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CONVERGENCE OF BOUNDARY LAYERS OF CHEMOTAXIS
MODELS WITH PHYSICAL BOUNDARY CONDITIONS I:
DEGENERATE INITIAL DATA*
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Abstract. The celebrated experiment of Tuval et al. [Proc. Natl. Acad. Sci. USA, 102 (2005),
pp. 2277-2282] showed that the bacteria living a water drop can form a thin layer near the air-water
interface, where a so-called chemotaxis-fluid system with physical boundary conditions was proposed
to interpret the mechanism underlying the pattern formation alongside numerical simulations. How-
ever, the rigorous proof for the existence and convergence of the boundary layer solutions to the
proposed model still remains open. This paper shows that the model with physical boundary condi-
tions proposed by Tuval et al. in one dimension can generate a boundary layer solution as the oxygen
diffusion rate £ > 0 is small. Specifically, we show that the solution of the model with £ > 0 will
converge to the solution with € =0 (outer-layer solution) plus the boundary layer profiles (inner-layer
solution) with a sharp transition near the boundary as € — 0. There are two major difficulties in our
analysis. First, the global well-posedness of the model is hard to prove since the Dirichlet bound-
ary condition cannot contribute to the gradient estimates needed for the cross-diffusion structure in
the model. Resorting to the technique of taking the antiderivative, we remove the cross-diffusion
structure such that the Dirichlet boundary condition can facilitate the needed estimates. Second,
the outer-layer profile of bacterial density is required to be degenerate at the boundary as t — 07,
which incapacitates the traditional cancellation technique. Here we employ the Hardy inequality and
delicate weighted energy estimates to overcome this obstacle and derive the requisite uniform-in-¢
estimates allowing us to pass the limit € — 0 to achieve our results.
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1. Introduction. The directional movement of cells in response to a chemical
concentration gradient is referred to as chemotaxis, which is said to be endogenous if
the chemical is secreted by the cell itself and exogenous if the chemical comes from
an external source (like oxygen, light, or food). Chemotaxis is a common biological
migration strategy occurring in various biological processes, such as aggregation of
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bacteria (cf. [50]), slime mold formation (cf. [23]), or tumor angiogenesis (cf. [7, 10]).
The mathematical models of chemotaxis mostly studied nowadays are of the Keller—
Segel type originally proposed in [31, 32]. The prototype of the Keller-Segel model
describing the exogenous chemotaxis reads as

(1) {utzAu—V~(uV¢(v)),
v =eAv — uw,

where u and v denote the cell density and chemical concentration, respectively, at po-
sition x €  and time ¢ > 0. £ > 0 denotes the chemical diffusivity, and ¢(v) is called
the chemotactic sensitivity function which has two prototypes: ¢(v) =Inv (logarith-
mic sensitivity) and ¢(v) = v (linear sensitivity). The logarithmic sensitivity was first
proposed in [32] based on the Weber—Fechner law (the sensory response to a stimulus
is logarithmic) which has various prominent biological applications (cf. [12, 29, 36]).
It was mentioned in [32, p. 241] that the chemical (i.e., oxygen) diffusion rate € is
negligible (i.e., 0 < € < 1) compared to the bacterial diffusion rate. The most im-
portant application of the logarithmic sensitivity lies in its capability of producing
traveling waves to interpret the experiment findings (cf. [30]), motivating a great deal
of interesting mathematical works on the study of existence and stability of traveling
wave solutions including [5, 9, 11, 38, 39], just to mention a few. The system (1.1)
with linear sensitivity ¢(v) = v was employed in a chemotaxis-fluid model proposed in
[49] to interpret the boundary accumulation layer of aerobic bacterial chemotaxis to-
wards the drop edge (air-water interface) in a sessile drop mixed with Bacillus subtilis
bacteria. The model in [49] reads as

ur+ w-Vu=Au— V- (uVo) in Q,

(1.2) v+ w-Vuv=DAv —uv in Q,
p(wWi+ w-V w)=pA w+Vp—Vogu(py —p) z in Q
V- w=0,

with the following physical zero-flux Dirichlet no-slip mixed boundary conditions:
(1.3) (Vu—uVv) -v=0, v=uv,, w=0on 05,

where u and v denote the bacterial and oxygen concentrations at z € €2 and ¢ > 0,
respectively, and w is the fluid velocity governed by the incompressible Navier—Stokes
equations with the pure fluid density p and viscosity p. p is a pressure function,
Vogu(py — p) z denotes the buoyant force along the upward unit vector z where
Vi, and pp are the bacterial volume and density, respectively, and ¢ is the gravi-
tational constant. In (1.3), v denotes the outward unit normal vector of 99, and
vs > 0 is a constant representing the saturation of oxygen at the air-water interface
(i.e., boundary). The numerical simulations in works [8, 35, 49] have shown that the
system (1.2) can reproduce the key features of boundary layer formation observed
in the experiment of [49] in two and three dimensions under the physical boundary
conditions (1.3). Therefore, justifying that (1.2)—(1.3) admits boundary layer solu-
tions becomes an imperative question, which has remained open for a long time and,
as far as we know, has not made any good progress. Indeed, the boundary layer
problem has been a fundamental topic in fluid mechanics due to the distortion of
nonviscous flow by surrounding viscous forces, as observed by Prandtl in 1904 [44],
and has attracted extensive studies (cf. [1, 18, 19, 20, 21, 28, 53, 55|, just to mention
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a few). Though the model (1.2) contains the fluid dynamics, the boundary layer was
formed due to the aggregation of bacteria attracted by the oxygen near the air-water
interface (cf. [13, 49]), and thus the fluid dynamics will play minor roles as can be
glimpsed from the boundary conditions (1.3). Since the Dirichlet boundary condition
for v cannot directly contribute to the estimate of Vv required by the first equation
of (1.1) for the estimate of u, many basic questions on (1.2)—(1.3), such as the global
well-posedness, still remain poorly understood so far apart from the boundary layer
solutions. To the best of our knowledge, there are fewer analytical results for problem
(1.2)—(1.3), the local existence of weak solutions with large initial data was obtained
n [41], and recently Wang, Winkler, and Xiang [51] proved the global existence of
smooth solutions with small initial data; the reader can also see [43] for a global exis-
tence result of the system with slightly different boundary conditions. If the domain
Q is radially symmetric (say a ball) and the solutions are also radially symmetric,
then the incompressibility condition V- w =0 on 2 and no-slip boundary condition
w|ga =0 imply that w =0, and as a result, (1.2)—(1.3) is simplified as

(1.4) {ut =Au—V-(uVv) in Q,

v = AV — uv in Q,
with boundary conditions
(1.5) (Vu—uVv)-v=0, v=v, on 99.

Regarding the boundary layer solutions, it was first shown in [34] that the prob-
lem (1.4)—(1.5) has a unique stationary solution in all dimensions, which possesses
a boundary layer profile with thickness of order €'/? as ¢ — 0. Subsequently, the
nonlinear local time-asymptotic stability of stationary solutions of (1.4)—(1.5) in one
dimension was established recently in [25]. However, whether the time-dependent
problem (1.4)—(1.5) can develop boundary layer profiles as ¢ — 0 remains unknown.
To see the possibility, we integrate the second equation of (1.4) with ¢ = 0 and get
v(x,t) = vo(x) e~ Jo “=7)T which gives rise to
(1.6) v|aq = volane™ o uloadr
This implies that the boundary value of v as € =0 is intrinsically determined by (1.6),
which may mismatch the prescribed boundary value of v for € > 0. If this occurs,
boundary layers will arise as € — 0, and the zero-diffusion limit of (1.4)—(1.5) as e — 0
becomes a singular problem. However, how to justify the convergence of solutions of
the singular problem (1.4)—(1.5) as € — 0 still remains an outstanding open question
as far as we know. The goal of this paper is to investigate the zero-diffusion limit of
the problem (1.4)—(1.5) in a one-dimensional domain Z = (0,1) as € — 0, reading as

Ut = Ugz — (W), , r€ZL, t>0,
(1.7) Vp = EVgy — UV, ze€Z, t>0,
(u,v)(z,0) = (ug,v0)(x), z€Z,

with boundary conditions

(1.8)

(uy —uvy)|oz =0, vlgr =0, ife>0,
(ug — uvy)|oz =0 if e=0,

where Z = [0,1] and 9Z = {0, 1}.
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The zero-diffusion limit of problem (1.7)—(1.8) as ¢ — 0 is a multiscale prob-
lem involving sophisticated formal and rigorous analysis with complex compatibility
conditions. In this paper, we shall prove that the solution of (1.7)—(1.8) is not uni-
formly convergent in L°° with respect to € > 0 but stabilizes to the outer layer profile
(solution with € =0) plus an inner (boundary) layer profile as € — 0 where governing
equations for both outer- and inner-layer profiles can be precisely derived. There are
two major difficulties encountered in our analysis: (1) how to employ the Dirichlet
boundary condition of v to obtain the estimates of v, in order to gain requisite reg-
ularity of solutions for the global well-posedness due to the cross-diffusion structure
in the first equation of (1.7); (2) how to derive the uniform-in-¢ estimates in order
to pass to the limit € — 0. To overcome the former one, with the mass conservation
of u resulting from the zero-flux boundary condition, we make a change of variable
(see (2.1)) based on the technique of taking the antiderivative as used in our previ-
ous works [4, 25] to reformulate (1.7)—(1.8) into a new Dirichlet problem (2.2)—(2.3)
without cross-diffusion structure, for which the Dirichlet boundary condition on v
can contribute to derive desired estimates. In doing so, we pay a price by requiring
inf 7 uo(z) = 0 (i.e., the initial value is degenerate) in the compatibility conditions
for the reformulated problem, which leads to the failure of the cancellation technique
used in the existing work [25] dealing with the reformulated problem. In this paper,
we shall develop a new idea with the help of the Hardy inequality to derive requi-
site uniform-in-¢ estimates and finally prove our main results. However, our results
cannot cover the case inf 7 uo > 0 for which initial layers will be present (see Re-
mark 2.1), and new ideas are needed to overcome this barrier. This case will be
investigated in a separate work. We stress that the zero-flux boundary condition of
u given in (1.8) cannot extrapolate the boundary profile of u. While showing that
the solution component v has boundary layer profiles as expected, we also prove that
u has boundary layer profiles as ¢ — 0 (see Theorem 2.2). As far as we know, this
is the first result showing that the time-dependent chemotaxis models with physical
boundary conditions in (1.5) have boundary layer profiles for both cell density and
oxygen concentration. Our results hence assert that the chemotaxis-fluid model (1.2)
is capable of generating boundary layer profiles in one dimension, though the higher
dimensional case is yet to be proved. Since the technique of taking the antideriv-
ative is not directly applicable in multidimensions, the boundary layer problem of
(1.2)—(1.3) or (1.4)—(1.5) in multidimensions has to be left out for future efforts with
new ideas and techniques.

Apart from the boundary layer problem, when 2 is a radially symmetric domain
in R™(n > 2), the existence of global classical solutions of (1.4)—(1.5) with € > 0 in two
dimension (n = 2) and global weak solutions in higher dimensions (n = 3,4,5) were
established in [33]. In the case when u and v satisfy zero-flux and Robin boundary
conditions, respectively, the global classical solutions of (1.4) were obtained in [2] for
any n > 1, and the existence of boundary layer solutions as ¢ — 0 was established
recently in [26]. With homogeneous Neumann boundary conditions, the global dy-
namics of (1.4) have been well understood (cf. [17, 46, 47]) by employing a clever
cancelling idea which is, unfortunately, inherently restricted to Neumann boundary
conditions. For the time-dependent problem (1.4)—(1.5), aside from the local stability
of stationary solutions shown in [25], a slightly modified model of (1.4) subject to
(1.3) was recently considered in [52], where the global generalized (weak) solution
was obtained in a three-dimensional domain (n = 3). In the case when homogeneous
Neumann boundary conditions for v and v and Dirichlet boundary conditions for w
are imposed or the domain is the whole space R"™(n > 1), the chemotaxis-fluid model
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(1.2) and its variants have been widely studied in the literature [6, 14, 15, 40, 54]; we
mention only a few due to limited spaces.

The rest of the paper is organized as follows: In section 2, we first reformulate our
problem by taking the antiderivative of a perturbed function against the cell mass and
derive the equations for the outer- and boundary (or inner-) layer profiles. Then we
state our main results on the convergence of boundary layer solutions. In section 3,
we are devoted to deriving the regularity of outer and boundary layer profiles. Finally,
in section 4, we prove our main results.

2. Statement of main results. In this section, we shall first derive the equa-
tions that outer-layer and boundary layer profiles satisfy by the Wentzel-Kramers-
Brillouin (WKB) method (cf. [22, 24, 45]), and then we state our main results on the
convergence of boundary layers as € — 0. For clarity, we first introduce some notation
used throughout the paper.

Notation.

e Denote R, := (0,00) and R_ := (—00,0). N represents the set of nonnega-
tive integers. Let LP with 1 < p < co denote the Lebesgue space LP(Z) in
which functions are defined with respect to (w.r.t.) the variable = € (0,1).
L2 denotes the space LP(0,00) for functions defined w.r.t. z € (0,00), and
L{ denotes LP(—00,0) for functions defined w.r.t. { € (—00,0), respectively.
Accordingly, we denote by H*, HY and H; k¥ the standard Sobolev spaces

W*2 for functions defined w.r. t r€L, z€ (0 00), and £ € (—o0,0), respec-
tively. We also write L%Y := LP(0,T; Y) (e.g., LPL := L>(0,T; L)) for
convenience when no confusion is caused

e Denote (z) =1+ 22 for z€[0,00) and (§) =+/1+ &2 for £ € (—o0,0].

e C(T) > 0 represents a generic constant dependmg on T but mdependent
of v, such that C(T) — 0 as T — 0%. C(v.,T) denotes a generic positive
constant depending on v, and T such that C(v.,T) = 0 as (v, T) — (0,0)
and C(vs,T) — +00 as v, — +00 or T — +00. Moreover we denote ¢(T) :=
co + C(T) and ¢(vs,T) := co + C(vs,T), where ¢o > 0 denotes a generic
constant independent of v, and 7.

e We often use (x); to denote the ith equation of the system (x) for brevity.

