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Abstract

Let Mn be the algebra of all n × n matrices over a field IF, where n ≥ 2. Let S be a
subset of Mn containing all rank one idempotents. We study mappings φ : S → Mn such
that F (φ(A)φ(B)) = F (AB) for various families of functions F including all the unitary
similarity invariant functions on real or complex matrices. Very often, these mappings have
the form

A 7→ µ(A)S(σ(aij))S
−1 for all A = (aij) ∈ S

for some invertible S ∈ Mn, field monomorphism σ of IF, and an IF∗-valued mapping µ
defined on S. For real matrices, σ is often the identity map; for complex matrices, σ often
the identity map or the conjugation map: z 7→ z̄. A key idea in our study is reducing the
problem to the special case when F : Mn → {0, 1} is defined by

F (X) =
{

0 if X = 0,
1 otherwise.

In such a case, one needs to characterize φ : S → Mn such that φ(A)φ(B) = 0 if and only
if AB = 0. We show that such a map has the standard form described above on rank one
matrices in S.
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1 Introduction

Let Mn be the algebra of all n × n matrices over a field IF, where n ≥ 2. There has been
considerable interest in studying preserver problems on Mn, which concern the character-
ization of mapping φ : Mn → Mn leaving invariant a set, a function, or a relation. In
early study, the mappings were often assumed to be linear, and the quest to describe these
mappings is collectively called linear preserver problems; see [11, 15]. Recently, researchers
have considered additive preservers, multiplicative preservers, or other milder assumptions,
see [18]. For example, given a function F : Mn → IF, S ⊆ Mn, and T ⊆ IF, researchers
characterize φ : S →Mn such that

F (φ(A) + µφ(B)) = F (A+ µB) for all A,B ∈ S, µ ∈ T ,

and particular attention is on the cases when T = {1} or {−1}; see [2, 4, 5, 8, 21]. Another
problem is to characterize φ : S →Mn such that

F (φ(A)φ(B)) = F (AB) for all A,B ∈ S; (1.1)

see [6, 13, 14, 19]. In this paper, we consider this problem for various families of functions F
including all the unitary similarity invariant norms on real or complex matrices. Very often,
these mappings have the form

A 7→ µ(A)S(σ(aij))S
−1 for all A = (aij) ∈ S

for some invertible S ∈ Mn, field monomorphism σ of IF, and an IF∗-valued mapping µ
defined on S. For real matrices, σ is often the identity map; for complex matrices, σ often
the identity map or the conjugation map: z 7→ z̄. Note that we do not require AB ∈ S even
if A,B ∈ S in our setting. However, we will require that S contains all rank one idempotents.

In studying preservers, one may develop special techniques to deal with a specific problem;
one may develop a general technique to treat a class of problems; one may also obtain a basic
preserver result so that other preserver problems can be reduced to it. For instance, many
linear preserver problems can be reduced to rank one preservers or nilpotent preservers. In
our study, many general problems are reduced to the special case when F : Mn → {0, 1} is
defined by

F (X) =
{

0 if X = 0,
1 otherwise.

In such a case, one needs to characterize mappings φ : S →Mn such that

φ(A)φ(B) = 0 if and only if AB = 0.

We will call such mappings zero product preservers. Many researchers have study bijective
zero product preservers; see Section 2 for more details. In our study, the bijectivity assump-
tion is not required. We show that if n ≥ 3, then for every zero product preserver φ, there
exist an invertible S ∈ Mn, a field monomorphism σ on IF, and an IF∗-valued mapping µ
defined on the rank one matrices in S such that

φ(A) = µ(A)S(σ(aij))S
−1 for all rank one A = (aij) ∈ S.
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Our paper is organized as follows. In Section 2, we used a result in [17] to characterize
zero product preservers. In Section 3, we discuss some immediate applications of the theorem
on zero product preservers to rank preservers and mappings on IFn that preserve orthogonal
pairs. In Section 4, we study mappings on S satisfying (1.1) for unitary similarity invariant
functions F including all unitarily invariant norms on real and complex matrices. A self-
contained elementary proof of Theorem 2.1 (without invoking the result in [17]) is given in
Section 5. It will be apparent from the proof there that when n = 2, we do not always have
a field monomorphism σ as in the case of n ≥ 3. Also, the idea of the proof may be useful in
further extending the result on zero product preservers to matrices over more general rings
such as division rings.

In our discussion, IF∗ denotes the multiplicative group of all nonzero elements in IF,
{e1, . . . , en} denotes the standard basis for IFn, and e = e1 + · · ·+ en. The standard basis for

Mn is denoted by {E11, E12, . . . , Enn}, and Mm
n denotes the semigroup of matrices in Mn

having rank at most m, where m ∈ {1, . . . , n}.

For any matrix A = (aij) ∈ Mn and field homomorphism σ of IF, denote by Aσ the

matrix whose (i, j)-th entry is σ(aij), i.e., Aσ = (σ(aij)). Note that

(a) AσBσ = (AB)σ for all A,B ∈Mn.

If σ is a monomorphism, we also have

(b) B−1
σ = (B−1)σ for all invertible B ∈Mn; and

(c) rankAσ = rankA for all A ∈Mn.

2 Zero product preserving mappings

Motivated by theory and applications, researchers have studied the basic preserver result on
linear, additive, or bijective mappings φ preserving zero products in both directions, i.e.,

φ(A)φ(B) = 0 ⇐⇒ AB = 0 for all A,B ∈ S

on various subsets S of an algebra; see [3, 7, 12, 16, 17].

In [12], Molnár studied zero product preservers on the set of all bounded linear rank
one idempotent operators acting on the Banach space X . If X is complex and has finite
dimension n, then operators on X can be identified as n × n complex matrices. Molnár
showed, among others, that if n ≥ 3, bijective zero product preservers on the n×n rank one
idempotent matrices have the form

(aij) 7→ S(σ(aij))S
−1 (2.1)

for some invertible matrix S and field automorphism σ.

