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Abstract

It is shown that the linear group of automorphism of Hermitian matrices which preserves
the tensor product of unitary orbits is generated by natural automorphisms: change of an
orthonormal basis in each tensor factor, partial transpose in each tensor factor, and interchanging
two tensor factors of the same dimension. The result is then applied to show that automorphisms
of the product numerical ranges have the same structure.
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1 Introduction

Let Mn be the set of n × n complex matrices, and Hn be the set of Hermitian matrices in Mn.

In quantum physics, quantum states of a system with n physical states are represented as density

matrices A in Hn, i.e., A is positive semi-definite with trace one; see [7]. Let C ∈ Hm and D ∈ Hn

be density matrices. They may be changed by quantum operations, or they may be put in different

bases for easy measurement. In closed systems, these correspond to unitary similarity transforms.

Hence, it is interesting to consider the unitary similarity orbits of these matrices, namely,

U(C) = {UCU∗ : U ∈Mm is unitary} and U(D) = {V DV ∗ : V ∈Mn is unitary}.

If there is no influence from the external environment, the joint system described by the states

X ∈ U(C) and Y ∈ U(D) is represented by X ⊗ Y . When C and D are pure states, i.e., both

C and D are rank one orthogonal projections, then U(C) ⊗ U(D) contains all states of the form
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X ⊗ Y , where X ∈ Hm and Y ∈ Hn are pure states, and the convex hull of U(C)⊗U(D), denoted

by S(C,D) = conv {U(C)⊗ U(D)}, becomes the set of all separable bipartite states; see [3].

In [1], we show that linear automorphisms on Hmn leaving invariant the set U(C)⊗U(D) have

the same structure as those leaving invariant the set S(C,D) when C and D are pure states. Such

an linear automorphism Ψ has the form

(1) A⊗B 7→ ψ1(A)⊗ ψ2(B) or (2) A⊗B 7→ ψ2(B)⊗ ψ1(A),

where for j = 1, 2, ψj has the form

X 7→ U∗jXUj or X 7→ U∗jX
tUj

for some unitary U1 ∈Mm and U2 ∈Mn.

The purpose of this paper is to refine the above result, and characterize linear automorphisms

Ψ on Hmn or Mmn such that

Ψ(U(C)⊗ U(D)) = U(C)⊗ U(D) and / or Ψ(S(C,D)) = S(C,D),

where C ∈ Hm and D ∈ Hn are density matrices.

In connection to U(C)⊗U(D), consider the (C,D)-product numerical range of an (mn)× (mn)

matrix defined by

W⊗C,D(T ) = {tr (TZ) : Z ∈ U(C)⊗ U(D)},

which is a generalization of the classical numerical range (see [2]) and is a useful tool for studying

quantum information science introduced in [6]. We will also characterize linear maps Ψ satisfying

W⊗C,D(Ψ(T )) = W⊗C,D(T ) for all matrices T ∈Mmn.

Note that when D = In/n, we can consider the composite map tr 2 ◦Ψ, where tr 2 is the linear map

such that tr 2(A ⊗ B) = (trB)A for A ⊗ B ∈ Mm ⊗Mn known as the partial trace operator with

respect to the second system. Then the problems reduce to the study of linear preservers of U(C)

and the linear preservers of the C-numerical range WC(T ); see [4] and its references.

To avoid degenerate cases, we always assume that C and D are non-scalar matrices in our

discussion. Furthermore, we use the usual inner product (X,Y ) = tr (XY ∗) for two complex

matrices of the same size. Also, to specify a linear map on Hmn or Mmn, it suffices to (and we

often will) specify only the image of elements of the form A⊗B.

2 Results and proofs

Consider the following sets of linear maps on complex or Hermitian matrices.

L(C): the set of operators mapping U(C) onto itself.

L(D): the set of operators mapping U(D) onto itself.
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L(C,D): the set of operators mapping U(C) onto U(D).

By the result in [5], operators in L(C) have the form

(1) A 7→ UAU∗ or A 7→ UAtU∗ for some unitary U ∈Mm,

(2) A 7→ (2trA/m)Im − UAU∗ or A 7→ (2trA/m)Im − UAtU∗ for some unitary U ∈Mm in case

C and 2I/m− C have the same eigenvalues.