2.1. Construction of outer- and boundary (inner-) layer profiles. In this
subsection, we shall first reformulate our target system (1.7)—(1.8) and then derive the
equations for the outer-layer and boundary layer profiles of the reformulated problem
with small € > 0 based on the WKB method. Notice that the zero-flux boundary
condition for u gives rise to the conservation of mass

/u(m,t)dx:/uodx::M,
z z

where the constant M > 0 denotes the cell total mass. By defining
@1 et = [ (i) =My with o(,0) = [ (ualy) — M)y = o)
0 0

we reformulate the problem (1.7)-(1.8) as

01 =Pz — (@ —|—M)vz, reT,
(2.2) VUt =EVpy — (o + M)v, xz€T,
(p,v)(x,0) = (<P07Uo)
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subject to boundary conditions

{@(O,t) =o(1,t)=0, v(0,t)=v(1,t)=v, ife>0,

(23) ©0(0,t)=(1,t) =0 if e=0.

We proceed to derive the equations for outer-layer and boundary layer profiles of
the problem (2.2)-(2.3) with small € > 0. As we will see later, once these profiles
are determined, one can easily recover outer-layer and boundary layer profiles of the
original problem (1.7)—(1.8). To this end, we define the so-called boundary layer
coordinates
T z—1
%, 527, xE[O,l],
where /¢ is the thickness of boundary layers which can be determined by the as-
ymptotic matching method (cf. [24, 27]). Clearly z € [0,00) and £ € (—o00,0]. The
equations governing outer-layer and boundary layer profiles of (2.2) can be derived in
four successive steps.

Step 1. Asymptotic expansions. By the method of perturbation (cf. [22,
24, 45]), we assume that the solution of problem (2.2)—(2.3) with € > 0 formally has
the following expansions for j € N:

(2.4) z=

o (2, t) = et (99 (m,8) + 0P (2,) + o (£,1)),
(2.5) 20
v (z,t) =

c? (0" (2,t) + 0B (2,t) + %7 (&),

i

Il
=)

J

where the boundary layer profiles (¢?7,v59) and (¢"7,v"7) are smooth and satisfy
the following asymptotic behavior for j > 0:

(2.6)

0B and vB7 decay to zero exponentially as z — oo,
"7 and v?7 decay to zero exponentially as £ — —oo0.

Step 2. Initial and boundary conditions. For initial conditions, setting
t =0 in (2.5) and noticing that the initial value (¢g,vo) is independent of & > 0, we
immediately get

©"0(2,0) =po(z), ©7°(2,0)=¢"(£,0)=0,
UI}O(xa O) = UO(x)a UB’O(Z7O) = Ub’D(gao) =0
and

P (@,0)= "7 (2,0) =" (6,0 =0, j=1,
ol (2,0) = 0P (2,0) =" (€,0) =0, j>1.

To match boundary conditions, we substitute (2.5) into (2.3) and use the asymp-
totic matching method to get
Qpl’j (Oat) + @B)j (Ovt) =0, (Pl’j(]-vt) + (Pb’j (Oat) =0, j=0,
v100,8) +0B0(0,8) = v, 01 0(1,8) +020(0,1) = v,,
v1I(0,t) +0P9(0,8) =0,  oLI(1,t) + 027 (0,8) =0, j>1,
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where We have neglected ((pb’j(—all/2,t),vb’j(—al%,t)) at x = 0 and (@B’j(gl%,t),
VB (L iz ,t)) at 2 =1 based on the decay properties in (2. 6) since € > 0 is small.

Step 3. Equations for outer-layer profiles (¢!, v17). Substituting (2.5)
without boundary layer profiles into the equations in (2.2)7 we get equations for the
outer-layer profiles ¢!+,

i
I,j I1,j I,j Lk, Ij—k -
(27) @tj:¢mg_Mvz]_wa UI] ) .7207
k=0
and equations for the outer-layer profiles v/,
v = (o + M"Y, j=0,
v,{’lz—(goi_’o—i-M)v“ <p£1 Lo j=1,

Ij_  1,j-2 1,5 Ik, I,j—k ;
vl =vyl " — Mo —g v , J>2.
k=0

Step 4. Equations for boundary layer profiles (@B, 03, vB:d b)),
Using (2.7), we neglect the right boundary layer profiles ¢”7 and v%7, and then insert
the remaining terms of (2.5) into the first equation in (2.2) to derive the equations
for the left boundary layer profiles 7,

(2.8) S etGi=0 for i>-2,
i>-2
where

. B0 BO B 0
G*Q = @zz P,

Goy=2! —(3x<p”(0,t)+M)vf° o0 — g7 ( UDE S
Go= " = g2 + 0D (020" 0(0,0)2 + 0up" (0,1) + 92%)
+ 0B 10,0700, 8) + M+ 9B1) + P 10,0700, 1) + (9207°(0, 1) 2
+ 0,11 (0,1) +vB:2) B0

Similarly, the right boundary layer profiles "/ satisfy
(2.9) > etGi=0 for i>-2,

i>—2

where, for each i > —2, G; is given by G; with (951 !k(0,¢

(0 ng ok 0MBF) replaced by (951 plk(1,t), 0501k (1,1)) (¢
(LA> 0), respectively.

By the same procedure used to derive the equations for 7 and %7 above, we

), 040" (0,) (¢ 0) and
> 0) and (2", 03v0*)

obtain the equations for the left boundary layer profiles v5 as
P20 (WP +010(0,1)) =0
o0 — B0 4 oBO(10(0, 1)z 4 w11 (0, ) + 0B 1)
+(ipa " (0,1) + M)P0 4+ oZ 1 (050 4+ 010(0,1)) =0,

vt =l 4 (900(0,6) + M 4+ PN (010(0,8)2 4 011 (0,8) +0™T)
+(s0m(0 t)z + @31 (0,0)0P0 + oF2 (0100, 1) + 050)
—i—goBO( vE0(0,1) + v11(0,1)z + 082 + v12(0,t)) =0,
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and the equations for the right boundary layer profiles v*7 as

0% (00 +010(1,1)) =0,

vfo—vfg—&-cpg( (1t)§+u11(1t)+vb1)
+(pr0(1,1) + M)v® oL +0"0(1,1) =0,

vyt =g+ (0, t)+M) +s0’§ (Io(l t)£+v“(1at) >h)
+(<Pm(1 £)€ + ol (1,)020 + o2 (v10(1, 1) + 0P 0
+20(Z0L0(1,4) + vl (1, t)z+vb2+v12(1 t)) =0,

Finally, from the above Steps 1-4, we derive initial- boundary value problems
satisfied by the profiles (!, B9 ©%7)(0<j<2) and (v, 087 7)) (0<j <1) for
later use. First, the leading-order outer-layer profile (o', v 1 0) satlsﬁes the problem

01" =l — (" + Mpl°, zeZt>0,
I’O——( i’O+M)vI’O, reZ, t>0,
@"0(0, ) e!0(1,t) =0,
( O )(I,O):(QO(),’U()),

which is nothing but the zero-diffusion problem of (2.2). We note that the stability
of the unique nonconstant steady state to the problem (2.10) has been established
in our previous work [25]. We further remark that, as will be stated in section 3, if
the initial value is compatible with boundary conditions and smooth enough, one can
prove the global existence of unique classical solutions to (2.10) with large initial data
due to the dissipation effect. The first-order outer-layer profile (o1, v1:1) satisfies the
following problem:

(2.10)

o =0l — ey + M)t — ol oy, zeT,t>0,
(2.11) vglz (L0 4+ M)p!H1 goil Lo reI,t>0,

90 ( )__@B1<O’t)a @171(17t):_90b’1(07t)7

("0 (@, 0) = (0,0).

The leading-order boundary layer profile 0?9 near the left boundary solves

P20 — PP =0, 2 ER,,
@P0(0,8) =0, ¢P0(+00,1) =0,
©?9(2,0) =0,
and thus ¢”°=0. The boundary layer profile v2:° near the left boundary solves

(2.12)
v =vB0 — (p10(0,8)+ M)uT0(0,8) ("= 1) — (g1 0(0,8) + M)e” PO, zeRy,
vB0(0,t) = v, —010(0,), vP(+o0,t) =0,
v20(2,0)=0,

and ¢! is determined by v?° through

(2.13) OBl = _/ (o10(0, ) + M) (e“B’°<y»t) - 1) dy.
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The boundary layer profile v*0 near the right boundary satisfies

(2.14)

va—v§5°—< O(1,1) + M)”(lt)( " 1) — (pl0(1, ) + M) 0, EeR_,
(Ot)—v*—v (,) ( 00,t) =0,

b°<s,0>:

Furthermore, we have ¢?° =0, and %! is given by

3
(2.15) ool = / (e20(1,8) + M) (e”b"(y’“ - 1) dy.

Although we focus only on the convergence result for leading-order approximation,
some estimates of the higher-order outer-layer and boundary layer profiles are also
needed in our analysis. The problem formed by equations for -2 and v?! reads

(2.16)
—o5” +Uf’°(<ﬂm (0,6)z + 91" (0,1) + %)
+o2 (pz0(0,1) + M + 7 >+saz tp?(0,1) =0, z€Ry,
vt =B 4 (0800,8) + M)t + P (010(0,8)2 + 011 (0,8) + 071
(som (0,1)2 + ¢ (0,8))0 "0 + sof 2(010(0,8) +0P0) =0, z€Ry,
vB1(0,t) = =01 (0,1), ©P?(+00,t) =0vP(+00,t) =0,
(72,07 1)(2,0) = (0,0),

and the problem for (¢%2,v%1) can be stated as
(2.17)
— g+ (Pl (L1 + ol (1,1) + ¢g?)
g (e (1) + Mt pe) 4o 0 0(11) =0, EER,
vt —vg + (e (1,6 + M)oPt + g (001,66 + 00 (1) + o)

+op (1 £)§ +pt (1,1))0>0 +902’2(v1’0(1»t) +v7%) =0, £eR,
w40, t) v (L), "2 (o0, t) = v (—o0, 1) =0,
(¥"2, )(5 0)=(0,0).

Finally, we remark that the global existence and regularity of solutions to problems
(2.11), (2.12), (2.14), (2.16), and (2.17) will be detailed in section 3.

2.2. Statement of main results. To prove the convergence of boundary layer
profiles deduced in the preceding subsection, we require that the initial data (¢g,vg)
satisfy compatibility conditions at the boundary as follows:

(2.18a) o000 =0, i=1,2,3, on 97,
(2.18b) Vg =0y, 0020 =0, j=1,2, on 97,

where 8%(,0] 94— and afvl 0],—o can be inductively determined from the equations in
(2.10) as
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(2.19)

"0 1=0 := Yowe — (Poz + M)voa,

—0:=(810"°4=0) 2z + (P0u + M)((SDOm + M)vo)s — (910" |1=0)2v0s,

—0:= (32¢"°]1=0) 2z — (370" °]1=0)2v0z + 2(De 0" *|1=0)2 ((@oz+M)Uo)w
+(00a + M)((8rp" O|t:0)xv0)m — (@0 + M)((¢oz + M)?v0)2 =0,

3t11[’0|t:0 = —(poz + M)vo,

7010 = [~ Pozwa + ((P0z + M)voz)z + (pos + M)Jvo

We say that the initial value o!:°|,—y of the problem (2.10) is compatible with bound-
ary conditions up to order three if it fulfills (2.18a), while the initial values of problems
(2.12) and (2.14) are compatible with boundary conditions up to order two if the con-
ditions in (2.18b) hold. The compatibility conditions for other initial-boundary value
problems mentioned in what follows are defined similarly. In terms of the initial
data (¢g,v0), we can write the compatibility conditions given by (2.18)-(2.19) more
explicitly as

(2.20)
V0 = Vs, Yoz + M =0, QoxzV0z — Pozas =0, on 07,
(010" i=0) 2z — (010" °l1=0)av0x =0, on 07,

(9F¢ Iolt 0)az — (070" 1=0)2v0x + 2(940" °}1=0) (Pox + M)vo; =0, on IZ,

where for brevity we have not explicitly expressed d;p’°|;—g and 92p"°|;—o as given
n (2.19).
We underline that the condition (¢g:+M )]sz = 0 in (2.20) implies that inf .7 ug =
0 (i.e., the initial value ug is degenerate on Z) and hence mf(m )€Tx(0,T] ul0(x,t) =0,
Where ul0 is the leading outer-layer profile of u satisfying u!%(z,0) = ug(z); see (3.1).
The main results of this paper concerning the convergence of boundary layers for
the reformulated problem (2.2)-(2.3) as € — 0 are stated in the following.

THEOREM 2.1. Assume that (¢o,v0) € H' x H' and (\/vo)z € L? with ¢o,+M >,
Z 0 satisfying (2.20). Then for any v, > 0, there exist constants Tp(vi) > 0 and
€0 >0, where To(vy) = 00 as v, — 0, such that for any e € (0,¢q), the problem (2.2)-
(2.3) admits a unique solution (¢°,v%) € L>(0,Ty; H*> x H?) satisfying the following
asymptotic expansions for any x € [0,1]:

(2.21a) ¢ (2,t) = " O(x,t) + V2 [ (@, t) + P (2,) + P (€, 8)] + O(%/®),

(2:21b) @i () = 3 (a,1) + [@f’l(z,ﬂ + wg’l(fvt)} +0(Y),
(2.21c) v (x,t) =00 (2, t) + 0B 0 (2,8) + 020 (€,1) + O(e1/?),

with z 1= <7 and § = /2, where (¢ and v*0 are solutions ofproblems
(2.10), (2. 12) and (2. 14) respectively; ¢*»" is determined by (2.11); and B! and p>?
are given by (2.13) and (2.15), respectively,

With the transformation (2.1), we can transfer the results of (2.2)—(2.3) stated in
Theorem 2.1 to the original problem (1.7)—(1.8). Indeed, from (2.1) we have

(2.22) uf = s + M, ul? =l M

10, 10) vB0,

with ¢ and ¢!? being the solutions to the problem (2.2)—(2.3) and the problem
(2.10), respectively. Then (uf,v) and (u!?,v:?) solve the problem (1.7)-(1.8) for
€ >0 and ¢ =0, respectively. With (2.13) and (2.15), we have

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/27/24 to 158.132.175.183 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

7586 JOSE A. CARRILLO, GUANGYI HONG, AND ZHI-AN WANG

'LLB,O (Z,t) = 90571(2;715) = (spi,o(o’t) + M)(eUB,O(Z,t) o 1)7
b,0
uP0 (&,8) =g (6, 8) = (e O(L,8) + M) (6D — 1)

Then the convergence of boundary layer solutions of the original problem (1.7)—(1.8)
is stated in the following theorem.

