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Abstract

Suppose F is a field and m,n, p, q are positive integers. Let Mmn(F) be the set of all

m×n matrices over F, and let M1
mn(F) be its subset consisting of all rank-one matrices. A

map φ : Mmn(F) → Mpq(F) is said to be an additive rank-one preserver if φ(M1
mn(F)) ⊆

M1
pq(F) and φ(A + B) = φ(A) + φ(B) for any A,B ∈ Mmn(F). This paper describes the

structure of all additive rank-one preservers from Mmn(F) to Mpq(F).
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1 Introduction

In order to state precisely this article, we first introduce some concepts and fix the notation.

Suppose F is a field and F∗ = F\ {0}. For positive integers m and n, let Mmn(F) be the set

of all m× n matrices over F, and let Mn(F) = Mnn(F) and Fn = Mn1(F). Denote by M r
mn(F)

the subset of Mmn(F) consisting of all rank-r matrices, and by GLn(F) the subset of Mn(F)

consisting of all nonsingular matrices. We use 〈m〉 to represent the set {1, 2, . . . ,m}. We denote

by Eij the matrix with 1 in the (i, j)th entry and 0 elsewhere (Note: the dimension of Eij will

be dependent on the content). For any matrix B, let N(B), BT and B−1 be the kernel space,

transpose and inverse of B, respectively. For a map ρ : F → F and a matrix A = [aij] over

F, we denote by Aρ the matrix [ρ(aij)]. Symbol ⊕ denotes the usual direct sum of matrices.

An operator φ : Mmn(F) → Mpq(F) is said to be additive if φ(A + B) = φ(A) + φ(B) for

any A,B ∈ Mmn(F), linear if it is additive and satisfies φ(aA) = aφ(A) for any a ∈ F and

A ∈Mmn(F), and a rank-one preserver if φ(M1
mn(F)) ⊆M1

pq(F).

In the recent several decades, characterizing linear/additive maps on spaces of matrices or

operators that preserve certain properties has been an active area of research (see [5, 8, 11, 15]

and the references therein). These are usually called linear/additive preserver problems in the

literature. One of the most basic problems in linear/additive preserver problems is rank-one

preserver problem, since some other questions about preservers have been solved with the help

of rank-one preservers (see [1–4] and the references therein). Here we mention only partial

results of rank-one preservers on spaces of rectangular matrices, which are closely related to

this article. Marcus and Moyls [9] and Minc [10] described the structure of those linear rank-one

preservers from Mmn(F) into itself when F is any algebraically closed field of characteristic 0.

Their difference lies in: Marcus and Moyls used multilinear algebra techniques, and Minc used

only elementary matrix theory. Lim [7] characterized all invertible linear rank-one preservers
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from Mmn(F) into itself when F is any field. Waterhouse [14] generalized the result of Lim to

commutative rings with unit, but the invertibility assumption was still needed. Recently, Li et

al. [6] obtained the following theorem (There is only a formal distinction to [6, Theorem 2.1];

they are in fact the same.) without the invertibility assumption.

Theorem 1 Suppose F is any field and f : Mmn(F) →Mpq(F) is a linear rank-one preserver.

Then f has one of the following four forms:

(I) p ≥ m ≥ 2, q ≥ n ≥ 2 and f(A) = X(A ⊕ 0)Y for any A ∈ Mmn(F), where X ∈ GLp(F)

and Y ∈ GLq(F).

(II) p ≥ n ≥ 2, q ≥ m ≥ 2 and f(A) = X(AT ⊕ 0)Y for any A ∈ Mmn(F), where X and Y

are defined as in (I).

(III) f(A) = ξ(A)γT for any A ∈ Mmn(F), where γ ∈ Fq \ {0} and ξ : Mmn(F) → Fp is a

linear map such that 0 /∈ ξ(M1
mn(F)).

(IV) f(A) = βη(A)T for any A ∈ Mmn(F), where β ∈ Fp \ {0} and η : Mmn(F) → Fq is a

linear map such that 0 /∈ η(M1
mn(F)).

