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Abstract

In this paper, we provide some characterizations of inverse M -matrices with
special zero patterns. In particular, we give necessary and sufficient conditions
for k-diagonal matrices and symmetric k-diagonal matrices to be inverse M -
matrices. In addition, results for triadic matrices, tridiagonal matrices and
symmetric 5-diagonal matrices are presented as corollaries.
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1. Introduction

A matrix A is called an M -matrix if A has non-positive off-diagonal entries
and the eigenvalues of A have positive real part. There are many equivalent
characterizations of M -matrices, see [3], for instance, A is an M -matrix if A
is nonsingular and A−1 is a nonnegative matrix. However, in general a non-
negative matrix is not necessarily the inverse of an M -matrix. A nonsingular
matrix A is called an inverse M -matrix if A−1 is an M -matrix. A first study in
finding sufficient conditions for a nonnegative symmetric matrix to be an inverse
M -matrix was conducted in [11] by T.L. Markham, and it was also shown in
[11] that the inverse of a type-D matrix A with positive (1, 1)th entry is a tridi-
agonal M -matrix. Since then, many efforts have been devoted to characterize
nonnegative matrices whose inverses are M -matrices [1, 6, 7, 13], and certain
special inverse M -matrices such as ultrametric matrices have been investigated
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in [8, 9, 10, 12]. Researchers call this problem the inverse M -matrix problem
[13]. However, until now only few sufficient conditions were developed.

The aim of this paper is to provide some characterizations for nonnegative
matrices with special zero patterns to be inverse M -matrices. A necessary and
sufficient condition for a matrix to be an inverse M -matrix will be given in
Section 2, and this main result will be used in Section 3 to study certain special
matrices, namely, k-diagonal matrices and triadic matrices.

We first fix some notation. Denote by ⟨n⟩ the index set {1, . . . , n} for positive
integer n. For notation convenience, we set ⟨n⟩ = ∅ if n ≤ 0. Let � and � be
nonempty ordered subsets of ⟨n⟩, both of strictly increasing integers. Then
A[�, �] is the submatrix of A with rows indexed by � and columns indexed by
�. For simplicity, we write A[�]=A[�, �]. It is not surprising that inverse M -
matrices inherit certain considerable properties from M -matrices. Here, we list
some properties that will be frequently used in this paper.

Suppose A is an inverse M -matrix.

(P1) A is a nonnegative matrix with positive diagonal entires.

(P2) All principal submatrices of A are inverse M -matrices.

(P3) For any permutation matrix P , PTAP is an inverse M -matrix.

(P4) For any � ⊆ ⟨n⟩, the Schur complement of A/A[�] is an inverse M -matrix.

To present the next property, we require the following definition. A nonneg-
ative matrix B = [bij ] is called zero-pattern invariant if for any i, j, the (i, j)th
entry of B equals zero if and only if

bij = 0 ⇐⇒ bikbkj = 0 for all k.

Indeed, if B is zero-pattern invariant, then every power Bn of B has the same
zero pattern as B. Let A = [aij ] be an inverse M -matrix. Then (P1) implies
that A has positive diagonal entires and (P4) implies that the Schur complement
A/[akk] is an inverse M -matrix for all k and hence A/[akk] is nonnegative. Then
for any distinct i, j and k,

aij −
aikakj
akk

≥ 0.

It follows that aij = 0 implies aikakj = 0 for all k. Then

aij = 0 =⇒
∑
k

aikakj = 0 =⇒ aijajj = 0 =⇒ aij = 0.

Thus, we have the following property.

(P5) Every inverse M -matrix is zero-pattern invariant.

It has to be noted that (P5) is equivalent to a well known fact that the directed
graph of every inverse M -matrix is transitively closed. That is, in the directed
graph of an inverse M -matrix, there exists a path form i to j if and only if there
is an edge from i to j (see e.g., [7] and [10]). For a more detailed description of
inverse M -matrices, we refer readers to [3, 5].
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2. Main result

We now present the main theorem of the paper.

Theorem 1. Suppose A = [aij ] is an n × n nonnegative matrix with positive
diagonal entries. Define the ordered index sets

i = {k ∈ ⟨n⟩ : aik > 0} and �j = {k ∈ ⟨n⟩ : akj > 0} for all i, j ∈ ⟨n⟩.

