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Abstract
Let Mn be the set of n × n complex matrices, and for every A ∈ Mn, let Sp (A) denote the

spectrum of A. For various types of products A1 ∗ · · · ∗ Ak on Mn, it is shown that a mapping
φ : Mn → Mn satisfying Sp (A1 ∗ · · · ∗ Ak) = Sp (φ(A1) ∗ · · · ∗ φ(Ak)) for all A1, . . . , Ak ∈ Mn has
the form

X 7→ ξS−1XS or A 7→ ξS−1XtS

for some invertible S ∈ Mn and scalar ξ. The result covers the special cases of the usual product
A1 ∗ · · · ∗Ak = A1 · · ·Ak, the Jordan triple product A1 ∗A2 = A1 ∗A2 ∗A1, and the Jordan product
A1 ∗A2 = (A1A2 + A2A1)/2. Similar results are obtained for Hermitian matrices.

2000 Mathematics Subject Classification. 15A04, 15A18
Key words and phrases. Eigenvalue, spectrum, preserve.

1 Introduction

Let Mn be the set of all n× n complex matrices. In [5], Marcus and Moyls proved that if a linear
mapping φ : Mn → Mn preserves the eigenvalues (counting multiplicities) of each matrix in Mn,
then there exists an invertible matrix S such that φ has the form

A 7→ S−1AS or A 7→ S−1AtS,

where At denotes the transpose of A. The assumption on multiplicity is not really necessary. Let
Sp (A) denote the spectrum of A, i.e., the set of all eigenvalues of A without counting multiplicities.
Then by a result of Jafarian and Sourour [3], the above conclusion holds if Sp (φ(A)) = Sp (A).

The result has been generalized in different directions. For example, in [8], Omladič and P. Šemrl
considered spectrum preserving mappings that are just additive. In [6] Molnár studied surjective
maps φ on bounded linear operators such that

Sp (φ(A)φ(B)) = Sp (AB) for all linear operators A,B. (1.1)

In particular, such a map on Mn has the form

A 7→ ξS−1AS or A 7→ ξS−1AtS (1.2)

for some invertible matrix S and ξ ∈ {1,−1}. Continuous differentiable maps on Mn preserving
spectrum was characterized in [1].

In this paper, we consider different types of products A ∗B on Mn including the usual product
A∗B = AB, the Jordan triple product A∗B = ABA, and the Jordan product A∗B = (AB+BA)/2.
We obtain a general result, which implies that a mapping φ : Mn → Mn satisfying

Sp (A ∗B) = Sp (φ(A) ∗ φ(B)) for all A,B ∈ Mn (1.3)
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has the form (1.2) for some invertible S ∈ Mn and scalar ξ. As we do not require the surjective
assumption on φ, our result refines that of Molnár in the finite dimensional case.

Note that a characterization of those φ : Mn → Mn such that AB and φ(A)φ(B) have the same
eigenvalues counting multiplicities is given in [7]. A crucial observation is the following proposition.
We include the proof for the sake of completeness.

Proposition 1.1 Suppose φ : Mn → Mn satisfies

tr (AB) = tr (φ(A)φ(B)) for all A,B ∈M.

Then φ is an invertible linear map.

Proof. For every X = (xij) ∈ Mn, let RX be the n2 row vector

RX = (x11, . . . , x1n, x21, . . . , x2n, . . . , xn1, . . . , xnn),

and CX the n2 column vector

CX = (x11, x21 . . . , xn1, x12, . . . , xn2, . . . , x1n, . . . , xnn)t,

Then for any X, Y ∈ Mn,

Rφ(X)Cφ(Y ) = tr φ(X)φ(Y ) = tr XY = RXCY . (1.4)

Let {Y1, . . . , Yn2} be a basis for Mn. Let Y have columns CY1 , . . . CYn2 , and Z ∈ Mn2 have columns
Cφ(Y1), . . . , Cφ(Yn2 ). Then by (1.4), for any X ∈ Mn we have

Rφ(X)Z = RXY.