THEOREM 2.2. Assume that (ug,vo) € HS x HT with ug >,% 0,09 > 0, and
(Vvo)z € L? satisfying the compatibility conditions (2.20) with o, =ug — M. Then
for any v, > 0, there exists constants To(vs) > 0 and g9 > 0, where Ty(vi) — 00 as
ve — 0, such that for any € € (0,&¢), the problem (1.7)—(1.8) admits a unique solution
(uf,v%) € L*(0,Ty; H x H?) which satisfies, for any x € [0,1],

(2.23)

’ > -z 1/4
(2.24) v ) =) +UB7O(%’t) +ub’0(7,t) +O(et4),

e _ .10 Bof T po(l—x 1/2
v (x,t) =v " (x,t) +v (ﬁ’t)—H) (7\/5 ,t)—l—O(E ),

where u''0 and (uB0,b0) are given as in (2.22) and (2.23), respectively, while (¢
v10), vBO and v*0 are solutions of problems (2.10), (2.12), and (2.14), respectively.

1,0 1,0
b

Remark 2.1. We give several remarks to enhance the understanding of our results.
e The O(e"), for some r > 0, notation used in the main results is a shortcut
whose exact meaning is that the difference of the two sides of the identities
(2.21) and (2.24) in LPLS®, for any 0 < T < Ty, is bounded by " modulo a
constant depending only on the initial data and v,.

e The conditions of (ug,vg) assumed in Theorem 2.2 can be fulfilled by many
functions, for instance, ug = 28(1 — )% and vy = v, + 2%(1 — 2)%. Further-
more, if (ug,vg) satisfies some higher-order compatibility conditions, by the
standard energy method (cf. [16, Chap. 7]), one can prove that the solutions
(p=,v%) and (u,v°) obtained in Theorem 2.1 and Theorem 2.2 are indeed
classical. We skip the details here since this is not the main goal of this
paper.

e From the refined solution structure given in (2.24), without difficulty we can
show, for any d = O0(¢%) >0 (0 < aw < 1/2), it holds that

lim Hua—ul’ >0,

e—0 0||L°Q([5,1—5]><[07T0]) - 0, hlgi}(l;lf ||u8 _ UI’

‘ ||L°<>([0,1]>< [0,T0])

lim [JoF = HLOO([(S,lftS]x[O,TO]) >0,
which indicates that the solution (u®,v¢) of (1.7)—(1.8) will develop a bound-
ary layer profile with thickness of order £'/2 as ¢ — 0, which consists of
outer-layer profile (u!°,v%) (i.e., the solution of (1.7)-(1.8) with ¢ = 0) and
boundary (inner-) layer profiles (u?:?,v5:%) at the left boundary z = 0 and
(ub?,v*0) at the right boundary x = 1, with an error at the order of el/* for
u® and of £'/2 for v° as € — 0.

e Though the boundary values of u® are elusive in the zero-flux boundary con-
dition of u prescribed for w in (1.8), the expansion (2.24) not only indicates
that u(z,t) has boundary layer profiles u”?(2,t) near x = 0 and u®(z,¢)
near x = 1, but also gives the approximate boundary value of u for 0 <e < 1,

uf(0,t) = u"0(0,t) exp (vs —v"0(0,1)) + O(et/4),
uf(1,t) =u"0(1,t) exp (v. —0v"0(1,1)) + O(e/?),
where u!0(z,t) = L0 + M; see (2.23).

=0, liggélf [|v - vI’OHLoo([o,l]x[o,To])
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e When v, =0, according to our analysis, the boundary layer profiles in (2.24)
will vanish, which leads to (uf,v) — (u!?,070) in L>® as ¢ — 0, where
(u9,v1:9) is the solution of the problem (1.7)—(1.8) with & = 0.

e The compatibility condition (o, + M)|oz = 0 implies min,c7 ug = 0. If we
assume min, 7 1o > 0, by the maximum principle we can find some constant
¢ > 0 which may depend on Ty such that 0 < ¢! < u!%(z,t) < ¢ for any
t€[0,Tp] and x € (0,1). In this case the condition (o, + M )]sz =0 in (2.20)
will fail, and consequently the initial values of (2.12) and (2.14) only satisfy
the zero-order compatibility conditions, for which initial layers will be present
and the key analyses in this paper are inapplicable. We shall investigate this
case in a separate paper using different approaches.

3. Regularity of the outer-/boundary layer profiles. In this section, we
shall derive the regularity of solutions to problems (2.10), (2.11), (2.12), (2.14), (2.16),
and (2.17), respectively. Let us begin with the problem (2.10) for the leading-order
outer-layer profile (7% v!:9). As mentioned before, this problem is exactly the zero-
diffusion problem of (2.2) which, in the sense of classical solutions, is equivalent to
the zero-diffusion problem of (1.7)—(1.8). Denote by (u:?,v:9) the solution to the
zero-diffusion problem of (1.7)—(1.8). Then we have

1,0 _ (, 1,0 1,0,1,0
Uy —(u$ —uuy )I, xel,

I
! 0 _uI,()UI,(]’ rel,

(3.1) "
. (ui,o 7UI’OU£’0)|BI:0,
(’U,I’O,

ULO)(‘% 0) = (u07 UO)(‘T>‘

We will first establish the global existence of solutions to the problem (3.1), and then
transfer the result to problem (2.10).

LEMMA 3.1. Assume that (ug,vo) € H® x H” with ug >,# 0,v9 >0, and (Vv0)z €
L? subject to compatibility conditions in (2.20) with ¢o = [ (uo — M)dy and M =
fI uodx. Then for any T >0, the problem (3.1) admits a unique classical solution on
[0,T] such that

(3.2a) uh? >0, [|0fu"0|| g2 gr-ar < e(T), k=0,1,2,3,4,
(3.2b) [0 0N e 7 + 050" 2 pro-2n < e(T), k=1,2,3,4.

Proof. The proof of local existence and uniqueness of classical solutions to the
problem (3.1) is standard based on Banach’s fixed point theorem (cf. Chapter 9 in
[16]), so is the property u!"® >0 in its lifespan if ug > 0 (cf. [17]). In the following, we
are devoted to deriving the a priori estimates of solutions by which the local solutions
can be extended to global ones. To begin with, for any T" > 0, we assume that
(u:% 019 is a classical solution to the problem (3.1) on [0, 7] satisfying the following
a priori assumption:

t
(3.3) /||v£’0||%xd7§017 te[0,T],
0

for some constant C7 > 0 to be determined later. Testing the equation (3.1); against
L0 — —max{—u!?,0}, we get
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/| I_0|2d +/| IO L2dz / w0104 10,
th {ul-0<0}
1,0 , I,
<3 [ 1P+ ool [ 0P,
A A

where the Cauchy—-Schwarz inequality has been used, and the constant ¢y > 0 is
independent of C;. This, along with (3.3) and the Gronwall inequality, gives

/ \u£’0|2dx§eclt/ lug|?dz = 0
z {uo<0}

for any t € (0,T], where ug > 0 has been used. Therefore it holds that
(3.4) ul0(x,t) >0, te(0,T).

With (3.4), we have from (3.1)s that v1:0 <wy. Testing (3.1); against Inu!Y, one has

d 1,07, ,.1,0 |u IO|2 1,0,1,0
(3.5) — [ v’ InuPde + de= [ uy v, dz,
dt Jz z T

where [;u’’dz = [;ugdz = M due to the zero-flux boundary condition. Differenti-
ating (3.1)2 with respect to z, and testing the resulting equation against v1.? /v!:0 we
get

1d |’UIO|2 1 [ ulOl0)2 I
3.6 - de+=- | —=2—dox=— Opl0dyg.
(36) 2 dt v1,0 +2/I vl,0 o /qu Ve €T

Combining (3.5) with (3.6), and integrating the resulting identity over [0,t] for any
t € (0,7], we have

1,0 1,0 IO|UIO|2
/I Inu™ dx—I— . UIO d —|—//< uIO 1.0 )dxdTSCO,

which, along with the basic inequality —zlnz <e ! for >0, and v/ <y, gives

1o ul 0|2 1,0|U£,0|2
(3.7) |v uIO 7.0 dzdr < ¢

for any t € [O7T}, where the constant ¢y > 0 is independent of Cy. Furthermore,
it holds from (3.4), (3.8), the basic inequality ||f|lre < col|f|lwr.1, and the Holder

inequality that
T T
1,0
/ Jul / ul
0 0

T
/ Ju®
0

T lul0|2 1/2 1/2
(3.8) < / ( ] dx) ( / u“)dx) dr +¢(T) < ¢(T),
0 Iz U T

where ¢(T) > 0 is as stated in section 2, and it is independent of C;. To proceed,
multiplying (3.1); by uf ¥ followed by an integration over Z, we have

1,02 1,0/2
uy | “dx + uy | “de
2dt/| ot [ Jul P
1,0
_/ Iovzoum da = 7/ 1,0 10 Iodx / io Iodx /ul,o%;5 ui’odaz.
T T

2
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By (3.7), Sobolev inequality (C.2) and equation (3.1);, we deduce that

/I 02|l 0 2

103,
< collut Ol g2kl 22 + collul”

< cOIIUI’OIILz(Ilu ||L2 +llug vp N e + llu"Cvill2) + collug® 17

<luy

2002 + Nz + collug®|1Z:.

1,0 , ,
< 2l ”ut 72 + collu" || o< [lvgz
That is,

|2 [lug® | 22 + colluz ° |72

1
(3.10) /Z|Ui’0|2|v£’°|2dw < T(j”utLO”%Q + collu’ 0| o L

for some constant ¢y > 0 independent of Cy. This, along with the Cauchy—Schwarz
inequality, gives

1
- [uttoroudtar < ¢ [l +4 [ bl Pde
1
< 5||u %72 + collu" (| (lop 72 + lub®l172) + collul 172

Noticing from (3.1)5 that vfm’o = —ul 010 — 10910 we estimate the last term on the
right-hand side of (3.9) as follows:

—/uI’OUitouI Odz
T
:/UI,O(ui,O,UIO+,UIO 10) i’odx
T
<o 0| oo [l Ol oo 1wl P72 + 10 o (" 0N [l02 01172 + lus®ll72)
<ol oo lug®lI72 + collu" oo [(lug®llze + w0 1)? + [lug 7]
<collu"? L (url7= +1),

where we have used (3.7), v1'? <y, ||u!?||z: = M, (C.1), and the Cauchy-Schwarz
inequality. Therefore we have from (3.9) that

/|u1 0|2dx / 1,0 IO Iodl'+ / /‘UI 0|2d$d7'
t
(3.11) gc(T)+c0/0 [ull Lo (llvgi 172 + luz |l )d¢+c0/0 [ [P 8

where (3.8) has been used, and the constant ¢y > 0 is independent of Cy. Noting that

1
/uI’Ovi’Oui’odng/|u£’0|2dx+/|ul’0 £’0|2dx
z 8Jz T
1
S*/|ui’0|2dm+co|\u1’0|\%oo _4/|u10|2dx+c0

due to (3.7), (C.1), and ||u?"?||;1 = M, we further update (3.11) as

/|uIO 2d:c+/ /|ulO 2dxdT

t
(312)  <o(T)+e / [ e (0202 + [ul0)2) dr + co / [l 0|2 .
0 0

2
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On the other hand, differentiating the equation (3.1)s with respect to = twice gives

1,0
I o 1,0 2u£’0v£70

1,0,1,0
vtza: = Uy Vg -

— U

Testing the above equation against v1,0, thanks to (3.1)1, (3.10), the fact v/:* < g, and

xx )

the Cauchy—Schwarz inequality, it follows that
(3.13)

1,0)2 1,01, 1,027, _ 1,0,1,0, 1,0 1,0,1,0, 1,0
2dt/‘v dx+/ vz | d;l:——/umv vmdz—/2ux vy vy da
z z

i AR AR e T ER T P A P2

/luIO
78

where ¢y > 0 is independent of Cy. Integrating (3.13) over (0,¢) for any t € (0,7
yields that

t
/|v£’zo|2dx+/ /u1’0|v£&0|2dxd7
z 0 Jz
1 st t
gf/ /|u£’0|2dxd7+co/ (JJu'
8Jo Jz 0

This, combined with (3.4) and (3.12), implies that

/(|’U,IO|2+|UIO2 dx+//|u10
s

(3.14) < / () + ([

? D0 (luz *I72 + Nl 1Z2) + colluz 12 + col vz I

)(lug® 122 + vz I172)dr

2

+ oz I22)dr + e(T).

Therefore an application of the Gronwall inequality along with (3.8) gives

t
(3.15) /(| ’0|2+\u10|2)dz+/ /|u£°
A s

for any t € (0,T], where the constant ¢(7) > 0 is independent of Cy. Furthermore, by
virtue of (3.7), (3.8), (3.15), (C.2), and the equations in (3.1), we have

2dxdr < ¢(T)

T
(3.16) | (k1B + 1)t < (7).
0

Using (3.7), (3.14), and the Sobolev inequality || f| L= < col|fllwr.2, we get

t
[ 1ok de <),
0

where the constant ¢(T) > 0 depends on the initial data and T but is independent of
(. Therefore the a priori assumption (3.3) is closed provided that C; > 0 is chosen
to be large such that Cy > ¢(T'), and thus the estimates (3.4), (3.7), (3.8), (3.15), and
(3.16) subsequently follow. Next, we shall derive some higher-order estimates for the
solution. The proof is based on the standard energy method (cf. [16, pp. 387-388]),
namely, recovering the estimates on spatial derivatives from those on time derivatives.
For brevity, we will establish the estimates on the second-order time derivatives of
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the solution only and their implications in the estimates of spatial derivatives, while
estimates on the higher-order time derivatives can be obtained in the same spirit. To
this end, we differentiate the equations in (3.1) with respect to ¢ and get

1,0 1,0 1,0, 1,0 1,0, 1,0
{utt —(utz TU T Uy — Uy Uy )x>

1,0 1,0, 1,0 _ 10,10
vy = Uy vt —utt

(3.17)

Multlplymg (3.17)1 by ut’ and integrating the resulting equation over Z, we have

/| |2dx+/|u£;50|2dx / w0l Iodx—i—/ uf vl 0ul 0 de
SZ/ |u$;50|2dx+co/ |l Ovtlw0|2dx+co/ lul 0010 12ds
z

1
SZ/;,'“ Y Pdz + collu e i I + collog T lug 13

1
<3 [ ubbPao -+ (ol
4 A

where we have used the Cauchy—Schwarz inequality and ||u!° POllpge e <
¢(T) ensured by (3.7), (3.15), and (C.2). Therefore we get, thanks to (3.15) and
(3.16),

(3.18) /| 102 dx+/ /|u102d:17d7—<c( )

for any t € [0,T]. This, along with (3.15), (3.16), and the equations in (3.1), further
implies that

(3.19) g

I,
2t uf N3 )

%"TCLZ + o) ||L°°H2 + [lvi; HLOOLZ + ||”UMHL2 2 <c(T).