In [17], Šemrl used the Fundamental Theorem of Projective Geometry to give a short
proof of an improved version of the above result. Specifically, he considered matrices over
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any field, and mappings preserving zero products in one direction only, which may not be
bijective. These zero product preservers have the same form as above, except that σ can
now be a field monomorphism.

Remark Theorem 1.2 in [17] only asserts that the mapping φ has the form (2.1) for some
field endomorphism σ. Nevertheless, one readily verifies that a nonzero field endomorphism
is automatically injective. It is clear from the proof of Theorem 1.2 in [17] that σ is nonzero.

Compared with the result of Šemrl in [17], ours has to assume that φ preserves zero
products in both directions as a trade off for not requiring rank one idempotents be mapped
to rank one idempotents. Indeed the two conditions are more or less equivalent, as we will
see that under the stronger assumption, φ maps rank one idempotents to scalar multiples of
rank one idempotents.

We are not able to exhaust all those φ preserving zero products in one direction only.
There are other examples than that described above. For instance, the φ that maps all
matrices to scalar multiples of a fixed square-zero matrix. It is also clear that such φ may
not preserve the set of rank one matrices.

The main theorem of this section is the following. An infinite dimensional version of the
result under a different setting and the bijective assumption is prove in [19, Theorem 4.1].

Theorem 2.1 Let S be a subset of Mn containing all rank one idempotents. Suppose φ :
S →Mn is zero product preserving, i.e.,

φ(A)φ(B) = 0 ⇐⇒ AB = 0 for all A,B ∈ S. (2.2)

Then there are functions f, g : IFn → IFn such that ytx = 0 if and only if g(y)tf(x) = 0,

and there is a IF∗-valued mapping µ on the rank one matrices in S such that

φ(xyt) = µ(xyt)f(x)g(y)t

for any rank one matrix xyt ∈ S. Suppose n ≥ 3. Then there exist an invertible S ∈ Mn

and a field monomorphism σ on IF such that f(x) = Sxσ and g(y) = (S−1)tyσ, i.e.,

φ(A) = µ(A)SAσS
−1 for all rank one A ∈ S.

Furthermore, if A = M(Ik ⊕ 0n−k)N ∈ S for some invertible M,N ∈Mn and k > 1, then

φ(A) = SMσ(Ak ⊕ 0n−k)NσS
−1

for some matrix Ak ∈ Mk. Moreover, if IF has the property that all its nonzero (field)

endomorphisms are automorphisms, then A and φ(A) have the same rank for each A ∈ S.

It follows from Theorem 2.1 that a zero product preserving map is always rank one

preserving and rank k non-increasing for k > 1. We are indebted to Peter Šemrl who showed
us the last assertion of the theorem and the following example showing that φ may indeed
decrease rank if IF is the complex field.
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Suppose n ≥ 3, Mn is the set of n×n matrices over C, and S ⊆Mn consists of all rank
one idempotents and the matrix E11 + E22. By the result in [9], there exists a, b, c ∈ C and

a field monomorphism σ of C such that a, b, c are algebraically independent of σ(C), i.e., if

p(z1, z2, z3) is a polynomial with coefficients in σ(C) such that p(a, b, c) = 0 then p is the

zero polynomial. Define φ : S → Mn such that φ(P ) = Pσ for all rank one idempotent P
and

φ(E11 + E22) =
(
a b
ca cb

)
⊕ 0n−2.

Then φ is a zero product preserving map and rank (E11+E22) = 2 > 1 = rank (φ(E11+E22)).

We need several lemmas to prove Theorem 2.1. The first one is a characterization of
(multiples of) rank one idempotents in terms of product zero. For any A ∈Mn, let N(A) =

{x ∈ IFn : Ax = 0} and R(A) = {Ax : x ∈ IFn} be the null space and the column space of
A, respectively.

Lemma 2.2 Let A1, . . . , An ∈Mn. Then

AjAi = AiAj = 0 6= A2
j for all i 6= j (2.3)

if and only if there exist an invertible S, and nonzero numbers r1, . . . , rn such that S−1AjS =

rjEjj for j = 1, . . . , n.

Proof. Suppose n ≥ 3 and that A1, . . . , An satisfy (2.3) with one of the Ai’s having rank

greater than one. Say, rankA1 > 1. Then dimN(A1) = n− rankA1 < n− 1. As A1Aj = 0,

R(Aj) ⊆ N(A1) for all 2 ≤ j ≤ n, and hence R(A2) + · · ·+R(An) ⊆ N(A1). There must be

some j, 2 < j ≤ n, such that

R(Aj) ⊆ R(A2) + · · ·+R(Aj−1).

Otherwise,
dim (R(A2) + · · ·+R(An)) ≥ n− 1 > dimN(A1).

We also have R(A2), . . . , R(Aj−1) ⊆ N(Aj). Hence

R(Aj) ⊆ R(A2) + · · ·+R(Aj−1) ⊆ N(Aj),

and A2
j = 0, which contradicts (2.3). So each Aj has rank one.

It is clear that the same conclusion holds when n = 2.

Since A2
j 6= 0, Aj is not a nilpotent. So, each Aj has one nonzero eigenvalue and is similar

to an upper triangular matrix with one nonzero row.

Now A1, . . . , An are mutually commuting. They are simultaneously triangularizable.

Take an invertible S ∈ Mn so that S−1A1S = r1E11. Then A1Aj = AjA1 = 0 implies that

S−1AjS = [0] ⊕ Bj for j = 2, . . . , n. Since BiBj = BjBi = 0 for all i 6= j, we can use

an inductive argument to show that there is an invertible T of the form [1] ⊕ T0 such that
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T−1([0] ⊕ Bj)T = rjEjj for j = 2, . . . , n. Replacing S by ST , we have S−1AjS = rjEjj for
j = 1, . . . , n.

The converse is clear.

