CONVERGENCE OF BOUNDARY LAYERS OF CHEMOTAXIS MODELS WITH
PHYSICAL BOUNDARY CONDITIONS I: DEGENERATE INITIAL DATA
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ABSTRACT. The celebrated experiment of Tuval et al. [49] showed that the bacteria living a water
drop can form a thin layer near the air-water interface, where a so-called chemotaxis-fluid system
with physical boundary conditions was proposed to interpret the mechanism underlying the pattern
formation alongside numerical simulations. However, the rigorous proof for the existence and conver-
gence of the boundary layer solutions to the proposed model still remains open. This paper shows
that the model with physical boundary conditions proposed in [49] in one dimension can generate
boundary layer solution as the oxygen diffusion rate ¢ > 0 is small. Specifically, we show that the
solution of the model with € > 0 will converge to the solution with e = 0 (outer-layer solution) plus
the boundary layer profiles (inner-layer solution) with a sharp transition near the boundary as ¢ — 0.
There are two major difficulties in our analysis. First, the global well-posedness of the model is hard
to prove since the Dirichlet boundary condition can not contribute to the gradient estimates needed
for the cross-diffusion structure in the model. Resorting to the technique of taking anti-derivative,
we remove the cross-diffusion structure such that the Dirichlet boundary condition can facilitate the
needed estimates. Second, the outer-layer profile of bacterial density is required to be degenerate
at the boundary as t — 07, which makes the traditional cancellation technique incapable. Here we
employ the Hardy inequality and delicate weighted energy estimates to overcome this obstacle and
derive the requisite uniform-in-¢ estimates allowing us to pass the limit € — 0 to achieve our results.
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1. INTRODUCTION

The directional movement of cells in response to a chemical concentration gradient is referred to as
chemotaxis, which is said to be endogenous if the chemical is secreted by the cell itself and exogenous
if the chemical comes from an external source (like oxygen, light or food). Chemotaxis is a common
biological migration strategy occurring in various biological processes, such as aggregation of bacteria
(cf. [50]), slime mold formation (cf. [23]), or tumor angiogenesis (cf. [7, 10]). The mathematical
models of chemotaxis mostly studied nowadays are of the Keller-Segel type originally proposed in
[31, 32]. The prototype of Keller-Segel model describing the exogenous chemotaxis reads as

u = Au—V - (uVo(v)),

(1.1)
v = eAv — uw,

where u and v denote the cell density and chemical concentration, respectively, at position x €
Q and time ¢ > 0. & > 0 denotes the chemical diffusivity, and ¢(v) is called the chemotactic
sensitivity function which has two prototypes: ¢(v) = lnv (logarithmic sensitivity) and ¢(v) =
v (linear sensitivity). The logarithmic sensitivity was first proposed in [32] based on the Weber-
Fechner law (the sensory response to a stimulus is logarithmic) which has various prominent biological
applications (cf. [12, 29, 36]). It was mentioned in [32, p.241] that the chemical (i.e. oxygen) diffusion
rate ¢ is negligible (i.e. 0 < ¢ < 1) compared to the bacterial diffusion rate. The most important
application of the logarithmic sensitivity lies in its capability of producing traveling waves to interpret
the experiment findings (cf. [30]), motivating a great deal of interesting mathematical works on the
study of existence and stability of traveling wave solutions [5, 9, 11, 38, 39|, just to mention a few.
The system (1.1) with linear sensitivity ¢(v) = v was employed in a chemotaxis-fluid model proposed
1
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in [49] to interpret the boundary accumulation layer of aerobic bacterial chemotaxis towards the drop
edge (air-water interface) in a sessile drop mixed with Bacillus subtilis bacteria. The model in [49]
reads as

ur+w-Vu=Au—V - (uVv) in Q,
v +w-Vv=DAv—uv in €, (1.2)
p(Wi+w - Vw) = pAw + Vp — Vigu(p, — p)z  in 9, '
V.-w=0,
with the following physical zero flux - Dirichlet-no slip mixed boundary conditions
(Vu—uVv)-v=0, v=uv,, w=0on 09, (1.3)

where © and v denote the bacterial and oxygen concentrations at = € €2 and ¢ > 0, respectively, and
w is the fluid velocity governed by the incompressible Navier-Stokes equations with the pure fluid
density p and viscosity u. p is a pressure function, Vygu(py, — p)z denotes the buoyant force along
the upward unit vector z where V4 and p, are the bacterial volume and density, respectively, and g
is the gravitational constant. In (1.3), v denotes the outward unit normal vector of 92 and v, > 0
is a constant representing the saturation of oxygen at the air-water interface (i.e. boundary). The
numerical simulations in works [8, 35, 49] have shown that the system (1.2) can reproduce the key
features of boundary layer formation observed in the experiment of [49] in two and three dimensions
under the physical boundary conditions (1.3). Therefore justifying that (1.2)-(1.3) admits boundary-
layer solutions becomes an imperative question, which has remained open for a long time without
good progresses made as we know. Indeed, boundary layer problem has been a fundamental topic
arising in the fluid mechanics due to the distortion of non-viscous flow by the surrounding viscous
forces observed by Prandtl in 1904 [44] and attracted extensive studies (cf. [1, 18-21, 28, 53, 55|,
just to mention a few). Though the model (1.2) contains the fluid dynamics, the boundary layer was
formed due to the aggregation of bacteria attracted by the oxygen near the air-water interface (cf.
[13, 49]) and thus the fluid dynamics will play minor roles as can be glimpsed from the boundary
conditions (1.3). Since the Dirichlet boundary condition for v can not directly contribute to the
estimate of Vv required by the first equation of (1.1) for the estimate of u, many basic questions
on (1.2)-(1.3) like the global well-posedness still remains poorly understood so far apart from the
boundary layer solutions. To the best of our knowledge, there are less analytical result for problem
(1.2)-(1.3), the local existence of weak solutions with large initial data was obtained in [41], and
recently Wang, Winkler and Xiang [51] prove the global existence of smooth solutions with small
initial data, one can also see [43] for a global existence result of the system with slightly different
boundary conditions. If the domain € is radially symmetric (say a ball) and the solutions are also
radially symmetric, then the incompressibility condition V - w = 0 on £ and no slip boundary
condition w|sg = 0 implies that w = 0, and as a result (1.2)-(1.3) is simplified as

up=Au— V- (uVv) in Q, (1.4)
v = eAv — uv in €, '
with boundary conditions
(Vu—uVv)-v=0, v=uv, on 90N. (1.5)

Regarding the boundary layer solutions, it was first shown in [34] that the problem (1.4)-(1.5) has a
unique stationary solution in all dimensions, which possesses a boundary layer profile with thickness of
order e1/2 as e — 0. Subsequently the nonlinear local time-asymptotic stability of stationary solutions
of (1.4)-(1.5) in one-dimension was established recently in [25]. However, whether the time-dependent
problem (1.4)-(1.5) can develop boundary layer profiles as ¢ — 0 remains unknown. To see the
possibility, we integrate the second equation of (1.4) with e = 0 and get v(x,t) = vo(z) e~ Jo u(@,T)dr
which gives rise to

'U|8Q = UO|BQ e f(f u|8$2d7'. (16)



CONVERGENCE OF BOUNDARY LAYERS 3

This implies that the boundary value of v as ¢ = 0 is intrinsically determined by (1.6), which may
mismatch the prescribed boundary value of v for € > 0. If this occurs, boundary layers will arise
as ¢ — 0 and the zero-diffusion limit of (1.4)-(1.5) as ¢ — 0 becomes a singular problem. However
how to justify the convergence of solutions of the singular problem (1.4)-(1.5) as £ — 0 still remains
an outstanding open question as far as we know. The goal of this paper is to investigate the zero-
diffusion limit of the problem (1.4)-(1.5) in a one-dimensional domain Z = (0, 1) as ¢ — 0, reading
as

Up = Uy — (UVz),, , reZ, t>0,
Vf = EVpgp — UV, xel, t>0, (1.7)
(U,U)($,0) = (UO7UO)(x)> U ja

with boundary conditions

{(ux—uvx)\azz(), vlgr = vi, ife >0, (1.8)

(ug — uvy)|or = 0, ife =0,

where Z = [0, 1] and 9Z = {0, 1}.

The zero-diffusion limit of problem (1.7)-(1.8) as € — 0 is a multi-scale problem involving sophis-
ticated formal and rigorous analysis with complex compatibility conditions. In this paper, we shall
prove that the solution of (1.7)-(1.8) is not uniformly convergent in L with respect to e > 0 but sta-
bilizes to the outer layer profile (solution with e = 0) plus an inner (boundary) layer profile as ¢ — 0
where governing equations for both outer and inner layer profiles can be precisely derived. There are
two major difficulties encountered in our analysis: (1) how to employ the Dirichlet boundary condi-
tion of v to obtain the estimates of v, in order to gain requisite regularity of solutions for the global
well-posedenss due to the cross-diffusion structure in the first equation of (1.7); (2) how to derive
the uniform-in-¢ estimates in order to pass the limit ¢ — 0. To overcome the former one, with the
mass conservation of u resulting from the zero-flux boundary condition, we make a change of variable
(see (2.1)) based on the technique of taking anti-derivative as used in our previous works [4, 25] to
reformulate (1.7)-(1.8) into a new Dirichlet problem (2.2)-(2.3) without cross-diffusion structure, for
which the Dirichlet boundary condition on v can contribute to derive desired estimates. In doing so,
we pay a price by requiring inf_ 7 uo(z) = 0 (i.e. the initial value is degenerate) in the compatibility
conditions for the reformulated problem, which leads to the failure of cancellation technique used in
the existing work [25] dealing with the reformulated problem. In this paper, we shall develop a new
idea with the help of the Hardy inequality to derive requisite uniform-in-¢ estimates and finally prove
our main results. However, our results can not cover the case inf__zuo > 0 for which initial layers
will be present (see Remark 2.1) and new ideas are needed to overcome this barrier. This case will be
investigated in a separate work. We stress that the zero-flux boundary condition of u given in (1.8)
can not extrapolate the boundary profile of u. While showing that the solution component v has
boundary layer profiles as expected, we also prove that u has boundary layer profiles as ¢ — 0 (see
Theorem 2.2). As far as we know, this is the first result showing that the time-dependent chemotaxis
models with physical boundary conditions in (1.5) have boundary layer profiles for both cell density
and oxygen concentration. Our results hence assert that the chemotaxis-fluid model (1.2) is capable
of generating boundary layer profiles in one dimension though the higher dimensional case is yet to be
proved. Since the technique of taking anti-derivative is not directly applicable in multi-dimensions,
the boundary layer problem of (1.2)-(1.3) or (1.4)-(1.5) in multi-dimensions has to be left out for
future efforts with new ideas and techniques.

Apart from the boundary layer problem, when  is a radially symmetric domain in R"(n > 2),
the existence of global classical solutions of (1.4)-(1.5) with € > 0 in two dimension (n = 2) and
global weak solutions in higher dimensions (n = 3,4,5) were established in [33]. If u and v satisfy
zero-flux and Robin boundary conditions, respectively, the global classical solutions of (1.4) was
obtained in [2] for any n > 1 and the existence of boundary layer solutions as ¢ — 0 was established
recently in [26]. With homogeneous Neumann boundary conditions, the global dynamics of (1.4) have
been well understood (cf. [17, 46, 47]) by employing a clever cancelling idea which is unfortunately
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inherently restricted to Neumann boundary conditions. For the time-dependent problem (1.4)-(1.5),
aside from the local stability of stationary solutions shown in [25], a slightly modified model of
(1.4) subject to (1.3) was recently considered in [52] where the global generalized (weak) solution
was obtained in three dimensional domain (n = 3). If homogeneous Neumann boundary conditions
for u and v and Dirichlet boundary condition for w are imposed or the domain is the whole space
R™(n > 1), the chemotaxis-fluid model (1.2) and its variants have been widely studied in the literature
[6, 14, 15, 40, 54], just to mention a few due to the limit of spaces.

The rest of the paper is organized as follows: In Section 2, we first reformulate our problem by
taking the anti-derivative of a perturbed function against the cell mass and derive the equations for
the outer and boundary (or inner) layer profiles. Then we state our main results on the convergence
of boundary layer solutions. In Section 3, we are devoted to deriving the regularity of outer and
boundary layer profiles. Finally, in Section 4, we prove our main results.

2. STATEMENT OF MAIN RESULTS

In this section, we shall first derive the equations that outer- and boundary-layer profiles satisfy by
the WKB method (cf. [22, 24, 45]), and then state our main results on the convergence of boundary
layers as € — 0. For clarity, we first introduce some notations used throughout the paper.

Notation.

e Denote R, := (0,00) and R_ := (—00,0). N represents the set of non-negative integers.
Let LP with 1 < p < oo denote the Lebesgue space LP(Z) in which functions are defined
with respect to (w.r.t) the variable z € (0,1). L% denotes the space L?(0,00) for functions
defined w.r.t z € (0,00) and L’g denotes LP(—o00,0) for functions defined w.r.t £ € (—o0,0),
respectively. Accordingly, we denote by H*, H* and H g“' the standard Sobolev spaces W2
for functions defined w.r.t x € Z, z € (0,00) and £ € (—o0,0), respectively. We also write
LYY = LP(0,T;Y) (e.g., LL® = L*=(0,T; L)) for convenience when no confusion is
caused.

e Denote (z) =1+ 22 for z € [0,00), and () = /1 + &2 for € € (—o0,0].

e C(T) > 0 represents a generic constant dependlng on T but mdependent of v, such that
C(T) = 0as T — 0". C(vs, T) denotes a generic positive constant depending on v, and T'
such that C(vs,T) — 0 as (v, T) — (0,0) and C(v,,T) — 400 as v, — 400 or T" — +o0.
Moreover we denote ¢(T) := co+ C(T) and c(vs,T) := co + C(vs, T), where ¢y > 0 denotes a
generic constant independent of v, and T'.

e We often use (x); to denote the i-th equation of the system (x) for brevity.

2.1. Construction of outer- and boundary(inner)-layer profiles. In this subsection, we shall
first reformulate our target system (1.7)-(1.8) and then derive the equations for the outer- and
boundary-layer profiles of the reformulated problem with small £ > 0 based on the WKB method.
Notice that the zero-flux boundary condition for u gives rise to the conservation of mass:

/u(az,t)dx :/uodx =M,
A T

where the constant M > 0 denotes the cell total mass. By defining
o) = [ (o) =2y with p(@0) = [ (o) = Mdy =@ 1)

we reformulate the problem (1.7)-(1.8) as

Pt = Pxx — ( +M)Uaca r el
Vf = EVgpy — (0 + M)v, x €I, (2.2)
(¢, v)(2,0) = (900700)
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subject to boundary conditions

0(0,t) = p(1,t) =0, v(0,t) =v(l,t) =0y, ife>0, (2.3)
(P(Oat) = (P(Lt) = 07 ife=0. '

We proceed to derive the equations for outer- and boundary-layer profiles of the problem (2.2)-(2.3)
with small ¢ > 0. As we will see later, once these profiles are determined, one can easily recover
outer- and boundary-layer profiles of the original problem (1.7)-(1.8). To this end, we define the
so-called boundary-layer coordinates

& ool
VE T Ve
where /¢ is the thickness of boundary layers which can be determined by the asymptotic matching
method (cf. [24, 27]). Clearly z € [0,00) and £ € (—00,0]. The equations governing outer- and
boundary-layer profiles of (2.2) can be derived in four successive steps.

Step 1. ASYMPTOTIC EXPANSIONS. By the method of perturbation (cf. [22, 24, 45]), we assume
that the solution of problem (2.2)-(2.3) with € > 0 formally has the following expansions for j € N:

z =

€[0,1], (2.4)

o (at) = Ze% ("9, t) + 6™ (2 )+ 6" (6,1))
% (2.5)
=Y ¢ %( Li(z,8) + 0B (z,8) + 0™ (¢, t))

7=0

where the boundary layer profiles (¢?7, vP27) and (p®/,v%7) are smooth and satisfy the following
asymptotic behavior for j > 0:

. (2.6)

0P and vP7J decay to zero exponentially as z — oo,
"7 and v%7 decay to zero exponentially as & — —oo.

Step 2. INITIAL AND BOUNDARY CONDITIONS. For initial conditions, setting t = 0 in (2.5) and
noticing that the initial value (¢g, vg) is independent of € > 0, we immediately get

"0(2,0) = po(z), ©P0(z,0) = ¢"0(€,0) =0,
v"0(2,0) = vo(z), vP0(2,0) =1"0(¢0) =0,

and

@1 (,0) = "7(2,0) = "I (£,0) =0, j =1,
vl (2,0) = 0P7(2,0) = v"7(£,0) =0, j>1.

To match boundary conditions, we substitute (2.5) into (2.3) and use the asymptotic matching
method to get

(1,t) 4+ ©%7(0,t) =0, 5 >0,
o 0PO(1,1) +00(0,) = vy,
(1,t) +0%9(0,8) =0, j>1,

where we have neglected (gob’j(—sl%,t),vb’j(—sl%,t)) at x = 0 and (wB’j(ﬁ,t),vB’j(sl%,t)) at
x = 1 based on the decay properties in (2.6) since € > 0 is small.

Step 3. EQUATIONS FOR OUTER-LAYER PROFILES (¢! v!7). Substituting (2.5) without bound-
ary layer profiles into the equations in (2.2), we get equatlons for the outer-layer profiles p!7:

J
Ij_ Ij 1j Lk, Li—k
Sotjchmg_M’Um]_Zsom v? ", § >0, (2.7)
k=0
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and equations for the outer-layer profiles v!+:
I,o I, I, o
= —(g" + M)v'", j=0,
vt“— e Ml = pptt =,

Lj G2 ; LkyLi=k
vy = oLd=2 _ Mol — E oy v j>2.
k=0

Step 4. EQUATIONS FOR BOUNDARY LAYER PROFILES (@B 7 vBJ 7). Using (2.7), w
neglect the right boundary layer profiles ©®7 and v?7, and then insert the remaining terms of (2 5)
into the first equation in (2.2) to derive the equations for the left boundary layer profiles ¢?

> e3G; =0 for i>—2, (2.8)
i>—2

where

Gy =0 — P00,

G =0t = (8:0"°(0,t) + M)vP° — PP — oPO(010(0, 1) + v,

Go =" — B2 + vB0(02p70(0, 1)z + Dap" 1 (0,8) + 9P2) + 0P (000" 0(0,8) + M + 1)

+eBL0,010(0,8) + (82010(0, 1) + B0 (0,1) + vB2) B0,

Similarly, the right boundary layer profiles %/ satisfy

Z e2G; =0 for i>—2, (2.9)
i>—2

where, for each i > —2, G is given by G; with (941 ok(0, 1), 940 (0,t)) (¢ > 0) and (8B *, d)vBF)
replaced by (05T1pl*(1,1), 0Lv!*(1,t)) (¢ > 0) and (8ég0b’k, 8§>‘vb’k)(l, A > 0), respectively.