Then the following are equivalent.

(a) A is an inverse M -matrix;

(b) A is zero-pattern invariant and the principal submatrix A[i] is an inverse
M -matrix for all i ∈ ⟨n⟩;

(c) A is zero-pattern invariant and the principal submatrix A[�j ] is an inverse
M -matrix for all j ∈ ⟨n⟩.

Proof. The implications (a) ⇒ (b) and (a) ⇒ (c) clearly follow from (P2)
and (P5). We now prove (b) ⇒ (a). The proof for (c) ⇒ (a) is similar.

Assume (b) holds. Fixed any arbitrary i ∈ ⟨n⟩. We choose a sequence
i1, . . . , im ∈ ⟨n⟩ with i1 = i such that

ik+1
∖ik ∕= ∅ for all k = 1, . . . ,m− 1 and

m∪
k=1

ik = ⟨n⟩.

Define �1 = i1 and �k = ik∖
(
i1 ∪ ⋅ ⋅ ⋅ ∪ ik−1

)
for k = 2, . . . ,m. Then for

any k < ℓ,

�k ∩ �ℓ = ∅ and

m∪
k=1

�k = ⟨n⟩.

Suppose k < ℓ and take any arbitrary (r, s) ∈ �k×�ℓ. Notice that r ∈ ik while
s ∕∈ ik . Hence, aikr ∕= 0 and aiks = 0. Then zero-pattern invariant property
ensures that aikrars = 0 and thus ars = 0. In short,

ars = 0 for all (r, s) ∈ �k × �ℓ with k < ℓ.

From this, there exists a permutation matrix P such that

PTAP =

⎡⎢⎢⎢⎢⎣
A[�1] 0 ⋅ ⋅ ⋅ 0

∗ A[�2]
. . .

...
...

. . .
. . . 0

∗ ⋅ ⋅ ⋅ ∗ A[�m]

⎤⎥⎥⎥⎥⎦ .
Furthermore, since ik ⊆ �1 ∪ ⋅ ⋅ ⋅ ∪ �k, A[ik ] is permutationally similar to[

A[ik∖�k] 0
∗ A[�k]

]
.
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Then the assumption that A[ik ] is an inverse M -matrix ensures the invertibility
of A[�k] for all k, and therefore PTAP is invertible. Moreover,

PTA−1P = (PTAP )−1 =

[
(A[�1])−1 0
∗ ∗

]
=

[
(A[i])

−1 0
∗ ∗

]
.

By the assumption, A[i] is an inverse M -matrix and hence (A[i])
−1 has non-

positive off-diagonal entries only. In particular, all off-diagonal entries in the
ith row of A−1 are non-positive. As i is arbitrary, we conclude that A−1 has
non-positive off-diagonal entries only. Therefore, A is an inverse M -matrix. □

A few remarks on Theorem 1. By (P1) and (P5), it is natural to assume in
Theorem 1 that A is zero-pattern invariant and has positive diagonal entries. On
the other hand, given an n× n matrix A with the above mentioned properties,
to determine whether A is an inverse M -matrix, by applying Theorem 1, one
only needs to check whether the n principal submatrices A[1], . . . , A[n] are
inverse M -matrices. In particular, if ∣i∣ ≤ k < n for all i ∈ ⟨n⟩, one only has
to consider n submatrices of A which are of size at most k. It will be definitely
an advantage in computation if k is much smaller than n. To illustrate this, let
us consider the following simple example.

Example Let

A =

⎡⎢⎢⎢⎣
1 0 1 0 1
0 1 1 0 0
0 0 1 0 0
0 1 1 1 0
0 0 1 0 1

⎤⎥⎥⎥⎦ .
First it can be checked that A is zero-pattern invariant. Since

1 = {1, 3, 5}, 2 = {2, 3}, 3 = {3}, 4 = {2, 3, 4}, and 5 = {3, 5},

one suffices to check the submatrices

A[{1, 3, 5}] =

⎡⎣ 1 1 1
0 1 0
0 1 1

⎤⎦ and A[{2, 3, 4}] =

⎡⎣ 1 1 0
0 1 0
1 1 1

⎤⎦ .
Observe that both these two matrices are inverse M -matrix matrices, so as A
by Theorem 1. Indeed,

A−1 =

⎡⎢⎢⎢⎣
1 0 0 0 −1
0 1 −1 0 0
0 0 1 0 0
0 −1 0 1 0
0 0 −1 0 1

⎤⎥⎥⎥⎦ .
The following corollary is immediate from Theorem 1.