Inspired by these works mentioned above, in this article we characterize the additive rank-

one preservers fromMmn(F) toMpq(F) over any field F, i.e., investigating the following theorem.

Theorem 2 For any field F, a map φ : Mmn(F) → Mpq(F) is an additive rank-one preserver

if and only if one of the following holds.

(i) There are P ∈ Mpm(F), Q ∈ Mnq(F) and an injective field endomorphism δ on F such

that N(P ) ∩
{
xδ |x ∈ Fm

}
= {0} and N(QT ) ∩

{
yδ |y ∈ Fn

}
= {0} , and φ has the form

A 7→ PAδQ.
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(ii) There are P ∈ Mpn(F), Q ∈ Mmq(F) and an injective field endomorphism δ on F such

that N(P ) ∩
{
xδ |x ∈ Fn

}
= {0} and N(QT ) ∩

{
yδ |y ∈ Fm

}
= {0} , and φ has the form

A 7→ P (Aδ)TQ.

(iii) There are nonzero v ∈ Fq and an additive map µ : Mmn(F) → Fp such that 0 /∈

µ(M1
mn(F)) and φ has the form A 7→ µ(A)vT .

(iv) There are nonzero u ∈ Fp and an additive map ν : Mmn(F) → Fq such that 0 /∈

ν(M1
mn(F)) and φ has the form A 7→ uν(A)T .

The proof of Theorem 2 will be shown in the next section. Now we remark Theorem 2 as

follows:

1. When p ≥ m+n−1, [6, Proposition 2.3] provided an example of linear rank-one preserver

of the form (iv). Here, we also give another example of linear rank-one preserver of the

form (iv) when F is a subfield of R of all real numbers. Let k be a positive integer, and

let f : M2,2k(F) →M1,2k(F) be defined by

f :
∑
i∈〈2〉

∑
j∈〈2k〉

aijEij 7→
∑
j∈〈k〉

((a1,2j−1 − a2,2j)E1,2j−1 + (a1,2j + a2,2j−1)E1,2j) .

Clearly, f is a linear rank-one preserver of the form (iv).We can construct similar examples

for the form described in (iii).

2. Note that, for any positive integers g and h, R is isomorphic to Mgh(R) when they are

viewed as additive groups. If ξ1 : Mmn(R) → R and ξ2 : R → Rg are additive group

isomorphisms, then ξ2 ◦ ξ1 is an additive group isomorphism from Mmn(R) to Rg. Hence

there is a non-linear additive map µ (respectively, ν) satisfying (iii) (respectively, (iv)).

3. If F is some field that is not isomorphic to a proper subfield of itself (for example, F

is a finite field), then any injective field endomorphism δ on F is a field automorphism.
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Hence,
{
xδ |x ∈ Fs

}
= Fs. Then for any A ∈ Mrs(F), N(A) ∩

{
xδ |x ∈ Fs

}
= {0} if

and only if A has full column rank. Therefore, if the condition “F is not isomorphic

to a proper subfield of itself” is added, the matrices P and Q defined in (i)/(ii) can be

extended to some p × p invertible matrix X and q × q invertible matrix Y , respectively.

Thus, the form described in (i) of Theorem 2 can be reduced to: p ≥ m ≥ 2, q ≥ n ≥ 2

and A 7→ X(Aδ ⊕ 0)Y with X ∈ GLm(F) and Y ∈ GLn(F). For the form described in

(ii) of Theorem 2, we have the similar conclusion.

4. One also observe that Theorem 1 can be obtained by Theorem 2 by using similar argu-

ment. Indeed if we further assume that φ is linear, then the injective field endomorphism

δ defined in (i)/(ii) must be linear too. Thus, δ must be the identity map, and hence the

set {xδ |x ∈ Fs} = Fs.