Now let S be a subset of Mn containing all rank one idempotents, and φ : S →Mn be
a mapping satisfying (2.2), i.e.,

φ(A)φ(B) = 0 ⇐⇒ AB = 0 for all A,B ∈ S.

By Lemma 2.2, φ maps rank one idempotents to scalar multiples of rank one idempotents.
It is clear that the scalars can be arbitrary. It is also clear that for every A ∈ S, φ(A) can
only be determined up to a scalar multiple. For any A,B ∈Mn, we write A ≡ B if A = λB
for some nonzero λ ∈ IF. Note that

A1 ≡ A2 and B1 ≡ B2 =⇒ A1B1 ≡ A2B2.

Moreover, A ≡ 0 if and only if A = 0.

Lemma 2.3 The mapping φ maps rank one matrices to rank one matrices. Moreover, for
any rank one matrices A and B in S,

(a) R(A) = R(B) implies R(φ(A)) = R(φ(B)); and

(b) N(A) = N(B) implies N(φ(A)) = N(φ(B)).

Consequently,
A ≡ B =⇒ φ(A) ≡ φ(B).

Proof. Suppose R(A) = R(B) for rank one matrices A and B. Take a nonzero x ∈ R(A)

and form a basis {x1, . . . , xn} for IFn with x1 = x. Let Ai = xiy
t
i , where [y1| · · · |yn]t is the

inverse of the matrix [x1| · · · |xn]. Then A1, . . . , An satisfy (2.3), and so do φ(A1), . . . , φ(An).

By Lemma 2.2, there is an invertible S ∈Mn such that φ(Ai) = riSEiiS
−1 for some nonzero

ri. Since Aix = 0, AiA = AiB = 0 for all i = 2, . . . , n. By (2.2),

φ(Ai)φ(A) = φ(Ai)φ(B) = 0 for all i = 2, . . . , n.

Hence R(φ(A)), R(φ(B)) ⊆ N(φ(A2))∩· · ·∩N(φ(An)). As dimN(φ(A2))∩· · ·∩N(φ(An)) =

1, we see that φ(A) has rank one, and R(φ(A)) = R(φ(B)). So, the first assertion and

condition (a) hold. Part (b) can be obtained by a similar argument.
The last assertion follows from the fact that for rank one matrices A and B, A ≡ B if

and only if R(A) = R(B) and N(A) = N(B).

Now, we can present the proof of Theorem 2.1.

By Lemma 2.3, we see that φ(xyt) = µ(xyt)f(x)g(y)t for some functions f, g defined on

IFn and IF∗-valued mapping µ on the rank one matrices in S. Also, for any rank one matrix
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xyt ∈ S, xyt is nilpotent if and only if φ(xyt) is. Hence ytx = 0 if and only if g(y)tf(x) = 0,
as asserted.

Suppose n ≥ 3. Since φ maps rank one idempotents to multiples of rank one idempotents,
by [17, Theorem 1.2] (and the remark before the theorem), there exist an invertible S ∈Mn

and a field monomorphism σ on IF such that

φ(A) ≡ SAσS
−1

for all rank one idempotents A ∈ S. In other words,

φ(xyt) ≡ S(xyt)σS
−1 = (Sxσ)((S−1)tyσ)t

for all rank one matrices xyt such that ytx = 1. Comparing the formula to the preceding

representation, we may choose f(x) = Sxσ and g(y) = (S−1)tyσ.

Now, suppose A ∈ S has the form A = M(Ik ⊕ 0n−k)N for some invertible M,N ∈ Mn

and k > 1. The assertion is trivial if k = n. Suppose k < n. For any j = k + 1, . . . , n, let

B = MEjjM
−1 and C = N−1EjjN . Then

φ(B) = µ(B)SBσS
−1 = µ(B)S(MEjjM

−1)σS
−1 = µ(B)SMσEjjM

−1
σ S−1.

Similarly,

φ(C) = µ(C)SN−1
σ EjjNσS

−1.

Clearly, BA = 0 = AC. Then φ(B)φ(A) = 0 = φ(A)φ(C). It follows that

φ(A) = SMσ(Ak ⊕ 0n−k)NσS
−1

for some Ak ∈Mk.
Finally, suppose IF has the additional property that all of its nonzero endomorphisms

are automorphisms. Then we may replace φ by A 7→ µ(A)−1S−1φ(Aσ−1)S and assume that

φ(P ) = P for all rank one idempotent P ∈ S. Then for every A ∈ S, we have AP = 0 if

and only if φ(A)P = 0, and PA = 0 if and only if Pφ(A) = 0, for all rank one idempotent

P . Thus, φ(A) and A have the same image and kernel. So, A and φ(A) have the same rank.
The proof of the theorem is complete.

3 Rank preservers onMm
n and orthogonality preservers

on IFn

As an immediate application of Theorem 2.1, we characterize rank preserving mappings on
the semigroup Mm

n of Mn, i.e., φ : Mm
n →Mn such that

rank (φ(A)φ(B)) = rank (AB) for all A,B ∈Mm
n . (3.1)

Clearly such a φ satisfies (2.2). When m = n = 2, one can apply Theorem 2.1 to get some
information about φ on rank one matrices. However, φ can map the set of invertible matrices
into itself in any way we like. So, we consider n ≥ 3 in the following.
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Theorem 3.1 Suppose n ≥ 3. A mapping φ : Mm
n →Mn satisfying (3.1):

rank (φ(A)φ(B)) = rank (AB) for all A,B ∈Mm
n

if and only if there exist an invertible S ∈Mn, and a field monomorphism σ on IF such that
for any A = M(Ik ⊕ 0n−k)N ∈ S with invertible M,N ,

φ(A) = SMσ(Ak ⊕ 0n−k)NσS
−1.

for some invertible matrix Ak ∈Mk.