Next, testing (3.17); against uy;", we have
3 20

2 2 1,0, 1,0 1,0, 1,0
| |d + \u |d33_ (“ Uy T U0 )utmdx
2dt
1,0, 1,0 1,0, 1,0 ;
(u Uta: +ut x )utx dJ}
dt T
1,0 1,0 1,0,.1,0 1,0, 1,0 1,0 1,0
_/(ut Vig U TV U U Uy u)umdx
T
d 1,0 1,0 1,0
< — (ulovm +uy’ io)um’; dx
dt /7
1,0
+ (It Ol lof”

1,0 , 1,0
o (It JwE Ol e + lf Y zoe ol ) e

L2 + [lu 0IILocllvam) s 2

d 10, 10 1,0 1, 10 1,0
Sa ( L0y 0 oy vi’o)ut; dx+§|\utt’ 122 + c(T)lugy 132 + c(T) |vgso]|3,

where we have used (3.15), (3.16), (3.18), (3.19), the fact [|[u”°|| poe poc +[[0L0 || Los oo <
¢(T), and the Sobolev inequality (C.2). Noting that

1,0, 1,0 10 10
/( Uy — )utmdx

<7 Hu ||L2+00(||u10||m\|v 72 + [l

utO12) < I + ()
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due to (3.8), (3.15), (3.18), and (3.19), we get, after integrating (3.20) over [0,¢] for

any t € (0,77,
t
/|utIQ’:O 2(-,t)dx—|—/ /|u£f|2dxd7§c(T),
T 0 JT

where (3.18) has been used. This combined with (3.16), (3.17)1, (3.18), and (3.19)
entails that

(3.21) Jul®

1,0
Lz + Ol 2 < ().
Applying 93 to the equation (3.17),, we get
3
agvtLO _ Zalgul,Oai;fkvLO'
k=0

Multiplying this equation by 92v’? followed by an integration over Z, we have

1d
(3.22) /I|8£UI’O|2dm—|—/Iu1’0|8ivl’0\2dx

2dt

1
<D MO0 e |07 0T 2 03070 2
k=0

3
+eo Y o5ul 0 2 l|0F o 0 e 03070 12
k=2

<c(T)[03u” |2 + 03001172 + (1),

where we have used (3.7), (3.15), (3.19) and the Cauchy—Schwarz inequality. On the
other hand, by (3.1)1, (3.7), (3.15), and (3.21), we get

1
12 < w32 + Z 05U 03|02 0 0T + | (ul "0 %), |7
k=0
(3.23) < e(T)]|O20"0|22 + ¢(T).

107"

Therefore we update (3.22) as

1d

_ 2
(3.24) 5T 2 +e(T),

/I|8§UI’O|2dx+/Iu1’0|8gv1’0|2dmSc(T)\|8§UI’O|

which, along with the Gronwall inequality, (3.23), and the fact u?* > 0, entails that
for any ¢ € [0,T7,

(3.25) 102070, 1)l[72 + 03u 0 ()72 < e(T).
By the analogous arguments, one can also get
t
(3.26) 020"l + [ 0tul e < (1)
0

for any ¢ € [0,T]. Now combining (3.1)2, (3.7), (3.15), (3.16), (3.19), (3.21), (3.25),
and (3.26) yields

I I
[|ve ’O||L§H4 + Hvtt’OHL2TH2 <c(T).
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The rest of the estimates in (3.2) can be proved in a similar manner by applying 0;
and 07 to the equations in (3.17), and the details are omitted here for brevity. |

With the solution obtained in Lemma 3.1 for the problem (3.1), recalling the
transformation (2.1), one can easily show the existence of unique classical solutions
to (2.10). Precisely, we have the following lemma.

LEMMA 3.2. Assume that (po,v0) € H” x H' and (,/v9), € L? satisfying (2.20)
and oz + M > 0. Then for any T > 0, there exists a unique solution (¢'° v19) to
the problem (2.10) on [0,T] satisfying
(3.27a) e’ + M >0, (107" 2 ps2e <e(T) for k=0,1,2,3,4,

(3.27b) ||vI’0||L%oH7 + ||8fv1’0\|LzTHg_zk <c(T) fork=1,2,3,4.

The next lemma gives the regularity of boundary layer profiles v2:? and 1.

LEMMA 3.3. Let (!0, v1:0) be the solution of (2.10) obtained in Lemma 3.2. Then
for any T >0, the problem (2.12)—(2.13) admits a unique solution vB° on [0,T] such
that for any l € N,

(3.28)
0<vP0 <, () orP0 e LZH572% ()orePt e LZHT? for k=0,1,2,3.
Furthermore, it holds that

(3.29)
||<z>lava’OHL%H§_zk < Ko(T,v,)s, H<z>lﬁf<p3’1HL2THz7—% <c(vs, Tvs, £=0,1,2,3,

2 1 3—-2X\
(3-30) ,;) H(Z)latka’OHL%cHg—zk + ;} % H(zyag‘aﬁvB’O”L%c’LZ" < KO(Ta U*)”»w

where the constant Ko(T,v,) := C(T)e“=T) > 0, with c(v.,T) and C(T) being as
stated in section 2. Clearly, Ko(T,v.) is increasing in T and v, with limp_,0 Ko(T,v.)
=0 and limp_, oo Ko(T, vs) = +00.

Proof. The local existence and uniqueness of solutions to the problem (2.12) with
regularity given in (3.28) can be proved by routine procedures: first, we study the
linearized problem by the reflection method; second, we derive suitable estimates for
solutions of the linearized problem and then prove the existence of solutions for the
original nonlinear problem by the Banach’s fixed point theorem. For completeness,
we detail the proof in Appendix A. Below we derive the a priori estimates of solu-
tions, which are used not only for the global existence of solutions but also for the
convergence of boundary layers. We first prove that the solution of (2.12) is bounded
and satisfies

(3.31) 0<vB0<u,.
To this end, we test the equation in (2.12) against v~ := —max{0, —v?°} to derive
that

1d

s | WPz [ 1o Pz [ b0+ 3™ o

+/‘ (£10(0, 1) + M)l (0, £)(e””
{vB:9<0}

0

—1wB%z =0,
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where, to ensure the validity of integration by parts, we have used the fact v, >
v10(0,¢) > 0 due to ¢+ M >0 and

(3.32) v10(0,t) = v, exp (— /Ot(gpi’o(o, )+ M)dT) :

This entails that
| pae<o,
Ry

which implies v~ = 0 and v?° > 0. Similarly, testing the equation (2.12) against
vt :=max{v?? —v,,0}, we can show that v2:? <wv,. Therefore (3.31) is proved.

Next, we shall derive some weighted estimates for v29. Let n(z) € C*°(]0,00))
such that

(3.33) n(0)=1, n(z)=0 for z>1,

and denote ul0 := ©L.0(0,¢) + M. Then if we take ¥ = v5° — n(2)(v, — v10(0,t)) =
B0 —¢(z,1), it follows that 9 solves

0 =1., — ul 0" T2 (9 4 @) — ul:0010(0,8)(e" ¢ — 1) + o,

(3.34) 9(0,¢) =0, z9(+oo t)=0,

9(z,0) =
where

0 ="n::(2)(ve = v"0(0,2)) = n(2) (vs = v"0(0,1)):-

By (3.27) and (C.2), we get that
(3.35) {3fwi’0(0,t)llm(o,m <ll0F ek ll g <elT) for 0<k<3,

1050700, )| 20,1y < 195010 a1 < e(T) for 0< k<4,
which gives rise to
10F 03 (0,6) | L 0,1y < e(T) for 0< k<2 and
“af’l][)o(()?t)HLoo(o,T) <(T) for 0<k<3.

Thanks to (2.20), (3.32), and (3.36), it holds for I € N that (2)!0Fo € L2 H2=2k (k =
0,1,2) with

(3.37) 1) 0 ell a2+ < C(TYs, k=012,

(3.36)

where the constant C'(T) > 0 is as stated in section 2. Similarly, we get for [ € N that
(2)loFp € L2H2F (k=0,1,2) with

(3.38) 1(=)108 2]l o oo < (D)o, k=0,1,2, A=0,1.

Multiplying the equation (3.34); by (z)219 followed by an integration over R,
we have

(3.39) 1d < Y2192dz + / (2)292dz + / ()2 uT0e?992d
:/ (z>2119gdz—21/ (z)2l_2zz9z19dz—/ (2)2 T 06" T9Y9pd
Ry Ry Ry

- / ()2l 0010(0,¢) ("1 — 1) ¥dz =: A,
Ry
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where, due to ul.0 = ©L0(0,¢) + M >0 and 0 < vB0 <w,, it holds that
(3.40) / (z)2T.0e7+992dz > 0.
Ry

We now turn to estimating the terms on the right-hand side of (3.39). By (3.32),
(3.36), 0 <vBY <w,, and the Cauchy—Schwarz inequality, we get

A< (9l z2 (=) el 22 + coll(209] 2 1210 122 + coll (20012 [1{2)' )z
+—c<v*¢r>j/ (22T 00100, 1) (10] + |]) d=
Ry

1
(3.41) SZ/R <z>2l19§dZ+C(v*,T)/R (2)29%dz + col| (=) el 72 + coll (=)' 8172,
+

+

where the constant c(v,,T) > 0 is as stated in section 2. Inserting (3.40)—(3.41) into
(3.39) and integrating the result for any ¢ € (0,7, we get

(3.42)

t t
/ (V2192(-, )z + / / (Y292 zdr < C(TYo? + o(vs, T) / / ()292dzdr,
Ry o Jr, 0o JR,

where C(T') and ¢(vs,T) are constants as stated in section 2. Applying the Gronwall
inequality to (3.42), we get

t
(3.43) / (2)29% (-, t)dz + / / (2)292dzdr < C(T)es = T)y2,
Ry o Jry

Multiplying (3.34); by (2)2"9; and integrating the resulting equation over R, we have

(3.44)

lg/ 21 192 1’0192619+¢) dz +/ <z>2l19%dz

24t Jg, 5
_1 / ()2 9ul 092" 9z + = / (2)2ul 092 (9 + ¢y) " T0dz — 2l/ (2)72209409.dz
2 Jr, 2 Jr, R,

/ 2) 2T 0699 g9,dz — uI’OvI’O(O,t)/ <z)2l(e§+¢—l)ﬁtdz—/(z>2lgi9tdz
Ry Ry z

< c(ve, T)|0pul 0| | (2)%9%dz + (v, T)ul 0 V2102 (|0¢] + el)d

(z
+c0/ (22719, 192 d=
Ry
+ (v, T) / ()2 18] 04] dz + (e, TV O 0(0, )] / ()2 (19] + 6 [04] dz
Ry Ry

— / (z)2lg19tdz
Ry
< é / <z>2l19?dz + c(vs,T) / (z)2l19§dz + c(v*7T)/ <z>2l(¢2 + ¢%)dz
R Ry

Ry

+co/ (z)QZQde
Ry

+ (0, T) (Bl 0] + [ 02 4 [ O !0 (0,1)]%) / (2)92d,
Ry
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where we have used (3.27), (3.43), 0 <v50 <w,, and the Cauchy-Schwarz inequality.
By (3.36), we further update (3.44) as

1d 21 2 2 .0 20,92
9?2 +ul09%eT9) dz + 2y 97dz
2a ), ¢ ( ) MR

§c(v*,T)/R (z)% (0% +92) dz—!—c(v*,T)/

Ry

(2)2H($? 4 ¢?)dz + co / (2)% 9%dz.

Ry

This, along with (3.27), (3.37), (3.38), (3.43), and the Gronwall inequality, yields for
any t € (0,T] that

t
645 [ @PReode [ [ @M o@D
R, 0o Jr,

With (3.36), (3.37), and (3.45), we get from (3.34); that
T

(3.46) / / (29292 ddt < CO(T)es= T2,
o Jry

Denote ¥ = ;. Then by (3.34) and the compatibility condition (2.20), we find that 9
satisfies
=4.. ul ul0e9 499 — 1079 (9 4 ¢)i) — ul-0u10(0,£)e %9 + g,

t)=

(3.47) J(+00,t) =0,

C}sz C‘oz 3l

t
(0,
(2,0) =
where ¢ is given by
6= —0ul 0" (9 + ¢) — ul 0" ¢ (1 + 9 + ¢) — ul0u0(0,)e’ T2 ¢,
— <mv1’0(0, t)) (€?+¢ —1) + d,0.

From (3.27), (3.37), (3.43), and (3.36)(3.46), it follows for I € N that (z)!0Fp €
LZH?72k (k=0,1) with

(3.48) 1)1 05 8l 2 py2-2 < C(T)e ™ Do, k=0,1.

With (3.48), by repeating the procedures in the proofs of (3.43), (3.45), and (3.46),
we have

/ <Z>2l (&2+192 dZ+/ / 2l ,192 +192_|_792 )dZdTgc(T)ec(v*,T)vf
Ry

for any ¢ € (0,T]. This, along with (3.27), (3.34)1, (3.47)1, and the fact & = v, implies
that

/ / 2l ﬁizz + ’&zzzz + ﬂtzz + 19t2t) dZdt S C(T)eC(q)*VT)Ufa
Ry

where we have used ||<Z>lan||L%H3—2k < C(T)v. (k=0,1) from (3.37) and the esti-
mate ||<z>l§HL2TL§ < C(T)ec= Ty, from (3.48). Thus we conclude for the problem
(3.34) that

(3.49) 1(=)! 0801l 12 gya-2v < O(T)e D, k=0,1,2,
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provided |[(z)'0Fo| 2 22+ < C(T)vs with k = 0,1. Notice that the initial value
i1z
for the problem (3.47) is compatible up to order one, and that |[(z)'0f 0| ;2 j2-2 <
2H?