Similarly, operators in L(D) have the forms

(3) B 7→ V BV ∗ or B 7→ V BtV ∗ for some unitary V ∈Mn,

(4) B 7→ (2trB/n)In−V BV ∗ or B 7→ (2trB/n)In−V BtV ∗ for some unitary V ∈Mn in case D

and 2I/n−D have the same eigenvalues.

For L(C,D) to be non-empty, we must have m = n. If U(C) = U(D), i.e., C and D have

the same eigenvalues, then L(C,D) = L(C) and L(C,D) consists of operators of the form (1).

Otherwise, 2Im/m−C and D have the same eigenvalues, equivalently, 2In/n−D and C have the

same eigenvalues, and L(C,D) consists of operators of the form (2) described above.

We have the following.

Theorem 2.1 Let Ψ : V → V be a linear map with V ∈ {Mmn, Hmn}, and C ∈ Hm and D ∈ Hn

be non-scalar density matrices. The following are equivalent.

(a) Ψ(U(C)⊗ U(D)) = U(C)⊗ U(D).

(b) Ψ(S(C,D)) = S(C,D).

(c) One of the following holds.

(c.1) There are ψ1 ∈ L(C) and ψ2 ∈ L(D) such that

Ψ(A⊗B) = ψ1(A)⊗ ψ2(B) for all A⊗B ∈ Hm ⊗Hn.

(c.2) (m,U(C)) = (n,U(D)), there are ψ1 ∈ L(C) and ψ2 ∈ L(D) such that

Ψ(A⊗B) = ψ2(B)⊗ ψ1(A) for all A⊗B ∈ Hm ⊗Hn.

(c.3) (m,U(2Im/m− C)) = (n,U(D)), and there are ψ1, ψ2 ∈ L(C,D) such that

Ψ(A⊗B) = ψ2(B)⊗ ψ1(A) for all A⊗B ∈ Hm ⊗Hn.

In the rest of this section, we always assume that C ∈ Hm and D ∈ Hn such that C 6= Im/m

and D 6= In/n. To prove Theorem 2.1, we first establish some lemmas.
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Lemma 2.2 Given any four distinct elements X1 ⊗ Y1, . . . , X4 ⊗ Y4 in U(C)⊗ U(D). Suppose

4∑
j=1

αj (Xj ⊗ Yj) = 0, (1)

for some nonzero α1, . . . , α4 ∈ R with α1 + · · ·+ α4 = 0. Then either

X1 = X2 = X3 = X4 or Y1 = Y2 = Y3 = Y4.

Proof. Without loss of generality, suppose X1 6= X2. Then X1 and X2 are linearly independent

and there is a linear functional f : Hm → R such that f(X1) = 1 and f(X2) = 0. Applying the

linear map A⊗B 7→ f(A)B to equation (1),

α1Y1 + α3f(X3)Y3 + α4f(X4)Y4 = 0 =⇒ Y1 = (−α3f(X3)/α1)Y3 + (−α4f(X4)/α1)Y4.

Notice that at least one of f(X3) and f(X4) is nonzero. Suppose f(X3) 6= 0. Then we must have

Y1 = Y3 as Y1, Y3, Y4 are in U(D). In this case, we must have X1 6= X3. Then there is another

linear functional g : Hm → R such that g(X1) = 1 and g(X2) = g(X3) = 0. Applying g to (1),

α1Y1 + α4g(X4)Y4 = 0.

Then we have Y1 = Y4. Taking the partial trace A⊗B 7→ (trA)B in (1), one gets

α1Y1 + α2Y2 + α3Y3 + α4Y4 = 0.

Since, Y1 = Y3 = Y4, we must have Y1 = Y2. The result follows. �

For any A ∈Mm, let A(i, j) be the submatrix of A with row and column indices i and j.

Lemma 2.3 Suppose D = diag (d1, . . . , dn) is not a scalar matrix. For any (i, j) pair, let Tij(D) be

the set of matrices in U(D) obtained from D by replacing D(i, j) by a matrix in H2 with eigenvalues

di and dj.

(1) If di 6= dj, then for any two distinct matrices T1, T2 ∈ Tij(D), there are T3, T4 ∈ Tij(D) such

that T1, T2, T3 and T4 are all distinct and either T1 + T3 = T2 + T4 or T1 + T2 = T3 + T4.