Next, we show that Z is invertible. To this end, let {X1, . . . , Xn2} be a basis for Mn, X ∈ Mn2

with rows RX1 , . . . RXn2 , and W ∈ Mn2 with rows Rφ(X1), . . . , Rφ(Xn2 ). Then WZ = XY for the
invertible matrices X and Y. So, Z is invertible, and for any X ∈ Mn

Rφ(X) = RXYZ−1.

Hence, φ is an invertible linear map.

The problem of characterizing mappings that preserve the spectra of the product of matrices
is more challenging. Our results will give characterization of mappings preserving the spectrum of
various products of k matrices X1 ∗ · · · ∗Xk defined as follows.

Let k ≥ 2, and a sequence (j1, . . . , jm) be given so that {j1, . . . , jm} = {1, . . . , k}. We consider
products of the form

X1 ∗ · · · ∗Xk = Xj1 · · ·Xjm ,

which cover the usual product A ∗B = AB and the Jordan triple product A ∗B = ABA. We also
consider products of the form

X1 ∗ · · · ∗Xk = (Xj1 · · ·Xjm + Xjm · · ·Xj1)/2,

which cover the Jordan product A ∗B = (AB + BA)/2.

In Section 2, we obtain the results on the set Mn of n× n complex matrices. Using a transfer
principle in model theoretic algebra (see [2]), one sees that the results also hold for square matrices
over an algebraically closed field. In Section 3, similar results are proved for the set Hn of n × n
complex Hermitian matrices. The same results and proofs are valid for n × n real symmetric
matrices as well.
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2 Results on complex matrices

Theorem 2.1 Suppose k ≥ 2, and a sequence (j1, . . . , jm) is given so that {j1, . . . , jm} = {1, . . . , k}
and there is jr not equal to js for all s 6= r. Consider

X1 ∗ · · · ∗Xk = Xj1 · · ·Xjm .

Then a mapping φ : Mn → Mn satisfies

Sp (φ(X1) ∗ · · · ∗ φ(Xk)) = Sp (X1 ∗ · · · ∗Xk) for all X1, . . . , Xk ∈ Mn (2.1)

if and only if there exist an invertible matrix S ∈ Mn and a scalar ξ satisfying ξm = 1 such that

(a) φ has the form A 7→ ξS−1AS, or

(b) (jr+1, . . . , jm, j1, . . . , jr−1) = (jr−1, . . . , j1, jm, . . . , jr+1) and φ has the form A 7→ ξS−1AtS.

Note that the assumption that there is jr /∈ {j1, . . . , jr−1, jr+1, . . . , jm} is necessary. For exam-
ple, if A∗B = ABBA, then mappings φ satisfying Sp (φ(A)∗φ(B)) = Sp (A∗B) may not have nice
structure. For instance, φ can send all involutions, i.e., those matrices X ∈ Mn such that X2 = In,
to a fixed involution, and φ(X) = X for other X.

Proof of Theorem 2.1. It is clear that if (a) or (b) holds, then φ satisfies (2.1). We need only
prove the necessity part. We divide the proof of it into several assertions. Since Sp (Xj1 · · ·Xjm) =
Sp (Xjr · · ·XjmXj1 · · ·Xjr−1), we may assume that j1 /∈ {j2, . . . , jm}. Define

S = {X ∈ Mn : X has n distinct eigenvalues}.

Assertion 1 For every A ∈ S, there is a neighborhood of NA such that the restriction of φ on NA

equals an invertible linear map LA.