5. If some appropriate restrictions on φ and F (for example, F = R and φ preserves rank-one

matrices in both directions) were added to Theorem 2, then Theorem 2 can be obtained

directly from [12, 13]. However, the general case of Theorem 2 is not a direct corollary

of [12, 13].

2 The Proof of Theorem 2

In this section, we investigate Theorem 2.

Proof of the sufficency part of Theorem 2. It is trivial that φ is an additive rank-one

preserver if (iii) or (iv) holds. Suppose φ has the form described in (i). Clearly, φ is an additive

map. It remains to show that φ is a rank-one preserver.

Note that for any A ∈M1
mn(F),

rank(φ(A)) = rank(PAδQ) ≤ rankAδ = 1.
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Therefore, φ(M1
mn(F)) ⊆M1

pq(F) ∪ {0} . It suffices to show that φ(A) 6= 0 for all A ∈M1
mn(F).

Since both the sets N(P ) ∩
{
xδ |x ∈ Fm

}
and N(QT ) ∩

{
yδ |y ∈ Fn

}
contain the zero vectors

only, Pxδ andQTyδ are nonzero for all nonzero x ∈ Fm and y ∈ Fn. Then φ(xyT ) = P (xyT )δQ =

Pxδ(yδ)TQ 6= 0 for all xyT ∈M1
mn(F).

Similarly, we show that φ is an additive rank-one preserver if φ has the form described in

(ii).

For the necessary part, we only need to prove the following two theorems.

Theorem 3 Suppose F is any field, and φ : Mmn(F) → Mpq(F) is an additive rank-one pre-

server such that rank(φ(H) +φ(G)) > 1 for some H,G ∈M1
mn(F). Then φ has the form either

(i) or (ii) of Theorem 2.

Theorem 4 Suppose F is any field, and φ : Mmn(F) → Mpq(F) is an additive rank-one pre-

server such that rank(φ(H) + φ(G)) ≤ 1 for any H,G ∈ M1
mn(F). Then φ has the form either

(iii) or (iv) of Theorem 2.

We first prove Theorem 4 as follows.

Proof of Theorem 4. For any A ∈ M1
mn(F), it follows from the definition of φ that

φ(A) ∈M1
pq(F), and hence for each A ∈M1

mn(F)

φ(A) = uAv
T
A (1)

for some nonzero uA ∈ Fp and vA ∈ Fq. Let

u = uE11 and v = vE11 . (2)

Case 1 Suppose the maximum number of linearly independent elements in φ(M1
mn(F)) is

1. Then φ(A) and φ(E11) are linearly dependent for any A ∈ M1
mn(F). Thus, by (1) and (2),

φ(A) = xAuv
T for every A ∈ M1

mn(F), where xA ∈ F∗. Since every matrix in Mmn(F) can be
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written as a sum of finitely many matrices in M1
mn(F), we derive from the additivity of φ that

φ is of the form (iii)/(iv).

Case 2 Suppose the maximum number of linearly independent elements in φ(M1
mn(F)) is

greater than or equal to 2. Then there exists B ∈ M1
mn(F) such that φ(E11) and φ(B) are

linearly independent. This, together with (1) and (2), implies that either

(a) u and uB are linearly independent; or

(b) v and vB are linearly independent.

When (a) holds, it follows from (1), (2) and rank(φ(E11) + φ(B)) ≤ 1 that v and vB are

linearly dependent, i.e., there is cB ∈ F∗ such that vB = cBv. This, together with (1), (2),

rank(φ(E11)+φ(A)) ≤ 1 and rank(φ(B)+φ(A)) ≤ 1 for any A ∈M1
mn(F), implies that for any

A ∈M1
mn(F), v and vA are linearly dependent. Thus, vA = cAv for some cA ∈ F∗. Furthermore,

φ(A) = cAuAv
T . From the arbitrariness of A ∈ M1

mn(F), we can write (1) as φ(A) = µ(A)vT

for any A ∈ M1
mn(F), where µ(A) = cAuA ∈ Fp \ {0} . Since every matrix in Mmn(F) can be

written as a sum of finitely many matrices in M1
mn(F), we derive from the additivity of φ that

φ has the form (iii). Similarly, when (b) holds, one can conclude that φ has the form (iv).