(2) For any permutation σ on the index set {1, . . . , n}, define Dσ = diag
(
dσ(1), . . . , dσ(n)

)
. Then

the real linear span of the set
⋃
{Tij(Dσ) : permutation σ and 1 ≤ i < j ≤ n} equals Hn.

Proof. For the first statement, we assume that (i, j) = (1, 2), T1 =

(
x11 x12
x21 x22

)
⊕ D̂ and

T2 =

(
y11 y12
y21 y22

)
⊕ D̂ with D̂ = diag (d3, . . . , dn). Consider the following two cases:

Case 1. Suppose T2 6=
(
x22 −x12
−x21 x11

)
⊕D̂. Let T3 =

(
x22 −x12
−x21 x11

)
⊕D̂ and T4 =

(
y22 −y12
−y21 y11

)
⊕

D̂. Then T1, T2, T3 and T4 are all distinct and T1 + T3 = (d1 + d2)I2 ⊕ 2D̂ = T2 + T4.
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Case 2. Suppose T2 =

(
x22 −x12
−x21 x11

)
⊕ D̂. One can always choose T3 and T4 ∈ T12(D) so that

T1, T2, T3 and T4 are all distinct and T1 + T2 = (d1 + d2)I2 ⊕ 2D̂ = T3 + T4.

For the second statement, clearly, the set {Dσ : permutation σ} spans the set of all diagonal

matrices in Hn. Next, for each (r, s) pair, one can find a permutation σ so that dσ(r) 6= dσ(s) and

hence Trs(Dσ) contains two linearly independent matrices with nonzero (r, s) and (s, r) entries.

Therefore, the set
⋃
{Tij(Dσ) : permutation σ and 1 ≤ i < j ≤ n} clearly spans Hn. �

Lemma 2.4 Suppose C ∈ Hm and D ∈ Hn are non-scalar density matrices. Let Ψ : V → V be a

linear map with V ∈ {Mmn, Hmn} such that Ψ(U(C) ⊗ U(D)) = U(C) ⊗ U(D). Then one of the

following holds.

(1) For every X ∈ U(C) there is X̃ ∈ U(C) such that Ψ(X ⊗ U(D)) = X̃ ⊗ U(D); for every

Y ∈ U(D) there is Ỹ ∈ U(D) such that Ψ(U(C)⊗ Y ) = U(C)⊗ Ỹ .

(2) m = n, for every X ∈ U(C) there is X̃ ∈ U(D) such that Ψ(X ⊗ U(D)) = U(C) ⊗ X̃; for

every Y ∈ U(D) there is Ỹ ∈ U(C) such that Ψ(U(C)⊗ Y ) = Ỹ ⊗ U(D).

Proof. Without loss of generality, assume that m ≤ n and D = diag (d1, . . . , dn). For any

permutation σ on the index set {1, . . . , n}, define Dσ = diag
(
dσ(1), . . . , dσ(n)

)
. Fixed a C0 ∈ U(C).

We first claim that each Dσ with dσ(i) 6= dσ(j), either

(i) there is a C̃0 ∈ U(C) such that Ψ (C0 ⊗ Tij(Dσ)) ⊆ C̃0 ⊗ U(D); or

(ii) there is a C̃0 ∈ U(D) such that Ψ (C0 ⊗ Tij(Dσ)) ⊆ U(C)⊗ C̃0.

Suppose T1 and T2 ∈ Tij(Dσ) are distinct. By Lemma 2.3(1), there exist T3 and T4 ∈ Tij(Dσ)

such that T1, T2, T3 and T4 are distinct and either T1 + T3 = T2 + T4 or T1 + T2 = T3 + T4. Let

Ψ(C0 ⊗ Ti) = Xi ⊗ Yi for some Xi ∈ U(C) and Yi ∈ U(D), i = 1, . . . , 4. Then X1 ⊗ Y1 +X3 ⊗ Y3 =

X2 ⊗ Y2 + X4 ⊗ Y4 or X1 ⊗ Y1 + X2 ⊗ Y2 = X3 ⊗ Y3 + X4 ⊗ Y4. By Lemma 2.2, we have either

X1 = · · · = X4 or Y1 = · · · = Y4. As T1 and T2 are arbitrary matrices in Tij(Dσ), the claim holds.