Proof. For every A ∈ S, Sp (AIm−1
n ) has n distinct elements. By the continuity of the eigenval-

ues, there are neighborhoods NIn of In and NA of A such that XY m−1 has n distinct eigenvalues
for every X ∈ NA and Y ∈ NIn . By (2.1), φ(X)φ(Y )m−1 has n distinct eigenvalues equal to those
of XY m−1. Hence

trφ(X)φ(Y )m−1 = tr XY m−1 for every X ∈ NA and Y ∈ NIn . (2.2)

As in the proof of Proposition 1.1, for every X = (xij) ∈ Mn, let RX be the n2 row vector

RX = (x11, . . . , x1n, x21, . . . , x2n, . . . , xn1, . . . , xnn),

and CX the n2 column vector

CX = (x11, x21 . . . , xn1, x12, . . . , xn2, . . . , x1n, . . . , xnn)t,

Then
Rφ(X)Cφ(Y )m−1 = tr φ(X)φ(Y )m−1 = tr XY m−1 = RXCY m−1 (2.3)

for every X ∈ NA and Y ∈ NIn .

3



Now, suppose trXZ = 0 for each Z ∈ {Y m−1 : Y ∈ NIn}. Then for any R ∈ Mn,

trX(I + tR)m−1 =
m∑

j=0

tj
(

m− 1
j

)
trXRj = 0

for sufficiently small t > 0. We have tr XR = 0. It follows that X = 0. So, {Y m−1 : Y ∈ NIn}
is a spanning set of Mn, and contains a basis {Y m−1

j : 1 ≤ j ≤ n2} for Mn with Yj ∈ NIn for

each j = 1, . . . , n2. Let Y and Z be the n2 × n2 matrices with columns CY m−1
1

, . . . , CY m−1

n2
and

Cφ(Y1)m−1 , . . . , Cφ(Yn2 )m−1 respectively. By (2.2) and (2.3),

Rφ(X)Z = RXY for every X ∈ NA.

We claim that the matrix Z is invertible. To this end take a basis {X1, . . . , Xn2} of Mn in NA and
let X and W be the n2×n2 matrices with rows RX1 , . . . , RXn2 and Rφ(X1), . . . , Rφ(Xn2 ) respectively.
Then WZ = XY for invertible matrices X and Y. It follows that Z is invertible, and

Rφ(X) = RXXZ−1 for every X ∈ NA.

Hence the restriction of φ to NA is some invertible linear mapping LA. The proof of Assertion 1 is
complete.

Assertion 2 All the linear maps LA in Assertion 1 are the same, i.e., φ is equal to an invertible
linear mapping L on the dense subset S.

Proof. Note that for any A,B ∈ S, there is a continuous curve f : [0, 1] → S such that f(0) = A
and f(1) = B. Consider the set

C = {t ∈ [0, 1] : φ = LA on an open neighborhood of f(t)}.

Then clearly C is an open subset of [0, 1]. But C is also closed in [0, 1]. Let t0 ∈ C−. There
is an open neighborhood Nf(t0) of f(t0) on which φ is equal to the linear mapping Lf(t0). Take

t ∈ f−1(Nf(t0)) ∩ C. Then on some open neighborhood Nf(t) of f(t), φ = LA. On the non-empty
open set Nf(t0) ∩ Nf(t), Lf(t0) = φ = LA. Hence Lf(t0) = LA, and t0 ∈ C. We conclude that
C = [0, 1], and LA = LB. The proof of the Assertion 2 is complete.

Assertion 3 The mapping L in Assertion 2 has the form A 7→ ξS−1AS or A 7→ ξS−1AtS for some
invertible S ∈ Mn and ξ ∈ C with ξm = 1. Moreover, if the latter case holds, then (j2, . . . , jm) =
(jm, . . . , j2).