Now we devote our attention to the proof of Theorem 3. This requires the following three

lemmas.

Lemma 1 ( [16, Lemma 1]) Let F be any field and A,B ∈ M1
mn(F) satisfying A + B ∈

M2
mn(F). Then there are P ∈ GLm(F) and Q ∈ GLn(F) such that A = PE11Q and B =

PE22Q.

Lemma 2 ( [17, Lemma 2]) Let C = [cgh] ∈ M1
mn(F). If C + xEij ∈ M1

mn(F) for some

x ∈ F∗, i ∈ 〈m〉, j ∈ 〈n〉. Then C =
∑m

g=1 cgjEgj or
∑n

h=1 cihEih.
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Lemma 3 Suppose F is any field and ψ : M2(F) →Mpq(F) is an additive rank-one preserver.

If ψ(I2) ∈ M2
pq(F), then there are X ∈ GLp(F), Y ∈ GLq(F) and an injective field endomor-

phism δ on F such that ψ has the form

A 7→ X(Aδ ⊕ 0)Y or A 7→ X((Aδ)T ⊕ 0)Y.

Indeed, it is equivalent to say that there are linearly independent pairs x1, x2 ∈ Fp and y1, y2 ∈

Fq such that either

(i) ψ(λEij) = δ(λ)xiy
T
j for all λ ∈ F, i, j ∈ 〈2〉, or

(ii) ψ(λEij) = δ(λ)xjy
T
i for all λ ∈ F, i, j ∈ 〈2〉.

Proof. Since ψ is an additive rank one preserver, we have ψ(E11), ψ(E22) ∈M1
pq(F). This,

together with ψ(E11) + ψ(E22) = ψ(I2) ∈M2
pq(F) and Lemma 1, implies that

ψ(E11) = PE11Q, ψ(E22) = PE22Q (3)

for some P ∈ GLp(F) and Q ∈ GLq(F).

Define a map ψ0 : M2(F) →Mpq(F) by

ψ0(A) = P−1ψ(A)Q−1, ∀A ∈M2(F). (4)

Then ψ0 is an additive rank-one preserver, and further, we can derive from (3) that

ψ0(E11) = E11, ψ0(E22) = E22. (5)

For any x ∈ F∗, since xE12, E11 + xE12, E22 + xE12 ∈ M1
2 (F), it follows from (5) that

ψ0(xE12), E11 + ψ0(xE12), E22 + ψ0(xE12) ∈ M1
pq(F). By Lemma 2, there is ax ∈ F∗ such that

ψ0(xE12) = axE12 or axE21. Since ψ0 is an additive rank-one preserver and xE12−yE12 ∈M1
2 (F)

for any distinct x, y ∈ F∗, it is seen that either

ψ0(λE12) = π(λ)E12, ∀λ ∈ F (6)
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or

ψ0(λE12) = π(λ)E21, ∀λ ∈ F, (7)

where π : F → F is an injective additive map. Similarly, either

ψ0(λE21) = µ(λ)E12, ∀λ ∈ F (8)

or

ψ0(λE21) = µ(λ)E21, ∀λ ∈ F, (9)

where µ : F → F is an injective additive map.

Case 1 Suppose (6) and (8) hold simultaneously. Then it follows from (5) that ψ0(E11+E12+

E21+E22) = (π(1)+µ(1))E12+E11+E22 ∈M2
pq(F), which contradicts that E11+E12+E21+E22 ∈

M1
2 (F) and ψ0 is an additive rank-one preserver.

Case 2 Suppose (7) and (9) hold simultaneously. By an argument similar to Case 1, one

can derive a contradiction.