By the same procedure as deriving the equations for ¢®7 and ¢?7 above, we obtain the equations
for the left boundary layer profiles v5J

J as
(20 (wP0 + v!0(0,1)) = 0,
vtB 0 vzz + cpZB O( i’o((), t)z + vl’l(O, t) + val)
+(01°(0,8) + M)oP0 + @D (70 10190, 1)) =
vrt =B (P100,8) + M)wPt 4 P (0]0(0,4)2 + v (0,8) + 0P
+Hpar (0,)z + 1 (0,))wP0 + o2 (010(0, 1) + vP0)
FoP (2 002(0,8) + v (0,8)z + 0B2 + 012(0,1)) = 0,

and the equations for the right boundary layer profiles v*7 as
b,0
S0P + 1 O(1, 1)) =0,
o o+ (L 0E o (L) o)
+(10(1,8) + M)v ”"Jrgo5 ("0 +010(1,¢)) = 0,
vt — ”gg + (@21, 1) + M 4 @l 0(1L, 1€ + o (1,8) + 0P
+H(prr (1,06 + 92 (1,))070 + g (101, 1) 4 020
+29( 2’1);,;3[; (1,1) + vb (1, 1)z + 022 + 012(1,1)) = 0,
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Finally, from the above Step 1 to Step 4, we derive initial-boundary value problems satisfied by
the profiles (77, P9 ©?7) (0 < j < 2) and (v/7 0B vP7) (0 < j < 1) for later use. First the
leading-order outer-layer profile (!9 v1:0) satisfies the problem

o’ = op = (0% + M)ug®, xeZLt>0
o0 = — (L0 4 MO, r€ZL,t>0
@I’O(Ovt) = 90170(1775) =0,

(cpl’o, vI’O)(:c, 0) = (o0, v0),

which is nothing but the zero-diffusion problem of (2.2). We note that the stability of the unique
non-constant steady state to the problem (2.10) has been established in our previous work [25]. We
further remark that, as will be stated in Section 3, if the initial value is compatible with boundary
conditions and smooth enough, one can prove the global existence of unique classical solutions to
(2.10) with large initial data due to the dissipation effect. The first-order outer-layer profile (¢!'!, v'!)
satisfies the following problem:

(2.10)

1,1 ,
o = oan — (g + Mvyt —pter?, reZt>0
v{’lz—(goi’o—i—]\/[)v[ — pl 1yl €L, t>0 (2.11)
90171(07t) = _SOB,I(Oat)a 90171(171:) = _(pbﬂl(ovt)v
(SOle UIJ)(J"7 O) = (07 0)
The leading-order boundary layer profile p? near the left boundary solves
02’ — o0 =0, z€Ry,
pP0(0,1) =0, ¢P0(+00,t) =0,
QOBVO(Za 0) =0,
and thus ¢P0 = 0. The boundary layer profile v50 near the left boundary solves
00 = vB0 — (p10(0,8) + M) 0(0,£)(e"" — 1) — (920, £) + M)e" PO, 2 e Ry,
vB0(0,1) = v, —010(0,1), PP (4+00,t) =0, (2.12)
vP0(2,0) =0,
and ¢! is determined by v2° through
[e.e]
PPl = / (0100, 1) + M) (e”B’O@’t) - 1) dy. (2.13)
z
The boundary layer profile v*° near the right boundary satisfies
0" = g — (L) + M) (L) — 1) = (ph0(L, 1) + M)e "0, £ e R,
v?0(0,) = v, — o1 0(1,1), v"0(—00,t) =0, (2.14)
v?0(¢,0) = 0.
Furthermore, we have ¢?% = 0, and ¢! is given by
b1 ¢ 1,0 0.0 (y ¢
= [y + ) (00 - 1) dy, (2.15)
—o0

Although we focus only on the convergence result for leading-order approximation, some estimates
of the higher-order outer- and boundary layer profiles are also needed in our analysis. The problem
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formed by equations for o2 and v reads
— oD% + 0 0(010(0,8)2 + 011 (0,8) + ©F?)

+ol 1 (@200,1) + M + 1) + P 110(0,1) = 0, zER,,
vl = ol 4 (E0(0,8) + M)oP! 4+ B (w00, 8)z + 011 (0,8) + 0P )

+(par (0,)z + 2 (0,£)) B0 4 P2 (v10(0,) 4+ v50) =0, z € Ry,
vB1(0,1) = —u1(0,1), goB’Z(—i—oo,t) = UB’1(+oo,t) =0,
("?%,051)(2,0) = (0,0),
( b,2 b,l)

,

(2.16)

and the problem for can be stated as

—ogt + v (1L E + i (1,8) + 9
+vb’1( DO t) + M+ o2 + o'l 0(1,t) = 0, EeR_,
vp! _vgg + (R0, 1) + M 4 ot (0B (1, )€ + 0" (1, 1) + 0P)
(1€ + o (1,)0P0 + P2 W01, 1) +v80) = 0, ceR,
v"1(0, t) —oP(1,1), @"*(—o00,t) =" (=00, t) =0,
(¢"?,0")(€,0) = (0,0).

Finally, we remark that the global existence and regularity of solutions to problems (2.11), (2.12),
(2.14), (2.16) and (2.17) will be detailed in Section 3.

(2.17)

2.2. Statement of main results. To prove the convergence of boundary -layer profiles deduced in
the preceding subsection, we require that the initial data (g, vg) satisfy compatibility conditions at
the boundary as follows

a§¢170|t:0 = 07 1= 17 27 37 on aI, (218&)
on 0Z, (2.18b)

vy = Vs, 8gv ’
where 9{p!0|,—¢ and 9jv?°|;—g can be inductively determined from the equations in (2.10) as
Opp! 0 — (¢oz + M)vog,
02010 1—0 := (00 1=0)zz + (p0z + M) ((oz + M)v)z — (Or0"°|t=0) zv0z,
o1 =0 := (070"°|1=0)2e — (20"°]1=0)xv0x + 2(0r 0" 1=0)x ((0x + M)v0)s (2.19)
+(poz + M)((at‘PI 0|t 0)z0)z — (Yo + M)((poz + M)QUO)IZ 0,
O i—0 = —(pox + M)vo,
\ atQUI’O’t:O = [_QOOxxx + ((‘p():c + M)”Ox)x + (‘pOx + M)2]UO

We say that the initial value ¢!°|;—q of the problem (2.10) is compatible with boundary conditions up
to order three if it fulfills (2.18a), while the initial values of problem (2.12) and (2.14) are compatible
with boundary conditions up to order two if the conditions in (2.18b) hold. The compatibility
conditions for other initial-boundary value problem mentioned in the sequel are defined similarly. In
terms of the initial data (yo,vo), we can write the compatibility conditions given by (2.18)-(2.19)
more explicitly as

'UO == U*, @Ox + M == 07 SDOxx'UO:L‘ - @OIII - 07 on aI’
(8,5@1 vO\H)m — (atgol vo\tfo) voz = 0, on 9T, (2.20)
( )xm - ( )IUOQS + 2(8tSOI 0|t 0) (SDO:E + M)UOI = 0, on 8Ia

where for brevity we have not explicitly expressed 9" 0;—¢ and 97!0|;—¢ that are given in (2.19).

We underline that the condition (¢, + M)|szr = 0 in (2. 20) 1mphes that mfzez uo =0 (i.e. the
initial value ug is degenerate on Z) and hence inf (2,£)€Tx(0,T) u!O(z,t) = 0, where u’? is the leading
outer-layer profile of u satisfying u!*(x,0) = ug(x), see (3.1).
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The main results of this paper concerning the convergence of boundary layers for the reformulated
problem (2.2)—(2.3) as € — 0 are stated in the following.

Theorem 2.1. Assume that (pg,v9) € H' x H' and (\/vo)x € L? with po, + M >,% 0 satisfying
(2.20). Then for any v« > 0, there exists constants To(vs) > 0 and g9 > 0, where Ty(ve) — 00 as
ve — 0, such that for any e € (0,e9), the problem (2.2)~(2.3) admits a unique solution (¢°,v°) €
L>(0,To; H? x H?) satisfying the following asymptotic expansions for any x € [0,1]

o (1) = "0, 1) + &2 [ (1) + 6P (2,8) + P (6,1)] + O(P), (2.21a)
Palt) = 0, 1) + [P (=) + L6, 1) + O, (2:21D)
0 (,8) = 010, 1) + 00 (2,8) + "0 (&) + O(1/2), (2:21¢)

with z == Sz and § == jl;/%, where (p10,v10), vBO and vP0 are solutions of problems (2.10), (2.12)

and (2.14), respectively, @' is determined by (2.11), B and ©*' are given by (2.13) and (2.15),
respectively.

With the transformation (2.1), we can transfer the results of (2.2)—(2.3) stated in Theorem 2.1 to
the original problem (1.7)-(1.8). Indeed from (2.1), we have
u® = ¢S + M, uwlV = @50 + M (2.22)

with ¢f and !0 being the solutions to the problem (2.2)-(2.3) and the problem (2.10), respectively.
Then (uf,v¢) and (u’?,v!0) solve the problem (1.7)-(1.8) for ¢ > 0 and ¢ = 0, respectively. With
(2.13) and (2.15), we have

aPO(z,0) = o2 (5,1) = (910(0,8) + M) (e - 1),

W0 (6,1) = U6, 1) = (pEO(1 1) + M) ("0 1),

Then the convergence of boundary layer solutions of the original problem (1.7)-(1.8) is stated in the
following theorem.

(2.23)

Theorem 2.2. Assume that (ug,vo) € H® x H” with ug >,% 0,v9 > 0 and (V/V0)z € L? satisfying
the compatibility conditions (2.20) with wo, = ug — M. Then for any v, > 0, there exists constants
To(ve) > 0 and g9 > 0, where To(ve) — 00 as vs — 0, such that for any € € (0,e0), the problem
(1.7)-(1.8) admits a unique solution (u®,v¢) € L>(0,To; H* x H?) which satisfies for any x € [0,1]

c 10 Bo( T po(l—2 1/4
ut(z,t) =u"P(x,t) +u (\@,t>+u (7\£ ,t)+0(5 )s

ve(z,t) = vl0(z, t) + vB’O(%,t> + vb’0<1\;g t) +O0(e'/?),

where ul0 and (uB0,b0) are given in (2.22) and (2.23), respectively, while (10, v10), vB0 and v>0
are solutions of problems (2.10), (2.12) and (2.14), respectively.

(2.24)

Remark 2.1. We give several remarks to enhance the understanding of our results.

e The O(¢"), for some r > 0, notation used in the main results is a shortcut whose exact
meaning is that the difference of the two sides of the identities (2.21) and (2.24) in L LS°,
for any 0 < T < Tp, is bounded by " modulo a constant depending only on the initial data
and v,.

e The conditions of (ug,vg) assumed in Theorem 2.2 can be fulfilled by many functions, for
instance uy = 2%(1 — 2)® and vy = v, + 2%(1 — 2)5. Furthermore, if (ug,vg) satisfies some
higher-order compatibility conditions, by the standard energy method (cf. [16, Chap. 7]),
one can prove that the solutions (¢°, v°) and (u®,v®) obtained in Theorem 2.1 and Theorem
2.2 are indeed classical. We skip the details here since this is not the main goal of this paper.
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e From the refined solution structure given in (2.24), without difficulty we can show for any
d=0(c") >0 (0 < a <1/2),it holds that

lim Hu —u > 0,

e—0 1o HL°°(51—§]><[0 7o) =0, lirgrijélf Huﬁ — 10

! HLOO([O,l]x[O,To})

lim Hv —v > 0,

1,0
ey HLoo([o,u x[0,T0))

IOHLOO([SI s1x01o)) = U hren_}(?f [v° ="
which indicates that the solution (u®,v) of (1.7)-(1.8) will develop a boundary layer profile
with thickness of order £!/2 as ¢ — 0, which consists of out-layer profile (u/?,v10) (i.e. the
solution of (1.7)-(1.8) with € = 0) and boundary (inner) layer profiles (u?°, v29) at the left
boundary x = 0 and (u®?,v?%) at the right boundary = = 1, with an error at the order of
el/4 for uf and of €'/2 for v° as e — 0.

e Though the boundary values of u® are elusive in the zero-flux boundary condition of u pre-
scribed for u in (1.8), the expansion (2.24) not only indicates that u®(z,t) has boundary
layer profiles u9(z,t) near x = 0 and u®°(z,t) near x = 1, but also gives the approximate
boundary value of v for 0 < e < 1

u®(0,1) = u'(0,t) exp (v — v"°(0,2)) + O(Y%),
uf(1,t) = ul0(1,¢) exp (v — v]’o(l,t)) +0(e'?),

where u!0(z,t) = oh" + M, see (2.23).

e When v, = 0, according to our analysis, the boundary layer profiles in (2.24) will vanish,
which leads to (uf,v%) — (u!'0,v10) in L> as ¢ — 0, where (u!9,v70) is the solution of the
problem (1.7)—(1.8) with ¢ = 0.

e The compatibility condition (o, + M)|sz = 0 implies min ug = 0. If we assume minuy > 0,
x€T €L

by the maximum principle we can find some constant ¢ > 0 which may depend on Ty such
that 0 < ¢! < u!0(x,t) < ¢ for any t € [0,Tp] and = € (0,1). In this case the condition
(poz + M)|sz = 0 in (2.20) will fail, and consequently the initial values of (2.12) and (2.14)
only satisfy the zero-order compatibility conditions, for which initial layers will be present and
the key analyses in this paper are inapplicable. We shall investigate this case in a separate
paper using different approaches.

3. REGULARITY OF THE OUTER/BOUNDARY LAYER PROFILES

In this section, we shall derive the regularity of solutions to problems (2.10), (2.11), (2.12), (2.14),
(2.16) and (2.17), respectively. Let us begin with the problem (2.10) for the leading-order outer-layer
profile (¢7?, v7:%). As mentioned before, this problem is exactly the zero-diffusion problem of (2.2)
which, in the sense of classical solutions, is equivalent to the zero-diffusion problem of (1.7)-(1.8).
Denote by (u!9,v1:0) the solution to the zero-diffusion problem of (1.7)-(1.8). Then we have

uéz = (u%’oo—lzg[’ové’o)x , r €L,
v o= —uv, e, (3.1)
(ug® = u"P00) oz = 0,

(u"?, 00 (2, 0) = (uo, vo)(x).

We will first establish the global existence of solutions to the problem (3.1), and then transfer the
result to problem (2.10).

Lemma 3.1. Assume that (ug,vo) € HS x HT with uo >, % 0,090 > 0 and (\/0o)s € L? subject to

compatibility conditions in (2.20) with ¢ = fo ug — M)dy and M = fI updz. Then for any T > 0,
the problem (3.1) admits a unique classical solution on [0,T] such that
u® >0, (|0pu0 2 groae < e(T), k=0,1,2,3,4, (3.2a)

(T), k=1,2,3,4. (3.2b)

[[o™
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Proof. The proof of local existence and uniqueness of classical solutions to the problem (3.1) is
standard based on Banach’s fixed point theorem (cf. Chapter 9 in [16]), so is the property ul0 >0
in its lifespan if ug > 0 (cf. [17]). In the following, we are devoted to deriving the a priori estimates
of solutions by which the local solutions can be extended to global ones. To begin with, for any
T > 0, we assume that (u/? v0) is a classical solution to the problem (3.1) on [0, T] satisfying the
following a priori assumption

t
/ [vE0||2 odr < Cy, t€[0,T] (3.3)
0

for some constant C; > 0 to be determined later. Testing the equation (3.1); against ul? =
—max{—uY 0}, we get

/] 2dx+/](ul_’0)z|2dx:/ ulOul0ul0ds
th T {ul-0<0}

<5 [ Pde + ool [ 1ulOP
7 I

where the Cauchy-Schwarz inequality has been used, and the constant ¢y > 0 is independent of (7.
This along with (3.3) and the Gronwall inequality gives

/ [ Pde < eclt/ lug|?dz =0
v {uo<0}

for any t € (0,7, where ug > 0 has been used. Therefore it holds that
ul(z,t) >0, te(0,7]. (3.4)

With (3.4), we have from (3.1), that v1:0 < v. Testing (3.1)1 against Inu!%, one has

d
IolnuI Odz +/ ’ Io dzr = / ul Ol 0dg, (3.5)
u 7

dt

where [;u’Ydz = [ updz = M due to the zero-flux boundary condition. Differentiating (3.1), with

respect to x, and testing the resulting equation against vl 0 Jvl0

1d [ |vb?? 1 [ 0?2 1,0, 1,0
5& . 1)-[70 dx+2/IMd$__/IuI7 ’Ux’ dx (36)

Combining (3.5) with (3.6), and integrating the resulting identity over [0,¢] for any ¢t € (0,7T], we

have
/ ul0InuOdx + = /‘ d +//< IO|U ‘2> dadr < ¢
;. V1.0 w0 V1.0 = €05

which, along with the basic inequality —zIna < e~! for > 0, and v < vy, gives

10124 IO‘”IO‘ dzdr < 3.7
|U |“dx + uIO I zdr < ¢ (3.7)

for any t € [0,T], where the constant ¢g > 0 is independent of C;. Furthermore, it holds from (3.4),
(3.8), the basic inequality || f||r < col|f]|1.1 and the Holder inequality that

T T T
/ e O]| pedr < cq / a0l dr + co / || dr
0 0 0
T 02 1/2 1/2
</ xI dz /ul’odx dr + ¢(T) < ¢(T), (3.8)
0 z u 0 T

, we get
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where ¢(T') > 0 is as stated in Section 2, and it is independent of C;. To proceed, multiplying (3.1),
1,0 . .
by u,” followed by an integration over Z, we have

1,02 10}
u, |"de + | Juy | "dx
BT / " | / |
I I I
= /IuI L0yl O g = t/Iul’ové’oui’odm—/Iut’ovi’oui’odx—/zul Oy 00 0dy. (3.9)

y (3.7), Sobolev inequality (C.2) and equation (3.1),, we deduce that

7)
/‘uI,O
- x

2oy %1 dz < Jlug® | Fee oz 172
< collug®|l g2 luzy 272
< CoHu (Il HL2 + [lug Y0z 2 + [lu" ozl 2) + collug® 17
HUfsovi’OII%z IIU U172 + collu" Ol lofl g 7.
That is,
/ Jug P log°[Pdz < 16Hu B0l b oz 12 lug I 22 + colluz® (172 (3.10)

for some constant ¢y > 0 independent of C';. This along with the Cauchy-Schwarz inequality gives

—/ 10 vl 0L 0dy < = /|u 2d$+4/\u
T

’ I: bl I7 Iv
< 5 Jur *I172 + collu e (lof I + Iur®l72) + collur®l72-

]0’2(11'

Noticing from (3.1), that vtIg};O = k%10 — 1010 we estimate the last term on the right-hand side
of (3.9) as follows