Proof. By the continuity of L and the spectrum, we have that

Sp (L(X1) ∗ · · · ∗ L(Xk)) = Sp (X1 ∗ · · · ∗Xk)

for all X1, . . . , Xk ∈ Mn. If A is invertible, then

0 /∈ Sp (A ∗ · · · ∗A) = Sp (L(A) ∗ · · · ∗ L(A)),

and hence L(A) is also invertible. It follows that L is nonsingular and preserves invertible matrices.
By [5], there are invertible matrices M,N such that L has the form

A 7→ MAN or A 7→ MAtN. (2.4)

4



We claim that NM is a scalar matrix. Otherwise, there exists an invertible R ∈ Mn such that
RNMR−1 is a direct sum of companion matrices so that its second row has the form (1, 0, . . . , ∗).
Let A = R−1E12R or At = R−1E12R depending on L has the first or the second form in (2.4),
where E12 is the n × n matrix with 1 at (1, 2) position and 0 everywhere else. Then Sp (Am) =
Sp (A) = {0}. Now

Sp (L(A)) = Sp (M(R−1E12R)N) = Sp (E12RNMR−1).

It follows that 1 ∈ Sp (L(A)) and hence 1 ∈ Sp (L(A)m) where as Sp (Am) = {0}, which contradicts
(2.1).

We have proved that L has the form A 7→ ξS−1AS or A 7→ ξS−1AtS for some ξ. Since
{ξm} = Sp (L(In)m) = Sp (Im

n ) = {1}, ξm = 1.

Now, suppose L has the form A 7→ ξS−1AtS. Replacing L by the mapping A 7→ ξ̄SL(A)S−1,
we may assume that L(A) = At for all A ∈ Mn. Then

Sp (Xj1 · · ·Xjm) = Sp (X1 ∗ · · · ∗Xk) = Sp (L(X1) ∗ · · · ∗ L(Xk))

= Sp (Xt
j1 · · ·X

t
jm

) = Sp (Xjm · · ·Xj1) = Sp (Xj1Xjm · · ·Xj2)

for any X1, . . . , Xk ∈ Mn. We have to show that (j2, . . . , jm) = (jm, . . . , j2). Suppose it is not true.
Let l ≥ 2 be the smallest integer such that jl 6= jm+2−l. Then l ≤ (m + 1)/2. Let Ajl

= A =
diag(λ, 1, . . . , 1), and for every k /∈ {1, jl}, let Ak = B = B1⊕ In−2, where B1 ∈ M2 is a symmetric
invertible matrix with positive entries. Then

Aj2 · · ·Ajm = RAr1Bs1Ar2Bs2 · · ·ArtBstRt

for positive integers ri, si, where R = Aj2 · · ·Ajl−1
. Note that

AriBsi =

(
λrib

(si)
11 λrib

(si)
12

b
(si)
21 b

(si)
22

)
⊕ In−2,

for positive numbers b
(si)
11 , b

(si)
12 , b

(si)
21 and b

(s1)
22 . An induction argument shows that the (1, 2) entry of

Ajl
· · ·Ajm−l+2

is a polynomial of degree r1+· · ·+rt in λ. Similarly, the (1, 2) entry of Ajm−l+2
· · ·Ajl

,
is a polynomial of degree r2 + · · ·+ rt. So, there is λ > 0 such that

Ajl
· · ·Ajm−l+2

6= Ajm−l+2
· · ·Ajl

.

It follows that

Aj2 · · ·Ajm = RAjl
· · ·Ajm−l+2

Rt 6= RAjm−l+2
· · ·Ajl

Rt = Ajm · · ·Aj2 .

Note that if X ∈ Mn is a rank one idempotent matrix, and Sp (A) = Sp (BX), then tr (AX) =
tr (BX). Moreover, if tr (AX) = tr (BX) for all rank one idempotent X ∈ Mn, then A = B. By
these facts, we see that there exists a rank one idempotent A1 such that

Sp (Ajm · · ·Aj2Aj1) 6= Sp (Aj2 . . . , AjmAj1) = Sp (Aj1Aj2 · · ·Ajm),

which is a contradiction. Hence, (j2, . . . , jm) = (jm, . . . , j2) as asserted.
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Assertion 4 The mapping φ equals the invertible linear mapping L in Assertion 3.

Proof. From (2.1), and the continuity of L and the spectrum, we have

Sp (L(A)L(B)m−1) = Sp (ABm−1) = Sp (φ(A)L(B)m−1) for every A,B ∈ Mn.