C(T)e“= Ty, with k = 0,1. Therefore, by the same arguments as those proving
(3.49), we have for the problem (3.47) that

(3.50) ||<z>lafz§||L2THgfzk <O(T)e Dy, k=0,1,2.
This, along with (3.37) and (3.49),further gives
T
(3.51) / 1850(-,£) %1 dt < C(T)es@= T2,
0
Collecting (3.49)—(3.51), we have

(3.52) () oFB 0 e LZHS2F | =0,1,2,3.

By (3.52) and Proposition C.4, we get for £k = 0,1,2, ¢ = 0,1,...,4 — 2k that
(2)1OFvB 0 € C([0,T]; H32F) and (2)!0F 0P € L L with

3
(3.53) (=)' 0 0P Ol e a2 + ) II(2) D200
A=0

Ly Lge
1
+ ) I2)' 0200050 Lo Lo < C(T)e Doy,
A=0

Now let us derive estimates for 1. Since

¢ B0 vB9 90, B0 4, B,0
0e” = E Cre” 0 vT - 0 vTY, 4>
L+ +L=L
1<0 <<l 1<

for some constant C,. independent of v, and T, we get, thanks to (3.28) and (3.53),

B,0

(3.54)
() (e = 1) o

< Y Gl PO a PO L+ ol (2) (e

bt t£,.<6
1<0, < <8, 1<r<6

T
< > / 102 070 - 02 0P O o I(2) 020 P 0| it
0

L1+ +L£-<6
1< <+ <L, 1<r<6

1, B,0|2
+ coll(z) 07|75 2
6
< c(vn, T 3 V0P OU2s 1o + 1) 0702 s < clon, DO, e
=1
< c(v,, T2

B,0
~DlIZz

Similarly, we have for any [ € N that (z)l(e”B’(J —1) € LY H® with

B,0

(3.55) 12 (™ = )l s < (s, Tho.
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Noting that

B,0 B,0
ke = E Cre’ 9Bl 9l PO for k>1,

with C, being a constant independent of v, and e, similar to (3.54), we get for k =
1,2, 3 that

I(z)'ofe”” ||L2 won < > ol D)0 ()0 oo

Ly+--Lr=k
1<0, < el 1<r<k

+ Z c(ve, T)|| (2 >atelvB70 az BO”LzHG 2k

O4-lo=k
1<0, <<l 1<r<k

k
E c(vs, T

L2 H5 2k

012, -2 92 N s
j=1
k k
Z c(ve, T aj BOHLzHG 2k Z c(vi, T J BO||L2H6 25
SC(’U*,T)Uf,

where we have used (3.28), (3.53), (3.54), (3.55), and the fact

(3.56) Kz) Fgll e e,y < coll (@) ey (@) gl ey

for any [ € N and any integer k > 1, provided (z)'f, (x)'g € H¥(R,). Therefore we
now have for [ € N that

(3.57)
k

IERACE *1)||L2He o S (v, T) Y I1(2)'0]0 07, yomse < elva, T2, 0<K<3,
j=0

where ¢(vi,T) > 0 is a constant as stated in section 2. With (2.13), (3.36), (3.57),
and the Holder inequality, we derive for k=0,1,2 that

(3.58)

(=) OF 017 gz

2

>~ —i i wB0
) / o (2L00.0) + M)} (7" 1) dy

[ )
LZ2.H™%F
k oo
< c(v*,T)Z (1 —l—/R / <y>4dydz> 1(2)! 200 (e" " — 1)||2LQTH3721C < c(v,, T
+ z

=0

L2 HI 2
2
<COZ||ak “(r2(0,8) + M) 7 0.1
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For k=3, we get

3
(=) 07" |32 1 < coZ

2

t/ 931 (p ow+Aﬁy(v&V—Qdy

[

2

LT H]
2

<00§:H331 20,8) + M) [ Lo 0,17

L3 H]

=: Al + AQ,
L%HZ1

+ o

/ 93 (i 0t)+M)( B’°—1)dy
where A; can be estimated by arguments similar to those proving (3.58):

3 oo
A <Y (.. T) <1+ / / <y>—4dydz> [(2)20) (" = 1|35 12 < c(v., T)02,
i=1 +7E

where (3.36) and (3.57) have been used. We proceed to estimate Ag. It follows from
(3.35), (3.55), and the Holder inequality that

s < v, T (1+ / / 4dydz> 1 2™ = Dl 1 92200, 2 01
R

< c(v,, T)v2.

Therefore we get for any [ € N that
H(z)l(?f@B’lHL%Hzf% <c(ve, T)vs, k=0,1,2,3.
The proof is complete. ]

The following lemma gives the regularity of (%!, v%!) which can be proved by
arguments similar to those proving Lemma 3.3.

LEMMA 3.4. Assume the conditions in Lemma 3.2 hold. Then for any T > 0,

the problem (2.14), (2.15) admits a unique solution (v®°, ") on [0,T] such that
0< 0™ <w,,
(3.59)
||<Z>l (T,’U*)'U*, H<2>l tLp, — (U*’T)U*7 k:071a2a3a
1 3-2\
(360) QYA+ D Y I1(6) 000" (vs, T)os,
A=0 £=0

where Ko(T,vs) >0 is as in Lemma 3.3, and c¢(v.,T) is as stated in section 2.

We next turn to the existence and regularity of the outer-layer profile (¢?'*, v1:1).

LEMMA 3.5. Assume the conditions in Lemma 3.2 hold, and let (vB0 1) and
(%0, 1) be the solutions obtained in Lemmas 3.3 and 3.4, respectively. Then for
any T >0, the problem (2.11) admits a unique classical solution (1t ,v11) on [0,T)

satisfying
(3.61a) 105 @™ M L2, o2k < c(vs, T)  for k=0,1,2,3,
(3.61b) 0" Loo ms + 100" | 2 rr-an < (e, T) for k=1,2,3.
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Proof. The local existence and uniqueness of solutions to the problem (2.11) on
(pf1, 011 can be proved by the classical PDE theory for linear parabolic equations
(cf. [16, Section 7.1]) along with the Banach’s fixed point theorem. In the following,
we will devote ourselves to establishing some a priori estimates from which the global
existence and the desired regularity of the solution follow.

Denote b(x,t) :=z¢"1(0,t) + (1 — )P 1(0,t) and @ := pl*! + b(x,t) with

PP (0,1) =~ / (20(0,6) + M) ("0 — 1) ay,
0
0

#"1(0,1) :/ (201, 0) + M) (&0 — 1) ay.
Then we deduce from (2.11) that
~t - @wz - (‘Pi’o + M)UQI;J - @wvio + fl (LIJ,t),
o = — (4 M)l — 3 4 (e,
@(Ovt) = @(Lt) =0,
(@, v"")(2,0) = (0,0),

where the fact v59(2,0) = v>(£,0) = 0 has been used, and f;(z,t) (i = 1,2) are given
by

(3.63) fi(z,t) :==by + bl 0 fo(x,t) :=b0’° k=0,1.

x

(3.62)

To ensure the desired regularity of the solution, it is necessary to derive some estimates
for the source terms involved. By (3.27), (3.28), (3.35), (3.36), and (3.57), we deduce
for k=0,1,2 that

Hafsé’B’l(O t)HQLQ(o T)

<CQZ/

T
<caZH8’” 0t>+M>||Lx0T/O

2
/ OF 3100, t)+M)8J( ’°<W)—1) dy‘ dt

mﬁj e?” D 1) dy

o )
B,0

z / )2yl (3] (" = ]2 12

S C('U*, T);
and for £ =3 that

0™ 0.0 .1 <coZ/
B,0 2
/ 92100, 1) (e” wt) —1) dy’ dt
0

+CO/
0
B,0

< (0., T) / () 2y 1030 (0,0) |22 01y 1) (€7 = DlfEe 12
+

2
dt

2
dt

/833 0t)+M)8]( Clyt) )dy

3

B,0
c(ve, T Z 2dy\| ( - 1)”%?@

R+

< (v, T).
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Thus it holds for £ =0,1,2,3 that
(3.64) 185071 (0,)11720,7) < (s, T).
Similarly, by (3.27), (3.35), and (3.59), we have for ©*°(0,t) that
(3.65) 10F " (0,8) 1720,y < c(vs, T)  for k=0,1,2,3.

With (3.27), (3.64), and (3.65), recalling the definitions of f; and f; in (3.63), we get
for k=0,1,2 that

108 £1112 v < (e, T) (10FF 0P 0,003 0.2 + 19516210,

k
0 (10050, 3 0,r + 10§61 (0,0) 320.1))
j=0

(3.66a) X 0 007 e pra-an < e(vs, T),

k
Haff2||2L2(o,T;H5—2k) < co Z ("agQOBJ(Ovt)"%?(O,T) + ||854Pb’1(07t)||2L2(07T)>
=0

(3.66b) X 0 00 e pro-an < e(vs, T).

Now we are ready to establish estimates for the solution. Multiplying the first equation
in (3.62) by ¢ and integrating the resulting equation over Z, we have

(3.67)
1d [ =2
—— d d
550 [P+ [ Gao
—— [t aylipdo - [ poot®pan+ [ figpdo
T A v
= [ ehootipdn+ [ (@104 M0 e+ 02
T T
PR P ST =T

1, . .
+ 1 12ellZ: + c(ve, T) (I@e 2l 2z + 11172 + 1211Z2)

Lo l|@allL2 (19l L2 + [ f1ll 2 (|2l 22

1, .
< 2 l@alie + (v, T) (1Bl + [l HI72) + (v D flIZ2,

where (3.27), integration by parts, and the Cauchy—Schwarz inequality have been
used. On the other hand, testing the second equation in (3.62) against v/:!, we have

1
(3.68) 5%/|vl’1|2dx+/ (¢£’0—|—M)\vl’l|2dx:/ (—@xvl’o—kfg) ol lde
z z z

<eo / W 2dz + eol|o 2 2125 + coll 2122
v

SCO/ 0" 2da + c(vs, T) 1 Ga 72 + coll foll7,
z

where we have used (3.27) and the Cauchy—Schwarz inequality. Combining (3.67)
with (3.68) implies that
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e (</> + [v51?) da

+ /Ii?idw < (v, T) (I@l172 + [l HI72) + (v T) (ILAll72 + 1 F272) -

where we have used the fact ¢Z0 + M >0 from (3.27). This, along with (3.66) and
the Gronwall inequality, immediately yields for any ¢ € (0,7 that

(3.69) / (@*+ |05 ?) (- t)da —|—/ / 2dzdr < c(v,, T).
z

Multiplying the first equation in (3.62) by ¢; followed by an integration over Z, it
holds that

(3.70)
1d

BT <p2dx+/g5t2dx— /gpx aptdz+/f1g5td:c—/( JrM) 1o,da.
z

By (3.27) and the Cauchy—Schwarz inequality, we have

- - o 1 [ o
- [eutopdot [ npde< [ Gdo ol lgals + ol Al
z z T
Lo =12 2
(3.71) < g Ielze + e, Tl @allze + coll fillze,
where we have used the fact [|[v20||Lec e < c(v4,T) due to (3.27). For the last term

on the right-hand side of (3.70), we get by virtue of integration by parts and the
Cauchy—Schwarz inequality that

(3.72)
- / (ph0 4+ Mol G, = / (010 + MY Gada + / L0011 5yl
T

d
=5 (¢£’0+M)vl’l¢zdx7/goio Llg dx — /(ﬁpIOJrM)vt Pdx
1,0, 1,1
/wm prde

prllLe

< o0 M) o e 0" 22 2l -+, T of
S PR PR A

< %/I(wi’o + M)v" pda + éll@l\% +o(ve, T)||2 122
+ofvn, ) (o 32 + 0132

where we have used [|o10]| s o + |05t || Lge Lo < c(vs, T) due to (3.27) and Proposi-
tion C.4. Collecting (3.71) and (3.72), we thus have from (3.70) that

1d 3> d 1,0 11~ 1/ =2
—— | Fdr— — O 4 M G,da + = d
53 T dt/(%+ o eda + 5 | erde
I
(3.73) < C(U*vT)(”%Ow”L? + v I7) + c(on, D1 f1 1172 + c(vs, T) 07172
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To control the term on vtI ! on the right-hand side of (3.73), we test the second
equation in (3.62) against vtl ! and deduce that

1d
ga‘/z(@i’o“rM) |’UI’1 2dx+/ "Utl’1|2d$
1

:7/ Ololt)? dx—i—/( b vl’o—&—fg)vtl’ldx
T
/ [0F Az + o050 e 07 25 + collo" 02 [ Ball2s + coll o122

(3.74) /\” *dz + vy, T) 0" [72 + c(vi, )22l 22 + coll foll 72

where we have used (3.36). Therefore we get from (3.73) and (3.74) that

d -
G L@+ @0t ) (odet [ (64 10F) da
<t T) (1l + 107 22) + c(0aT) (VA + 112
d
—&-c(v*,T)d—/((pi’O—l—M)vl’lngdx.
tJz

Integrating the above inequality over (0,¢) for any t € (0,7 yields that

| @+t dx+/ [ @+ ot o
< (v, T) + e(vs, T) /I(soi’o + M) godz + (v, T) /0 (LfLliZe + 1Lf2l122) dr
+ (v, T) /Ot (I@2lz2 + llv"H)Z2) dr
<3 [ ety veon) [ WP el T) [ (loulls + 1ot 1) ar
<3 [[#tart o)+t [ Nanlear
where we have used (3.66), (3.69), and the Cauchy—Schwarz inequality. We thus have

(3.75)

t t
/ F2(t)dx + / / (82 + [l P) dedr < (0., T) + c(v,. T) / |Ball22dr < (0., T),
T 0 v 0

where we have used (3.27) and (3.69). We proceed to derive estimates for vI:1. Dif-
ferentiating the second equation in (3.62) with respect to z leads to

(376) Uthl - _(9031070 + M) @ixo bt bemv - 3036 + 8 f2
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Multiplying (3.76) by vl:! followed by an integration over Z, we have