/UI,Ovi,tOué,de:/uI,O(ui,OUIOJrvIO 1.0Y,, 104,
7 z

< [l MOl ool 172 + llu" Ol (lulfEoe [log 172 + [luzlI72)
< collu|| oo Jug 12 + collu” ze [(lfuz M1 20)% + gl 7]
< collu|| oo ([luz®(IZ2 + 1),

where we have used (3.7), v1? < vy, ||ul||;1 = M, (C.1) and the Cauchy-Schwarz inequality.
Therefore we have from (3.9) that

1 I
2/ |u£’0|2dx—/ul’ovi’oui’odx+2/ /‘U{.’O‘le’dﬂ'
z I 0 Jz

t t
<o) o [l (501 + [l ar o [k (.11)
where (3.8) has been used, and the constant ¢y > 0 is independent of C;. Noting that
1
10,10, 1 I
/u Opl0y 104 < 8/ |uzy de—l—/ |ul0)? 0] 02 da
z z z
1 1
< / [ul%2dz + collu’ )2 < / [ul0)2dz + ¢
8 T 4 T
due to (3.7), (C.1) and ||u!0)| ;1 = M, we further update (3.11) as
t
/ [ul0?da +/ / |ul0)2dzdr
z 0Jz
t t
<«T) +Co/0 lullzoe (logz 172 + luz®l1Z2) dT+CO/O [ (3.12)
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On the other hand, differentiating the equation (3.1), with respect to x twice gives

10 _ 10,10 1,0, IO 1,0,.1,0
Vi = — Uy U — 2y’ — U U,

Testing the above equation against Ui}f, thanks to (3.1);, (3.10), the fact v/:% < vy and the Cauchy-
Schwarz inequality, it follows that

|UI 024y + [ ub 0|v1 0124y = — uifvl’oviggdx — 2u£’0v£’0v£;?dx

:_/( +u[0 IO+UIO IO) IDIOCLT"FHU HL2Hu

1
<3 [l PO o (Ol + Iol32) + collsl I3 + collol? (313
where ¢y > 0 is independent of C. Integrating (3.13) over (0,t) for any ¢ € (0,77 yields that
/ lvl02dz +/ / ul 0wl dzdr
t
<5 [ [torasar+e [ GutOlue + D0 + 101
This, combined with (3.4) and (3.12), implies that
t
/ (|l + [020)?) da —|—/ / lul02dgdr
z 0Jz
t
< 00/0 (1o + D (luz®l72 + vz 172)d7 + e(T). (3.14)
Therefore an application of the Gronwall inequality along with (3.8) gives
t
[P+ oopy o [ [ o () (3.15)
z 0Jz

for any ¢ € (0,7, where the constant ¢(7") > 0 is independent of Cy. Furthermore, in virtue of (3.7),
(3.8), (3.15), (C.2) and the equations in (3.1), we have

T
1,0
| (21 + 10712 e < (). (3.16)

Using (3.7), (3.14) and the Sobolev inequality ||f||z~ < col|f]lw1.2, we get

t
/u%W&MRSdn
0

where the constant ¢(7") > 0 depends on the initial data and 7" but independent of C. Therefore the
a priori assumption (3.3) is closed provided that C; > 0 is chosen to be large such that C; > ¢(T),
and thus the estimates (3.4), (3.7), (3.8), (3.15) and (3.16) subsequently follow. Next we shall derive
some higher-order estimates for the solution. The proof is based on the standard energy method
(cf. [16, pp. 387-388]), namely, recovering the estimates on spatial derivatives from those on time
derivatives. For brevity, we will establish the estimates on the second-order time derivatives of the
solution only and their implications in the estimates of spatial derivatives, while estimates on the
higher-order time derivatives can be obtained in the same spirit. To this end, we differentiate the
equations in (3.1) with respect to ¢ and get

1,0 1,0 1,0 1,0
Uy = (utz “I’Ovm — U Ui’o) )
. (3.17)
10 1,0, 1,0 1,0,1,0
vy = —uy v —ut P



14 J.A. CARRILLO, G.-Y. HONG, AND Z.-A. WANG

Multiplying (3.17), by utI 0 and integrating the resulting equation over Z, we have
2dt/’u 2dx+/ \uIOQdm—/uIOUfIO itoda:—i—/ Iovl’oui;odx
/]u 2dx + co /\ulo L0124z 4 ¢ /\um 10124y
< [ kB + ol ol + collof e f I
< [ kB + o) (Il + i I52)

where we have used the Cauchy-Schwarz inequality and |ju!-° + [0 Lgere < ¢(T) ensured
by (3.7), (3.15) and (C.2). Therefore we get, thanks to (3.15) and (3.16),

/yu d:c+/ /WO\ dudr < oT) (3.18)

for any ¢ € [0,T]. This along with (3.15), (3.16) and the equations in (3.1) further implies that

g 7o r2 + lor ll e 2 + oz e 2 + vzl pz 12 < e(T)- (3.19)

Next testing (3.17), against u{t’o, we have

2 1,0/2 1,0, 1,0 1,0 10 1,0
th/‘ dx+/‘utt _/Z<U Uiy + U Uy )uttzdx

1,0,.1,0 1,0, 1,0\ 1,0 10, 10 1,0,.1,0 1,0, 1,0 1,0, 1,0\ 1.0
dt (u Uy U UL )umdx—/z(ut F UV, T Uy Uy Uy )umdx

Uyt
s% (w00l + wf k) uf Pz + (lfuf e of e + a0l oo ol ze ) luf) 1o
+co(|ru gallof®leee + g “llzsllof 2 ) llug Il
< (00l 0l G s + T + e, (3.20)

where we have used (3.15), (3.16), (3.18), (3.19), the fact ||u’
Sobolev inequality (C.2). Noting that

10,10 _ 10,10 10
/I(u Uy — U Uy >utxdx

1, I,
< 113 + co (IO [of 2032 + 020 3ot

+ ||v£’0||L%oLoo < ¢(T) and the

22) <t + e(T)
due to (3.8), (3.15), (3.18) and (3.19), we get after integrating (3.20) over [0, ¢] for any t € (0, 7]

/yu dx—i—/ /|u10|2dxdr<c( ),

where (3.18) has been used. This combined with (3.16), (3.17),, (3.18) and (3.19) entails that
g e poe + gl 2,12 < o(T). (3.21)

Applying 92 to the equation (3.17),, we get
3
8%1},5[’0 =— Z Okl 093~k 10,
k=0
Multiplying this equation by 93v!? followed by an integration over Z, we have

th/‘a3 IO‘de_'_/ 10’83 10’2(13?
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1 3
<Y 05l e 03 R0 0 2| 0307 0 2 + co > |05 u 0 2|03 F 0" 0 oe [ 0300 2
k=0 k=2
< (D) 03u"1 72 + 19300172 + e(T), (3.22)
where we have used (3.7), (3.15), (3.19) and the Cauchy-Schwarz inequality. On the other hand, by
(3.1)1, (3.7), (3.15) and (3.21), we get

1
1,0 , — ,
036" 0170 < [lug 172 + ) 05u oo l|03 0"
k=0
< ()20 2, + o(T). (3.23)

22+ (w0 0)all2

Therefore we update (3.22) as

1d
/\8§v1’0\2dx+/u1’0

which along with the Gronwall inequality, (3.23) and the fact /' > 0 entails that for any ¢ € [0, 7],
1850 0)][ 72 + 183u" 0, )][72 < e(T). (3.25)

3002 < o[22 + e(T), (3.24)

By the analogous arguments, one can also get
(o0 + [ N0k e < e(r) (3.26)
for any ¢t € [0,7]. Now combining (3.1),, (3.7), (3.15), (3.16), (3.19), (3.21), (3.25) and (3.26) yields
lof Nz 0+ 05l 12.1r2 < (T).

The rest of the estimates in (3.2) can be proved in a similar manner by applying d; and 9?7 to the
equations in (3.17), and the details are omitted here for brevity. O

With the solution obtained in Lemma 3.1 for the problem (3.1), recalling the transformation (2.1),
one can easily show the existence of unique classical solutions to (2.10). Precisely, we have

Lemma 3.2. Assume that (po,v0) € H' x H' and (\/vo), € L? satisfying (2.20) and o, + M > 0.
Then for any T > 0, there exists a unique solution (10, v1%) to the problem (2.10) on [0, T] satisfying

o’ + M 20, 07"l 2 gs-an < o(T) fork=0,1,2,3,4, (3.27a)
[0 o7 + 10500l 3 go-oe < (T) for b =1,2,3,4. (327h)

The next lemma gives the regularity of boundary layer profiles v20 and ¢!

Lemma 3.3. Let (70, v19) be the solution of (2.10) obtained in Lemma 3.2. Then for any T >0,
the problem (2.12)~(2.13) admits a unique solution v®° on [0,T] such that for any | € N,

0<vP0 <, ()P0 e L2HS2* ()okpPl e LZAHT% for k=0,1,2,3. (3.28)
Furthermore, it holds that
[P0l o o on < KolTova)ens 2005 2 yroe < clvn Thon, k=0,1,2,3,  (3:20)

2 1 3-2X\
¢
kz_o () 000 s + ;0 ; 1(2)! R 00?0 | pgeree < Ko(T,vu)vn,  (3.30)

where the constant Ko(T,v,) := C(T)e"T) > 0 with ¢(v,,T) and C(T) being as stated in Section
2. Clearly, Ko(T,v,) is increasing in T and v, with :PHB Ko(T,v.) =0 and Tlim Ko(T,v,) = +00.
— —+00
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Proof. The local existence and uniqueness of solutions to the problem (2.12) with regularity given in
(3.28) can be proved by routine procedures: first, we study the linearized problem by the reflection
method; second, we derive suitable estimates for solutions of the linearized problem and then prove
the existence of solutions for the original nonlinear problem by the Banach’s fixed point theorem.
For completeness, we detail the proof in Appendix A. Below we are devoted to deriving the a priori
estimates of solutions, which are used not only for the global existence of solutions but also for the
convergence of boundary layers. We first prove that the solution of (2.12) is bounded and satisfies

0 <0P0 <. (3.31)
To this end, we test the equation in (2.12) against v~ := — max{0, —v?°} to derive that
1d :
e |v_|2dz+/ |0zv_]2dz—|—/ (¢20(0,1) +M)e”BO|U_|2dz

+ / (©20(0,8) + M)v"0(0, )"’ — 1)0P0dz = 0,
{UB O<0}

where, to ensure the validity of integration by parts, we have used the fact v, > v/'°(0,¢) > 0 due to
1,0
vz + M >0 and

v19(0,) = v, exp (— /O t(goi’o((), )+ M)dT) : (3.32)

/ lv™|?dz <0,
Ry

which implies v~ = 0 and v#° > 0. Similarly, testing the equation (2.12) against v := max{v?0 —
Vs, 0}, we can show that v < v,. Therefore (3.31) is proved.
Next we shall derive some weighted estimates for v20. Let n(z) € C°°([0,c0)) such that

n(0) =1, n(z)=0 for z > 1, (3.33)

This entails that

and denote by ul0 := ©1°(0, )+ M. Then if we take 9 = vB0 —5(2) (v, —010(0, 1)) =: vB0 — §(2, 1),
it follows that ¥ solves

19t ﬁzz ul 00 (1) + ¢>) ul00T0(0,8)(e”*? — 1) + o,
(z, 0)

where
0="2:(2)(vs — vI’O(O, t)) —n(z)(ve — UI’O(O, )
By (3.27) and (C.2), we get that
10F 10, llr201) < 10F L <¢(T) for 0<k <3,
|0Fv IO(O»t)HLQ(o,T) < ||0fv IO||L%H1 <¢(T) for 0< k<4,

(3.35)

which gives rise to
||8f§0£70(0,t)HL00(07T) <¢(T) for 0 < k <2 and ||8f'l)[’0(0,t)HLoo(07T) < ¢(T) for 0 < k <3. (3.36)
Thanks to (2.20), (3.32) and (3.36), it holds for I € N that (2)!0Fp € L2.H272¢ (k = 0,1,2) with
[(2)'0Foll 1 yo-se < C(T)oe, k=0,1,2, (3.37)

where the constant C(T') > 0 is as stated in Section 2. Similarly, we get for I € N that (2)'0f¢ €
LEZHY?F (k= 0,1,2) with

420826 1 oo < C(Thvs, k=10,1,2, A=0,1. (3.38)
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Multiplying the equation (3.34); by (2)%¥ followed by an integration over R, we have

1d
— [ (2)%9%dz + /

= (2)219%dz + / ()2l 0e7+992
2dt Jp,

Ry Ry
:/ (z>2119gdz—21/ (z>21_2z19219dz—/ ()2l 0?29 pd
Ry Ry Ry
- / (2270 0 0(0,1) (€74 — 1) vz =: A (3.39)
Ry

where, due to u/0 = goi’o(O, t) +M >0 and 0 < vB0 < w,, it holds that
/ (2)2u0e+992dz > 0. (3.40)
R+

We now turn to estimate the terms on the right hand side of (3.39). By (3.32), (3.36), 0 < vB0 < v,
and the Cauchy-Schwarz inequality, we get

A< (20l 2 1(=) ell 2 + coll (=)' VIl 2 [1¢2) 0=l 2 + coll(2) Dl z2l1(2) &l .2

+e(wn T) [ @M1, 0) (9] + [ol) 0

R

1
<2 / (2)20%dz + c(vs, T) / (2022 + coll{2) ell3a + coll(z)'Bl2e,  (341)
Ry Ry

where the constant c(vy,T) > 0 is as stated in Section 2. Inserting (3.40)-(3.41) into (3.39), and
integrating the result for any ¢t € (0,7, we get

/R JERACULE /O /R (a7 < O+ e T) /0 /R (s (3.42)

where C(T') and c¢(vs,T') are constants as stated in Section 2. Applying the Gronwall inequality to
(3.42), we get

t
/ (V292 1)z + / / (V292dadr < C(T)e W T2, (3.43)
Ry 0o JRy

Multiplying (3.34), by (2)?¥,; and integrating the resulting equation over R, we have

1d 2l 2 2.9 /
- 9% 4+ ul 092 +?) d 2y2q
sai [, P (2w ) e [ gapaa:

1 — 1 ——
= / (2)29ul 092" %Az + = / (2) 2l 092 (9, + ¢y) ¥ Pdz — 2l/ (2)272209,9,dz
2 Jr, 2 Jr, Ry

_ /R (V2T 06 +0 5, dx — ul Oy 0(0, 1) /
+

(2)21 (e — 1)9,dz — /<z>2lg19tdz
Ry z

< ¢(vy, T)|Opul 0| <z>2lz92dz+c(v*,T)u170/ (2)210% (|0, + |¢t|)dz+co/ ()21 194 9. dz

Ry R, Ry

+ e(0a, T) / (2)2'16] 04] dz + e(v., TYal0| (0, )| / (22 (9] + [6]) 9] dz — / BERRE
Ry

Ry R,

1
<1 / ()292dz + (v, T) / (V292dz + c(v, T) /
8 Jr, R,

Ry

(2)*(¢® + ¢7)dz + Co/ (z)2 0?dz

Ry

+ ¢(vs, T) (|0l 0] + |ul O + |ul02[010(0, £)[2) / (z)29%dz, (3.44)
R4
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where we have used (3.27), (3.43), 0 < v5¥ < v, and the Cauchy-Schwarz inequality. By (3.36), we
further update (3.44) as

1d 20 (42 | TT1.0.02.9 2192
92 4 ul 092V +o dz—l—/ z)*97dz
2dt <> ( ) R+<> t

< c(v*,T)/R (z)2 (192 + 192) dz + c(v*,T)/

Ry

(2)?(¢? + ¢7)dz + co / (2)%%dz.

Ry
This along with (3.27), (3.37), (3.38), (3.43) and the Gronwall inequality yields for any ¢ € (0,7]
that

t
/ (V2G2(-, 1)z + / / ()292dzdr < C(T)ecw D2, (3.45)
Ry Ry
With (3.36), (3.37) and (3.45), we get from (3.34), that
/ / 2)2192_dzdt < C(T)e=T)y2. (3.46)
R4+
Denote ¥ = ¥;. Then by (3.34) and the compatibility condition (2.20), we find that 1 satisfies
5, =, - A0 H0 _ T 4 4y — a0 ul(0, 1)+ 1 5.
9(0,t) =0, D(+o0,t) =0, (3.47)
9(2,0) =
where ¢ is given by

5 = —0ul0e" (9 + ¢) — ul0e? g, (1 4+ 9 + ¢) — ul010(0, )9,
3 (vavo(o, t)) (€ — 1) + r0.
From (3.27), (3.37), (3.43), (3.36)—(3.46), it follows for [ € N that (2)!0Fp € L2H2~% (k = 0,1) with
12)'0F all 2 22 < C(D) D, k=0, 1. (3.48)
With (3.48), by repeating the procedures in the proof of (3.43), (3.45) and (3.46), we have

/ (z)2 (@2 + 192 t)dz + / / )2 02 +O2 @gz) dzdr < O(T)ec@=T)y?
Ry R
for any ¢ € (0,7]. This along with (3.27), (3.34),, (3.47); and the fact ¥ = v; implies that
[ Gt e vt 0Bt < O
R4

where we have used || (2)'0F 0|, 2 yy2-2r < C(T)vy (k = 0,1) from (3.37) and the estimate H<Z>I@HL2TL2 <
T "2 z
C(T)ecw=T)y, from (3.48). Thus we conclude for the problem (3.34) that

121080 1 s -2v < O T,k =0,1,2 (3.49)
provided [|(2)'0f ol ;2 y2-2» < C(T)v, with k = 0,1. Notice that the initial value for the problem
T4z

(3.47) is compatible up to order one, and that ||(2)!0fd]|,s 22 < C(T)ec= Ty, with k = 0, 1.
T4z
Therefore, by the same arguments as proving (3.49), we have for the problem (3.47) that

)08l g s < C(T) T, = 0,1,2. (3.50)
This along with (3.37) and (3.49) further gives

T
/ 1029(-, 1)[| 3 dt < O(T)ec=T)y2, (3.51)
0
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Collecting (3.49)—(3.51), we have
(2)okvBY e LZHS | =0,1,2,3. (3.52)

By (3.52) and Proposition C.1, we get for k = 0,1,2, £ = 0,1,---,4 — 2k that (z)!9fvB0 ¢
C([0,T); H37%) and (2)!0F0L0P 0 € LL L with

I(=)"

1
ore + 3 () 020050 e oo < C(T)e Dy (3.53)
A=0 A=0

Now let us derive estimates for ¢?!1. Since

¢ vB0 vB:9 a0 B0 ¢ B,0
eV = > Cre? " 9hpBO . gl BO >

el++er:£
1<l <<l 1<r<l

for some constant C,. independent of v, and T, we get, thanks to (3.28) and (3.53),

a 1)’ L2.HS

< > Crll{2)' 0z 00 - 9w B0, 1o + coll(2)!(€°

b1+ +£-<6
1< <<l I<r<6

2 /Wl POl 105 PO 1620 0™ Ot + coll(2) 0”3 1

b1+ +£-<6
1< <<l I<r<6

6
c(vs, Tyo ) (=)' 00072 2 + 11(2) 10
(=1

B,0
1)”%%]@

IN

6 < c(vs, T)v2. (3.54)