Case 3 Suppose (6) and (9) hold simultaneously. For any λ ∈ F, it follows from rank(λE11+

E11) ≤ 1 and E12 + λE11, E21 + λE11 ∈ M1
2 (F) that rank(ψ0(λE11) + ψ0(E11)) ≤ 1 and

ψ0(E12) + ψ0(λE11), ψ0(E21) + ψ0(λE11) ∈M1
pq(F). Using Lemma 2, (5), (6) and (9), we have

ψ0(λE11) = δ(λ)E11, ∀λ ∈ F, (10)

where δ : F → F is an injective additive map with δ(1) = 1. Similarly,

ψ0(λE22) = κ(λ)E22, ∀λ ∈ F, (11)

where κ : F → F is an injective additive map with κ(1) = 1. Because of λE11+λE12+E21+E22,

E11 + λE12 +E21 + λE22 ∈M1
2 (F), it follows from (6) and (9)—(11) that δ(λ)E11 + π(λ)E12 +

µ(1)E21 + E22, E11 + π(λ)E12 + µ(1)E21 + κ(λ)E22 ∈M1
pq(F), and hence

δ(λ) = κ(λ) = π(λ)µ(1), ∀λ ∈ F. (12)
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Similarly,

δ(λ) = κ(λ) = π(1)µ(λ), ∀λ ∈ F. (13)

If we denote U = µ(1)−1 ⊕ Ip−1 and V = µ(1) ⊕ Iq−1, then it is easy to verify from δ(1) = 1,

(6) and (9)—(13) that

ψ0(λEij) = δ(λ)UEijV, ∀λ ∈ F, i, j ∈ 〈2〉. (14)

For any a, b ∈ F, because of abE11 + aE12 + bE21 +E22 ∈M1
2 (F), it follows from (14) that

δ(ab)E11 + δ(a)E12 + δ(b)E21 + E22 ∈ M1
pq(F), and hence δ(ab) = δ(a)δ(b). Since δ : F → F

is an injective additive map with δ(1) = 1, it can be concluded that δ is an injective field

endomorphism on F. This, together with (14) and the additivity of ψ0, ψ0 has the form A 7→

U(Aδ ⊕ 0)V . Thus, with (4), ψ has the same form too.

Case 4 Suppose (7) and (8) hold simultaneously. Then by an argument similar to Case 3,

ψ has the form A 7→ U((Aδ)T ⊕ 0)V .

Based on the above preparations, one can prove Theorem 3 as follows.

Proof of Theorem 3. Suppose there are H,G ∈M1
mn(F) such that rank(φ(H)+φ(G)) >

1. Then rank(H + G) > 1. Since rank(H + G) ≤ rankH + rankG = 2, we conclude that

H + G ∈ M2
mn(F). By singular decomposition, there are U ∈ GLm(F) and V ∈ GLn(F) such

that H +G = U(I2 ⊕ 0)V.

Define ψ1 : M2(F) →Mpq(F) by ψ1(B) = φ(U(B ⊕ 0)V ) for all B ∈M2(F). Then ψ1 is an

additive rank-one preserver. Furthermore,

ψ1(I2) = φ(U(I2 ⊕ 0)V ) = φ(H +G) = φ(H) + φ(G),

and hence rankψ1(I2) ≤ rankφ(H) + rankφ(G). This, together with φ(M1
mn(F)) ⊆M1

pq(F) and

rankψ1(I2) = rank(φ(H) + φ(G)) > 1, implies that ψ1(I2) has rank two. Then by Lemma 3,
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there are P ∈ GLp(F), Q ∈ GLq(F) and an injective field endomorphism δ on F such that

φ(U(B ⊕ 0)V ) = ψ1(B) = P (Bδ ⊕ 0)Q for all B ∈M2(F)

or

φ(U(B ⊕ 0)V ) = ψ1(B) = P ((Bδ)T ⊕ 0)Q for all B ∈M2(F).