Suppose first Ψ(C0⊗T12(D)) ⊆ C̃0⊗U(D) for some C̃0 ∈ U(C). In this case, we will show that

{Ψ(C0 ⊗Dσ) : permutation σ} ⊆ C̃0 ⊗ U(D). (2)

Once this is proven, with Lemma 2.3 and the claims (i)-(ii), one can conclude that Ψ(C0⊗U(D)) ⊆
C̃0 ⊗ U(D). Applying the argument to Ψ−1 on the set C̃0 ⊗ U(D), we see that Ψ−1(C̃0 ⊗ U(D)) ⊆
C0 ⊗ U(D). Thus, Ψ(C0 ⊗ U(D)) = C̃0 ⊗ U(D).

To prove the inclusion (2), let D′ = diag (d2, d1, d3, . . . , dn). Notice that {D,D′} ⊆ T12(D). By

claim (i),

Ψ(C0 ⊗D) = C̃0 ⊗ Y and Ψ(C0 ⊗D′) = C̃0 ⊗ Y ′ for some distinct Y, Y ′ ∈ U(D). (3)
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We consider the following two cases.

Case 1 Suppose dσ(1) 6= dσ(2). Let D′σ = diag
(
dσ(2), dσ(1), dσ(3), . . . , dσ(n)

)
. Then

(dσ(1) − dσ(2))
(
Ψ(C0 ⊗D)−Ψ(C0 ⊗D′)

)
− (d1 − d2)

(
Ψ(C0 ⊗Dσ)−Ψ(C0 ⊗D′σ)

)
= Ψ

(
(dσ(1) − dσ(2))(C0 ⊗ (D −D′))− (d1 − d2)(C0 ⊗ (Dσ −D′σ))

)
= 0.

Then Lemma 2.2 and (3) imply Ψ(C0 ⊗Dσ) = C̃0 ⊗ Yσ for some Yσ ∈ U(D).

Case 2 Suppose dσ(1) = dσ(2). Clearly, there is j ≥ 2 such that dσ(j) 6= dσ(1). Without loss of

generality, we may assume j = 3, i.e., dσ(3) /∈ {dσ(1), dσ(2)}. Let D′′ = diag (d1, d3, d2, . . . , dn) and

D′′σ = diag
(
dσ(1), dσ(3), dσ(2), . . . , dσ(n)

)
. By Case 1, Ψ(C0 ⊗D′′σ) = C̃0 ⊗ Y ′′σ for some Y ′′σ ∈ U(D).

Observe that

(dσ(2) − dσ(3))
(
Ψ(C0 ⊗D)−Ψ(C0 ⊗D′′)

)
− (d2 − d3)

(
Ψ(C0 ⊗Dσ)−Ψ(C0 ⊗D′′σ)

)
= 0.

With Lemma 2.2 and (3), one can conclude that Ψ(C0 ⊗ Dσ) = C̃0 ⊗ Yσ for some Yσ ∈ U(D).

Therefore, the inclusion (2) holds.

Next suppose Ψ(C0⊗T12(D)) ⊆ U(C)⊗C̃0 for some C̃0 ∈ U(D). By a similar argument, one can

show that Ψ(C0⊗U(D)) ⊆ U(C)⊗ C̃0. Then Ψ induces an injective map from span {C0⊗U(D)} =

C0⊗Mn to span {U(C)⊗ C̃0} = Mm⊗ C̃0. Since we assume that m ≤ n, we conclude that m = n.

Applying the argument to Ψ−1 on the set U(C)⊗ C̃0, we see that Ψ(C0 ⊗ U(D)) = U(C)⊗ C̃0.

From the above argument, one see that for each C0 ∈ U(C), either Ψ(C0⊗U(D)) = C̃0⊗U(D)

or Ψ(C0 ⊗ U(D)) = U(C)⊗ C̃0. Now, we claim that one of the following holds.

(I) For every X ∈ U(C) there is X̃ ∈ U(C) such that Ψ(X ⊗ U(D)) = X̃ ⊗ U(D).

(II) For every X ∈ U(C), there is X̃ ∈ U(D) such that Ψ(X ⊗ U(D)) = U(C)⊗ X̃.