1,12 1,0 1,12
337 [ Pde+ [ (el + anlel o

/cpIO 11 “d:c /gémvl’ovi’ldxf/@zvi’ovi’lder/azfgvi’ld:c
T T T

<l lree o Hlzzllvg Hlzz + 070l o | @aoll 2 ozl 2

+ [0z iz 1@zl 2 lvg lz2lloz 22

a7 A [

1
< 2laallze +co (logi e + 0"
+eo (0" I7e + 182122 + 110z fall72)
1
B.77) < gllcpmlliz +e(ve, Dlogt 17 + c(v, T) + e(vs, T)10s fo 122,

where we have used (3.27), (3.75), Proposition C.4, and the Cauchy—Schwarz inequal-
ity. On the other hand, with (3.27), (3.69), and (3.75), we deduce from (3.62); that

1PaallZs < coll@ellZs + coll (03 + M)vy I3 22 16z ll72 + coll full 2
<, T) (L4 12z + llopt 122 + 1£1l1Z2)

which, together with (3.27) and (3.77), yields that
(3.78

)
1,1
2dt/|“

Applying the Gronwall inequality to (3.78), by virtue of (3.66) and (3.75), we then
arrive at

t
(3.79) / Wl 2( ) + / | Basll2adr < (0., T)
v 0

for any t € (0,7]. This, along with (3.27), (3.66b), and (3.76), further gives that
||8tv£’1||L2TL2 < ¢(vy,T). Denote 1 := @ and w :=v;*'. Then in view of (3.62) and
the compatibility conditions of initial data, we have

11% = %x - (505370 + M)wi)l - wzviﬁ + fl ('T7t)a
Wy = — ((pi’o + M) wht — o0 4 fg(x,t),
¥(0,t) =v(1,t) =0,

(Y, w)(z,0) = (&t,v¢)|t=0 = (0,0),

where fi(z,t) (i=1,2) are given by

? <, T) (L4 12l + lopt 172 + 1 f 1122 + 102 fallZ2) -

(3.80)

fl (:,C,t) - _QDnIctOUI L @Ivglc;fo + 8tfl (l',t), fg(l‘ﬂf) ‘pi’tovl ! (vat + 8tf2(x t)'

Thanks to (3.27), (3.66), (3.75), (3.79), and Proposition C.4, we deduce that
z T 1o
1ill2s 1 < / s e ol et + [ ol
T

T
< (0., T) / 02 wdt + c(v,, T) / 22 et + / 10, f1 (2, 0)| 2t
(3.81) <c(vs,T),

T
: ||%2dt+/ 100 fr (,8) 201t
0
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T T
T -
|%2|\v1>1||%mdt+/0 ||vt’0||%wllcpz\lizdt+/o 10 fo (e, 1) 7 2t

T
Bl < [ 1k
T T
(682 <o) [ otlliedt + (o) [ ol fiedt (v, T) S0, T)
0 0

and

10, Fll2s
r 1,0 1,0
) I, )
< [ (IerbBallot™ B~ + s
0

T
- 1,0 - 1,0
o A (G PAREN

Fellol 32 )

2+ 00, o122 ) e

T
1,0 , ~
<cton) [ (Iebls + 16E e + 12l + 100, o) de < c(o..T)

Therefore by the above procedure for estimates on ($,v''!), we conclude for any
t€(0,T] that

t
(10 + ) + [ (el + 5 2 + oo ) dr < (0. 7).

That is,
(3.83)
t
(1Ol + ol ) + [ (1l + 127l + 02 )b < 0, ).
With (3.27), (3.66a), (3.69), (3.75), (3.79), and (3.83), we deduce from (3.62) that

(3.84)
t
/0 10352 dr

t t t
<o / |Bar |27 + (s, T) / o [2adr + co / 1803 [0 |2 dr
0 0 0

t t t
o [ b Baalfadr + co [ 1@l e [oE edr +co [ 0.1
0 0 0

%2 dr

t
<e(vnT)+e(wnT) [ ok

0
for any ¢ € (0,T]. Differentiating (3.76) with respect to = gives

I,1 _ 1,0 I,1 1,0,.1,1 3, 1,0, 1,1 3 ~,.1,0 ~ 1,0
vtmmfi(cpr +M)Urz 7290 v 7az§0 v 78:%01} 72901$vz

(3.85) — @avyy + 03 f.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/27/24 to 158.132.175.183 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

7606 JOSE A. CARRILLO, GUANGYI HONG, AND ZHI-AN WANG

Testing (3. 85) against vl we have

(131?7

(6360 g [ WhPaes [ @0+ anpl P
= - [2ettuttoltan— [ oltortullar— [ gt oulie

/24,03;901)]0 Ildx—/gvajo Ildx+/62f2vl Ldg
T

< 2llony e llvg Iz oz o2 + 0" oo 1030l oz e
+ 1030l L2l e llz2 + 2ol e [ Goall 2 vz [ 2
+ oz oo 1ol 2 oz Ml 2z + 1103 foll 2 oz [l 2

< (v, T)llvg 172 + cve, T) (1+ | Gaalze + 10251172 + 102 £2172) .

where we have used (3.27), (3.75), (3.83), Proposition C.4, and the Cauchy—Schwarz
inequality. Integrating (3.86) over (0,t) gives

/|v£m1| da:—i—// O M)l 2dedr
c(vs, T // (ol 2 +[0231%) dadT + (v, T),

where we have used (3.66b) and (3.79). This, combined with (3.84), yields that

/|UI12 )dx—|—/ /((g&i’o—k Il|2—|—|(93<p\ )dxdr
c(vs, T / /\v '2dadr + c(vs, T).

Applying the Gronwall inequality to the above inequality, we have

t
(3.87) /|v;g|2(-,t)dx+/ /|8§’.g5\2dxd7'§c(v*,T),
0 T

where .0 + M >0 from (3.27) has been used. Similar to the proof of (3.87), we can
derive that

(3.88) /|a3 Ly dx—i—/ /\ 923|” dedr < c(v.,T),

where we have used || f2||z2 s < ¢(vs, T') by (3.66b). Furthermore, by (3.27), (3.66b),
(3.69), (3.75), (3.79), (3.83), (3.87), and (3.88), we deduce from (3.62)s that
||8tk'UI’1||L%H5—2k < ¢(vi,T) for k =1,2. Hence, we conclude for the problem (3.62)
that

(3.89) 10 " M| L2, pra-ae < e(va, T) for k=0,1,2,

(3.90) ||vl’1||L%oH3 <c(vi,T), Haf’UI’l”L%HE)—Qk <c(vi,T) for k=1,2,
provided ||aff1HL%H272k < ¢(vs,T), ||aff2HL%H3—2k < ¢(vs,T) for k = 0,1. With

(3.27), (3.66), (3.89), (3.90), and Proposition C.4, we can update the estimates in
(3.81) and (3.82), respectively, for f; and fo as

108 Fill g mo-ov < (e, T), 108 foll g rsen < v, T), K=0,1.
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Indeed, it holds for f; that

2|20 72t

T T
3 1,0 ) 1,0
il <co | IeE ol it +co [0k

T
+%/|@ﬁm0%Mt
0

T T
<cllet e [ I B+ collf e | Nolfyac+ e(wn,T)
0 0
<c(vs,T)
and
100 fil172 12
T 1,0 1,0 1,1 r
) 1, ) )
<co [ (IotEIE~ob Balloh [ ot 132 dico | ousilac
0 0
4 1,0 1,0
0112 = 112 ,
o [ 10k 818 1 el

T
I1 - -
<eo [ (I B ol I2al2u 6ol ) dec(on,T) < (0, ).
0

Boe B0ell3 ) dt

For fs, it follows that
1Fall2s 1
T
<eo [ el
0 T
< collg )20 11 / ot

T
I ~
el Wipms [ 1603t <clo,T)
0

T T
Broct+co [ 1@ull ol “oct +co | 01 falodt
0 0

T
|§{3dt+60/ ||atf2‘|%[3dt
0

and

19:Fell2

T T
1,0 , 1,0 I1
<co [ (b8l 0" B + It s ot 3 ) e+ co [ 108 ls
r 2 1,0 1,0
o [ (It ot g+ 16 ot )
0

T
<ao [ (" 1+ 1ot

Here we have used the Sobolev inequality ||fgll g+ ®, ) < Crllf|lax@ )9l mr ) for
any integer k > 1. On the other hand, it can be verified that the initial value of the
problem (3.80) is compatible up to order one. Therefore, by arguments similar to
those proving (3.89) and (3.90), we have for the problem (3.80) that

~ 2 ~
B+ Bt + 10 1%0 ) At + (00, T) < (v, 7).

(3.91) 10F ]| 2. pra-er < c(va, T) for k=0,1,2,
(3.92) lwll Lge s + HanJ”L%HS—Zk <c(vi,T) for k=1,2.
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Collecting estimates (3.89), (3.90), (3.91), and (3.92), and also making use of (3.27)
and (3.66), one can deduce

l" L2, prs + [0 s+ [10f0" | Lz 7o < e(vi, T) for k=1,2,3

and ultimately obtain (3.61). The proof of Lemma 3.5 is complete. ]

With Lemmas 3.2-3.5 at hand, we proceed to study the problems (2.16) and
(2.17).

LEMMA 3.6. Assume the conditions in Lemmas 3.2, 3.3, and 3.5 hold. Then the
problem (2.16) admits a unique solution (v21,pB2) on [0,T] for any T € (0,00) which
satisfies, for any l €N,

(3.93) 1V OE0P g o-av + (00 0B 2l 1 ro-s < v, T),
where k=0,1,2,3, and j=0,1,2.
Proof. From (2.16);, we have

oo
B B0 Bl I B,1y,—v""°
= e /vy'l(%o(O,tHMﬂoy’l)e” dy
z

e / B0, )y + o (0,1)) + @B 1ol 0(0,8)] e dy

0

- / B0, )y + 1 (0,6)) + @B 1ol 0(0,8)] e dy

+e”B"0/ UB’lﬁy [(gpi’o(O,t) +M+<pf’1)e_”3'o} dy
(3.94) +vB’1(<pZ’O(O7t)+M+<,Df’1).
This, together with (2.16)2, gives
ot =Bt — (L0(0,8) + M)vB! — vB(pL0(0,8) + M + P (010(0,8) + vP0)
—e / TP, |10+ M+ ey 00,8) 4 070)

B,0

e ~ —v
e [T L0, 00+ o 0.) + 1oL, 0]

x dy(v!0(0,t) + vP0)
(3.95) =P (vp?(0,0)2 +0110,8) + 0P ) — (937 (0,1)z + 031 (0,8) )0

Take
5 =01+ (2)0"1(0,1)

with 7(2) as in (3.33). Then we deduce from (2.16)3, (2.16)4, and (3.95) that ¢ solves

(3.96)
¥ =02 — (91°(0,8) + M) — (210, tHMJ””Bl)( O+ — Bl
,e“BYO/ 0, [(%’ (0,8) + M+ @P)e™"" | dy(v0(0,1) +v70) + g,
5(0,t) =0, B(+o00,t) =0,
9(z,0) =0,
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where g is given by

(3.97)

g=e"" / ol (0,09, [(£E°(0,8) + M + o e | ay(v'0(0,1) + v7*)

+er”” / B0,y + 11 (0,8) + B Lol 0(0, )] e
x dy(v10(0,t) +0P0)

+(¢10(0,8) + M)n(z)o" 1<o 0+ n(z )0, (0,8) — @B (wh0(0,8)z + v!1(0, 1))

— (p22(0,6)z + 911 (0, ) 0"
+n(2)v"1(0,8)(¢h0(0,8) + M + <P ><v170<o,t> +0P0)
— 1" ()" (0,8) + ()" (0, )7

The existence of solutions to the problem (3.96) can be proved by using the reflection
method along with the Banach’s fixed point theorem. Since the argument is similar
to that in Appendix A for the linearized problem of (2.12), we omit the details here.
In the following, we are devoted to deriving some weighted estimates for the solution.
It can be verified that the initial datum for the problem (3.96) is compatible up to
order two. That is, if we define 9F9|;—q (k = 1,2) through the first equation in (3.96),
then 9Fo|;—¢ (k=0,1,2) vanish at the boundary. Furthermore, we have for k=0,1,2
and [ € N that

(3.98) 1210k gl 3 gro-ov < (v, T).

The proof of (3.98) will be detailed in Appendix B. We proceed to prove for m=1,2,3
and [ € N that

(3.99) ||<Z>lafﬁ|‘L%H§m,—2k <c(vi,T) for k=0,1,...,m

Indeed, for the case m = 1, multiplying the first equation in (3.96) by (z)2'% followed
by an integration over Ry, we have

38
=

00)
dg/ (z)?9%dz + /R+<z>2l17§dz + /R+ (2)2(p19(0,) + M) (v10(0,1) + vB0)5%d2

t J,

= 7/ gozB’l(vI’O(O,t) +0B0 4 1)<z>2lf)zdz +/
Ry

R

(

DN =

g(2)?vdz — 21/ ()22 200,dz
R

/ / 00y 00,t) + M + <p e~ BYO} dy(v°(0,t) + B0 (2)?dz,
Ry

where by (3.27)-(3.29), the Sobolev inequality [|f||Le < colf|lz:, and the Cauchy—
Schwarz inequality, it holds that
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[ B+ 0P 4 1)) 5%
R

<co o | oo (0"l + 070 +1)/R ()252dz
+

<c(vs,T ||<pz 1||L§°/R <Z>2l1~}2dZSC(U*,T)/R (z)25%dz,
+

+
/ g(2)*odz — 21/ (2)272200,dz
Ry Ry

1
< 7/ (2)20%dz + co/ (2)25%dz + co/ (2)?'g%dz
8 Jr, Ry Ry

and

= [ e [T a0, [(eh00.0) + 2 + e ay(u1 00,0 + 050 2o
Ry

z

<o, T) (["0(0,8)] + [0 )

[e%s} 2
AR Y LR AR R R L
+ e, )51
< cfo,, )25
oo T [ P[0 (o Lo e ) s
< elon, T8l
+ oo, T B3 (12500, + 1) o8

< c(ve, T)[[{2)'5] 22

dz

s+ I B I () 0F 012,

Therefore we update (3.100) as

1d

1
LA ypeg, 4 L / (2)252d < (v, T) | (2)15]22 + (v, T) / (2)2g2d>,
th R+ 2 R+ z

Ry

where we have used (3.27) and (3.32). This, along with (3.98) and the Gronwall
inequality, yields that