Proof. Suppose φ has the desired form. For any A = M(Ik ⊕ 0n−k)N ∈ Mm
n with M,N

invertible,

φ(A) = SMσ(Ak ⊕ 0n−k)NσS
−1 = SPAAσS

−1 = SAσQAS
−1

for PA = Mσ(Ak ⊕ In−k)M
−1
σ and QA = N−1

σ (Ak ⊕ In−k)Nσ. Then for any A,B ∈Mm
n ,

φ(A)φ(B) = SPAAσBσQBS
−1 = SPA(AB)σQBS

−1.

Since S, PA and QB are invertible,

rank (φ(A)φ(B)) = rank (AB)σ = rank (AB).

The sufficiency part holds.

For the necessity part, note that φ must also satisfy (2.2). By Theorem 2.1, there exist an

invertible S ∈Mn and a field monomorphism σ on IF such that for any A = M(Ik⊕0n−k)N ∈
Mm

n with invertible M,N ,

φ(A) = SMσ(Ak ⊕ 0n−k)NσS
−1

for some Ak ∈ Mk. We need to show Ak is invertible. Let B = N−1(Ik ⊕ 0n−k) ∈ Mm
n .

Then AB = M(Ik ⊕ 0n−k) has rank k. Hence,

φ(A)φ(B) = SMσ(Ak ⊕ 0n−k)NσS
−1SN−1

σ (Bk ⊕ 0n−k)S
−1 = SMσ(AkBk ⊕ 0n−k)S

−1

has rank k. It follows that Ak and Bk are invertible.

Next, we show that our main theorem can be used to study mappings on IFn preserving
orthogonality; see [1]. We write u ≡ v if u is a scalar multiple of v.

Proposition 3.2 Let n ≥ 3 and let f : IFn → IFn be a mapping such that

xty = 0 ⇐⇒ f(x)tf(y) = 0

for every x, y ∈ IFn. Then there exist S ∈ Mn with StS = In, a field monomorphism σ on
IF such that

f(x) ≡ Sxσ for all x ∈ IFn.
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Instead of proving this proposition, we present the result and proof for the slightly more
involved version for the inner product (x, y) = y∗x on Cn.

Proposition 3.3 Let n ≥ 3 and let f : Cn → Cn be a mapping such that

x∗y = 0 ⇐⇒ f(x)∗f(y) = 0

for every x, y ∈ Cn. Then there exist a unitary S ∈ Mn and σ : C → C of the form z 7→ z
or z 7→ z̄ such that

f(x) ≡ Sxσ for all x ∈ Cn.

Proof. For every nonzero rank one matrix A ∈Mn, write A = xy∗ and define

φ(A) = f(x)f(y)∗.

Also let φ(0) = 0. Then it is easy to check that φ : M1
n →Mn is zero product preserving.

By Theorem 2.1, there exist an invertible S ∈Mn, a field monomorphism σ on C and a

mapping µ : M1
n \ {0} → C∗ such that for all nonzero x, y ∈ Cn,

f(x)f(y)∗ = φ(xy∗) = µ(xy∗)S(xy∗)σS
−1 = µ(xy∗)(Sxσ)((y∗)σS

−1).

We conclude that
f(x) ≡ Sxσ and f(y) ≡ (S−1)∗((y∗)σ)∗.

Putting x = y, we get Sxσ ≡ (S−1)∗((x∗)σ)∗, and hence

(S∗S)xσ ≡ ((x∗)σ)∗.

For x = ej, we have (S∗S)ej ≡ ej. All ej are eigenvectors of S∗S and hence S∗S is a

diagonal matrix. But we also have (S∗S)e ≡ e. The diagonal matrix S∗S is indeed a scalar
matrix. Absorbing the scalar into the function µ, we may assume that S∗S is the identity
matrix, or equivalently, that S is unitary.

Now xσ ≡ ((x∗)σ)∗ for every x ∈ Cn. For every λ ∈ C, let x = (λ, 1, 0, . . . , 0)t. Since

(σ(λ), 1, 0, . . . , 0)t = xσ ≡ ((x∗)σ)∗ = (σ(λ), 1, 0, . . . , 0)t,

σ(λ) = σ(λ). But then σ(λ) = σ(λ) for every λ ∈ IR so that σ maps IR into IR. It then

follows that σ has the form z 7→ z or z 7→ z̄; see [20].

Peter Šemrl pointed out that the above proposition is the non-bijective finite-dimensional
version of Uhlhorn’s theorem in quantum mechanics; see [22] and also [12].
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4 Unitarily Invariant and Unitary Similarity Invariant

Functions

In this section, we focus on the case when IF = IR or C. Let Un = {U ∈ Mn : U∗U = In}.
We study φ : S →Mn such that

F (φ(A)φ(B)) = F (AB) for all A,B ∈ S, (4.1)

where F : Mn → [0,∞) satisfies the following conditions:

(F1) F (A) = 0 if and only if A = 0;

(F2) There is p ∈ IR∗ such that F (λA) = |λ|pF (A) for all λ ∈ IF∗;

(F3) F (UAV ) = F (A) for all U, V ∈ Un.

This class of functions includes all common matrix norms on Mn such as the spectral norm

‖A‖ = max{‖Ax‖ : x ∈ IFn, ‖x‖ ≤ 1}, the Frobenius norm ‖A‖F = tr (A∗A)1/2. However
the triangle inequality is not assumed.

Note also that we may always assume that p = 1 in (F2). Otherwise, we can replace

F by the mapping A 7→ |F (A)|1/p. A function F satisfying (F3) is known as a unitarily

invariant function. Evidently, condition (4.1) will still hold after this replacement. We will
always assume this in our discussion.

We have the following result.

Theorem 4.1 Let F : Mn → [0,∞) satisfy (F1) – (F3). Suppose n ≥ 3, and φ : S →Mn

is a mapping satisfying

F (φ(A)φ(B)) = F (AB) for all A,B ∈ S. (4.2)

Then there exist a matrix W ∈ Un, and mappings ψL, ψR : S → Un satisfying

ψL(A)A = AψR(A) for all A ∈ S

such that one of the following holds.