< c(ve, T)|[(2)"v

B,0

Similarly, we have for any I € N that (z)!(eV"" — 1) € L H® with

=)' (""" = Dllgoms < e(vs, T)os (3.55)

B,0

Noting that

B,0 B,0
AfFev”" = > Cre® "B gty BOY for k> 1,

li+--Lr=k
1<b < <hr 1<r<k

with C, being a constant independent of v, and e, similar to (3.54), we get for k = 1,2,3 that

B,0 B,0\ ¢ V.
() 0Fe” |32 1roan < c(vi, T)|[(2)' 0. (e ) 0P 0 - 0y BOHL2H5 2%
r li+Lr=k
1<t <<ty 1<r<k
+ Z c(ve, T)||(2) 0 20 - 9w BO||L2H6 "
"

1<0, <<l 1<r<k

NE

< C(v*,T)||<Z>13§UB’0H12TH§_%H(> 2 (e )IILooHs 2

1

.
I

_|_

-

k
C(U*7T)H< >6] B0||L2H6 2k Z U*a BOHL2H6 2J
1 j=1

J
< c(vy, )02,

where we have used (3.28), (3.53), (3.54), (3.55) and the fact
1) Foll e,y < coll(@) Fll e 1(@) 9l e ey (3.56)
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for any | € N and any integer k > 1, provided (z)'f, (x)!g € H*(R,). Therefore we now have for
[ € N that

H(Zyagc(evB )HLz HE—2k < c(vs, T Z (2 lang’OHizTHg—zk < C(U*aTﬁ)i 0<k<3, (3.57)

where c(v,,T) > 0 is a constant as stated in Section 2. With (2.13), (3.36), (3.57) and the Holder
inequality, we derive for k = 0, 1,2 that

[e’e) 2
()" O e, + M); (7 1) dy
z L2THZ—2k
[e’) B0 2
k—1 7 v
= Z Ha 0 t) * M) ”LOO(O 7 / at (e B 1> dy L2 g2k
Ttz

k 00 )
(v, T)Y (1 + /R / <y>_4dydz> 1(z)! 20 (e — l)lligHgf% < c(v., T)0%. (3.58)
+ vz

=0

For k = 3, we get

2
(=)' 0705|125 1 < T 050100, 1) + M)d: ( o0 _ 1) dy
L L2H1
T z
oo Bo 2
<COZ|ya3 H(eh00,8) + M) ooy / o <e” ’ _1) dy
: vy
2
+ ¢o / 83 Ot —‘rM)( —1)dy =: A1 + Ao,
L2.H]

where A; can be estimated by the similar arguments as proving (3.58):

3 0o ‘
s S ctonm) (14 [ [Tt ) 190 < IR, 1 < oo T2,
i=1 Ry J2

where (3.36) and (3.57) have been used. We proceed to estimate Ay. It follows from (3.35), (3.55)
and the Holder inequality that

oo
4y < c(0,,T) (1 [ <y>4dydz) 1) 2™ = 1) 2 P00, 1) 2y < e, T
+Jz
Therefore we get for any [ € N that
H(z>lat’“<valuL%Hz_2k < c(ve, T)vs, k=0,1,2,3.
The proof is complete. O

The following lemma gives the regularity of (¢*!, v*!) which can be proved by similar arguments
as proving Lemma 3.3.

Lemma 3.4. Assume the conditions in Lemma 3.2 hold. Then for any T > 0, the problem (2.14),
(2.15) admits a unique solution (v*°, 1) on [0,T] such that 0 < "0 < v,
[V OFl g yoon < KolTy0)ve, (V056" g yron < clons Ty k=0,1,2,3,  (3.59)

1 3-2X

H< > 8k bOHLooH4 2k + Z Z H 3?<9§Ub’OHL%°Lg° < K()(’U*,T)U*, (3-60)
A=0 ¢=0

where Ko(T,vy) > 0 is as in Lemma 3.3, c(vs,T) is as stated in Section 2.

We next turn to the existence and regularity of the outer-layer profile (¢!t v’:1).
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Lemma 3.5. Assume the conditions in Lemma 3.2 hold, and let (vB0,oB1) and (v"°, ") be the
solutions obtained in Lemmas 3.3 and 3.4, respectively. Then for any T > 0, the problem (2.11)

admits a unique classical solution (o't v1'Y) on [0,T] satisfying
|OF T (vx,T) fork=0,1,2,3, (3.61a)
v (v, T) fork=1,2,3. (3.61b)

Proof. The local existence and uniqueness of solutions to the problem (2.11) on (%!, v71) can be

proved by the classical PDE theory for linear parabolic equations (cf. [16, Section 7.1]) along with

the Banach’s fixed point theorem. In the following, we will devote ourselves to establishing some a

priori estimates from which the global existence and the desired regularity of the solution follow.
Denote b(z,t) := zp®1(0,1) + (1 — 2)?1(0,t) and @ := ¢! + b(z,t) with

0.0 = [T (e00.0+ M) (700 1) ay
0
0 b,0
A0 = [ (@004 2 (00 - 1) ay.

Then we deduce from (2.11) that

Pt = Pug — (P50 + M)vLt — G0l 0 + fi(a, ),
UtI’l == (9050’0 + M) vl — @ﬂcvl’o + fg(l’,t),

- N (3.62)
(p(()?t) = (p(lat) =0,
(¢,v"1)(x,0) = (0,0),
where the fact v50(z,0) = v*°(£,0) = 0 has been used, and f;(z,t) (i = 1,2) are given by
fi(z,t) == by + bpvl0,  fo(x,t) :== bo’?, k=0,1. (3.63)

To ensure the desired regularity of the solution, it is necessary to derive some estimates for the source
terms involved. By (3.27), (3.28), (3.35), (3.36) and (3.57), we deduce for k = 0,1, 2 that

ok 0.0 s <coZ/

T
<coZHa’” 0t>+M>||Loo0T/O

2
dt

Ok (100, ) + M) ("0 ~ 1) ay

k o0 i B,0
<ew.)Y [ @A < DIy,
=0

< c(vs, T),

2
dt

and for k£ = 3 that

||a3 Bl(o t HL2 o) < COZ/ 83 j ’O(O,t) +M)8g (eUB,O(y,t) . 1> dy

e / / o1o10(0,0) ("0 ~ 1) dy
0 0
B,0

< o(v.,T) /R ()~ 2dyl103 0100, )30 (2 (€ = D)3 12
+

2
dt

2
dt

3
re )Y [Pl @0 = 1)1
i=17R+
< c(vs, T).
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Thus it holds for £ = 0,1, 2,3 that
185050, 0)|[72(0.7y < e(vs, T). (3.64)
Similarly, by (3.27), (3.35) and (3.59), we have for ¢©*0(0,%) that
10F"1 (0, D)[|72(0.7) < e(ve, T)  for k =0,1,2,3. (3.65)

With (3.27), (3.64) and (3.65), recalling the definitions of f; and fs in (3.63), we get for k =0, 1,2
that

|’aff1H%2TH4—2k < c(vs,T) <”af+1903’1(07t)”%Q(O,T) + ”afHSOb’l(O’t)”%?(o,T))

k
+c0 3 (10101 0,020y + 190" (0.8) 20,7
j=0

X 10 0 0N e o < (v, T), (3.662)
k
Haff2H%2(o,T;H5—2k) < <o Z (’\3i¢3’1(07t)\\%2(0,T) + Hag@b71(07t)‘|%2(0,T))
=0
x Haf*ﬂ'vfﬁo||§%om,2k < ¢(vy, T). (3.66h)

Now we are ready to establish estimates for the solution. Multiplying the first equation in (3.62) by
» and integrating the resulting equation over Z, we have

Ld [ 52
—— d d
s [ Fde s [ oaa

=— / (L0 + M)vltgdr — / G0l 0Gdr + / frpda
A A A

/%Im? Iltpder/I(wi’oJrM)vI’l%derHvi’o Pol 2l @l 2 + Lf1l 212l 2

5 L. 5 5
< lleny MUl lglze + = ll@allze + c(vs, T) (I@allzz v lze + LAl + 121172)
16

1, . .
< gll%lliz + (v, T) (18172 + v 72) + e(vs, Tl 1l 72, (3.67)

where (3.27), integration by parts and the Cauchy-Schwarz inequality have been used. On the other
hand, testing the second equation in (3.62) against v/, we have

2dt/|vfl 2d$+/(@IO+M) v11|2dm—/(—gﬁva’O—l—fg)vI’ldzL“
z

Sm/wmmwﬂww 5225+ coll o2
A

= CO/ 0" dz + c(vs, T)|a 72 + coll f2l72, (3.68)
A

where we have used (3.27) and the Cauchy-Schwarz inequality. Combining (3.67) with (3.68) implies
that

d - -
G L@ 1P do o+ [ Gdn < e T) (16132 + 10713 + clon D) (112 + 1202).

where we have used the fact ¢4” + M > 0 from (3.27). This along with (3.66) and the Gronwall
inequality immediately yields for any ¢ € (0,77 that

[ @+, d$+/ /¢%ﬂh<cvMﬂ. (3.69)
T
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Multiplying the first equation in (3.62) by @, followed by an integration over Z, it holds that

1d
S | Prdr+ / Grde = — / Govy 0 Gy + / figuda — / (L0 + M)vltede. (3.70)
2dt T T .

By (3.27) and the Cauchy-Schwarz inequality, we have
- - ~ 1 [ -
- [ pokoua+ [ i < 7 [ Gdo+ ol 150l + cll Al

I .
< 2 l@el7e + (v, D @allz2 + coll full 72, (3.71)

where we have used the fact \|v£’0|]LoToLoo < ¢(vs,T) due to (3.27). For the last term on the right
hand side of (3.70), we get by virtue of integration by parts and the Cauchy-Schwarz inequality that

- / (P10 4+ M)l gyda = /Z (010 4 Myo' Gpoda + / L0 By

= gt J, e+ M) pade - /I Py 0" pada / (o2 + M)v," Goda + / ol Gude

- I1 -
<% (% + M)o" gade + gy llr=llo" |2 I Boll 22 + e(ow, T)lloy | g2 Bl 2

I ~
+ Hs%fHLoollv Hellgell 2

: p Lis 3 11
< dt/f(@f,ﬂ + M)l gada + §||<Pt||%z + c(ve, T) |Gz |72 + c(vs, T) (Hvt’ 122 + ol )12,

) . (3.72)

where we have used HcpéfHL%oLoo < ¢(vy, T) due to (3.27) and Proposition C.1. Col-
lecting (3.71) and (3.72), we thus have from (3.70) that

1d d . 1 [
3 /s de—a (¢ é’o—i-M)vI’l@mdx—l—Q/Zgofdx
11
< C(U*vT)(H(Pl"HLQ + ot %) + e, DI il 72 + elve, T log 172 (3.73)

To control the term on vt on the right hand side of (3.73), we test the second equation in (3.62)
against vt ! and deduce that

1d
[ (et ) ot [ ol P
2dt .
1 -
2/<th ’vll /Z(—¢xvl’0+f2) vtIde

1 1,0 -
2 /Z ol 2 da + colll | oo l[o" 122 + collo™ 3 |1Ba 22 + coll foll 2

2

IN

1 ~
<5 [ 10 P+ clon DR + o DGl + coll ol (3.74)
v

where we have used (3.36). Therefore we get from (3.73) and (3.74) that

G @+ @0+ MR (0o + [ (4 ol ) da
T
. d .
< (i T) (12l + 10 1) + ol ) (1Al + 1fale) + 00 DV [ (050 + M)o" s

Integrating the above inequality over (0,¢) for any ¢ € (0,7] yields that
t
[ @4 @0 - a0 (ondet [ [ (@ o) dadr
z 0Jz
¢
< c(vs, T) + ¢(vs, T) /(<P£’O + Mo gda + C(va)/ (Ifl72 + I f2l1Z2) d7
z 0
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t
bt T) [ (13l + 1)
1 e
<5 [ Bdotcon D)+ e(wnT) [l o+ e(wn ) [ (16l + 0" ) dr
T T 0

L[ Lo
< B / (P?;dx + c(vi, T) + C(U*aT)/ H@:L’H%Qdﬂ
z 0
where we have used (3.66), (3.69) and the Cauchy-Schwarz inequality. We thus have
t t
/@3(-,t)dx+/ /(¢3+|v£’1]2) dxdrgc(v*,T)—i-c(v*,T)/ 1622247 < c(vn, T),  (3.75)
z 0 Jz 0

where we have used (3.27) and (3.69). We proceed to derive estimate for v2". Differentiating the
second equation in (3.62) with respect to = leads to

vt = = (k0 + MvEt — L0t — G0t — 500 4 0, fo. (3.76)

Multiplying (3 76) by vl followed by an integration over Z, we have
3ar L e+ [0+ Al Pao

= /cpmvl Ayl 1dx—/cﬁmvl’0v£’1dx—/(ﬁmvi’ovi’ldx—i—/axfzv;’ldx
I z z I

< llogz 10| oo |l 2 vz | 2

+ oz Nz I @all 2 llog Il 2 + 18a fall 2 llog 2

Mgz flog?

I I I
+ oz lFe + 0" 0N1Z2) loz 117

Lo 1
< Sl@aallze + co (laz Iz + flv"
12+ 122lli2 + 102 £2172)

L.
= gl\%zH% + (v, T)[Jog [ 72 + (v, T) + c(ve, T) |05 fo |72, (3.77)

+ ¢o (Hvl’l

where we have used (3.27), (3.75), Proposition C.1 and the Cauchy-Schwarz inequality. On the other
hand, with (3.27), (3.69) and (3.75), we deduce from (3.62), that

Pell2 + coll full7

|8aallZ2 < coll@elZa + coll (02° + M)vpt |72 + collvg |7
< e, T) (L4 1@ell7e + llog 72 + 1LflZ2)
which together with (3.27) and (3.77) yields that

1,1
zdt/’v

Applying the Gronwall inequality to (3.78), by virtue of (3.66) and (3.75), we then arrive at

¢
/|U£71|2(.,t)dx+/ ||gbm||%gd7'§c(v*,T) (3.79)
A 0

for any ¢ € (0,7]. This along with (3 27) (3.66b) and (3.76) further gives that H@tvi’IHLz 2 <

¢(vy, T). Denote by 9 := ¢; and w := vt . Then in view of (3.62) and the compatibility conditions
of initial data, we have

2

< (e, T) (L4 18l 72 + gt 72 + 1 1ll72 + 102 fall72) - (3.78)

Y = e — (030 + M)wh! — p0l® + fi(x,1),
wy = — (cpi’o + M) wht — 00 + fz(x,t),
¥(0,t) =9(1,t) =0,

(¥, w)(z,0) = (&1, ve)[t=0 = (0,0),

(3.80)
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where fi(z,t) (i = 1,2) are given by

Filat) = —pulopt = oot + Oufr(a, 1), falwt) = —@p 0" = Geug + (e, 1).
Thanks to (3.27), (3.66), (3.75) and (3.79) and Proposition C.1, we deduce that

T T T
£ 1,0 , 1,0 ~
il < [ Nl Ielol It + [ ol alade+ [ 00010

T T
0 %oodt—kc(v*,T)/ \|v£;0||%oodt+/ 10 f1(, t)||2dt
0 0
S C(’U*,T), (381)

T
r I
Ialiy e < [ lletd

T
< o(v,,T) / 5022t + c(vs, T) / JoFO 3 mdt + c(v,, T) < cvn, T)  (3.82)
0 0

T T
1,0 -
iQIIUI’IH%oodH/O v H%oolls%llide/o 10 fa(, 1) ||7 2 dt

and

r I,
102 Fall3 12 < /0 (IR 0T 3w + o 3o 0d 122

T
- 1,0
+ [ (Wesalalof 1

T
<c(waT) [ (Ieils + 1ol + 1813 + 100 Lol ) dt < cfw.,T),

~ 1,0
1@ B 02132 + 10102 fo]22)

Therefore by the above procedure for estimates on (@, v!'!), we conclude for any ¢ € (0,7 that

t
(0Dl + (- DlF) + /O (Ialles + WorllF2 + lhwr 20 ) dr < (v, T).
That is,

t
- 11 ~ ~ ,
(ho O + 19 M) + [ (Wl + Wl + 102 s Yo < 0, 7). (3.89)

With (3.27), (3.66a), (3.69), (3.75), (3.79) and (3.83), we deduce from (3.62) that
t t
/ 1053 2adr < co /0 |BarlZadr + c(ve, T) /0 [t 2adr + ¢ / 102 2 20l

t t
e / 10202 [ B 2l + co / 1Bal22 0102 oedr + o / 100 f1]2adr
0 0 0

t
(v T) + (00, T) [ [0t 3edr (384
0
for any t € (0, 7. Differentiating (3.76) with respect to z gives
Viae = — (5" + M)vgy — 20000t — 9200l — 920" — 25,000 — Goul) + 00 fa. (3.85)

Testing (3.85) against Um, we have

2 1,0 1,12
33t Lo Pde+ [0+ Mol o
- [ettuttoltan - [ plattoliar - [ o Oullar

/ 2 zzvl 00l dz — / @pvlOplldz + / 92 fovllda
7 7

< 2|l

12 + [0 21030l e vz N2 + 10280 2 0" Ol o< vz 1] 2

woo ozt ellvg
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+ 20log Ol L | Gaall 2 vz 112 + oz lpee el c2llvg Iz + 102 ol 2oz Il 2
< (v, T)|[ogy 172 + c(ve, T) (L + | @aal72 + 11052172 + 1103 fol|72) (3.86)

where we have used (3.27), (3.75), (3.83), Proposition C.1 and the Cauchy-Schwarz inequality. Inte-
grating (3.86) over (0,t) gives

/!vixl\ dx—i—/ / O Mol 2dadr < e(vs, T) / / \U”Q (,5\2) dzd7 + c(vi, T),

where we have used (3.66b) and (3.79). This combined with (3.84) yields that

/|v£11] dx—l—// O Mol 2 +1026)%) dadr < c(vs, T) //]1) Y2dzdr + c(vi, T).
z

Applying the Gronwall inequality to the above inequality, we have

t
/ [l 2(- t)da +/ / |03 p|?dadT < c(vs, T), (3.87)

where gox 04 M >0 from (3.27) has been used. Similar to the proof of (3.87), we can derive that
/]83 LL2(. dJ:—i—/ /} <p‘2d:1:d7 < c(vs, T), (3.88)

where we have used |[f2([z2 s < ¢(vs, T') by (3.66b). Furthermore, by (3.27), (3.66b), (3.69), (3.75),
(3.79), (3.83), (3.87) and (3.88), we deduce from (3.62), that ||8tkv[’1||L2TH5_2k < (v, T) for k=1,2.
Hence, we conclude for the problem (3.62) that

||8fg0[’1HL2TH4_2k < c¢(vs,T) for k=0,1,2, (3.89)
[o" M oo s < (v, T), Hafvl’1||L2TH5—2k < (v, T) for k=1,2, (3.90)

provided [[0f fillpz 22 < (v, T), [10F foll p2 gra-2 < c(vs, T) for k = 0,1. With (3.27), (3.66),

(3.89), (3.90) and Proposition C.1, we can update the estimates in (3.81) and (3.82), respectively,
for f1 and fo as

”afleL%HQ_mC < C(U*7T)7 ||af:f~2”L%H3_2k < C(U*vT)7 k= 07 1.

