonzero off-diagonal entries. Moreover, A is

a polynomial of A2 by Proposition 1.1. Therefore, at most one row of A has

nonzero off-diagonal entries. Thus, part (b) follows.

Now suppose A and B satisfy the hypothesis in (c). By (b), at most one

row of each of A and B can have nonzero off-diagonal entires. Furthermore,

all diagonal entries of A and B are nonzero. Assume A and B have nonzero

off-diagonal entries in its i-th and j-th row, respectively. If i ∕= j, then both the

i-th and j-th rows of AB have nonzero off-diagonal entries. But then C(AB)

has a non-degenerate oval, which is a contradiction and part (c) holds. □

Proof of Theorem 3.1. Note that C(X) = C(PXP t) for any permuta-

tion matrix P , C(X) = C(DXD∗) for any diagonal unitary matrix D, and

C(X) = C(DXD−1) for any invertible diagonal matrix D if n = 2. Hence, if

Φ(A) = ±(DP )A(DP )−1, then Φ(A)Φ(B) = DP (AB)P tD−1 and C(AB) =

C(Φ(A)Φ(B)). We now prove the converse by dividing the proof into several

assertions. In the following, we assume that Φ : Mn →Mn satisfies (3.7).

Assertion 3.1. Let D = �diag (1, . . . , n) with � > 1. Then there exist a

permutation matrix P and a diagonal matrix R = diag (r1, . . . , rn) with rj ∈
{1,−1} such that

Φ(D) = PRDP t and Φ(D + Eij) = PR(D + �ijEij)P
t for all i ∕= j,

where �ij’s are nonzero numbers such that �ij�ji = 1.

Proof. Let Xij = D + Eij . Notice that for any i ∕= j, C(Φ(D)2) =

C(Φ(Xij)
2) = {�2, . . . , (n�)2}. By Lemma 3.2 (b), both Φ(D) and Φ(Xij) have

at most one row with nonzero off-diagonal entries.

We claim that Φ(D) is a diagonal matrix. Suppose Φ(D) has a nonzero off-

diagonal entry in the k-th row for some k. By the fact that C(Φ(D)�(Xij)) =

{�2, . . . , (n�)2} and Lemma 3.2 (c), only the k-th row of Φ(Xij) can contain

nonzero off-diagonal entries. In particular, this observation holds for Φ(X12)

and Φ(X21) and hence only the k-th row of Φ(X12)Φ(X21) may have nonzero

off-diagonal entries. Therefore, C(Φ(X12)Φ(X21)) contains isolated points only,
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which contradicts that C(X12X21) has a non-degenerate oval. Therefore, the

claim holds and Φ(D) is a diagonal matrix. Since C(Φ(D)2) = {�2, . . . , (n�)2},
there exist a permutation matrix P and R = diag (r1, . . . , rn) with rj ∈ {1,−1}
such that Φ(D) = PRDP t.

Without loss of generality, we may assume that P = In. Now the fact that

C(Φ(D)Φ(Xij)) = {�2, . . . , (n�)2} implies that Φ(Xij) has the same diagonal

entries as Φ(D). Since C(Φ(Xij)Φ(Xji)) = C(XijXji) has two non-degenerate

disks with centers (i�)2 + 1 and (j�)2, that implies that the (i, j)-th entry of

Φ(Xij) and the (j, i)-th entry of Φ(Xji) must be nonzero. Suppose the (i, k)-th

entry of Φ(Xij) is nonzero for some k ∕= i, j if n ≥ 3. Recall that Φ(Xki) has

nonzero (k, i)-th entry. Then one sees that (i�)2 is not a center of any of the

oval in C(Φ(Xij)�(Xki)). But this contradicts that C(XijXki) has two non-

degenerate disks centered at (i�)2 and (k�)2. Therefore, Φ(Xij) = RD+ �ijEij
for some nonzero �ij ∈ ℂ. Finally, since C(Φ(Xij)Φ(Xji)) = C(XijXji), one

can conclude that �ij�ji = 1.

Assertion 3.2. Following the notation in Assertion 3.1 and define �kk = rk,

we have

Φ(Eij) = �ijPEijP
t for all 1 ≤ i, j ≤ n.