Corollary 2. Suppose A is an n × n matrix with at most k nonzero entries
in every row (column). Then A is an inverse M -matrix if and only if A is
zero-pattern invariant and every k × k principal submatrix of A is an inverse
M -matrix.
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3. k-diagonal matrices and triadic matrices

The sufficient condition in Theorem 1 can be further reformulated if certain
special zero pattern is imposed. A matrix A = [aij ] is called k-diagonal if aij = 0
for all ∣i − j∣ > k−1

2 . Obviously, we can always assume k is odd. Now we have
the following series of results for k-diagonal matrices.

Theorem 3. Suppose A is an n × n nonnegative k-diagonal matrix with 1 <
k < n. Then A is an inverse M -matrix if and only if A is zero-pattern invariant
and the (k − 1)× (k − 1) principal submatrix

A[⟨r⟩∖⟨r − k + 1⟩]

is an inverse M -matrix for all r = k − 1, . . . , n.

Proof. The necessity part is trivial by (P2) and (p5). For the sufficiency
part, note that for any i ∈ ⟨n⟩, there is k ≤ r ≤ n such that A[i] is a principal
submatrix of the k×k matrix A[⟨r⟩∖⟨r−k⟩]. By Theorem 1 and (P2), it suffices
to show that A[⟨r⟩∖⟨r − k⟩] is an inverse M -matrix for all r = k, . . . , n.

Let B = [bij ] = A[⟨r⟩∖⟨r−k⟩] and p = k+1
2 . Clearly, B is a k×k nonnegative

zero-pattern invariant k-diagonal matrix. By considering (1, k)th entry of B2

with the fact that b1k = 0, we have

0 ≤ b1pbpk ≤
k∑

j=1

b1jbjk = 0.

Then either b1p = 0 or bpk = 0. If bpk = 0, then B has at most k − 1 nonzero
entries in every row. Define �i = {ℓ : biℓ > 0} for i ∈ ⟨k⟩. Observe that B[�i] is
a principal submatrix of either

B[⟨k − 1⟩] = A[⟨r − 1⟩∖⟨r − k⟩] or B[⟨k⟩∖⟨1⟩] = A[⟨r⟩∖⟨r − k + 1⟩].

By assumption, both these two matrices are inverse M -matrices. Thus, B[�i]
is an inverse M -matrix and the same conclusion occurs to B by Theorem 1. If
b1p = 0, then B has at most k−1 nonzero entries in every column. By a similar
argument, the result follows by considering �j = {ℓ : bℓj > 0}. □

If A is also symmetric, then one only needs to consider submatrices with size
k+1
2 as shown below.

Corollary 4. Suppose 1 < k < n and A is an n× n nonnegative symmetric k-
diagonal matrix. Then A is an inverse M -matrix if and only if A is zero-pattern
invariant and the p× p principal submatrix

A[⟨r⟩∖⟨r − p⟩]

is an inverse M -matrix for all r = p, . . . , n, where p = k+1
2 .
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Proof. If A is an inverse M -matrix, obviously the conclusion is true by (P2)
and (P5). Conversely, to get the result, it suffices to show that every A[i] is a
principal submatrix of A[⟨r⟩∖⟨r − p⟩] for some p ≤ r ≤ n.

To see this, suppose ais and ait are the first and the last nonzero entires in
the ith row, respectively. Notice that the (s, t)th entry of A2 is equal to

n∑
ℓ=1

asℓaℓt ≥ asiait = aisait > 0.

Because of the zero-pattern invariance property, A2 is also k-diagonal and so
∣t − s∣ ≤ k−1

2 < p. Then i ⊆ {s, . . . , t} ⊆ ⟨t⟩∖⟨t − p⟩, and therefore, A[i] is a
principal submatrix of A[⟨t⟩∖⟨t− p⟩]. □

Notice that a 2×2 nonnegative matrix B is an inverse M -matrix if and only
if the determinant of B is positive. Then Theorem 3 implies the following.