Indeed, it holds for f; that
T

T
; 1,0 N
i < eo [ IE0 Bl st co [ 1ot soulct-+ o [ oo
1,012 r 1,112 1,02 T 2
<aollel Vg | 1o ot + collef Ve | Nolface + c(v..7)
SC(U*aT)v

and

T T
03 e < o [ (ol ok I + Il Eellof 1) i+ o [ At

T
+ o / (HUttx
0
T
<o [ (bR + 1512
0

For fy, it follows that

~ 1,0 -
H%2 + llvg ||%°°||<th\|%2) dt

Pullte + 16utllFe ) dt + c(v, T) < (v, T),

T T T
1l < co [ 1o Bolo™ Bt +o [ Woalolof Vpdt+ o [ 10:Ralfpct
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T T
<l Zpe | 0" adt +co [ 100falFedt
T 0 0

+ collv)°

T
|%%°H3/0 |@ll7adt < e(vs, T),

and

T T
r3 1,0 I, 1,0 I1
[0 L2117 1 < o /O (om0 1+ o e llof 1350 ) e+ co /0 107 fol 3l
T ~ 2 1,02 ~ 12 1,0)2 d
te | [Pt v M7 + 1l loge (17 ) dt

T
I1 - -
<o [ (10" s+ ot s+ Wl + 6 1Boe ) + el T) < e, T)

Here we have used the Sobolev inequality || fgll gx®, ) < Ckll |l mr@,)llgll ar ., ) for any integer £ > 1.
On the other hand, it can be verified that the initial value of the problem (3.80) is compatible up to
order one. Therefore, by the similar arguments as proving (3.89) and (3.90), we have for the problem
(3.80) that

10F Pll 2. ra—an < (v, T) for k =0,1,2, (3.91)
[wll e s + 10Fwl| 2 grs—2 < (v, T) for k=1,2. (3.92)

Collecting estimates (3.89), (3.90), (3.91) and (3.92), making also use of (3.27) and (3.66), one can
deduce

HSDI’1HL2TH6 + HUI’1||L;9H5 + HanI’IHL%HP% < c(vi,T) for k=1,2,3,
and ultimately obtain (3.61). The proof of Lemma 3.5 is complete. O
With Lemmas 3.2-3.5 at hand, we proceed to study the problems (2.16) and (2.17).

Lemma 3.6. Assume the conditions in Lemmas 3.2, 3.3 and 8.5 hold. Then the problem (2.16)
admits a unique solution (vB1,pP2) on [0,T] for any T € (0,00) which satisfies, for any | € N,

12)'0F 05 g s+ 10 0P 12 oo < e, ), (3.93)
where k =0,1,2,3, and j =0,1,2.
Proof. From (2.16),, we have

0

[e.o]
B B0 B I B,1y,—vE
g7 = —e’ / v (9?0, 8) + M + e dy
z

B,0

o
B,0 B
- / [W2O(h2(0,6)y + @1 (0,1) + o vl (0,1)] e dy
z

B,0

o0
B,0 _ )
= —¢v / [0l 0(eL2(0,t)y + L1 (0,4)) + o ul0(0,1)] e dy
z

(o]
+e" / o0, [(620(0,6) + M + e’ dy
z

+ 0B L(pL0(0,t) + M + B, (3.94)
This together with (2.16), gives
B,1
v = ot = (@00, 8) + Mot — P (l0(0,8) + M+ oD (070(0,1) + 070)

— e / valay [(Lpi’o((), t)+ M+ Lpf’l)e*”B’O} dy(v10(0,t) + vP0)

o0
B,0 . B0
+e / [0l 020, t)y + L1 (0, 1) + @ 1wl 0(0,4)] e dy(v0(0, 1) + vP0)
z
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— 2 (0 %(0,8)z + 0110, 1) + 0P) — (9L (0,8)2 + 11 (0, 1)) 0P (3.95)
Take

o = v 4+ n(2)v"1(0,1)
with 7(2) as in (3.33). Then we deduce from (2.16),, (2.16), and (3.95) that v solves
1= e = (A00,6) + M) — k00, 0) + M+ 6P )(010(0,1) + 05) — 5B
—e / i, [(20(0,6) + M + o2 Ne™™ | dy(o0(0,8) + v70) + g,
2

5(0,t) =0, ¥(+o0,t) =0,
#(2,0) =0,

(3.96)

where g is given by
o
g=e"" / " (0,6)9, [ ($E0(0,6) + M + o e | dy(o0(0, ) +v70)
z

o0
B,0 B,0
+ e /[ Oz (0,8)y + 02 (0,8)) + 010 2(0,8)] e dy(v0(0,) + 0™7)
z

+ (9200, 8) + M)n(2)"1 (0, 1) + n(2)v,(0,8) — @B (0100, 8)z + v"1(0,1))
— (22 (0,8)2 + 0 (0,£)) 0™ + n(2)0"1(0,8)(p10(0,8) + M + o) (70(0, 1) + v7)
o/ (z)vl’l(O, t) + n(z)vl’l(O, t)anB’l. (3.97)

The existence of solutions to the problem (3.96) can be proved by using the reflection method along
with the Banach’s fixed point theorem. Since the argument is similar to that in Appendix A for the
linearized problem of (2.12), we omit the details here. In the following, we are devoted to deriving
some weighted estimates for the solution. It can be verified that the initial datum for the problem
(3.96) is compatible up to order two. That is, if we define 9F|;—¢ (k = 1,2) through the first equation
in (3.96), then 9F%|;—¢ (k = 0,1,2) vanish at the boundary. Furthermore, we have for k = 0, 1,2 and
[ € N that

(=)' 0 gll 12 gra—2v < (v, T)- (3.98)

The proof of (3.98) will be detailed in Appendix B. We proceed to prove for m = 1,2,3 and [ € N
that

\|<z>laf@||L2TH§m,2k < c(v,,T) for k=0,1,--- ,m. (3.99)

Indeed, for the case m = 1, multiplying the first equation in (3.96) by (z)%'% followed by an integration
over Ry, we have

1d
/ (z)252dz + / (2)25%dz + / (2)2 (1000, 1) + M) (0100, 1) + vP0)5%dz

= —/ cpZB (UI’O(O,t) + B0 4+ 1)(2)21172dz +/
R4

/ va 0(0,¢) + M + e *”B’O} dy(v1°(0,1) + vP0)(2)%6dz,  (3.100)
R4

z

g<z>2117dz—2l/ (2)2 72200, dz
Ry

where by (3.27)-(3.29), the Sobolev inequality || || < coll f|| 2 and the Cauchy-Schwarz inequality,
it holds that

| B0+ 0B+ (@5 < o [P (10" + 105 +1) [ @i
+

R4

< c(vs, T Htpz 1HL§"/R (2)25%dz < c(v*,T)/R (z)252dz,
+

+
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1
/ g(2)%odz — 2l/ (2)222050,dz < / (2)25%dz + co/ (2)215%dz + co/ (z)2g%dz
Ry R, 8 Jr, R, R,

—/ U@ %0 t)+M—|—gp De _”B'O} dy(v10(0,t) + vP0) ()2 5d 2
R+ z
00 2
< c(wn T) (0001 + 1050z [ %) [ 1 o1+ 1ot + Lo 1oy s
+ z
+ewn, D)5
2
< clon DI, +elon TN [ % [0 (1 e+ o )

l, B
() o212,

< clon D313 + elwn DI (1) 0P + 1B + 1517
< (v, D)) 5]
Therefore we update (3.100) as

1 1
pap L @ g [ @20 < o TN + o D) [ (P
2dt R4 2 Ry z Ry

where we have used (3.27) and (3.32). This along with (3.98) and the Gronwall inequality yields that

15601 + [ 14115 e < cloT) (3101)

for any ¢ € (0, T]. Multiplying the first equation in (3.96) by (2)?'%; and then integrating the resulting
equation over R, we get

1d {/ (z>2l@§dz+/ (2)*(0£°(0,8) + M) ("0 (0, 1) +vB’°)@2dz} +/ (2)*'57dz
2 dt R+ R+ R+

- % / (= (22900, 0) + M) (0, 1) + v59)], P4

Lh9(0,t) 4+ vP0 4 1)(2)? 6ﬁtdz+/

9<Z>2l@td2—2l/ ()22 20,0,dz
Ry

Ry

(3.102)

/ / [(cpﬁ’o(o,t)+M+<pyB’1)e—”B’°] dy(v10(0, 1) + vP0) ()25,
5
ST

We now estimate Z; (1 <i <5) term by term. By (3.27), (3.28) and Proposition C.1, we have

B,0 - -
T < (0, T) (It oo + o] Pl + NP lleee ) 165135 < elon, TR 812,

Similarly, for Zy, we get
Iy < [l 1z (Il

L, - i
< SIE) Bz + c(ve, TIE) D72

) 1€ 0l 2 1 (=) Bell 2 < e(ve, TII(2)"0 ) 2ll(2) Tl 2

By the Cauchy-Schwarz inequality, we have

1
T3+ 14 < / (2)2152dz + c(v*,T)/
8 Jr,

Ry

(z)2g2dz + c(v*,T)/ (z)252dz.

R4
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Finally, in view of (3.27), (3.28), (3.29) and the Cauchy-Schwarz inequality, we get for Z5 that

1
7, <t / ()252dz + e(v., T) / ()2
S Je,

Ry

1 . - _

<3 [ @Fadst e T 01E (10262 s + 2B, [ ()%
+ +

1 B .
! /R ()2 58dz + c(v., T[22,
+

o] 2
/ 00, [(¢£’°(07t) +M+ soyB’l)e‘”B’O} dy‘ dz

<
-8
Collecting estimates for Z; (1 <14 < 5), we have from (3.100) that

/ (z) 2l 2 dz+// 21 2dzd7'<cv>,<, // 21 U —|—U)dzd7'
Ry Ry Ry

for any ¢ € (0,T)], where we have used the facts ¢>°(0,¢)+ M > 0 and vB0 > 0. Therefore we utilize
(3.101) and the Gronwall inequality to deduce that

t
/ (2)252(-, t)dz + / / (2)292dzdT < c(v,, T). (3.103)
Ry 0 JRy
This along with (3.96),, (3.27), (3.28), (3.29) and (3.98) leads to
T
| 1@ ol < (o)
O z
Then we finish the proof of (3.99) for m = 1. To proceed, set © = ¥;. Then v satisfies
O = 022 — (°(0,8) + M)o — 9(93°(0,8) + M + 1) (v10(0,8) +vP0) — 0!

Bo [ _ B0 -
e / 29, [(gog“(o, t)+ M + e | dy(v"(0,) +0v70) + 3, (3.104)
z
5(0,8) = 0, B(+00,t) =0,
@(Z, 0) = 615’15:07

where ﬁt\tzo is defined through the equation (3.96),, and g is given by
= —0[(25°(0,) + M)]o — 5(0rp°(0,8) + 05 1) (0700, 1) + 050)

- 1,0 B,0 ~ B,1
- U(%Ic’o(oat) + M + @f’l)(vt (0,t) +v,777) — Doy + gt

- / 00y [(£12(0,1) + M+ o e |y [ 010(0,1) +070)]

B evB,o (vI’O(O,t) 4 UB,O)/ 178yt [((pi’o(o,t) + M+ QOyBgl)eivBﬁ} dy.

z

In virtue of (3.27), (3.28), (3.29), (3.98), (3.101), (3.103) and similar arguments to proving (3.98), it
holds for £ = 0,1 that

||<z>lafg|\L2 2o < (v, T). (3.105)

Repeating the argument in the proof of (3.101) and (3.103), we then arrive at

/< V22 ( dz+// V2 (92 + 92) dedr < (v, T) (3.106)
Ry Ry

for any t € (0,7]. Furthermore, from (3.104), and (3.106), we get

/ / (2292 _dzdt < c(v,, T). (3.107)
R4
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In view of (3.96),, (3.101), (3.103), (3.104), and (3.107), we also have that

T
/ / () (10551 + |0%5%) dedt < c(u., T).
0o Jr.

Thus we finish the proof of (3.99) for m = 2. Now let us turn to the proof of (3.99) for the case
m = 3. Based on (3.105) and the fact that the initial datum of the problem (3.104) is compatible up
to order one, we get apply the procedure in the proof of the cases m = 1,2 to the problem (3.104)
and get that ||<z>lafﬁ||L%H;172k < C forany !l € Nand k=0,1,2. That is,

H(z>laf17HL2TH§_2k < c(vs, T) for k=1,2,3.

This along with (3.27), (3.28), (3.29), (3.96), and (3.98) further gives that

T
| (e, + 1ol ae < o ).

Then (3.99) is proved. With the definition of v and (3.99), one can immediately obtain the estimate
for vP1 in (3.93). The estimates for o2 follow from (3.27), (3.28), (3.29), (3.61a), (3.61b), (3.93),
and (3.94) along with similar arguments as proving (3.98). We thus finish the proof of Lemma
3.6. O

By analogous arguments as proving Lemma 3.6, we have the following existence and regularity
result on (%2 v®1).

Lemma 3.7. Assume the conditions in Lemmas 3.2, 8.8 and 3.5 hold. Then there exists a unique
solution (p»2,v"1) to the problem (2.17) on [0,T] for any T € (0,00) such that for any | € N,

407" 3 pro-an + I1ME)'DT "2l 1 o2 < (s, T), (3.108)

where k =0,1,2,3, and j =0,1,2.

4. CONVERGENCE OF BOUNDARY LAYERS

4.1. Reformulation of the problem. Denote by (¢°, v¢) the solution to problem (2.2)—(2.3). To
prove Theorem 2.1, normally we shall construct a perturbation as

o =60+ 2 (M@, 0) + P (5, 0) + (e ) ) + 8

(4.1)

of = UI’O + UB’O + Ub,O + 525

and estimate the remainder (£7,&5) to show that
€Tl z = OE™®), €5 llLgere = O(€Y?), [0:EF|Lgproe = O(eM1). (4.2)

for some T" > 0. However, if we substitute (4.1) into (2.2), we shall find that the equations for (€7, £5)
involves terms that converge to non-zero constants as ¢ — 0, but we need estimates in (4.2), where
&} behaves like 0(51/ 2). This gap causes troubles to the analysis. To circumvent this difficulty, we

resort to higher-order outer- and boundary layer profiles by introducing an approximate solution to
the problem (2.2)-(2.3) as follows

DA (1) i= "0 42 (PP, 1) + ™ (2, 8) + PUE D))
e ($72001) + "2 1) + b2, (4.32)

VA, t) = 010 4 B0 4 b0 4 £1/2 (vl’l(x, t) + vP (2, 1) + o L(E, t)) + b5 (z, 1), (4.3b)
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where the functions b%,(z,t) and bj(z,t) are constructed below to homogenize the boundary values
of (@4, VA):

1
V(1) = —(1— ) [e%b%— ) + e

. 0+ 2pP2(0.1)

c1/2’

1 1
— X |:€1/2QOB’1(61/2, t) + 590372(@, t) + 5(,0b72(0, t):| y (44&)

1

1
€ _ b,0 1/2, b,1
b5 (z,t) = (x — 1) [v (—51/2,t)+5/v (—81/2,

1 1
B 1/2, B,1
t)] —x [v (81/2,t)+8 /2y (81/2,t) . (4.4b)

Then we can write (¢, v°) as

oF = & 4 1205, of — VA L 12yE (4.5)
with (®¢, V) being the perturbation functions, which along with (4.1) implies that
& = e20° + e (pP2(x ) + (1)) + b (1), (4.6)
£5 = l2ye 4y 12 (v“(x, £) + Bl (2, 1) + P, t)) b (1), (4.7)

We remark that we have omitted the term ep’? in the above construction of ®4. Indeed, this term
is of order ¢, and is unnecessary for our analysis. On the other hand, if this term is included, then
the upper bound on H&g(pi’zH 212 is needed for the estimate of Rj in the subsequent analysis. This

will require higher-order regularities on the initial data (¢g,vg). Substituting (4.5) into (2.2)—(2.3),
we see that the perturbation functions (®¢,V¢) satisfy

@ = @F, — POEVE — BV - VB + M) + VRS,
VE = Vg, — P05V - 05V — (@ + M)VE + 2 12RS,

(4.8)
(®%,VF)(z,0) = (0,0),
(%, VE)(0,¢) = (2%, VF)(1,1) = (0,0),
where
R =04 — (2 + M)VA -0}, R =cVA — (02 + M)VA - VA (4.9)

Notice that the coefficients and source terms in (4.8) involve only the outer- and boundary layer
profiles studied in the previous section. By standard arguments (e.g. [37, 42]), one can prove the
local-in-time existence and uniqueness of solutions to the problem (4.8) with € > 0 in the time interval
[0, T¢] for some T. > 0 which may be small. Now the key is to establish some uniform-in-¢ estimates
for (®¢,V¢) so that the e-independent lifespan of the solution and the convergence of boundary layers
can be extracted. To this end, we present the following results for the problem (4.8), which will be
proved in the next subsection.

Proposition 4.1. Assume the conditions in Theorem 2.1 hold. Then for any v, > 0, there exists
constants T > 0 and €9 > 0 such that for any € € (0,&q), the problem (4.8) admits a unique solution
(®°,Ve) € L>®(0,T; H?> x H?) which satisfies for any t € [0,T],

1% (, )13 + 2N R5(, )13 + €321 ®5, 1132 + e 105VEC B)lfF2 < c(vs, T)eM?
and

t
[ (1051 + 210 + 0, s + eV + IVEIe + /2 Varl) d < e, )12,

where £ = 0,1,2, ¢(vs,T) > 0 is a constant depending on T' but independent of .

4.2. A priori estimates.
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4.2.1. Preliminaries. We introduce some basic facts for later use. By (3.28), (3.29), (3.93), (3.108)
and Proposition C.1, we have for [ € N that

H(z> oF BlHLoon) 2k + H< ) 8fag(PB1 L2 < Ko(T', v4)vs, (4.10a)
(&) or sob’lllL%ng% + {6 F 0" Lz rge < Ko(T,va)vs (4.10b)
for k=0,1,2, 7=0,1,--- ,4 — 2k, and that
12 0P 2| e e+ () 500052 i 1 < e, T, (4.11a)
H<€>l(9590b’2||LoToH§—2k + 148 o0l g rge < e(va, T) (4.11b)

for k = 0,1, j = 0,1,--- ,4 — 2k. Hereafter the constant c(v,,T) > 0 is as stated in Section 2,
Ko(T,vs) > 0 is as in Lemma 3.3. Also, we collect some basic estimates on the boundary layer
profiles of v as follows.