Proof. Without loss of generality, we assume P = In in Assertion 3.1. For

any distinct i and j, since C((RD)Φ(Eij)) = C(DEij) = {0}, all diagonal

entries of Φ(Eij) are zero. Furthermore, as C(Φ(Xst)Φ(Eij)) is equal to {0} or

{1, 0}, depending on (s, t) ∕= (j, i) or (s, t) = (j, i), only the (i, j)-th entry can be

nonzero and equal to �−1ji = �ij , i.e., Φ(Eij) = �ijEij . Thus, the assertion holds

for i ∕= j. Now for any k = 1, . . . , n, since C((�ijEij)Φ(Ekk)) = C(EijEkk) =

{0} for all i ∕= j, Φ(Ekk) must be a diagonal matrix. Moreover, C(Φ(E2
kk)) =

{1, 0} and C(Φ(D)Φ(Ekk)) = {k, 0} implies that Φ(Ekk) = rkEkk. Then the

assertion follows.

Assertion 3.3. The map Φ has the asserted form as in Theorem 3.1.

Proof. Assume that P = In in Assertions 3.1 and 3.2. By a similar argument

as in the first part of Assertion 2.3, one can assume that �kk = 1 for all k, and

for any A = [aij ] ∈Mn,

Φ(A) = N ∘A = [�ijaij ] with N = [�ij ]. (3.8)

For the case when n = 2, the map has the form Φ(A) = SAS−1 with S =

diag (1, �21). Therefore, the result follows if n = 2. In the following, we assume

that n ≥ 3.

11



Let X = 2Eij + Eik + Eji and Y = Eij + 2Eik + Eji with k ∕= i, j. Notice

that Φ(In) = In. Then

C(InΦ(X)) = C(InX) = C(InY ) = C(InΦ(Y )),

which is a disk centered at zero with radius
√

3. Thus, ∣�ji∣(2∣�ij ∣ + ∣�ik∣) =

∣�ji∣(∣�ij ∣ + 2∣�ik∣) and hence ∣�ij ∣ = ∣�ik∣. Similarly, one can show that ∣�ji∣ =
∣�jk∣ and ∣�ki∣ = ∣�kj ∣. Then

∣�ij ∣ = ∣�ik∣ = ∣�ki∣−1 = ∣�kj ∣−1 = ∣�jk∣ = ∣�ji∣ = ∣�ij ∣−1

and therefore ∣�ij ∣ = 1. Now let U = diag (1, v21, . . . , vn1), which is a unitary

matrix. By replacing Φ with the map A 7→ U−1Φ(A)U , we may assume that

�1k = �k1 = 1 for all k. It remains to show that �ij = 1 for all 2 ≤ i, j ≤ n.

To see this, consider X = E11 + E1i + E1j + Ei1 + Eii + Eij . Notice that

X2 = 2X. By (3.8), Φ(X) = E11 + E1i + E1j + Ei1 + Eii + �ijEij and hence

Φ(X)2 = 2(E11+E1i+Ei1+Eii)+(1+�ij)(E1j+Eij). Since C(Φ(X)2) = C(X2)

contains a disk centered at 2 with radius 8, one can conclude that �ij = 1. Thus,

the result follows. □
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[2] R. Bhatia, P. Šemrl and A.R. Sourour, Maps on matrices that preserve

the spectral radius distance, Studia Math. 134 (1999), no. 2, 99–110.

[3] J.T. Chan, C.K. Li and N.S. Sze, Mappings on matrices: Invariance of

functional values of matrix products, J. Aust. Math. Soc. 81 (2006),

165–184.

[4] J.T. Chan, C.K. Li, and N.S. Sze, Mappings preserving spectra of

product of matrices, Proc. Amer. Math. Soc., 135 (2007) 977–986.

[5] W.S. Cheung, S. Fallat and C.K. Li, Multiplicative Preservers on Semi-

groups of Matrices, Linear Algebra Appl. 355 (2002), 173-186.

[6] J. Hartman, A. Herman and C.K. Li, Preservers of eigenvalue inclusion

sets, Linear Algebra Appl., to appear.

[7] R.A. Horn and C.R.Johnson, Matrix Analysis, Cambridge University

Press, Cambridge, 1985.

[8] J.C. Hou, C.K. Li and N.C. Wong, Jordan isomorphisms and maps pre-

serving spectra of certain operator products, Studia Math. 184 (2008),

31-47.

12



[9] R. Jungers, The Joint Spectral Radius: Theory and Applications, Lec-

ture Notes in Control and Information Sciences, Spring-Verlag, Berlin,

2009.

[10] C.K. Li and S.Pierce, Linear preserver problems, Amer. Math.

Monthly 108 (2001), 591–605.

[11] M. Marcus and B.N. Moyls Linear transformations on algebras of ma-

trices, Canad. J. Math. 11 (1959), 61–66.
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