(a.1) F (ψL(A)ABψR(B)) = F (AB) for all A,B ∈ S, and φ has the form

A 7→ WψL(A)AW ∗ = WAψR(A)W ∗.

(a.2) IF = C, F (ψL(A)ABψR(B)) = F (AB) for all A,B ∈ S, and φ has the form

A 7→ WψL(A)AW ∗ = WAψR(A)W ∗.
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Suppose A = XDY , where X,Y ∈ Un and D = diag (s1(A), . . . , sn(A)). Then ψL(A)A =

AψR(A) if and only if X∗ψL(A)XD = DY ψR(A)∗Y ∗. So, each of the matrices X∗ψL(A)X

and Y ψR(A)∗Y ∗ is a direct sum of square blocks according to the multiplicities of the singular
values of A. Moreover, the blocks corresponding to the nonzero singular values are the same
in the two matrices.

It turns out that we can further strengthen Theorem 4.1 by replacing the assumption
(F3) by the following weaker condition on F : Mn → IF.

(F3’) F (U∗AU) = F (A) for all U ∈ Un.

A function F satisfying (F3’) is called a unitarily similarity invariant function. Clearly, a
unitarily invariant function is also unitary similarity invariant. The following result shows
that preservers of unitary similarity invariant functions have the same structure of preservers
of unitarily invariant functions, and more can be said if F is not unitarily invariant on rank
one matrices.

Theorem 4.2 Let F : Mn → [0,∞) satisfy (F1), (F2) and (F3’). Suppose n ≥ 3, and
φ : S →Mn is a mapping satisfying

F (φ(A)φ(B)) = F (AB) for all A,B ∈ S.

Then condition (a.1) or (a.2) of Theorem 4.1 holds. Moreover, if {|F (X)/s1(X)| : X ∈M1
n}

is not a singleton, then there is a mapping µ : S → Π = {z ∈ IF : |z| = 1} such that

ψL(A) = ψR(A) = µ(A)I, and thus one of the following holds.

(b.1) φ has the form

A 7→ µ(A)WAW ∗.

(b.2) IF = C, F (AB) = F (AB) for all A,B ∈ S, and φ has the form

A 7→ µ(A)WAW ∗.

We need only prove Theorem 4.2, and Theorem 4.1 will then follow. We begin with
a condition under which F is essentially the largest singular value on rank one matrices.
Denote by s1(A) ≥ . . . ≥ sn(A) the singular values of A.

Lemma 4.3 Suppose n ≥ 3. If there is a vector b ∈ IFn, which is not a multiple of e1, such
that

F (e1y
∗) = F (by∗) for all y ∈ IFn.

Then

F (X) = s1(X)F (E11) for all X ∈M1
n. (4.3)
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Proof. Since b is not a multiple of e1, there exists U = [λ] ⊕ U1 ∈ Un with |λ| = 1 such

that Ub = c = (c1, c2, 0, . . . , 0) with c1 ≥ 0 and c2 > 0. As

F (cy∗) = F (U∗cy∗U) = F (by∗U) = F (e1y
∗U) = F (Ue1y

∗) = F (λe1y
∗) = F (e1y

∗),

we may assume that b = (b1, b2, 0, . . . , 0) with b1 ≥ 0 and b2 > 0.

Let t ∈ [0, π/2]. There exists a µt > 0 such that for any t̂ ∈ (t − µt, t + µt) ∩ [0, π/2],

there are vectors y = (sin t, y2, . . . , yn) and z = (sin t̂, z2, . . . , zn) with ‖y‖ = ‖z‖ = 1 such

that |y∗b| = |z∗b|. This is possible as n ≥ 3.

Now the rank one matrix e1y
∗ is unitarily similar to sin tE11 + cos tE12, and that by∗ is

unitarily similar to a unit multiple of

|y∗b|E11 +
√
‖by∗‖2 − |y∗b|2E12 = |y∗b|E11 +

√
‖b‖2 − |y∗b|2E12.

Hence

F (sin tE11 + cos tE12) = F (e1y
∗) = F (by∗) = F (|y∗b|E11 +

√
‖b‖2 − |y∗b|2E12).

Similarly,

F (sin t̂E11 + cos t̂E12) = F (|z∗b|E11 +
√
‖b‖2 − |z∗b|2E12).

As |y∗b| = |z∗b|,
F (sin tE11 + cos tE12) = F (sin t̂E11 + cos t̂E12).

It follows from the compactness of [0, π/2] that F (sin tE11 + cos tE12) = F (E11) for all

t ∈ [0, π/2]. Thus, F (X) = s1(X)F (E11) for all X ∈M1
n.

Lemma 4.4 Suppose n ≥ 3. If there are matrices A,B ∈ M with B not a multiple of A
such that

F (AX) = F (BX) for all X ∈M1
n,

then F satisfies (4.3).

Proof. Using Lemma 4.3, it is not difficult to see that (4.3) holds if there are vectors b, c
in IFn, one is not a multiple of the other, such that

F (by∗) = F (cy∗) for all y ∈ IFn.

Now if B is not a multiple of A, there is an x in IFn such that Bx is not a multiple of
Ax. But we have

F (Axy∗) = F (Bxy∗) for all y ∈ IFn.

The conclusion follows.
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Lemma 4.5 Suppose F satisfies (4.3). Then for any matrices A,B ∈Mn,

F (AX) = F (BX) for all X ∈M1
n (4.4)

if and only if there is a U ∈ Un such that B = UA. Similarly,

F (Y A) = F (Y B) for all Y ∈M1
n (4.5)

if and only if there is a V ∈ Un such that B = AV .

Proof. Since F satisfies (4.3),

s1(AX) = s1(BX) for all X ∈M1
n.

For every nonzero x in IFn,

‖Ax‖ = s1(Axe
∗
1) = s1(Bxe

∗
1) = ‖Bx‖.