(3.101) 50Ol + [ 1615 B dr < (o, )
0

for any ¢ € (0,7]. Multiplying the first equation in (3.96) by (2)?'%; and then inte-
grating the resulting equation over R, we get
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lg 2 21,&2 P > 21 1,0 UI,O ’UB’O ’62 2 5 21’[’}2 5
2d {/Rf> =d +/R+<> (91°(0,8) + M)(W"°(0,1) + vP0)3%d }+/R+<> 2d
[ @ [0, + M) 00,8) + 050 dz

R4

_ / P2 (w"0(0,8) + 020 +1)(2)*58,dz + /
R

g(2)* 5, dz — 21/ (2)2220,0,dz
Ry

R

o0
= [ e [, [0 + M e ay 010000+ 08 )5
z

We now estimate Z; (1 <4 <5) term by term. By (3.27), (3.28), and Proposition C.4,
we have

1,0

B,0 - -
Ilécm,T)(HcP [zoe 4+ [lvg [ oo + (v ||Lgo)||<2>lvlligSC(U*,T)II<Z>leI2Lg~

Similarly, for Zo, we get

Io < |l Mz (0" llpee + 107 0llpee + 1) () 0l 21I(2) Bl 2
< (v, T){(2) 0l 211 (2) Bl 2

Lo, - ~
< 2@ BllZz + e(on, T 12) 0112z

By the Cauchy—Schwarz inequality, we have

1
s +I4§f/ (z}glﬁfdz—i-c(v*,T)/
8 Je,

(z)%g%dz + c(v*,T)/ (2)2'92dz.
R4

Ry

Finally, in view of (3.27), (3.28), (3.29), and the Cauchy—Schwarz inequality, we get
for Z5 that

Ts
1 o g0 . |?
<5 | @rtarcwat) [ @[50, (k0004 M efhe "y d:
R4 R4 z
1 - - _
<3 / (22572 + (vn, DI B3 (K205 3, + () 20502, / () "2dz
+ +

—_

<5 [ @Yzt clo DI
5 :

Collecting estimates for Z; (1 <¢ <5), we have from (3.100) that

/ (2)20%( dz+// V2152dzdT < c(vs, T) // )2 (82 +9%) dedr
Ry Ry Ry

for any ¢t € (0,7], where we have used the facts ©l:°(0,¢) + M > 0 and v > 0.
Therefore we utilize (3.101) and the Gronwall inequality to deduce that

(3.103) /R <z>2l@§(.,t)dz+/0t/R (2)292dzdr < ¢(v,,T).
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This along with (3.96), (3.27), (3.28), (3.29), and (3.98) leads to

T
[ e izt < ctwn, 7).
o 2
Then we finish the proof of (3.99) for m =1. To proceed, set © = ¥;. Then ¥ satisfies

(3.104)
b =02z — (9°(0,8) + M) — 0 (e I’O(Ot)+M+wf’1)(vI’°(0,t)+vB’°)—wf’l
°(0,

—ev?’ / 00y [( H+ M+ gaB e~ dy(vI’O(O,t) +029) 4 g,
5(0,6) =0, #(+00,¢) =0,
0(2,0) = 0¢|¢=0,
where ¥;|;—¢ is defined through the equation (3.96);, and g is given by
[(p50(0,8) + M)]5 — 5(Dph°(0,8) + 92 ) (00(0,8) + 070
—3(p°(0,6) + M+ 2 1) (v °(0,6) + v") — b2y + gy
0

_ 70, [((pi,O(O,t) LM+ (pyBJ)e_UB,O} dy [e”B’O(vI’O(O,t) —i—’UB’O)}

z

§=-0,

t

o0
— """ (u10(0,) + P 0) / 00yt [(wi’°(07 t)+ M+ 9"5’”@_”3’0} dy.

z

By virtue of (3.27), (3.28), (3.29), (3.98), (3.101), (3.103), and arguments similar to
those proving (3.98), it holds for k= 0,1 that

(3.105) 1)1 08 G 2 22 < e(vs, T).
Repeating the argument in the proofs of (3.101) and (3.103), we then arrive at
t
(3.106) / <z>21@§(.,t)dz+/ / ()% (92 + 92) dedr < c(vs, T)
R, o Jry

for any ¢ € (0,7]. Furthermore, from (3.104); and (3.106), we get

(3.107) / / 2292 dzdt < c(v.,T).
Ry

In view of (3.96)1, (3.101), (3.103), (3.104)1, and (3.107), we also have that

T
/ / (27 (18552 + |9%5]%) dzdt < c(vs, T).
o Jr,

Thus we finish the proof of (3.99) for m = 2. Now let us turn to the proof of (3.99) for
the case m = 3. Based on (3.105) and the fact that the initial datum of the problem
(3.104) is compatible up to order one, we apply the procedure in the proof of the cases
m =1,2 to the problem (3.104) and get that [|(2)'0F0]|,» ga-2r < C for any [ €N and
k=0,1,2. That is, ’

||<Z>l851~1”L%H2672k <c(vy,T) for k=1,2,3.
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This, along with (3.27), (3.28), (3.29), (3.96)1, and (3.98), further gives that

T
/ (1421020113 + (=)' 9832 ) e < (v, T).
0

Then (3.99) is proved. With the definition of ¢ and (3.99), one can immediately
obtain the estimate for v?! in (3.93). The estimates for 2 follow from (3.27),
(3.28), (3.29), (3.61a), (3.61b), (3.93)1, and (3.94) along with arguments similar to
those proving (3.98). We thus finish the proof of Lemma 3.6. d

By arguments analogous to those proving Lemma 3.6, we have the following
existence and regularity result on (¢%2,v%1).

LEMMA 3.7. Assume the conditions in Lemmas 3.2, 3.3, and 3.5 hold. Then there
exists a unique solution (o2, v%1) to the problem (2.17) on [0,T)] for any T € (0, 00)
such that for any l € N,

(3.108) (&) oF ™! 2 o2+ + | <§>l3§¢b’2||LzTHgfw < (v, T),

where k=0,1,2,3, and j=0,1,2.
4. Convergence of boundary layers.

4.1. Reformulation of the problem. Denote by (¢°,v¢) the solution to prob-
lem (2.2)—(2.3). To prove Theorem 2.1, normally we shall construct a perturbation
as

(4.1) " ="+ (D (@ 1) + N (2,0) + 9V (E1)) + €5,
) v =l B0 b0 4 g2

and estimate the remainder (£5,£5) to show that
(42) & llpr==0E"%), 1€ Igr==0("?), [0:E |Lgr==0("")

for some T' > 0. However, if we substitute (4.1) into (2.2), we shall find that the
equations for (&f,&5) involves terms that converge to nonzero constants as € — 0, but
we need estimates in (4.2), where £ behaves like o(¢'/2). This gap causes trouble
in the analysis. To circumvent this difficulty, we resort to higher-order outer- and
boundary layer profiles by introducing an approximate solution to the problem (2.2)—
(2.3) as follows:

4 (1) = "0 + 12 (o1 (,1) + 07 (2,8) + 91 (6, 1))
(4.32) +e (P22, 0) + "2 (6,1)) + b (2,1),

(4.3D)
VA2, t) =0l 4 0B 0 40 4 V2 (I (2 8) + 0Bl (2, 8) + 021 (€, 1)) + 05 (2, 1),

where the functions bS(x,t) and b:(z,t) are constructed below to homogenize the
boundary values of (®4,V4):

1 1
bo(z,t) =—(1 —2) {s”%”’l ( - 51/2’t> +eph? ( - 51/2’t> +ewB’2(07t)}

1 1
(4.4a) -z [61/2g03’1 <€1/2,t) + g2 <€1/2,t) + apb’z((),t)} ,
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- 1 1
bv(m,t) = (33 — 1) [Ub’()( 81/2’t> +€1/2’Ub’1 ( — 81/2’t>}

1 1
(4.4b) —x |:1)B’O <€1/2,t) +€1/2’L)B’1<€1/2,t>:| .

Then we can write (¢, v°) as
(4.5) o° =4 4125 W = VA /2y
with (®%,V¢) being the perturbation functions, which, along with (4.1), imply that

(4.6) E5 =20 + e (P 2(2,1) + "2 (6,1)) + b5 (2, 1),
(@7) &=V e (01 (,8) + 0B (2, 1) + 0P (6, 1)) + b (a, ).

We remark that we have omitted the term ep’? in the above construction of ®4.
Indeed, this term is of order € and is unnecessary for our analysis. On the other hand, if
this term is included, then the upper bound on ||d;¢ZL? |2 2 is needed for the estimate
of Rj in the subsequent analysis. This will require higher-order regularities on the
initial data (@g,vp). Substituting (4.5) into (2.2)—(2.3), we see that the perturbation
functions (®°,V*) satisfy

@ = @5, — V2BV - SV - VE@A M)+ VRS,
VP =eVE, — e 205VE - VA - (@ + M)V 4R,

48
@8 ) @%,vo) (.0 = (0.0),
(©°,V)(0,t) = (®°,V*)(1,t) = (0,0),
where
(4.9) R =05, — (2 + M)VA - @, R5=eVys — (2 + M)VA-VA

Notice that the coefficients and source terms in (4.8) involve only the outer- and
boundary layer profiles studied in the previous section. By standard arguments (e.g.,
[37, 42]), one can prove the local-in-time existence and uniqueness of solutions to the
problem (4.8) with € > 0 in the time interval [0,7;] for some T. > 0 which may be
small. Now the key is to establish some uniform-in-¢ estimates for (®°, V<) so that the
e-independent lifespan of the solution and the convergence of boundary layers can be
extracted. To this end, we present the following results for the problem (4.8), which
will be proved in the next subsection.

PRrROPOSITION 4.1. Assume the conditions in Theorem 2.1 hold. Then for any
v, > 0, there exist constants T > 0 and g9 > 0 such that for any € € (0,g¢), the
problem (4.8) admits a unique solution (®¢,V) € L°°(0,T; H? x H?) which satisfies,
for any t € 10,77,

19° (- ) 172 + /215 (-, 1)1 72 + %2 D5, 172 + € N0VE( )I72 < (v, T)'?
and
t
(1920 21203 + 0 e+ el V2 1+ 1V I + < 2IVir ) dr
gc(v*,T)51/2,

where £=0,1,2, and c(v.,T) >0 is a constant depending on T but independent of .
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4.2. A priori estimates.

4.2.1. Preliminaries. We introduce some basic facts for later use. By (3.28),
(3.29), (3.93), (3.108), and Proposition C.4, we have for [ € N that

(4.102) I(2)"oF ™!
(4.10b) (€)' o ™!

Leems—2 + ||<Z>lafa§¢3’l||L$L;o < Ko(T,v4)vs,

LI T ||<f>lafa§¢b’1||L;°Lg° < Ko(T,v4) v

for k=0,1,2, j=0,1,...,4— 2k, and that

(4.11a) (=)' 07 0" 2| oo pra-2r + (=)' 07 020" 2| e 1w < e(ws, T),
(4.11b) (€)' 080" [| g pra-=v + 146)' 07 08" |l o 1= < (v, T)

for k=0,1, j =0,1,...,4 — 2k. Hereafter the constant c¢(v,,T) > 0 is as stated in
section 2, and Ko(T,v,) >0 is as in Lemma 3.3. Also, we collect some basic estimates
on the boundary layer profiles of v as follows:

1 3-2X\
(4.12a) 1) OF 0P M | e e+ D 62! 070507 M| g L < (v, T),
A=0 ¢=0
1 3-2X\
(4.12b) MO O™ | g gra—ae + D D I OO e e < (v, T,
A=0 ¢=0
and
1 3—-2X\
(4132) () 0F 0™ oy + Y D ) RO re < Ko(T, v,
A=0 ¢=0
1 3—-2X\
(4.13b) ()OOl e -z + Y Y 16)' 07060 L < Ko(T v o
A=0 ¢=0

for k=0,1,2, due to Lemmas 3.3, 3.4, 3.6, 3.7, and Proposition C.4. From (3.27) and
(4.10)—(4.12), one can deduce some estimates on the approximate solution (®4,V4):
(4.14a)  ||0L®?| Lo o + [|0:0LA | Lo e < (s, T), 1=0,1,

(4.14b) (VA zzere + [V s +€2)100:VA | Lse Lo < (04, T), 1=0,1.

4.2.2. Estimates on the error terms. Now let us turn to estimates on the
error terms Rj and R5.

LEMMA 4.2. Let 0 <e < 1. It holds for any T >0 that
(415) | Rillzgpr= <c(v, T)e?,  |IRS|og 2 + 1R |l 2 12 < elvs, T)e> ™.
Proof. First, recalling the definitions of G; (i = —1,0) and G; (i = —1,0) in (2.8)

and (2.9), respectively, using (4.9) and the first equation in (2.10) and in (2.11), we
get from a direct computation that
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Ri = v [l — 020(0,t) — 20220, t)]
+ b0 [P0 — p10(1,¢) — (ar — ey (1,1)]

=[P (e ) — e (0.0)) + P () — 1 (1L1)

= [PROok ) = e 0.0)) + Pl ) — 1 (11)
V2[B! (0L, £) — v (0,8)) + @ (0] £) — 01 0(1,1)]
1/2( BO(pZI_FUbO(pf 1)

*5(31501714"01)190]314’@32 b0+90b2@BO)

_E[SDZL’ (Bl+v21)+v£1((px +(10:c )]
api LTl g B2 [UI,O 4ol 4 oBl 4 Ub,l)]m
= e [0 4 (0 0P 4 o)

x

[ ) e )] 4 7 Y R

where

(4.16)
Fe = =005 (0 + M+ e 2(ph1 + B+ b) + (022 + %))
1,0, B0 b0 1/2( 1,1 Bl bl
— 0:05, (v + B0 480 12Tt LBl 4y ))I—(awa08$bf))—8tbfa.

Now we are ready to estimate ||Rf[[z2 2. By (3.27), (4.12a), (C.6a), and Taylor’s
formula, we have

(4.17) |P1llpsere =

H(pé’o(x,t)—goio—xcpm (0,1) 220 B0
2 Ve

Lo L2
<35 103" | e Lo 12?00 Lo 12 < coelle” Ol e s | 2202 ° || poo 2

3/4 )ed/4,

<o 0"l Lge o 12202 || e 12 < (v, T

The same argument as above yields
1, .- .
1Pallzgers < 51026 g reell(@ = 1?02 2 < c(ve, T)e?/,
Furthermore, in the same manner, we get from (3.27) and (4.10)—(4.12) that

1Pill Leo 2 < c(vs, T)e%*, i=3,4,5.