Since L is surjective,

Sp (φ(A)Cm−1) = Sp (L(A)Cm−1) for every A,C ∈ Mn. (2.5)

Let A ∈ Mn. If C ∈ Mn is a rank one idempotent, φ(A)Cm−1 has at most one nonzero eigenvalue,
which is given by trφ(A)C. The same is true for L(A)C. By (2.5),

trφ(A)C = tr L(A)C for every rank one idempotent matrix C ∈ Mn.

It follows that φ(A) = L(A) for all A ∈ Mn. The proof of Assertion 4 is complete.

By Assertions 1–4, the theorem follows.

Theorem 2.2 Suppose k ≥ 2, and X1 ∗ · · · ∗Xk = Xj1 · · ·Xjm + Xjm · · ·Xj1 for a given sequence
(j1, . . . , jm) so that {j1, . . . , jm} = {1, . . . , k} and there exists jr not equal to js for all s 6= r. Then
a mapping φ : Mn → Mn satisfies

Sp (φ(X1) ∗ · · · ∗ φ(Xk)) = Sp (X1 ∗ · · · ∗Xk) for all X1, . . . , Xk ∈ Mn (2.6)

if and only if there exist an invertible matrix S ∈ Mn and a scalar ξ satisfying ξm = 1 such that φ
has the form

A 7→ ξS−1AS or A 7→ ξS−1AtS.

Proof. The necessity of the result is clear. We consider the sufficiency part. Using similar
arguments as in the proof of Theorem 2.1 (cf. Assertions 1 and 2), we can prove that φ is equal to
a bijective linear mapping L on the dense subset

S = {X ∈ Mn : X has n distinct eigenvalues }.

By continuity of L and the spectrum, we see that

Sp (L(X1) ∗ · · · ∗ L(Xk)) = Sp (X1 ∗ · · · ∗Xk)

for all X1, . . . , Xk ∈ Mn. Thus, Sp (L(A)m) = Sp (Am) for all A ∈ Mn. Using the argument in
Assertion 3 in the proof of Theorem 2.1, we see that L has the form A 7→ ξS−1AS or A 7→ ξS−1AtS.
Now, replace φ and L by the mappings A 7→ ξ̄Sφ(A)S−1 and A 7→ ξ̄SL(A)S−1, respectively, we
may assume that L(A) = A for all A ∈ Mn.

We will show that φ = L on Mn. From (2.2), we have

Sp (Xr−1L(Y )Xm−r + Xm−rL(Y )Xr−1)

= Sp (L(X)r−1L(Y )L(X)m−r + L(X)m−rL(Y )L(X)r−1)

= Sp (Xr−1Y Xm−r + Xm−rY Xr−1)

= Sp (φ(X)r−1φ(Y )φ(X)m−r + φ(X)m−rφ(Y )φ(X)r−1)

= Sp (L(X)r−1φ(Y )L(X)m−r + L(X)m−rφ(Y )L(X)r−1)

= Sp (Xr−1φ(Y )Xm−r + Xm−rφ(Y )Xr−1)
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for every X ∈ S and Y ∈ Mn. Since the set of such matrices X is dense in Mn, by continuity of
the spectrum, we see that

Sp (Xr−1φ(Y )Xm−r + Xm−rφ(Y )Xr−1) = Sp (Xr−1L(Y )Xm−r + Xm−rL(Y )Xr−1) (2.7)

for any X, Y ∈ Mn. It remains to prove the following.

Assertion Let A,B ∈ Mn. Then A = B if

Sp (Xr−1AXm−r + Xm−rAXr−1) = Sp (Xr−1BXm−r + Xm−rBXr−1) for every X ∈ Mn.