Corollary 5. Suppose A is a nonnegative tridiagonal matrix. Then A is an
inverse M -matrix if and only if A is a zero-pattern invariant matrix with all its
principal minors of order 2 being positive.

For 3 × 3 case, we have the following equivalent conditions for inverse M -
matrix, which can be found in [4, 13].

Lemma 6. Suppose A = [aij ] is a 3× 3 nonnegative matrix with positive diag-
onal entries. Then the following are equivalent.

(a) A is an inverse M -matrix;

(b) For any distinct i, j and k,

aijaji < aiiajj and aikakj ≤ aijakk.

(c) The Schur complements A/[a11], A/[a22], and A/[a33] are nonnegative with
positive diagonal entires.

Now Theorem 3 and Lemma 6 give the following result.

Corollary 7. Suppose A = [aij ] is a nonnegative symmetric 5-diagonal matrix
with positive diagonal entries. Then A is an inverse M -matrix if and only if
the Schur complement A/[ajj ] is nonnegative with positive diagonal entries for
all j ∈ ⟨n⟩.

Proof. The necessity part is clear by (P1) and (P4). For the sufficiency part,
suppose the Schur complement A/[ajj ] is nonnegative with positive diagonal
entires for all j ∈ ⟨n⟩. Then for any distinct i, j and k,

aijaji < aiiajj and aikakj ≤ aijakk.

So aij = 0 implies aikakj = 0 and hence
∑n

k=1 aikakj = 0. Thus, A is zero-
pattern invariant. Also by Lemma 6, the submatrix A[⟨r⟩∖⟨r− 3⟩] is an inverse
M -matrix for all r = 3, . . . , n. Then the result follows by Theorem 3. □
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A matrix A is called a triadic matrix if each row of A has at most two
nonzero off-diagonal entires. Obviously, a tridiagonal matrix is a special case.
We remark that this definition is slightly different from the one given by Fang
and O’leary in [2]. By a similar argument as in the proof of Corollary 7, we
have the following result for triadic matrices.

Theorem 8. Suppose A = [aij ] is a nonnegative triadic matrix with positive
diagonal entries. Then A is an inverse M -matrix if and only if the Schur
complement A/[ajj ] is nonnegative with positive diagonal entires for all j ∈ ⟨n⟩.

Corollary 9. Suppose A is a triadic (0, 1)-matrix. Then A is an inverse M -
matrix if and only if A is a nonsingular zero-pattern invariant matrix.

Proof. The necessity part is clear by (P5). Suppose A is nonsingular and
zero-pattern invariant. Clearly, all its diagonal entries must be positive, i.e.,
ajj = 1. In addition, if aikakj ∕= 0, then zero-pattern invariant property ensures
aij ∕= 0 and by the fact that A is a (0, 1)-matrix, we conclude aikakj ≤ aijakk
for all distinct i, j and k.

We next claim that aijaji = 0 for all i ∕= j. Suppose not, then aij = aji = 1.
For any k ∕= i and j,

aik = 0 ⇒ aijajk = 0 ⇒ ajk = 0 ⇒ ajiaik = 0 ⇒ aik = 0.

Therefore, aik = 0 if and only if ajk = 0. In this case, the ith and jth rows of A
are the same as A is a (0, 1)-matrix. But this contradicts that A is nonsingular.
So aijaji = 0 and hence aijaji < aiiajj . Since the above inequalities hold for
any arbitrary distinct i, j and k, it can be concluded by Lemma 6 that any 3×3
principal submatrix of A is an inverse M -matrix. Then the result follows by
Theorem 3. □

Back to the Example before Corollary 2. Indeed, the matrix A in the exam-
ple is a triadic zero-pattern invariant (0, 1)-matrix. One can conclude directly
by Corollary 9 that A is an inverse M -matrix, and the examination of those
principal submatrices A[i] is actually redundant.

However, it has to be noted that the sufficiency part of Corollary 9 is not
true if one removes the triadic condition. This can be seen by considering the
following counter-example.

B =

⎡⎢⎣
1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

⎤⎥⎦ and B−1 =

⎡⎢⎣
1 −1 −1 1
0 1 0 −1
0 0 1 −1
0 0 0 1

⎤⎥⎦ .
Notice that B is a nonsingular zero-pattern invariant (0, 1)-matrix, but B is not
an inverse M -matrix.
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