Replacing φ by the maps A 7→ P−1φ(UAV )Q−1 or A 7→ (P−1φ(UAV )Q−1)T , we may assume

that

φ(B ⊕ 0) = Bδ ⊕ 0 for all B ∈M2(F). (15)

Now for any j ∈ 〈n〉 \ {1, 2}, since

E21 + φ(E2j) = φ(E21 + E2j) and E22 + φ(E2j) = φ(E22 + E2j)

are rank one, we check that at least one of

E11 + φ(E2j) = φ(E11 + E2j) and E12 + φ(E2j) = φ(E12 + E2j)

has rank two. Otherwise, we have φ(E2j) = 0, but this contradicts to φ(M1
mn(F)) ⊆ M1

pq(F).

Let E1k, where k = 1 or 2, be the matrix for which φ(E1k + E2j) has rank two. We define

ψ2 : M2(F) →Mpq(F) by

ψ2

(
b11 b12

b21 b22

)
= φ (b11E1k + b12E1j + b21E2k + b22E2j) for all

(
b11 b12
b21 b22

)
∈M2(F).

Then ψ2 is an additive rank-one preserver and ψ2 (I2) = φ(E1k +E2j) has rank two. From (15),

we have

ψ2 (λE11) = φ (λE1k) = δ(λ)e1e
T
k and ψ2 (λE21) = φ (λE2k) = δ(λ)e2e

T
k for all λ ∈ F.

Then by Lemma 3, there is yj ∈ Fq such that yj and ek are linearly independent and

φ (λE1j) = ψ2 (λE12) = δ(λ)e1y
T
j and φ (λE2j) = ψ2 (λE22) = δ(λ)e2y

T
j for all λ ∈ F.
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Let Y T =
[
y1 · · · yn

]
with y1 = e1 and y2 = e2. Then with (15), we have

φ (λEij) = δ(λ)eie
T
j Y for all λ ∈ F, i ∈ 〈2〉 and j ∈ 〈n〉. (16)

Now for any i ∈ 〈m〉 \ {1, 2} and j ∈ 〈n〉 \ {k} , we check that at least one of φ(E1k + Eij)

and φ(E2k +Eij) has rank two. Let Elk, where l = 1 or 2, be the matrix for which φ(Elk +Eij)

has rank two. Similarly, with Lemma 3, (16) and by considering the map ψ3 : M2(F) →Mpq(F)

defined by

ψ3

(
b11 b12

b21 b22

)
= φ (b11Elk + b12Elj + b21Eik + b22Eij) for all

(
b11 b12
b21 b22

)
∈M2(F),

we conclude that there is xi ∈ Fp such that xi and el are linearly independent and

φ (λEik) = ψ3 (λE21) = δ(λ)xie
T
k Y and φ (λEij) = ψ3 (λE22) = δ(λ)xie

T
j Y for all λ ∈ F.

Let X =
[
x1 · · · xm

]
with x1 = e1 and x2 = e2. Then with (16), we have

φ (λEij) = δ(λ)Xeie
T
j Y = δ(λ)XEijY for all λ ∈ F, i ∈ 〈m〉 and j ∈ 〈n〉.

As φ is additive, we deduce that φ (A) = XAδY for all A ∈Mmn(F).

Finally, for any nonzero x ∈ Fm and y ∈ Fn, φ
(
xyT

)
= Xxδ(yδ)TY 6= 0 as φ is a rank-one

preserver. Therefore, Xxδ and Y Tyδ are nonzero for all nonzero x ∈ Fm and y ∈ Fn, i.e.,

N(X) ∩
{
xδ |x ∈ Fm

}
= {0} and N(Y T ) ∩

{
yδ |y ∈ Fn

}
= {0} .

3 Concluding remarks

This article characterized the additive rank-one preservers from Mmn(F) to Mpq(F) over any

field F without the surjectivity assumption. As shown in [1–4], some preserver problems on

matrix spaces can be reduced to rank-one preserver problems. This provides the possibility for

removing the surjectivity assumption of some results on additive preserver problems.
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Further work is to solve some preserver problems between spaces of rectangular matrices

by reducing them to the results obtained in this article.
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