1 3-2X\
) 0P | e -z + Y D 1) RO g 10 < (v, T), (4.12a)
A=0 /=0
1 3-2\
1€)! of v bll!LooH4 o+ Y Y 90O g < e(vs, T), (4.12b)
A=0 /=0
and
1 3-2X\
[[(z)! o) BO||LOOH4 2+ > Y 2 000 e Lo < Ko(T, i), (4.13a)
A=0 (=0
1 3-2\
14€)' 0 bol!LooH4 o+ Y Y 00 e rge < Ko(T, v )vs (4.13b)
A=0 /=0

for k =0,1,2, due to Lemmas 3.3, 3.4, 3.6, 3.7 and Proposition C.1. From (3.27) and (4.10)—(4.12),
one can deduce some estimates on the approximate solution (<I>A, VA):

10L®4 | Lee oo + [|000L @ | Lo oo < c(vs, T), 1=0,1, (4.14a)
IVAllLgeroe + 1V gz + 21000V | L5100 < c(vs, T), 1=0,1. (4.14b)
4.2.2. Estimates on the error terms. Now let us turn to estimates on the error terms Rj and Rs5.
Lemma 4.1. Let 0 < e < 1. It holds for any T > 0 that
IR gL < e(ve, TN, IR llpgere + 10R 212 < e(vs, T)Y™. (4.15)

Proof. First recalling the definition of G; (i = —1,0) and G; (i = —1,0) in (2.8) and (2.9), respectively,
using (4.9) and the first equation in (2.10) and in (2.11), we get from a direct computation that

R = —u7 [0r% = 0220, 1) — 237 (0,)] +02° [03” — 03°(1,1) = (2 — D)o (1,1))]
= [e2P (PE 0w, 1) — 100, 1)) + el (pE 0@, ) — 61 0(1,1))]
— [P O (w,8) — o (0,0) + R (P (2 8) — 0B (L,8))]
— V2 B, 8) —vE0(0,6) + 5 (0F (1) — v O(1,1) | — 2P0 + b0

(Bl b,1 b,1 B,1 B,2 bO

bt ol pBl o820 4 0250y [wi’l(vf’l + i)+l (OB + 90’3;1)}

8%161 3121 g(pf,z ,UI,O_i_E(UI,l_i_vB,l_i_vb,l)} —8@2’2 [UI,0+€(UI,1+,UB,1+U1),1)}
X x

V2ot + M)+ e(0? + @?’Q)} +F =) P+ F",
=1
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where
e = — 0,05 (20 + M+ 2l + B+ b1 + e(082 + 6h?))
— Ol (vl,o + B0 4 20 12000 Bl vb’1)>x — (0:b5,0:b) — O4b5,. (4.16)
Now we are ready to estimate HR?HL%LE By (3.27), (4.12a), (C.6a) and Taylor’s formula, we have

1,0 1,0 1,0
oz (z,t) — vz — 20y (0,1) 220580

1Pillpse 12 =

2 *
L L2
< 2|!3§’<PIOHL°OL°°||$ v Nl a2 < coelle™ | g mall 2o
< o= g o g |220B e < (v, TYEVA, (4.17)

The same argument as above yields
[Pallrger2 < *H 20" g ree (2 = 12000 | Lo 2 < e(vs, T)Y™.
Furthermore, in the same manner, we get from (3.27), (4.10)—(4.12) that
1Pill e 2 < (v, T)EY, i =3,4,5.

Notice that 1/2 <z=H45 < 1/2 for 1/2 < x < 1, and that 51% < €= 1/% < %ﬁ for

0 <z < 1/2 This along with (3 59), (3.93), (3.108), (4.12) and (C.6) 1mphes for m € N and
k=0,1,2 that

e 211070507 | Lo 121y x(0.)) € 2 I0F O | e 0,2y x 0,1
< COHZnH45$5iUZIjHmeoangwoﬁflﬂ))4*COH§WH45%5%UbJ”Laxoangwfng2p»
< col[ (=)™ OO0 || L + ol |(E) " OF O™ || e < e(vs, T), (4.18)
where 7 =0,1,¢=0,1,--- ,4 — 2k. Similarly, we have
e/ (H@k 20 oo (12, x (0)) + ||atkai90b’1||Loo((o,1/2)x(o,T))) < c(vs, T) (4.19)
for k=0,1,2,¢=0,1,--- ,4 — 2k, and
e/ (Hafafcsf’B’Q||Lo<>((1/2,1)x(o,T)) + ||3fafc90b’2||L<><>((o,1/2)x(o,T))) < c(vs, T) (4.20)

ifk=0,1,7=0,1,---,2 — 2k. Therefore, we deduce for m € N, that
2172 1/2 1/2

log

v 0% a2 < €2 0% | Lo oiz2(0,1/2)) + €

(0,13L2(1/2,1))
m+1 _
S i (R PR AT 1] P

e 200 oo 12,1y x 0,70 168 512 )

2m+ b1
< coe ™5 (o2 gz )
2m+1

<c(vs,T)e 5, (4.21)

and

£1/2 1/2

b0 B b0 B b0 B
1800 e 2 < €200 | oo 0.7502(0,1/2) + €2 N0S 0P Ml oo 0. mi2(1 2,1

m+1 _
<g: <||€ m/QUf;’O||Loo((o,1/2)x(o,T))|190§’1||L00L2

e ™ 2B | oz 120 e 22

2m+1
< coe ™ (P g1z + Io} HLOTOLg)
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2m+1

< c(vi, T)e™ 4 (4.22)

where we have used (4.10), (4.12) and (C.6). Thus [|Pg||per2 < c(vs, T)e?/*. By the same argument
as proving estimates for Pg, one can infer that

1Prllpsers < elvs, T)EY

With (3.61), (4.10), (4.12) and (C.6), we obtain

[Psllpsere < C(U*aT)53/4H90315’1||L%°L°° (HUf’l rgerz + Hvlg71HL§’?Lg>
(v, D)ol oo (117 ngrz + I8 nerz) < o, T)EY,
Similarly, we also have
IPillzge 2 < e(va, T)EY, i =9,10,11,12.
For the last term F*, we first deduce from (4.4a) and (4.10)—(4.12) that
10505 | Lo 11

< C(U*,T)5(H5_1/25590b’1(—€_1/27t)||Loo(0,T) + [|0F P2 (—e 12, )| oo (0,1 + HafsﬁB’Q(O,t)HLoo(o,T)>

< c(ve, T)e ()"

|geree + 108"\l Lgeree + HafwB’ZHL%OLgO)

< c(vs, T)e (4.23)
for k = 0,1. By similar arguments, we have from (4.4b) that
10F6; | e mr1 < c(va, T)e, k=0, 1. (4.24)
Similar arguments along with (3.28), (3.59), (3.93) and (3.108) further imply that
10265 1 g s + 07| 12 s < el T)e: (4.25)

Notice also that 8,,;(); and 0,b; are independent of z. Thus it holds that

107065 || £2(0.7) + 11070t £2(0,7) + 10F 02bS || oo (0,7) + 110F Oub || e 0,7y < (v, T, (4.26)
where k = 0,1. With (3.27), (4.10)—(4.12) and (4.23)—(4.26), recalling the definition of F** in (4.16),

we have
[ F (| pge e
< c(ou T o (14 (68 o + €200 e + /10 | e

+El/4H§0b’1’ 3/4"@3,2

3/4), b2
Lyut t€ 0 i (' L%OHEI)

1/4||UB’1 1/4||Ub’1

+ 10265 oo (0,7) <||UI’O L?F’Hal)
+ 0265 | o< (0,7) 19205 || o< (0,7) + (|05 [| oo 12

< c(vy, T)Y2. (4.27)

LeH! T € LeHl T €

In summary, we now have for 0 < & < 1 that

12
IRS 2 < S I1Pilsenz + 1 F ] e 12 < clvn, T)HA, (4.28)
=1

Repeating the above procedure with L?-norm replaced by L>-norm, we have that

IRl Lo Lo < e(vs, T)E'?. (4.29)
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We proceed to estimate [|0;R{|[12 r2. Notice that if |[hx[|z < collhllx[[x]ly for h € X and x € Y with
X, Y and Z being Banach spaces, then

10:(hx) |z < coll:hlxlxIly + collPllx 1Orx]ly, (4.30)

provided that 0;f € X and dyx € Y. Therefore, by (3.27), (4.12a) and similar arguments to proving
(4.17), we have

0P 1201
< 8153031670(1" t) — 875(,0;{;’0(0, t) — x8t¢££(07 t) 2,,B,0
> 2 LUy
Xz
LPL?
1,0 1,0 1,0
Pz’ (1.7 t) — or (07 t) — TPz (07 t) 2 B0
+ 2 TV
L L?

< 01020 | pge oo ll2®vF Ol e 12 + 1050l e poe 10”07 | e 12
< (e, D) 07 0 rall 22020 poe £2 + (s, T)EY 0" 120 pral| 2205 | Lo 2
< ¢(vy, T2, (4.31)
Similar arguments further yield that
10:Pill o2 < c(va, T, i =2,3,--- 11, (4.32)

Now it remains to prove [|0;P12[|2 2 < c(vy, T)e** and [0:F=|| 2.2 < c(vy, T)e**. For the former,
it follows from (3.29), (3.59), (3.93), (3.108) and 0 < € < 1 that

||6t7312\|L2TL2 = COE%(||31:2<PB’1HL2TL§ + 107" L%Lg)
o100 a2 + 10807 12.12) < elwn T, (4.33)
For the latter, we split 9;F into two parts:
O = ~0r |00, (Dap™® + M+ 620,01 + 0,0t + 0,081 + (02072 + 01" 2) )
A e e ) R G M|
= F— 8t2bf0,
where ||8t2b;|\LzTL2 < ¢(vg, T)e due to (4.25). In view of (4.30) along with a modification of the

arguments in (4.27), it holds that HFHL2TL2 < ¢(vy, T)e%/*. Therefore we have
10eF| 12,2 < c(ve, T,

This alongside (4.28), (4.29), (4.31)—(4.33) gives rise to (4.15), and thus complete the proof of Lemma
4.1. U

Lemma 4.2. For any 0 <T < oo and 0 < e < 1, it holds that
RSl Lo 2 + 10 RS |2 2 < elvs, T)EY, | RS [|ngproe < e(vs, T)e?. (4.34)
Proof. From (2.12)—(2.15), we know that
0B = 0P 4 (8,100, 8) + M)PO + Bl (B0 10100, 1)),
vgg = 0"+ (@op"0(1,8) + M0 4 Q8 (0P 0101, 1)) .

Plugging (4.35) into RS in (4.9), recalling the definition of ®4 and V4, we have

R5 = — [07%(pr%(a,t) = ¢3°(0,) — 2033 (0,1)) + 0" (03 (2, 8) — 03 (1,8) — (x — 1)z (1, 1))
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7)870(9051( 7t) - Qoi’l(()? t)) + vb,O(sDi,l(l,’ t) - ¢£71(17 t))}

= eV2 [oP A (ph0a, 1) — 0(0,1)) + vP (o0, 1) — hO(1,1))]

eV B (010 = 0T0(0,6) = wul0(0,6)) + ! (70 0! 0(1,8) — (2 = 1)elO(1,1))]
e | " ) =0 (0,0) + e 01 (1) — o (1)

= [P0 @ 1) = 00(0,1) + 2 (0w, 1) — v O(1, )]
_ 53091571(7)]’1 + UB’l + Ub’l) _ 61/2(905,1Ub0 + 902;1 BD) 5( B711}b1 + (pgl B, 1)

6((,05’2’0120 +30b2U6B 0) 3/2@:63’2(1}1’1 +U 1 +’U , )763/2801;,2(,0 1y B,1 +Ub’1)
— bl + M+ (ol + ot + b1 + 0,0

1
- 8,,31);(1)[’0 + B0 b0 p ezl 4B b)) 4 [Evif + 63/2’0££} — oS =: Z Ki.

To prove (4.34), it suffices to establish estimates for IC; (1 <14 < 15). The proof is quite similar to the
one for Lemma 4.1. We first prove |[R5| zsor2 < c(vs, T)e?/*. By (4.18), (C.6) and Taylor’s formula,
we get

1K llpge e < coelloe™ g nee (105l pgerz + 107 e 12 ) < ewn, T

Similar arguments imply that || Kil|peer2 < c(vx, T)e?* for i = 2,3,4,5,6. From (3.27), (4.10)(4.12)
and (C.6), we get

ICellngera < elleh lageroe (Il gz + 0P ppre + 0" liger2) < c(vs, Te,
where the constraint 0 < € < 1 has been used. Analogously, we further have that
IKill g2 < c(vs, T)E*, i = 11,12,
and

1
Lger2 T et HSOEJHL%OLE

1
1Krslzzers < co (1+ IOl zgre + 2 0kt
Lo b1
o3l g2 + 105N s 1) 65 lugerse < (v, T,

1
1l e < e(e TNl ez (1 + 2 (o™ ugerme + 05 g p + 10" [z 12) )
< c(vg, T)e.

Recalling the arguments in (4.21) and (4.22), we proceed to estimate ||Ks||peoz2 as follows:

sl ge 2 < €2 (0000 || oo 2 + /20"

< cpe (Hafm/lu

x

(/2% e gz

b,0
I L;}OLg)

+lle

Ly L2

+ coe o (Ha‘m/chf;’lHLoo ((0,1/2)x(0,T)) HUB’D

+|le=™/? BOHLoo( 1/21)><(0T)||90§ ||L°°L2)

< vy, T)SQWZH

for any integer m > 1, where we have used (4.18), (4.19), (C.6) and 0 < & < 1. Thus, || Ks|reer2 <
c(vy, T)e/*. Similarly, we have also IKillLger2 < c(vy, T)e3/* for i = 9,10. For K5 and Ky, it
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follows from (3.27), (3.61) and (4.24) that
3
1Krsll ez < ellopdllpgere + 2 vl o2 < e(ve, T)e, [IKi6ll ez < c(vs, T)e,

where we have used 0 < € < 1. Therefore we conclude that
16

HRgHL;Om < COZ ”’Cz‘HLgsm < C(U*aT)53/4-

i=1
Repeating the above arguments with || - [[zeop2 replaced by || - ||rgere, from (3.27), (4.10)-(4.12),
(4.18), (4.23)—(4.26) and (C.6), one can deduce that

IRS||Lee e < e(vs, T)e2.

Finally, in view of (4.30), the above estimates for IC; (1 < ¢ < 16) and Lemmas 3.2-3.7, we have that
10 RS | oo 2 < c(vx, T)e3/*. This ends the proof of Lemma 4.2. O

4.2.3. Lower-order estimates. From now on, we shall establish some uniform-in-¢ estimates for (9, V¢).
Throughout this section, we assume that (®¢, V) satisfies for any T > 0,

sup [|®°(-, 1) <6, (4.36)
te[0,T]

where & > 0 is a small constant to be determined later, and may depend on 7. The results in Lemmas
3.2-3.7, 4.1, 4.2 will be frequently used in the subsequent analysis without further clarification. We
emphasize that these estimates are all independent of §. We begin with the L? estimates of (®¢, V¢).

Lemma 4.3. Let the conditions in Proposition 4.1 hold. Assume 0 < € < 1 and that the solution
(®°,VE) to (4.8) on [0,T] satisfies (4.36). Then there exist a positive constant 61 > 0 independent
of € and 0 such that for any t € [0,T],

¢

VG OlZ + 19°C, )12 +/0 (VN2 +ellVElIZ2 + 195]72) dr < e(vs, T)e?, (4.37)
provided 6 < 81 and K1 (T, v, )v. < 1/16, where K1(T,vy) is given in (4.40), c(vs, T) > 0 is a constant
depending on T but independent of € and §.

Proof. Multiplying the first equation in (4.8) by ®¢, followed by an integration over Z and integration
by parts, one deduces that

1d
/|<1>€|2dx+/y<1>§|2dx

= —¢l/2 / PEPEVEdr + / e V2RE D — / (@2 + M)VEDde — / PEPEVAdL. (4.38)
A a A A

The terms on the right hand side of (4.38) can be treated as follows. Thanks to (4.36), Lemma 4.1
and the Cauchy-Schwarz inequality, it holds that

—51/2/<1>€<1>;V§dx§ ;/ V;|2dx—|—co|]<I>EH%oo/]<I>§C|2dx
7 A A

< E/ V;Fdx+co(5/ |®2|2da, (4.39)
8.Jz1 T
and that
/ e PRI < 0| ®° 7 + cos IR II72 < coll®F[[72 + clve, )2
T

Hereafter the constant c(v.,T") > 0 is independent of ¢ and §. The integration by parts along with
(3.27), (4.10), (4.11), (4.14a), the fact &%bfo = 0, the Hardy inequality (C.5) and the Cauchy-Schwarz
inequality gives

- /(cb;;‘ + M)VE®D da = /
T

VEREDA da + / (@4 + M)VEdsda
A

A
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< El/z/IV‘f@a(wm + i ) + / VEDr (10 + eM2phl 4 epB? 4 eh2 4+ 215 ) da

+ 0| @3 + M|z |[VE| 2|95 2

Pe z(1—2x) g,
(1 =) || 2 gl/

(0, IV 22197 2 (105
b,1
< (o, DIV 2095 2 (105 ne + 100wk lge ) + eve, THIVFllge (1951 2 + 1971 52)
1
< S 1@alF2 + (o, DI + V2.