Hence there is a U ∈ Un such that B = UA.

The other assertion can be obtained similarly.

Now we are ready to give the proof of Theorem 4.2.

In view of the comment before Theorem 4.1, we may assume that p = 1 in (F2). Clearly, if φ

satisfies (4.2), then it also satisfies (2.2). By Theorem 2.1, there exist an invertible S ∈Mn,

a field monomorphism σ on IF, and a IF∗-valued mapping µ on the rank one matrices in S
such that

φ(A) = µ(A)SAσS
−1 for any rank one matrix A.

We claim that |σ(α)| = |α| for every α ∈ IF. For any α ∈ IF, take A = E11 +αE1n. Then

φ(A) = µ(A)S(E11 + σ(α)E1n)S−1. For any 1 ≤ k ≤ n,

|µ(A)µ(E1k)|F (SE1kS
−1) = F (φ(A)φ(E1k)) = F (AE1k) = F (E1k)

and
|σ(α)µ(A)µ(Enk)|F (SE1kS

−1) = F (φ(A)φ(Enk)) = F (AEnk) = |α|F (E1k).

It follows that |σ(α)| = |µ(E1k)/µ(Enk)| |α|. Since σ(1) = 1, |µ(E1k)| = |µ(Enk)|, and hence

|σ(α)| = |α| for all α ∈ IF. It is well-known that σ must either be the identity or the complex

conjugation if IF = C; see [20] for example. Replacing φ by A 7→ φ(A), if necessary, we may
assume that σ is the identity on IF.

By the singular value decomposition, S = UDV for some U, V ∈ Un and diagonal matrix
D = diag (d1, . . . , dn), where d1 ≥ · · · ≥ dn > 0. Replacing φ by A 7→ U∗φ(V ∗AV )U , we
may assume that S is the diagonal matrix D.

Actually D is a scalar matrix. Note that φ(Ekk) = µ(Ekk)Ekk for all k = 1, . . . , n. Hence

|µ(Ekk)|2F (Ekk) = F (φ(Ekk)
2) = F (E2

kk) = F (Ekk),
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and |µ(Ekk)| = 1. Since φ(E11 + E1n) = µ(E11 + E1n)(E11 + d1d
−1
n E1n),

|µ(E11 + E1n)µ(E11)|F (E11) = F (φ(E11 + E1n)φ(E11)) = F ((E11 + E1n)E11) = F (E11)

and

d1d
−1
n |µ(E11+E1n)µ(Enn)|F (E1n) = F (φ(E11+E1n)φ(Enn)) = F ((E11+E1n)Enn) = F (E1n).

We have |µ(E11 + E1n)µ(E11)| = 1, and d1d
−1
n |µ(E11 + E1n)µ(Enn)| = 1. It follows that

d1 = dn, and that D is a scalar matrix. In conclusion, we have

φ(X) = µ(X)X for any rank one matrix X.

We now show that |µ(X)| = 1 for any rank one matrix X. Take any rank one matrix X.

If X2 6= 0, then

|µ(X)|2F (X2) = F (φ(X)2) = F (X2),

and hence |µ(X)| = 1. If X2 = 0, there exists a rank one matrix Y such that both XY and

Y 2 are nonzero. We have

|µ(X)|F (XY ) = |µ(X)µ(Y )|F (XY ) = F (φ(X)φ(Y )) = F (XY ).

Hence |µ(X)| = 1 too.

Finally, for any matrix A ∈ S,

F (φ(A)X) = F (φ(A)φ(X)) = F (AX) and F (Xφ(A)) = F (φ(X)φ(A)) = F (XA)

for any rank one matrix X, as |µ(X)| = 1. By Lemma 4.4, either

(i) φ(A) is some unit multiple of A for all A ∈ S; or

(ii) F (X) = s1(X)F (E11) for any rank one matrix X.

If (i) holds, µ can be extended to a µ : S → Π such that φ(A) = µ(A)A for all A ∈ S. If

(ii) holds, then by Lemma 4.5, there exist unitary matrices UA, VA ∈ Un such that φ(A) =

UAA = AVA. Define mappings ψL, ψR : S → Un by ψL(A) = UA and ψR(A) = VA. Then

φ(A) = ψL(A)A = AψR(A), and the result follows.

As mentioned before Theorem 4.1 covers many functions such as all unitarily invariant

norms on Mn including the spectral norm ‖A‖ and the Frobenius norm ‖A‖F = tr (A∗A)1/2.

Next, we consider unitary similarity invariant functions F so that condition (b.1) or/and

(b.2) of Theorem 4.2 hold. For IF = C, define the numerical range of A by

W (A) = {x∗Ax : x ∈ Cn, x∗x = 1}

and the numerical radius of A by

r(A) = {|µ| : µ ∈ W (A)}.
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It is known and easy to check that r(A) = 0 if and only if A = 0, and that r(U∗AU) =

r(A) = r(A) for all A ∈ Mn. Note that r(E11) = 1 6= 1/2 = r(E12). So, if n ≥ 3, and

φ : S → Mn is a mapping satisfying (4.2) with F (A) = r(A), then condition (b.1) or (b.2)
of Theorem 4.2 holds.

Now, if n ≥ 3, and φ : S →Mn is a mapping satisfying (4.2) with F (A) = W (A), then

r(φ(A)φ(B)) = r(AB) for all A,B ∈Mn. Furthermore, if A = iE11 then

W (A) = {it : t ∈ [0, 1]} 6= {−it : t ∈ [0, 1]} = W (A).

We see that φ satisfies (b.1) of Theorem 4.2 only.
More generally, let C ∈Mn. The C-numerical range of A ∈Mn is defined by

WC(A) = {tr (CU∗AU) : U ∈ Un}

and the C-numerical radius of A is defined by

rC(A) = max{|µ| : µ ∈ WC(A)}.