To see this, consider any distinct X1, X2 ∈ U(C). Suppose Ψ(X1 ⊗ U(D)) = X̃1 ⊗ U(D) and

Ψ(X2 ⊗ U(D)) = U(C)⊗ X̃2 for some X̃1 ∈ U(C) and X̃2 ∈ U(D). Then

Ψ(X1 ⊗ U(D)) ∩Ψ(X2 ⊗ U(D)) = {X̃1 ⊗ X̃2}.

But this contradicts the fact that Ψ is bijective and the two sets X1 ⊗ U(D) and X2 ⊗ U(D) are

disjoint.

Now, suppose D0 ∈ U(D). We can apply similar arguments to conclude that either

(i’) Ψ(U(C)⊗D0) = U(C)⊗ D̃0 for some D̃0 ∈ U(D), or

(ii’) Ψ(U(C)⊗D0) ⊆ D̃0 ⊗ U(D) for some D̃0 ∈ U(C).
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Note that in (ii’), we cannot get m = n and the set equality as before because we assume that

m ≤ n.

We will show that if (I) holds then (i’) holds. Assume the contrary that (I) and (ii’) hold. We

can find X1 ∈ U(C) such that Ψ(X1 ⊗ U(D)) = X̃1 ⊗ U(D) with X̃1 6= D̃0. Then

Ψ(X1 ⊗D0) ∈ Ψ(X1 ⊗ U(D)) ∩Ψ(U(C)⊗D0) ⊆
(
X̃1 ⊗ U(D)

)
∩
(
D̃0 ⊗ U(D)

)
= ∅,

a contradiction. Thus, if (I) holds, then (i’) holds.

Similarly, if (II) holds we can show that (i’) cannot hold. Thus, we must have condition (ii’) with

the additional conclusion that the set equality Ψ(U(C)⊗D0) = D̃0⊗U(D). Now for any Y ∈ U(D),

we can show that Ψ(U(C)⊗ Y ) = U(C)⊗ Ỹ for some Ỹ ∈ U(D), or Ψ(U(C)⊗ Y ) = Ỹ ⊗U(D) for

some Ỹ ∈ U(C), depending on (i’) or (ii’) holds. The desired result follows. �

Proof of Theorem 2.1 Since U(C) ⊗ U(D) is the set of extreme points of S(C,D), we have (a)

⇔ (b). Clearly, (c) ⇒ (a).

Suppose (a) holds. By Lemma 2.4, either (1) or (2) holds. Suppose (1) holds. Let ψ1 = tr 2 ◦Ψ

and ψ2 = tr 1 ◦ Ψ, where tr 1 and tr 2 are the partial traces given by tr 1(A ⊗ B) = tr (A)B and

tr 2(A ⊗ B) = tr (B)A. It follows that (c.1) holds. Similarly, we have either (c.2) or (c.3) if (2)

holds.. �

By Theorem 2.1, we can deduce the following.

Theorem 2.5 Let Ψ : V → V be a linear map with V ∈ {Mmn, Hmn}, and C ∈ Hm and D ∈ Hn

be non-scalar density matrices. The following are equivalent.

(a) W⊗C,D(Ψ(T )) = W⊗C,D(T ) for all T ∈ V.

(b) conv
(
W⊗C,D(Ψ(T ))

)
= conv

(
W⊗C,D(T )

)
for all T ∈ V.

(c) Ψ has the form described in Theorem 2.1(c).

Proof. The implications (c) ⇒ (a) ⇒ (b) are clear. Suppose (b) holds. Note that

conv {W⊗C,D(T )} = {tr (TZ) : Z ∈ S(C,D)}.

Thus the dual map Ψ∗ satisfies Ψ∗(S(C,D)) = S(C,D) and has the form described in Theorem 2.1

(c). One readily checks that the dual map of such a map has the same form. The result follows. �

Remark 2.6 One may further extend the results to multi-partite systems U(C1) ⊗ · · · ⊗ U(Ck)

using techniques similar to those in [1] and the following extension of Lemma 2.2.

If four distinct elements X1, X2, X3, X4 ∈ U(C1) ⊗ · · · ⊗ U(Ck) satisfy α1X1 + · · · + α4X4 = 0

for some nonzero α1, . . . , α4 ∈ R summing up to 0, then X1, . . . , X4 differ in only one of the tensor

factors.

We omit the discussion.
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