For the last term on the right hand side of (4.38), from (3.27), (3.61), (4.3b), (4.12), (4.13), (C.4),
the Hardy inequality (C.5) and the Cauchy-Schwarz inequality, we get

- /I<I>€¢§VxAda: . /qu@; (vf’o + vfc’o) do — /qu@; [v;’o +elV2(phl 4 Bl bl c%bi]
z(l1—z) po z(l—x) po
P v + v
3 H IHLQ < E1/2 z . 51/2 £ .
I B b,1 I,
+ (12| 22| %] 22 (H%’OHLOO + v | pee + llug e + e 2ol + ||3xb§HL°°)

b
< col| @572 (H<Z>vf’OIILgo + ||<§>vg’0||Lg°) + (v, T) | 9| 297 2

< IVEll g2 +

LO()
b,2
+e 2 ogp oo + 192l + llege g + 11035, HLoo)

b,
c1/2 Pee

1_
21=2) b1 >+C(U*7T)HVEHL2H(I)§:HL2
LOO

¥
z(l—x)

1
< (5 + Ka(Tov)v. ) [ 05]72 + (o, D03, (4.40)

where K1 (T, v.) := Ko(T,vs)co > 0 is constant with Ko(v«,T) as in (4.13). Thus, plugging (4.39)-
(4.40) into (4.38), it follows that

d €
G [1epdo s [1aas < 5 [ VePdo+ el TR + VIR + clwon D2, (01
A T A

provided ¢pd < 1/8 in (4.39) and K (T, v«)v. < 1/8 in (4.40). To proceed, multiplying the second
equatlon in (4.8) by V¢ and integrating the resulting equation over Z, we get

/\VE 2dx+a/ |VE|2de = —/ e2ecveEvedes — / PEVAVEda
2 dt T
4
- / (@4 4 M)[VE|2dz + / Ve PRedr = S ON (442)
z z —
where, due to (4.36), integration by parts and the Cauchy-Schwarz inequality,

M —51/2/@51/;1/5(1955 ;/\Vj[2daﬁ+c(v*,T)H<I>€H%oo/\V€]2daz
v v A

< £ [ 1viPds + (o, TV (4.4
7

provided 6 < 1. For N2 and N3, the estimates in (4.14) along with the Cauchy-Schwarz inequality
yields that

1
No <[V oo [ @5 12 [[VEllze < GI@S T2 + c(ve, TIIVEIIZ2, - Ns < e(vn, T VEIZ2-

For the last term N, by the Cauchy-Schwarz inequality, one has Ny < [[VE||3, + c(v,, T)e || R5|32
Inserting the estimates on A; (1 <7 < 4) into (4.42), we get by virtue of Lemma 4.2 that

2dt/\v€| dz+5/]V€| dr < = /|¢€]2dx+ (v, T)||VE|22 + (v, T)eV2. (4.44)



40 J.A. CARRILLO, G.-Y. HONG, AND Z.-A. WANG

Combining (4.44) with (4.41), we obtain that

d
T (JVE|? + |@?) dx+/ (1B + <|VE]?) d:vgc(v*,T)/ (Ve +|9°%) dz + c(vs, T)e"/?,
T T T

which along with the Gronwall inequality entails for any ¢ € [0, 7] that
t
IVECONZ + 197G 0172 + [ (VT + 195]172) dr < v, T)e"2,
L L 0 z L zIIL
The proof of Lemma 4.3 is complete. U

We proceed to establish H' estimate for (®¢, V).
Lemma 4.4. Under the conditions of Lemma 4.3, it holds that

t
ell 5 (017 +ellVa ()17 +/0 (el 372 + VEIfF2) dr < s, T)eY?, Ve € (0,T],  (4.45)

where the constant c(v«, T) > 0 is independent of € and §.

Proof. Multiplying the second equation in (4.8) by V¢ and integrating the resulting equation over Z,
we have

s [iars [eras
= /I (@2 + M)VEVEdr — /I PEVAVEdr — /2 /I PEVEVEdr + /2 /I R5VEde,  (4.46)
where, due to ||®2|| Lo < c(vs, T) from (4.14a) and the Cauchy-Schwarz inequality,
- @ MVVEde < [0 M IV Vi 12 < IV + cCon DIV (4T
By (4.14b) and the Cauchy-Schwarz inequality, we get
- [avAveds < VA 9512 < VPR + el DISER (449

Thanks to (4.37), the Cauchy-Schwarz inequality, the Sobolev inequality (C.2) and Lemma 4.2, we
deduce that

1
e [ @svevide < § [ VePdo+ e DelVE B [ 185
A A A

IN

1

1 / VERdz + (o, TV 12| VE | 12 / 12 [2de
8 Jz1 T

1

1 / VEPde + (o, T)E A VE 12 / 15 2de

8 Jr T

1
8/IIVfIQd:v+C(v*,T)€||V§II%zII‘I>§|%2 + (v, T)e>? || 8517,

IN

N

and that
1 1
2 [ RVede < [ Ve + el e IRSR: < 5 [ IVER oo D2 (49)
7 T z
With (4.47)—(4.49) and the fact 0 < & < 1, we thus update (4.46) as
d € €
T IE\Vz Pda + Vil 72 < elos, TIIRS 72 (ElIVENI72) + ClIOS T2 + elvs, T)V?,
which followed by an integration over [0, ¢] for any ¢ € (0,7 gives

t t
ellVa (- )lI7 +/O IlVf\liszSC(v*7T)/0 19572 (V3 l72)dr + e(ve, T)e' 2, (4.50)
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where we have used Lemma 4.3. Applying the Gronwall inequality to (4.50), we then obtain that
t
VG + [ IVERadr < cfwn, T2 (451)
0

where we have used (4.37). Now let us turn to the estimate on ®S. Taking the L? inner product of
the first equation in (4.8) with ®$, followed by the integration by parts, we have

/|<1>fy d;v—i—/ |®¢ 2 dx = —/@f@;VmAd:U—/sl/g‘I)f(I)iV;dx
2dt T 7

4
— / VEDS (D2 + M)dx + / e PRIDSdr = ) Q. (4.52)
z z i=1

Next we estimate Q; (1 < ¢ <4). From (4.14) and the Cauchy-Schwarz inequality, we deduce that
1 _
Q1 < IV Iz 195 1 2125 2 < SIPEIIZe + e(ve, T)e [R5 7,
1
Qs <123 + M| [ VE |l 22|l 2 < IPEILe + c(on V72
By the Cauchy-Schwarz inequality, we get
1 1
0 < § [ 197w +-Ce [ [@2ViPar < § [ (0P ar+ e ViR 950 (453
Similarly, we have
1 1
Qi< § [ 18P e+ s IRG[s < § [ 197 Pda + clon T2 (4.54)

where we have used Lemma 4.1. Therefore, inserting the estimates on Q; (0 < i < 4) into (4.52), we

get
P |“dx <I>€ d
e / 82de + 2 / 185 2de
< (0, TY(ENVE2) 1851122 + c(vn TY(E 0525 + [VE|22) + (s, T)eV2,

Integrating the above inequality over (0,¢) for any ¢t € [0,T], we arrive at
t t
1950l + [ 105 < oo ) [Vl @ifadr +e0n D2 (459)
where we have used (4.37) and 0 < ¢ < 1. To close the estimate, it now suffices to show that
T
g/ IVEI2wdt < c(o,,T) (4.56)
0

for some constant c(v,,T) > 0 independent of ¢ and 0. Indeed, if (4.56) holds true, then by the
Gronwall inequality, we get from (4.55) that for any ¢ € [0,77,

t
105, )ll2 + / 105 2,7 < cfv,, T)e /2.

This along with (4.51) yields (4.45). To prove (4.56), we first derive from the second equation in
(4.8) that

EIVillze <IVENZ + ellVElZe |92 + clve, TIPS + clvs, DIVEIIZ: + 7RSI, (4.57)
where (4.14) has been used. Therefore,

T T T
/ IVE,|2adt < / IVE2adt + / @5 220t + (v, T) / 105 2.dt
0 0 0
T
4 o0, T) / IVE|20dt + et / IRS|12dr
0
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< c(vy, T)eY?, (4.58)
where we have used (4.14b), (4.37), (4.51), Lemma 4.2 and the following fact
Ve < (o T) (VT2 + IVEI2NVE ll22) < eon T)2 4 (0., T) < e(vs, T, (4.59)

due to (4.37), (4.51), 0 < e < 1 and the Sobolev inequality (C.2). Therefore, we utilize the Sobolev
inequality (C.2) again, along with (4.37), to derive that

T T T
/ IVE2wdt < efv, T) / IVE 2 IVE 2t + e(vn, T) / IVE|20dt
0 0 0

T T
< c(on D [ Va0, D)2 [ IVERadt < clon D)
0 0
where the constant c(v,,T") > 0 is independent of ¢ and §. This gives (4.56). Thus we finish the
proof of Lemma 4.4. O
As a direct consequence of Lemmas 4.3 and 4.4, we have the following corollary.
Corollary 4.1. Assume the conditions of Lemmas 4.3 and 4.4 hold. Then for any solution (9, V¢)
to (4.8) on [0,T] satisfying (4.36), we have
T
| (21050 + 19503 + 2 IVAIR:) dt < (0., T) (460)

where c(ve, T) > 0 is a constant depending on T but independent of € and §.

Proof. The estimate on V£, follows from (4.58) directly. We now show estimates on ®, and ®Z. By
the first equation in (4.8), we have

A _
195 M7 < IDFIIZ> + el RSN IV + IV IZoe 1RSI + clvs, DIIVEIZ2 + e IR, (4.61)

where we have used (4.14a). Therefore we derive that

T T T T
/ H@fmﬂizdtg/ 195 22dt + & sup \\@;HQB/ HV;H%mdt—Fc(v*,T)al/ 192 |12 dt
0 0 t€[0,7] 0 0

T T
+eonT) [ Vet [ RS B
0 0

< c(ve, T)e ™2 4 c(vy, T)eY? < c(v,, T)e™ /2 (4.62)

for some constant c¢(v,,T) > 0 depending on T' but independent of ¢ and ¢, where we have used

(4.14), (4.37), (4.51), (4.56), 0 < ¢ < 1 and Lemma 4.1. This along with (4.37) and the Sobolev
inequality (C.2) further entails for 0 < ¢ < 1 that

T T
/0 185 |20t < (0., T) /0 (185120 + 5|2 [, |2 ) dt

T T
<o T+ ) [0tk c(wn T2 [0
0 0
< c(vy, T).
The proof is complete. O

4.2.4. Higher-order estimates. To prove the convergence result in Theorem 2.1, we derive some
higher-order estimates for (®%, V¢) in this subsection.

Lemma 4.5. Assume that the conditions of Lemmas 4.3 and 4.4 hold. Then it holds for anyt € (0,T]
that

195 C, )17 + IV CL )12 + 21050, D)1 72 + el Vaa (- )12

t
+/ (IR 1132 + ]| Var|[32) dT < c(v,, T)e V2, te (0,71, (4.63)
0
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where c(ve, T) > 0 is a constant independent of € and §.
Proof. Differentiating the equations in (4.8) with respect to ¢, we end up with
x ¥ xt

VE =eVE, — e2d5,VE — c2 05V — 5, VA — BEVA — AV — (34 + M)VF + e 20,R5.
(4.64)

{@a—@;xt eI, VE — e7REVE — B,V — GBIV — VE(DD + M) — VIS + e 20,5,

Multiplying the first equation in (4.64) by ®$, and then integrating the resulting equation over Z, we
get after using the integration by parts that

2dt/|<1>6| dx—l—/]<1>€t| dz

= 51/2/I<I>§tVf<I>§dx/I e/2qe §t¢5dx/(I)sVAQ)de/V;@ft(I)fdm

+ / e V20,Rs dida / 5,V 05 — / (@7 + M)®jda =: Z%v (4.65)
T T

=1

where, in view of the Cauchy-Schwarz inequality, H; (1 <i < 5) can be estimated as follows:
< 112572 + cocll Va7 1951172, Ho < 16|| st e + col| 0511 F |95 172,
Ha < coll Vit (72105030 + 21195 132 ) Ha < coll @iz (IVEIGe + 195]7),  (4:66)
Hs < |9 ][22 + cos ™ |1O:RY 72

For He and H7, it follows from (3.27), (3.61), (4.3b), (4.12), (4.13), (C.4), the integration by parts
and the Hardy inequality (C.5) that

He = — /Z<D§t€1/2(vf’0 + vé’%@idx — /I@fct(vi’o + vf’l + vg’l + 51/2v£’1 + 0,05) P dx
oF e z(l—x) gy z(1—=x) po

wl-2)||, H(I)xtHL2< iz v iz % -

195 12125l (I020llze + NoP laze + lof e + &2 l0E lnoe + 10285 1 )

< coll @5l (120020 e + 1) llage ) + e(ve, TIPS, 2195 2

+
LOO

< (5 + 2T 0200.) 95,02 + c(ve, T) |95 (4.67)

with K;(T,v,) > 0 as in (4.40), and that

/ VERSDA dx — / (D4 + M)VEDE,da

—el/? / VER (02! + o) da — / VDS (<Pif + M2l 4+ epB? 4 o2 + 32195)

197 + Moo [V | 22195 2

¥; x(1 ) z(l-a) by
< € t B,l y
< IVl | s L2< | || ) e DIV el 2
b,2 ,
+ IVE e l05 e (ke B2) 1 + 082l + V2 ok AT

b,1
< ol Vil ll@5ullze (0008 ne + 1) 0 e

1
+ e(ve, DIVE 22 (195122 + 195 ]122) < gllParllze + e(vr, TIPEIIZ2 + 1VE172), (4.68)
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where the constant C' > 0 is independent of € and §. Plugging (4.66)—(4.68) into (4.65) followed by
an integration over (0,t) for any ¢ € (0,71, it follows that

t
125, 8)]% + /0 125, |2adr

t t
9 _
<3 [ Warladr +(07) [ (EVE R+ 15 ) 195 D) + clon, TIT2, (460)

provided that Ki(vs,T)vs < 1/16 in (4.67), where we have used (4.14), 0 < ¢ < 1 and Lemmas 4.1,
4.3 and 4.4.

To proceed, multiplying the second equation in (4.64) by V7, we get after integrating the resulting
equation over 7 that

2dt/Wt| da:+5/|Vft| dx +/(<I>A+M)Vt| dx

= —¢!/? / o5, VEVide — / e PO VEVS da — / o, VAVEde — / OEVAVEda
z z z z

6
- / PAVEVEdr 4+ 7 1/2 / ORSVidr =: ) L, (4.70)
7 z ]
where, similar to (4.66), £; (1 <1i < 6) enjoy the following estimates:
H‘D lI72 + c(on DElVETe [VENF2r L2 < 2105 L |Vall7e,
L3 <7 H‘I) 7z + (e, DIIVA T IVEIT2 L1 < VAl (195172 + 1VEN72) (471)
Ls < ||<I> e (IVENZ2 + 1VENZ2) s Lo < IVEIIT2 + clve, T)e ™ 0RS 122
Therefore, we integrate (4.70) over (0,¢) C (0,7 to get

t
Vel + [ [ Ve dsdr < clon ) [ (1+lV I + 20080 IVEC )l ade

1 t
+5 [ IS adr + cfw.. ), (472

where we have used (4.14), (4.37), (4.45), 0 < e < 1 and Lemma 4.2. Combining (4.72) with (4.69),
we arrive at

t
195 (-, )17 + 1V D12 +/0 (195172 + el VirlIZ2) dr
t
< c(vs, T)e™ /2 + C(v*,T)/O (elVElZe + 195117 ) 195 ) Z2d7

t
sl ) [ (L4 lVAIe + 210 ) IVE ) B (4.7
0
Applying the Gronwall inequality to (4.73), alongside (4.56), (4.59) and (4.60), we get that
195 (. I72 + I1VEC- 1)I17 +/0 (1951172 +ellVir[172) A7 < e(vs, T)e™ /2.

This along with (4.14), (4.37), (4.45), (4.57) and Lemmas 4.1, 4.2 further entails that
Vi T2 < clvn, T).

It now remains to derive the estimate for ®¢,. Multiplying the first equation in (4.64) by ®Z,,
followed by an integration over Z, we get

2dt/y¢>§m\ dx_/@gtéfxdx+51/2/Zq>;tv;<b;xdx+/z 12peve @S dx+/q>§vx§‘q>f dz
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- / VERADE dx — / e 129, R5 05 dx + / P VADE du
T s

+ / (@2 + M)®E dx = / P05 dr + Z’H (4.74)
a T i

where, thanks to integration by parts, we have

/¢§t<1>§xdx: i/@f@‘;xdx /qfq»;xt jt/qfqﬁ dx+/|c1>§,t|2dx. (4.75)
7 T

For H,; (1 <i<7), we get by the Cauchy-Schwarz inequality that
Hi < co( @517z + ellVE 7 195:172), Ha < colellVallZe + 195117 195, [172),
Ha < coll|VilFoo 1951172 + 195 172) Ha < colll®ll e Va7 + [19541172)
Hs < co([|95, 1172 + e M IORTIT2), Ho < Vil llpee (11950172 + 195,1172)
Hy < co(e' 2195 + M7 Vel 7 + 205,11 72)-
Inserting (4.75) and estimates on #; (1 < i < 7) into (4.74), followed by an integration in ¢, we get
195, (- 1)]72

t
< [ @05 et clvn D)2 clon D2 [ (05,1 + 05,I22) dr
z 0

t t
+e0nT) [ (SPIVEIR + P10 )T + 0 T) [ (EVE IR+ 1051 195, 3

IN

1 B t
§H<I>ix(-,t)H%2 + c(ve, T) || ®F |72 + c(vs, T)e™! + C(v*,T)/O (ElVElZe + 19570 ) |95, 117 2d7

1 3 t
< 5!@%(3””%2 + (v, T)e™! +C(v>«aT)/0 (ENVE T + 1957 ) 195411 72dT,

where we have used (4.14), (4.37), (4.45), (4.60) and Lemma 4.1. That is,

t
1952 (172 < c(vs, T)e™! + C(v*7T)/O ElVElZe + 19517 ) 195417 2dT,
which along with (4.60) and the Gronwall inequality gives
1952 (. 1)l[72 < e(vs, T)e™, t € (0,7
for some constant ¢(vs,T) > 0 independent of € and 0, and thus ends the proof of Lemma 4.5. O

With Lemma 4.5, we can get an improved estimate for ®¢.

Corollary 4.2. Assume the conditions in Lemmas 4.3—4.5 hold. Let (®%,V¢) be the solution of the
problem (4.8) on [0,T] satisfying (4.36). Then we have

t
D5 (-, 1)]%2 +/ / |®¢ 2dzdr < c(v,,T), te€(0,T], (4.76)
0 JI
where c(vy, T) > 0 is a constant independent of € and 0.

Proof. Recalling (4.52), (4.53) and (4.54), we have

€ 82
2dt/|<1>|d$+/|‘1> dz

—/@f@iVxAdx—/fobi @;“+M)dx—/el/2<1>§<1>31/;dx+/s1/2R§<1>§dx
z T T s
/ VED

(
1
—/(I)f@chxAdx— & §(<I>;‘+M)dx+/\<1>§12d:c
T T 4 /1
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+ c(va, Te|[ Vg |7 | B5 172 + (vs, T)E'?
1
= Q1+ Qo+ - / |51 d + c(ve, T)el|Vy 17 951172 + c(vs, T)eY2, (4.77)

where, thanks to (3.27), (3.61), (4.3b), (4.12), (4.13), (C.4), integration by parts and the Hardy
inequality (C.5), @1 and Qs enjoy the following estimates:

O = — / PEPE1/2 (vao + vg’()) dx — / DD (vi’o + Bl 4 vg’l + el /20t 4 (%bf,) dz
I I
7 z(l—z) po z(1—2) o
—_t o ——v> —— )
x(l - .I) 12 H xHL2 ( o1/2 z Lo cl/2 I3 Lo
B b1 I,
+ 0P ree + llog g + e llvg [z + HaxbillLoo)

195 121125 = (lof
b,0
< o[ @2 195 22 (1005 e + 1€ wg e ) + v, TYIDE 21195 ) 12

< gl!q’il!é (v, TV 2| @517 + c(os, T)(1+7Y/2) | €517,

Qy = / VEDS DL da + / (@4 + M)VEDE, da
7 T

S€1/2/VE<I>€(<PM +<pm)dx+/V5<I>§ (P50 + e'20h) 4+ epB2 4 eh2 + 0215, ) da
192+ M oo [V 219 12
(I)% x(lil‘) B,1 €
| (e (o D[V |95
b,2
+ ol VI 2125 2 (lehlloe + €2kt loe + leB2nz + Igdlicgs + 1026512 )
b,1
< ol VoIl ll@5ullze (0005 ne + €0 e ) + c(ve, TVl (1951152 + |95l 2)

< *H‘Pﬂ\é + (v, T)e 205172 + clvs, T) (L + )| VE fa.

z(l—z) Ba

<|[[VEl 2 SRR

_|_
Lo

Lo

Therefore, we update (4.77)

2dt/|q>6| dz+ + /|<1>€| dz

< c(ve, e[V |70 195 72 + (v, TN + c(vs, )2 5,17
+ c(ve, T)e 2 (@517 + IVE172)- (4.78)
Integrating (4.78) with respect to t gives

t t
/|¢;\2(-,t)dx+/ |<1>i|2dxdTgc(v*,T)+c(v*,T)/ e||VE| e | E |3 2d T, t € [0,T]
A 0 0

for some constant c¢(v,,T) > 0 independent of & and §, where we have used (4.37), (4.63) and
0 < & < 1. This alongside the Gronwall inequality and (4.56) immediately implies (4.76), and the
proof is complete. 0

Remark 4.1. In view of (4.37) and (4.76), the a priori assumption (4.36) is verified. Indeed, from
(4.37), (4.76) and the Sobolev inequality (C.2), we get for 0 < e < 1 that

sup [|0°(, )| 7 < (v, T) sup ([, )72 + 195C, )12 /197, 1)1 2)
t€[0,T t€[0,T

< e(vg, T) (51/2 + 81/4> < c(vy, T)e4, (4.79)
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where the constant c(vy,T) > 0 is independent of € and §. Furthermore, if we take § = %1 with 61 as

in Lemma 4.3, then we have supycpo 7y [|®°(-,1)|[re < c(vs, T)et® < § provided c(v,, T)e'/® < 61 /4.
Hence, all the estimates in Lemmas 4.3—4.5 and Corollaries 4.1 and 4.2 exactly hold true with the
constant c(vy, T') independent of .