When C = E11, these reduce to W (A) and r(A). One may see [10] for some general back-
ground on the C-numerical range and C-numerical radius. If C is a non-scalar matrix with
nonzero trace, then (F1) - (F3) hold for F (A) = rC(A). If C is positive semi-definite, then

we can extend the analysis on r(A) and W (A) in the preceding paragraphs to rC(A) and

WC(A) and get the same conclusion on φ. We have the following.

Corollary 4.6 Let IF = C and C ∈Mn be a non-scalar positive semi-definite matrix, where
n ≥ 3. Suppose φ : S → Mn is a mapping satisfying (4.2) for F (A) = rC(A) or WC(A).

Then condition (b.1) or (b.2) of Theorem 4.2 holds if F (A) = rC(A); and condition (b.1) of

Theorem 4.2 holds if F (A) = WC(A).

Continue to assume IF = C. A norm ν on Mn is unitary similarity invariant or weakly
unitarily invariant if ν(U∗AU) = ν(A) for all U ∈ Un and A ∈ Mn. It is known (e.g., see

[10]) that for every unitary similarity invariant norm ν, there is a compact subset K of Mn

such that
ν(A) = max{rC(A) : C ∈ K}.

So, the C-numerical radius can be viewed as the building blocks for usi norms. It would be
interesting to extend Corollary 4.6 to general unitary similarity invariant norms that are not
unitarily invariant on S.

5 A self-contained elementary proof for Theorem 2.1

In this section, we give a self-contained elementary proof of the second part of Theorem 2.1.

The proof continues from Lemma 2.3. Replacing φ by A 7→ S−1φ(A)S for some suitable
S ∈Mn, we may assume that

φ(Ejj) = rjEjj for all 1 ≤ j ≤ n. (5.1)
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Lemma 5.1 For any rank one matrix A, the (i, j)-th entry of φ(A) is zero if and only if
that of A is.

Proof. Suppose aij, the (i, j)-th entry of the matrix A, is 0. Then since A has rank one,

either the i-th row, or the j-th column, of A is zero. Respectively, EiiA = 0 or AEjj = 0.

Because of (5.1), either riiEiiφ(A) = 0, or φ(A)rjEjj = 0. In both cases, the (i, j)-th entry

of φ(A) is zero.

The converse is similar.

Lemma 5.2 Replacing φ by the mapping A 7→ D−1φ(A)D for some invertible diagonal
D ∈Mn, we may further assume that

φ(eet) = eyt (5.2)

for some y = (y1, . . . , yn)t with all yi nonzero.

Proof. Since φ maps rank one matrices to rank one matrices, φ(eet) = xzt for some

x = (x1, . . . , xn)t, z = (z1, . . . , zn)t ∈ IFn. By Lemma 5.1, all entries of φ(eet) are nonzero,

and hence all xi and zi are nonzero. Let D = diag (x1, . . . , xn). Then x = De, and

D−1φ(eet)D = D−1xztD = eztD.

Replacing φ by A 7→ D−1φ(A)D, the new mapping satisfies (5.2) with y = Dtz.

Lemma 5.3 Suppose φ : S →Mn satisfies (2.2), (5.1) and (5.2). When n ≥ 3, there exists
a field monomorphism σ on IF such that

φ(A) ≡ Aσ

for all rank one matrix A in S with nonzero trace.

Proof. We claim that for each j ∈ {1, . . . , n}, there exists a monomorphism σj on IF such

that

φ(A) ≡ Aσj
for all rank one A ∈ S with ajj 6= 0. (5.3)

Suppose (5.3) is proved. Then for any i, j ∈ {1, . . . , n} with i 6= j, and any nonzero α ∈ IF,

Eii + Ejj + σi(α)Eij + σi(α
−1)Eji

≡ σi(1)Eii + σi(1)Ejj + σi(α)Eij + σi(α
−1)Eji

≡ φ(Eii + Ejj + αEij + α−1Eji)

≡ σj(1)Eii + σj(1)Ejj + σj(α)Eij + σj(α
−1)Eji

≡ Eii + Ejj + σj(α)Eij + σj(α
−1)Eji.

Thus σi(α) = σj(α). Choosing σ to be the common monomorphism, the conclusion follows.

We prove (5.3) by a sequence of assertions. Assume that j = 1 for simplicity.
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Assertion 1 There exist injective mappings f2, . . . , fn, g2, . . . , gn on IF such that

φ




1
x2
...
xn

 (1 y2 · · · yn)

 ≡


1

f2(x2)
...

fn(xn)

 (1 g2(y2) · · · gn(yn))

for all x2, . . . , xn, y2, . . . , yn ∈ IF. Furthermore, fj(1) = 1 and gj(α) = −fj(−α−1)−1 for all

nonzero α ∈ IF.

Proof. For each j > 1 and α 6= 0, we have by Lemma 5.1 nonzero βα and γα such that

φ(E11 − α−1E1j) ≡ E11 − β−1
α E1j and φ(E11 − α−1Ej1) ≡ E11 − γ−1

α Ej1.

Define fj, gj : IF → IF by fj(0) = gj(0) = 0,

fj(α) = βα and gj(α) = γα

for all nonzero α.

Let α 6= 0. Then (E11 + αE1j)(E11 − α−1Ej1) = 0. Hence

(1 + fj(−α−1)−1gj(α)−1)E11 = (E11 − fj(−α−1)−1E1j)(E11 − gj(α)−1Ej1)

= φ(E11 + αE1j)φ(E11 − α−1Ej1) = 0.

It follows that gj(α) = −fj(−α−1)−1.

Next we show that fj is injective. Suppose fj(α) = fj(β) for some nonzero α 6= β. Then

φ(E11 − βE1j)φ(E11 + αEj1) = (E11 − fj(β)−1E1j)(E11 − gj(−α−1)−1Ej1)

= (E11 − fj(α)−1E1j)(E11 + fj(α)Ej1) = 0.