Proof. If both r− 1 and m− r are positive, then for any rank one idempotent X ∈ Mn we have

Sp (2AX) = Sp (XAX + XAX) = Sp (Xr−1AXm−r + Xm−rAXr−1)

= Sp (Xr−1BXm−r + Xm−rBXr−1) = Sp (XBX + XBX) = Sp (2BX).

Since AX and BX have the same spectrum and have rank at most one, we see that

tr (AX) = tr (BX).

It follows that A = B.
Suppose r − 1 or m− r is zero. Then

Sp (AX + XA) = Sp (BX + XB)

for all X ∈ {Zm−1 : Z ∈ Mn}, which is a dense set in Mn. By continuity of the spectrum, we may
assume that the above equality is true for all X ∈ Mn. We shall assume without loss of generality
that A is upper triangular. We claim that B is also upper triangular. Suppose A = (aij), B = (bij),
and for every t ∈ C, let Xt = E11 + tE12 + · · ·+ tn−1E1n. Then only the first row of AXt + XtA is
nonzero and equals (2a11 ∗ · · · ∗).

Hence Sp (AXt + XtA) = {2a11, 0}. As Sp (BXt + XtB) = Sp (AXt + XtA) = {2a11, 0},
BXt + XtB has eigenvalues 2a11 and 0 with certain multiplicities. So,

tr (BXt + XtB) ∈ {2a11, . . . , 2(n− 1)a11}.

Now

BXt + XtB =


b11 b11t · · · b11t

n−1

b21 b21t · · · b21t
n−1

...
...

...
bn1 bn1t · · · bn1t

n−1

+


bn + b21t + · · ·+ bn1t

n−1 ∗ · · · ∗
0 0 · · · 0
...

...
...

0 0 · · · 0


has diagonal entries

2b11 + b21t + · · ·+ bn1t
n−1, b21t, . . . , bn1t

n−1,

and hence
tr (BXt + XtB) = 2b11 + 2b21t + · · ·+ 2bn1t

n−1

is a polynomial in t. It cannot take on a finite number of values only unless it is a constant. The
coefficients, except the constant term, are all zero. Hence b21 = · · · = bn1 = 0. Similarly, by
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considering Xt = Eii + tEi,i+1 + · · · + tn−iEin, we get bi+1,i = · · · = bni = 0 for i = 2, . . . , n − 1.
The matrix B is upper triangular.

To show that A = B, we first obtain, by putting X = Eii, aii = bii for every i. For i < j, we
have

AEji + EjiA =



a1j
...

aij
...

0 · · · aii + ajj · · · aij · · · ain

0
...
0


.

Expanding along the jth column, say, we get

det (AEji + EjiA− λIn) = (−λ)n−2(aij − λ)2.

Hence Sp (AEji + EjiA) = {aij , 0}. Note that Sp (BEji + EjiB) = {bij , 0}. So, aij = bij .

3 Results on Hermitian matrices

In this section, we study mappings on Hn that have similar preserving properties as in Section 2.
First, we consider products of the form X1 ∗ · · · ∗Xk = Xj1 · · ·Xjm such that one of the jr appears
only once in (j1, . . . , jm). Even though Hn may not be closed under this product, mappings that
preserve the spectrum of the product are in nice form. If we insist that X1 ∗ · · · ∗ Xm ∈ Hn,
then m is odd, and r = (m + 1)/2 is the only possible value for jr to appear once; in particular,
A ∗B = AkBAk is the only product we can define on two matrices.

Theorem 3.1 Suppose k ≥ 2, and X1 ∗ · · · ∗ Xk = Xj1 · · ·Xjm for a given sequence (j1, . . . , jm)
so that {j1, . . . , jm} = {1, . . . , k} and there exists jr not equal to js for all s 6= r. Then a mapping
φ : Hn → Hn satisfies

Sp (φ(X1) ∗ · · · ∗ φ(Xk)) = Sp (X1 ∗ · · · ∗Xk) for all X1, . . . , Xk ∈ Hn (3.1)

if and only if there exist a unitary matrix S ∈ Mn and a scalar ξ satisfying ξm = 1 such that

(a) φ has the form A 7→ ξS∗AS, or

(b) (j1, . . . , jr−1, jr+1, . . . , jm) = (jr+1, . . . , jm, j1, . . . , jr−1) and φ has the form A 7→ ξS∗AtS.