4.3. Proof of Proposition 4.1. Thanks to the analysis and results in the preceding subsection, we
know that for any 7" > 0 such that C1(T, v, )v. < 1/16 with K;(T,v.) presented in (4.40) and (4.67),
the solution (®¢,V*) satisfies for any ¢ € [0, 17,

195 8)[132 + 22 [ @5, )13z + %205, 132 + £ NOLVEC, )13z < e(wn, )2 (4.80)

and

t
Q15+ <21+ @ V2 4 VA Ve ) 0

< c(v*,T)sl/Q,

where £ = 0,1,2, ¢(vs,T) > 01is a constant depending on 7" but independent of €. In particular, since
K (T, v,) is increasing in T, if v, is fixed, then there exists an increasing function ¢(-,vy) = K7 (-, vs)
such that K1 (T, v.)v, < 1/16 provided T < qﬁ(ﬁ,v*) =: Tp. Then the estimates (4.80) and (4.81)
hold for any ¢ € [0,7p]. This along with the local existence result and the continuation argument
implies that the problem (4.8) admits a unique solution (®¢,V¢) € L*(0,Tp; H? x H?) satisfying
(4.80) and (4.81). In what follows, we shall show that Ty — oo as v, — 0. To achieve this, without loss
of generality, we first assume that v, < 1. Then we may strengthen the condition K (T, v.)v, < 1/16
for (4.40) and (4.67) as K1 (T, 1)v. < 1/16. Here we write K1 (T') := K;(T,1) for simplicity. Clearly,
since K1(T,v,) is increasing in v,, we have K1 (T, v,)v, < 1/16 as long as K;(T)v, < 1/16. Therefore

we know that the estimates (4.80) and (4.81) hold for any ¢ < Kfl(ﬁ) =: Tp with Tp — oo as

vy — 0 due to the increasing monotonicity of K 1() This completes the proof of Proposition 4.1.
O

4.4. Proof of Theorem 2.1. From Proposition 4.1, we know that for any v, > 0, there exist
constants Ty > 0 and €9 > 0 such that for any € € (0,¢¢), the problem (2.2)-(2.3) admits a unique
solution (%, v¥) € L°°(0,Ty; H? x H?). To finish the proof of Theorem 2.1, now it remains only to
show the estimates in (2.21). Recalling (4.1) and Lemma 3.5, it suffices to show the estimates of £}
and & stated in (4.2). Thanks to (4.11), (4.12), (4.24), (4.25), Lemma 3.5 and the fact that 0,b, is
independent of x, there holds that

10207 2 o2 + 106" e ge + lon Lgeree + € 100G g < v, T), (4.82)

05! | e Lo + [0P!

gerge + 0 g ree + e b5l g e < e(vs, T), (4.83)

where [ = 0, 1, the constant c¢(v,, T) > 0 is independent of €. Furthermore, from (4.79), (C.2), (C.3),
Lemmas 4.3-4.5 and Corollary 4.2, we get

18 Nngpne < clvnT) (19 z2 + 197112 105112 12 ) < elwon, TIEVS, (484)
1/2 1/2 _
195 e < eon T) (195 ez + 10512 @512 0 ) < clon T (4.85)
and
1/2 1/2
IVl < VEIVEIR VAR e < cvn,T) (4:86)

for some constant c¢(vi,T) > 0 independent of . Therefore we get from (4.6), (4.7), (4.82)—(4.86)
that

€ 2 < coe (™2 Dllugrm + 16726 )z 1)
+ coe™?||®° (2, 8)|| Lo oo + collbE || Lo oo

< c(vy, T)EYB,
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165 20 < oz (o™ @)z + 0™ (Dl gere + [0 (6,0 e )
+ coe' 2|V (, )| Lge oo + collb5 (2, 1) || Loe oo
< e(vy, T)e/?
and
b2
1025 || e Lo < coe™/? <H<Pf’2(2,t)HL§°9Lg° + [l (&t)HL%L?)
+ coe 2[5 (2, ) | Las Lo + collOubS | Lge Los
< C(’U*,T)El/4, (4'87)

where 0 < € < 1 has been used. Combining the above estimates on £ (i = 1,2), we get (2.21), and
thus finish the proof of Theorem 2.1. O

4.5. Proof of Theorem 2.2. Theorem 2.2 follows directly from Theorem 2.1 except the estimate
(2.24). To prove (2.24), we first notice from (4.1) that

b
05 = ol + 0PN (2, t) + 9N (& 1) + 20l + 0,65,
which implies that
uf = ul0 4 B0 b0 2G04 g 5, (4.88)

On the other hand, from (4.82) and (4.87), we have H51/2§03[c’1”L%°Loo + |0:E5 | Lge L < c(vy, T)e/*
with the constant c(vs,T) > 0 independent of . This along with (4.88) gives rise to (2.24). O

APPENDIX A. LOCAL EXISTENCE RESULT ON v2:0

In this section, we detail the proof of local existence and uniqueness of solutions to the problem
(2.12) for the leading-order boundary layer profile v2°. Equivalently, we study the reformulated
problem (3.34), i.e.,

B = Bz — w0 (9 4 9) = wTOWI0(0,8) (779~ 1)) + o,
9(0,t) =0, ¥(+00,t) =0, (A1)
¥(z,0) = 0.

The solution space for the problem reads

Xp = {u € L2.L2duli_o = 0), OFu € L2HS2F [ =0,1,2, k=0, 1,2,3}

for some T > 0, where 6y = 0, and ) := 0/9|;—o (I = 1,2) are determined by wug, vy and 9(z,0)
through the equation (A.1);. By (2.20), we know that the initial datum is compatible up to order
two. We shall divide the proof into three steps in the following.
Step 1: Linearization. Given w € X, we first consider the following linearized problem for (A.1):
Vp = sy — ul 00 — ul 0+ — 4 10(e ¢ — 1)(v10(0,1) + w) 4+ 0 =: v, — ul v + F + o,
v(0,t) =0, v(4o0,t) =0,
v(z,0) =0,
(A.2)

where u!0 is as in (3.34). Let V = elo w"dsy Then V' satisfies

Vi = Vi, 4 Felial®ds | polyulds,
V(0,) =0, V(+o0,t)=0,
V(z,0) =0,
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which can be solved explicitly by the reflection method:

t [e'e] N
= [ [ e nt =) [Pl m)el T oty el T ayar
/ / (2 =yt = 7) [ P(—y, )l 700 4 p(—y, r)eli ¥"705) ayar,

where I'(z,t) = \/%te 4t is the heat kernel. Hence one can recover v from the above identity along

with the definition of V. The uniqueness of solutions to the problem (A.2) is standard, so the details
are omitted here.

Step 2: A priori estimates. We shall show for (A.2) that there exists a suitably large constant
K > 0 and a small Ty > 0 such that if

3
> Hafwuizﬁg_zk <2K for T < T, (A.3)
then it holds that
3
> Hafvlli%Hg% <K, VYT <T. (A.4)

First, by the Sobolev embedding theorem and (A.3), we have
okw e (0, T); H>72), k=0,1,2. (A.5)

Furthermore, for any ¢ € [0,7] and for k£ = 0,1, 2, it follows that

t T
okl = [+ [ oE T mar] < Cllricsn+ [ 10F . 0)o-aea
0 h 0

T 1/2
< Cy+ T2 (/ Haf+1w(.,t)|y’f;{4_2kdt> (A.6)
0
< Co+ CKYV?T'/2, (A7)

where Cj is a positive constant depending only on the initial data ;. Hereafter C > 0 is a generic
constant independent of 7. With (3.27b), (3.35), (A.3), (A.5) and (A.6), similar to the proof of
(3.54) and (3.57), we proceed to derive for k = 0,1, 2 that

ot

2 y4—2k
L2 H?

k
T 0ak—i R
< Z {Haiul,oat j(ew+¢¢)HiQTH§—2’“ + Hagul,oat J[w(ew+¢ ~1)] 2

=0 HL%HQL_%

.

107 (060 (0,1)0) (e~ 1)|12, 1o |

k
T3 10w iy (1087 (€7 P02 e+ 1074 = D)2 1o

j=0
k
k— W
CT 3 110l D (0" (0, 0) e o, 1077 [0 (€4 = DI o s
7=0

< CKe“KT(1 + Z |0 w]? . o) < CTECK (14 KT) (A.8)
=0 T
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where we have used the fact e?*¢ < eCK due to (A.3), the constant C' > 0 may depend on ul:0, yT0
and ¢, but independent of T' and K. Thanks to (3.27b), we get for k = 0, 1,2 that

k
2
Jote

12 fa-2k = <CT Hajvlo 0,t) HL2(0 T) < é (A.9)
Tz

0

where C' > 0 is a constant independent of K and 7. By a procedure similar to the one in the proof
of Lemma 3.3, one can deduce for T < 1 that

Z ||6kVHL2 H6 2k

k=0
2
~ IOd Od
<cr (o (pet a2 v ok (kL)
k=0
2
<oy (| 100l )
k=0

<C+ éT(l +K2eéT+éK)7

where we have used (A.8) and (A.9), the constant C' > 0 is independent of K and T'. In view of the
definition of V, there holds that

2
S 10F ]2, oo < Cr+ OT(1 n K2eCT+CK>
k=0 g
for some constants C; and C independent of K and T'. Hence, we get

2
> l0Fvll3, yo-ae < 261 =0 K, (A.10)
k=0
provided
~ R |
T < min {1, [C + (201)2e0+2001} } = Tp.

This gives (A.4).
Step 3: Contraction. Denote

3
vri={ue XT‘ > 0k ul, oo < K}
k=0

with K as in (A.10). In the previous steps, we have proved for 7" < Ty that the solution map
© : Yr — Yr for the linearized problem (A.2) is well-defined. To prove the existence of solutions to
(A.1), it now suffices to show the contraction of © in the norm || - [[¢(o,r;z2) for suitably small 7' > 0.
For any wi, way € Yr, denote v; = O(w;) (i = 1,2) and
szl—wg, V:vl—UQ.

Then we have from (A.2) that

Vi = Vio — ul OV — ul0e? (%1 — ev2) (¢ + v10(0, ) + wy) — ul O(e¥2+® — 1)W,

V(0,t) =0, V(4o0,t) =0,

V(z,0) =0.

The standard L? estimate implies that

d - =
pr V172 +/ (V2+V?)dz < Ce“F W 7.
R4
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It thus holds that

~ 1
sup [V[[72 + VI3 yn < OTEX sup W3y < 5 sup (IWIEz + W30 )
te[0,T te[0,T) te[0,T) T

provided
: L1 er]™t
T < min < Tp, 3 [C’e ] =:1T.

Hence the desired contraction of © is proved.

Finally, based on the analysis in Steps 1 to 3, we conclude that the problem (A.1) admits a
solution ¥ € Y7,. The uniqueness of the solution is standard, so we omit the details here. The proof
is complete.

APPENDIX B. PROOF OF (3.98).
We shall prove that
\|<z>lafg||L2THg,% < c(vy,T) for k=0,1,2, (B.1)
where the constant is independent of € and §. For this, we first split the function g into three parts

g="n+ T+ T3,

where

Ji= (""" = 1) / (0,00, | (P5(0,8) + M + o )e™™" | as(w!2(0,1) + v?°)

- / (0,9, |(92(0,8) + M + o e | ay(v'0(0,1) + v5),

z

T = (""" =1 / (w2020, t)y + 011(0,8)) + P ul0(0, )] e dy(v!0(0, ) + vP0)

+/ [0 (@20, )y + @ (0,) + o o0 (0,6)] e dy(v10(0, ) + vP0),
Ty = (05°(0,) + M)n(2)o" (0,8) + n(z)v," (0,1) — o2 (01°(0, )z + 0"1(0,1))
— (922 (0,8)2 + 031 (0,6))0 0 + ()01 (0, 6)(03°(0,8) + M + oZ) (010(0, 1) +070)
— 1" (2)o"1(0,) + n(2)v" 1 (0, ).

Thanks to (3.27), (3.35), (3.55), (3.57), (3.61b), (4.10), (4.12) and the Holder inequality, we get for
k=0,1,2 and [ € N that

@'of [ not (0.0, (0206 + M + e e ay

@'of [ ot (0.00, (02006 + M + e ay

—i—c(m,T)H( Vor [m) (0,1)0. ((90910’0(0,75)+M+g0ZB’1)e*“B’U>} 2

3—2k
L2 H?

7 )/R (y) "y
k

O ) S ([ L A [ R e
+

7=0
< c(vs, T), (B.2)

k
(v, 7)Y (1200502 s + 11 () 420] 0P
7=0
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where we have used 9fv"1(0,t) € L>=°(0,T) (k = 0,1,2) due to (3.61b) and taken the space-time L>
norms for the terms involving lower-order spatial derivatives which are bounded according to (4.10)
and (4.12). Therefore, J; can be estimated as follows:

lak

<@@mh%?%
00 BO 2

< e(vs, T) <z>laf/ (0,0, [(9500,8) + M+ e ay
z L2 Hi-2k

Ua 2 BO
< (e =12 o+ 1) (14 0702 o)

T =z

< c(vs, T) (B.3)

for k =0, 1,2, where we have used (3.56), (3.57), (4.10) and (4.12). By similar arguments as proving
(B.2), we get

- 2
oF [ [op k00, 0+ b (0,8) + el 00, )] ey
. L2 Hi 2k
k 00
k—7j 711
< C(U*,T)Z‘|<Z>l/ [8 ]( v )8](%’3( )y—pr (0.#)) dy‘ L2 HI 2k
j:O

2

/ BIuL0(0, 1)0E (pB e )y

L2 H2 2

< o(v..T) / e 3 1 [ ([olet00f + odit
Ry 0

1,7=0
e Y (I2)

1,j=0

2
)t

LooH4 2+ [(2) 20 Bl||LooH4 Zk)/R (y)~?dz
+

T, . 2
x/‘w@MWqﬂ<u
0
< c(vs, T),
due to (3.27), (3.61a), (4.10), (4.12) and the Holder inequality. Therefore, for Ja, we get

l
H<Z> “72) L2 Hi2F
2
_..B,0
< e(0,T) ||(2)'0F / [WBO(E0(0, )y + 1 (0,8)) + B 100, 8)] e dy
z L2 HE %
x (e = 12 o+ 1) (1 072 o) < v, T). (B.4)

Now let us turn to J3. With (3.35), (3.61a), (3.61b), (4.10), (4.12) and the fact that 7 is a smooth
function with compact support, we deduce for k£ = 0,1, 2 that

k
2 .
B, B
e ST Y (L 1A P + (AP o)
T z

1,7=0

=)ok

T
x (1+ [ 050,08 + 010 0,007 + 0120, >\2>dt)

0
< c(vs,T).

This combined with (B.3) and (B.4) gives (B.1). The proof of Appendix B is complete.
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In this section, we collect some basic results used in this paper, which include some Sobolev-type
inequalities and an embedding theorem on space-time Sobolev spaces. Let us begin with the Sobolev

inequalities.

Lemma C.1 ([3, Page 236]). Let p > 1. Then for any € > 0, there exists a positive constant

C = C(e,p) such that
12l Lo z) < €llhallLe@) + CliAl L1 ()
for any h € WHP(T).
Lemma C.2. For any h € HY(Z), it holds that
1/2 1/2
o) < © (IAlze + IRIE2 10 E2)
where C' > 0 is a constant independent of h.
We also remark that if h € H}(Z), then
1/2 1/2

Rl < V2RI IR E and (Bl < Cllha(, 1) 2,
and that if h € H! (resp. Hl), then

1/2 1/2 1/2 1/2

1hllzse < ClIRIZ RS < Clltllas (resp. [bllzge < ClRIL rel 2" < Cllbllay).

where the constant C' > 0 is independent of h.

Next, we introduce the Hardy’s inequality.

Lemma C.3 (cf. [3, Page 233]). Let u € Wol’p(l') with 1 < p < oco. Then

u

2(l—2) < Cpllug| o (zy

LP(T)

where C, > 0 is a constant depending only on p.

The following embedding theorem is also frequently used in our analysis.

(C.1)

(C.2)

(C.5)

Proposition C.1 (cf. [48, Lemma 1.2]). Let V., H and V' be three Hilbert spaces satisfying V. C
H C V' with V' being the dual of V. If a function u belongs to L*(0,T;V) and its time derivatives

uy belongs to L*(0,T; V'), then
ue C([0,T; H) and |lullpsor;m) < C (lull20,mv) + utll20mv) 5
where the constant C' > 0 depends on T but independent of u.
Remark C.1. Proposition C.1 implies the following fact for any m € N |
{u| uwe L2(0,T; X™2) u, € LQ(O,T;Xm)} — C([0,T); X™) continuously,
where X™ := H™, H" or H{".

Finally, by the change of variables in (2.4), for any G1(z,t) € HI" and G»(&,t) € Hy" with m € N,

we have the following inequalities

‘ (%’t)HB -
e ()

1 2m m

L2

(%02, 107G (2, 8) o = = 2 [0 Cr(2, 1) 120,

10" G2(&, D)z, 105" G2 (& D)l poe = €72 (10" Ga(€, 1) e

(C.6a)

(C.6b)
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