It is impossible as (E11 − β−1E1j)(E11 + αEj1) = (1− αβ−1)E11 6= 0. Thus fj is injective.

The mapping gj is also injective, as gj(α) = −fj(−α−1)−1 for all nonzero α.

Now let A = (1 x2 · · · xn)t(1 y2 · · · yn). Then φ(A) is rank one with nonzero (1, 1)-th
entry so that

φ(A) ≡ W = (1 u2 · · · un)t(1 v2 · · · vn)

for some u2, . . . , un, v2, . . . , vn in IF. By Lemma 5.1, ui = 0 if and only if xi = 0, and vi = 0

if and only if yi = 0. Now if xj 6= 0, then (E11 − x−1
j E1j)A = 0. We have

(E11 − fj(xj)
−1E1j)W ≡ (E11 − fj(xj)

−1E1j)φ(A) = 0,

and hence 1− fj(xj)
−1uj = 0 or uj = fj(xj). Similarly, we get that vj = gj(yj).

Finally since φ satisfies (5.2),

(1 f2(1) · · · fn(1))t(1 g2(1) · · · gn(1)) ≡ φ(eet) = (1 · · · 1)t(y1 · · · yn)

for some nonzero y1, . . . , yn ∈ IF. It follows that 1 = f2(1) = · · · = fn(1).
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Assertion 2 For any distinct i, j > 1, and any xi, xj, yi, yj ∈ IF,

1 + xiyi + xjyj = 0 ⇐⇒ 1 + fi(xi)gi(yi) + fj(xj)gj(yj) = 0. (5.4)

Proof. Take A = E11 +xiE1i +xjE1j and B = E11 +yiEi1 +yjEi1. The conclusion follows

from (2.2).

Assertion 3 For each i, fi = gi, and they are multiplicative.

Proof. Take (xi, xj) = (α, 1) and (yi, yj) = (β,−αβ − 1). By (5.4), 1 + fi(α)gi(β) +

gj(−αβ − 1) = 0. Now take (xi, xj) = (α′, 1) and (yi, yj) = (β′,−α′β′ − 1) with α′β′ = αβ,

then 1 + fi(α
′)gi(β

′) + gj(−α′β′ − 1) = 0. It follows that

1 + fi(α)gi(β) + gj(−αβ − 1) = 0 = 1 + fi(α
′)gi(β

′) + gj(−α′β′ − 1),

i.e., fi(α)gi(β) = fi(α
′)gi(β

′) for any αβ = α′β′. Then for any α, β,

fi(α)fi(β)gi(1) = fi(α)fi(1)gi(β) = fi(α)gi(β) = fi(αβ)gi(1).

Since gi(1) 6= 0, fi is multiplicative.

Since fi is injective and multiplicative, fi(−1) = −1, and so gi(1) = fi(−1−1)−1 = 1.
Thus,

gi(α) = gi(α)fi(1) = gi(1)fi(α) = fi(α) for all α ∈ IF.

Assertion 4 f2 = · · · = fn = g2 = · · · = gn.

Proof. It suffices to prove that f2 = fj for any j ≥ 2. Take (x2, xj) = (−α − 1, α) and

(y2, yj) = (1, 1) in (5.4). Then we have

1 + f2(−α− 1) + fj(α) = 1 + f2(−α− 1)g2(1) + fj(α)gj(1) = 0.

Hence, fj(α) = −f2(−α − 1)− 1 = f2(α + 1)− 1. In particular, 1 = fj(1) = f2(2)− 1, i.e.,

f2(2) = 2. Interchanging the roles of x2 and xj, we get f2(α) = fj(α+ 1)− 1 and fj(2) = 2.

Then

fj(α)− 1 = f2(α− 1) = f2(2)f2((α− 1)/2) = 2[fj((α− 1)/2 + 1)− 1]

= fj(2)fj((α− 1)/2 + 1)− 2 = fj(α+ 1)− 2,

i.e., fj(α+ 1) = fj(α) + 1. Thus, f2(α) = fj(α+ 1)− 1 = fj(α).

Assertion 5 The mappings f2 = · · · = fn = g2 = · · · = gn are additive.
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Proof. For any nonzero α, β ∈ IF, take (x2, x3) = (−α/(α + β),−β/(α + β)) with

(y2, y3) = (1, 1), we have

1− f2(α+ β)−1f2(α)− f2(α+ β)−1f2(β) = 1 + f2(−α/(α+ β)) + f3(−β/(α+ β)) = 0.

Thus, f2(α+ β) = f2(α) + f2(β), i.e., f2 is additive.

Assertion 6 There exists a σ1 such that (5.3) holds.

Proof. Let σ1 = f2 = · · · = fn = g2 = · · · = gn. Then by above assertions, σ1 is a field

monomorphism on IF and φ(A) = (σ(aij)) for all A = (aij) ∈M1
n with a11 = 1. Now for any

B = (bij) ∈M1
n with b11 6= 0, B ≡ (1/b11)B. By Lemma 2.3,

φ(B) ≡ φ((1/b11)B) ≡ (σ(bij/b11)) ≡ σ(b−1
11 )(σ(bij)) ≡ (σ(bij)).

The assertion follows.

Suppose n ≥ 3. By Lemma 5.3, there exist an invertible S ∈ Mn and a field monomor-
phism σ on IF such that

φ(A) ≡ SAσS
−1 (5.5)

for all rank one matrix A in S with nonzero trace. Now, suppose B = xyt ∈ S \{0} has zero

trace. Let u, v ∈ IFn be such that utx = ytv = 1. Then (5.5) holds for A = xut and A = vyt.

By Lemma 2.3, R(φ(B)) = R(xut) and N(φ(B)) = N(φ(vyt)). Hence, φ(B) ≡ SBσS
−1.

Combining the above arguments, we see that for each rank one A, φ(A) = λASAσS
−1 for

some nonzero λA. Define µ : S ∩M1
n → IF∗ by µ(A) = λA. The desired conclusion follows.
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