Proof. Again, we only need to consider the sufficiency part. Using similar arguments as in the
proof of Theorem 2.1 (cf. Assertions 1 and 2), we can prove that φ is equal to a bijective (real)
linear mapping L on the dense subset

S = {X ∈ Hn : X has n distinct eigenvalues },
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and that L preserves the invertible matrices in Hn. By [4, Theorem 6], there is an invertible matrix
S ∈ Mn such that L is of the form

A 7→ ±S∗AS or A 7→ ±S∗AtS.

From the observations

{1} = Sp (Im
n ) = Sp (L(In)m) = Sp ((±S∗S)m)

and that S∗S is positive definite, we conclude that S∗S = In, i.e., S is unitary. Hence L has the
asserted forms.

Also, we can show that (jr+1, . . . , jm, j1, . . . , jr−1) = (jm, . . . , jr+1, jr−1, . . . , j1) if L has the
form A 7→ ξS∗AtS with the help of the following fact.

Two matrices A,B ∈ Mn are equal if Sp (XA) = Sp (XB) for every rank one X ∈ Hn.

[Note that we use real symmetric matrices in the proof of Assertion 3 in the proof of Theorem 2.1.]
Using the above fact again, we can adapt the proof of Assertion 4 in the proof of Theorem 2.1.

Theorem 3.2 Suppose k ≥ 2, and X1 ∗ · · · ∗Xk = Xj1 · · ·Xjm + Xjm · · ·Xj1 for a given sequence
(j1, . . . , jm) so that {j1, . . . , jm} = {1, . . . , k} and there exists jr not equal to js for all s 6= r. Then
a mapping φ : Hn → Hn satisfies

Sp (φ(X1) ∗ · · · ∗ φ(Xk)) = Sp (X1 ∗ · · · ∗Xk) for all X1, . . . , Xk ∈ Hn (3.2)

if and only if there exist a unitary matrix S ∈ Mn and a scalar ξ satisfying ξm = 1 such that φ has
the form

A 7→ ξS∗AS or A 7→ ξS∗AtS.

Proof. We use arguments similar to those in the proof of Theorem 2.2. We need only replace
the Assertion in the proof by the following.

Assertion Let A,B ∈ Hn. Then A = B, if

Sp (Xr−1AXm−r + Xm−rAXr−1) = Sp (Xr−1BXm−r + Xm−rBXr−1)

for every rank one idempotent X ∈ Hn.

Proof. If both r − 1 and m − r are positive, we can prove the result using a similar argument
as in the proof of Theorem 2.2.

If r − 1 or m− r is zero, then we have

Sp (XA + AX) = Sp (XB + BX) for every rank one idempotent X ∈ Hn.

We shall assume without loss of generality that A is the diagonal matrix diag (a1, . . . , an). Put
X = E11, we have AE11 +E11A = diag (2a1, 0, . . . , 0), and hence Sp (AE11 +E11A) = {2a1, 0}. Let
B = (bij). Then

BE11 + E11B =


2b11 b12 . . . a1n

b12 0 . . . 0
...

...
...

b1n 0 . . . 0

 .
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The characteristic polynomial of BE11 + E11B is

(−λ)n−2(λ2 − 2b11λ− (|b12|2 + · · ·+ |b1n|2)).

The zeros of the polynomial are 2a1 and 0. Now it is easy to see that the polynomial cannot have a
nonzero double zero. Hence if a1 6= 0, 2a1 is a simple zero. We have b11 = a1 and b12 = · · · b1n = 0.
It is obvious that if a1 = 0, then b11 = b12 = · · · b1n = 0. Similarly, by putting X = Ejj , we
conclude that A = B.
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