3 <—

el 2e1/2

Notice that 81/2 <z=L7 <€1%for 1/2 <x <1, and that —61% <¢&=
d(C 6) 1mphes for

for 0 <z < 172, This, along with (3.59), (3.93), (3.108), (4.12, an
meN and k=0,1,2 that
(4.18)
e 2 0F OV || Loo (1 /2.1y x(0,Ty) HE 2 Hafaivb’jHLoo((o,%)x(o,T))
< Collzm“fﬁfaivB” ||L°°(0,T;Lg°(o,rl/2)) + CO||§m+Zaf‘9§Ub’j ||L°°(O,T;Lg°(—s*1/2,0))

< coll(z)™10F 0B | L + o[ (€) ™0 D" | e < v, T),
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where j=0,1,i=0,1,...,4 — 2k. Similarly, we have

(4.19) e (10F0i™ | oo (12,1 x (0.1 + 1OF O™ | Lo ((0,1/2) % (079 ) < (v, T)
for k=0,1,2,i=0,1,...,4— 2k, and

(4.20) e ™ (105 050™ % (| Lo (1 /2,1y x (0.1 + 1OF %" | v ((0,1/2) x (079 ) < (v, T)
if k=0,1,9=0,1,...,2 — 2k. Therefore, we deduce for m € N, that

e 2o 0l lLgrz < 51/2||vf’0902:’1||L°°(0,T;L2(071/2)) +e' 2oy 0! | zo0,7;L2(1/2,1))
<" (Ils’m/%i’;lHLoo((o,1/2)x(o7T))||Uf’OHL§9L2
+||€‘m/2vf’°Hm((l/m)x(om))||%03’1||L%°L2)
< o™ (08l re + of 1z 12)
(4.21) < (v, T)e 5
and
2000 g e < €20z 00 e orizr o2 + €102 00 riz2a /2y
<™ (||6’m/2v2’0||Lw((o,1/2)x(o,T)>H%’
g™ 2B | Lo /2,1y x 0,7 105 ||L°°L2>
< coe ™5 (P e 2 + Iob Nl 2)
(4.22) <, T)e 5,

where we have used (4.10), (4.12), and (C.6). Thus [|Ps|| 12 < c(vs, T)e%*. By the
same argument as that proving estimates for Pg, one can infer that

||P7HL%°L§ < e(v., T,
With (3.61), (4.10), (4.12), and (C.6), we obtain
1Pslligers < ewe, D) ok g oo (07 ooz + 08 ooz )
o+ ove, TN ol g e (P oz + ek g 12) < e(vn, TV,
Similarly, we also have
1 Pill gz < e(vs,T)e**, i=9,10,11,12.
For the last term F¢, we first deduce from (4.4a) and (4.10)—(4.12) that
[EAA Y
< v, D) (Il 20" (~e 2. 0) Lm0y + 19565 (2, D)l =01
+ 1050”20, 8)llL~ (o)
)

< c(v., T (€)™
(4.23)  <c(vi,T)e

t P

k b2
FLZ +||3t<p
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for k=0,1. By similar arguments, we have from (4.4b) that

(4.24) 10565 | s in < c(vs, T)e, k=0, 1.
Similar arguments, along with (3.28), (3.59), (3.93), and (3.108), further imply that
(4.25) 107631l 250 + || 0705 < c(vi,T)e.

Notice also that azbi, and 0,05 are independent of x. Thus it holds that
(4.26)
1070205 |1 L2(0,7) + 107 025 || L2(0,7) + 110F 02bS || Loc 0,7) + 10F 0ab | Lox 0,7) < (v, T)e,

where k£ =0,1. With (3.27), (4.10)—(4.12), and (4.23)—(4.26), recalling the definition
of F¢ in (4.16), we have

||| Lee 12

< ofou, DO e (1416 e s+ 2™ Vi

B’1||L39H;

S [ [ 177 +€3/4H<Pb2\|L°cHl>
+ 10205 [ Lo 0,1) <||U ' ||L;°H1 +€1/4||UB’1HL;°H; +€1/4||Ub"1HL;OH£1)
+ 110265 || o< (0,7) 1005 | L= 0,7) + 100G [ 50 1.2
(4.27)  <c(v,,T)e4.

In summary, we now have for 0 <e <1 that

12
(4.28) RS ILsers <D IPillgers + 1Fe |l < c(vs, T)E™.

i=1
Repeating the above procedure with the LZ-norm replaced by the L>°-norm, we have
that

(4.29) IR || Lgs Lo < e, T)e' 2.

We proceed to estimate [|0;R{|[12 2. Notice that if ||hx||z < col[h|[x[[x|ly for h € X
and y €Y, with X, Y, and Z being Banach spaces, then

(4.30) 10:(hx) | z < coll bl x Ixlly + coll Pl x I0exlly

provided that 0;f € X and d;x € Y. Therefore, by (3.27), (4.12a), and arguments
similar to those proving (4.17), we have

(4.31)
0Pl g 2
Dyl (,t) — 9oL °(0, 1) — w0l (0, t)x%B,o
L9, t) — pl0(0,t 0,t
_’_‘ P (.’E, ) P (27 ) me( )1205;0
X L%°L2

B
< 10:030" || Loo Lo || UBO||L°°L2 + 103070 Lo oo |20y || poo 1.2
< c(vs, TV 0y || e pra | 220 (Ve TV 10" 0 e 13| 2°05 Lo 1.2

< c(v,, T)e®?.
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Similar arguments further yield that
(4.32) 10¢Psll e 2 < vy, T)**, i=2,3,... 11.

Now it remains to prove [[0;Pi2|| 22 < c(vs, T)e3* and [0cF< || L2 L2 < c(v., )4,
For the former, it follows from (3.29), (3.59), (3.93), (3.108), and 0 < e < 1 that

3
[0: P12l 2, 2 S(m54(”83@£i1”L%L§4‘”83¢MI”L%L§)

(4.33) + o (107072 3.2 + 107" |1 13.02) < elvs, T)EP.
For the latter, we split 0, F'¢ into two parts:

O F*
= =0, 0255 (00" + M+ /200" + 00+ D) + 2(06™ 2 + 0" )
— 0,15, (vl’o + 080 40 4 /2T Bl vb’l)) + (8&;8&5)} - O7b5,
= F - 0" '

t Yo
where ||3t2bfp||L2TLz < (v, T)e due to (4.25). In view of (4.30) along with a modifica-

tion of the arguments in (4.27), it holds that ||F||L2TL2 < ¢(vs,T)e%/*. Therefore we
have

10F* | 3 12 < e(va, TV,
This, alongside (4.28), (4.29), and (4.31)—(4.33), gives rise to (4.15) and thus complete
the proof of Lemma 4.2. 0
LEMMA 4.3. For any 0<T < oo and 0 <e <1, it holds that

(434) [ RSlupre + 10RS N 1e < c(vn TIEYS, [R5\ Lgie < clvn, T2,

Proof. From (2.12)—(2.15), we know that

(4.35) {B =00+ (D 0(0,1) + M)+ B (B0 4 010(0,1),

vgd =00 4+ (Op" O (L, 1) + M )"0 + G2 (020 + 07 0(1,1)).
Plugging (4.35) into R§ in (4.9) and recalling the definition of ®4 and V4, we have

R == [07 (e (1) = 01 °(0,1) = 2(0.1))
+ 0" (ph (. t) — L0 (1,1) — (2 — D)ol (1,1))]

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/27/24 to 158.132.175.183 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

7620 JOSE A. CARRILLO, GUANGYI HONG, AND ZHI-AN WANG

— e [P0l (@ t) — L (0,) + 0" (@b (1) — b (1,1))]
— ' 2 BNk 0@, ) — pL0(0,8)) + 0 (020 (x,) — 010(1,1))]

—gl/? [gpf’l(vl’o —1}[’0(0 t) — vaO(O t))
+ 902’1( 1’0*01’0(1,75) (x—1)v°(1,1)) ]

e[t (W (@, t) =011 (0,8)) + et (1 (2, 1) — 011 (1,1)]
—e[p? ( (e, ) IO( t)) + @? ("0 (2, ) — 010(1,1))]
— el (v 4 0B b1y _ 1/2(4,0_,6371111’0—1—@" 1, B:0)
—E((pBl b1+(pb1UBl)

(B0 g hi2=B0y 3/2<pf,2(vl71+UB7l+vb,1)

63/2<p§;2(v AP —|—vb’1)
—5[pl0 + M+ P (ol + 0BT+ OU) + 0,05
. &J)Z(’ULO + UB,O + Ub,o —l—eé(vl’l + UB,l + Ub,l))

16
+ |evl0 4 63/2’1};’;} — Opb5 =: ZICi.
i=1
To prove (4.34), it suffices to establish estimates for K; (1 < i < 15). The proof is

quite similar to the one for Lemma 4.2. We first prove ||R5[ 12 < c(vy, T)e?/*. By
(4.18), (C.6), and Taylor’s formula, we get

(o™

Similar arguments imply that [|K;[| s 2 < c(vs, T)e3* for i =2,3,4,5,6. From (3.27),
(4.10)—(4.12), and (C.6), we get

") g1z < e(wn, T)EA,

IKillLsere < coel| O3

1Kzl Lse 2 <elloh M llnge e (" loge 2 + 07 | Lrre + 0" | Lser2) < e(vs, T)e,
where the constraint 0 < e < 1 has been used. Analogously, we further have that
IKill g r2 < (v, T)EY*,  i=11,12,
and

1 1
IKisllzgrz <co (1 + ||<P£’O||L;°L2 te2 ||<P:{;’1||L;°L2 +et ||50zB’1||L39L§
Lhb
et 6l g oz + 10aG a2 ) 1l e e < elvn, T,
1
Werallziers < el DO oz o (14 3 (0" [ noe +0% noe +]0" e o)

<c(vi,T)e.

Recalling the arguments in (4.21) and (4.22), we proceed to estimate ||Ks|reor2 as
follows:
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W00 1/2

IKs L2 </

‘Pf’lHL?L? +e ||UB’O<P2’1HL;°L2

2m—+1 _
<coe 3 (Hs 2020 oo 0,172y 0 (0 192 | e 12

He™™ 22 oo (12,1 x 0.1 10°°

Ly Lg)
2m+1

+coe 1 (Haim/Q(PZ’lHL‘”((OJ/Q)X((LT))”UB’OHL%OLE
- b1
He™™ 200 Lo 12,1y x 0.1 | ¢ HLOTOLg)
<c(vs,T)e

2m—+41
4

for any integer m > 1, where we have used (4.18), (4.19), (C.6), and 0 < ¢ < 1.
Thus, [|Ks|lpserz < c(vs, T)e?/. Similarly, we have also IKillLgore < (s, T)e3/* for
i=19,10. For K15 and Ky, it follows from (3.27), (3.61), and (4.24) that

3
K15l g 2 <ellvillpee e + 2 [0n s 2 < c(ve, T)e, [|Kaglnger2 < cve, T)e,

where we have used 0 < € < 1. Therefore we conclude that

16
RSN sz < co Y IIKill e 12 < e(vs, T)E™.
i=1
Repeating the above arguments with || - ||z 2 replaced by || - [[Lgre, from (3.27),

(4.10)—(4.12), (4.18), (4.23)—(4.26), and (C.6), one can deduce that

IRS || g Lo < ey, T)e'2.
Finally, in view of (4.30), the above estimates for K; (1 <i <16), and Lemmas 3.2-3.7,
we have that [|0;R5| e 2 < (s, T)e®/*. This ends the proof of Lemma 4.3. O

4.2.3. Lower-order estimates. From now on, we shall establish some uniform-
in-¢ estimates for (®¢, V¢). Throughout this section, we assume that (®°, V) satisfies,
for any T > 0,

(4.36) sup [|®°(-,1)]|7= <6,
t€[0,T]

where § > 0 is a small constant to be determined later, and may depend on T'. The
results in Lemmas 3.2-3.7, 4.2, and 4.3 will be frequently used in the subsequent
analysis without further clarification. We emphasize that these estimates are all
independent of §. We begin with the L? estimates of (®€,V¢).

LEMMA 4.4. Let the conditions in Proposition 4.1 hold. Assume 0 < e <1 and
that the solution (=, V) to (4.8) on [0,T] satisfies (4.36). Then there exists a positive
constant 01 > 0 independent of € and § such that for any t € [0,T],

(4.37)
t
IVEC DT + 1197 ()22 +/0 (IVEll72 +ellVa 172 +1195]172) d < c(v., T2,

provided 6 < §1 and K1 (T,v.)v. < 1/16, where K1(T,v.) is given as in (4.40), and
c(vs,T) >0 is a constant depending on T but independent of € and J.
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Proof. Multiplying the first equation in (4.8) by ®¢, followed by an integration
over Z and integration by parts, one deduces that

(4.38

)
1 d/ 9 9
—— [ |9°| dac—|—/|<1>5| dx

:751/2/<I>5<I>§V;dx+/5’1/2R§<I>5dx7/(@erM)VfCI)def/<I>5<I>2VIAdx.
s A A s

The terms on the right-hand side of (4.38) can be treated as follows. Thanks to (4.36),
Lemma 4.2, and the Cauchy—Schwarz inequality, it holds that

—51/2/@5¢>§V;dx§§/|V;|2dx+co||<1>5||%x/ |®° |2da
T 3 T A
(4.39) §5/|V;|2dx+c05/|<1>;\2dx
8 T T
and that

/ e 1VPRED A < || ®° |22 + coe M| RS |22 < col|DF||2 + vy, T)et/?.
T

Hereafter the constant ¢(v,,T) > 0 is independent of € and ¢. The integration by parts,
along with (3.27), (4.10), (4.11), (4.14a), the fact 92bS, = 0, the Hardy inequality (C.5),
and the Cauchy—Schwarz inequality gives

7/(<I>;4+M)Vf<b6dx:/
T

T
§61/2/VE<I>E(sof£ + gl )da
7

VEDED da + / (@4 + M)VEDEda
s

b [Vear (ol ekl el eph? + 000 ) da
z
+col|®F + M Lo l[VE 2| 95 2

@° z(l—2) p, z(l—x) 44
z(1—x) Lz( ez Ve Loo+ SRR

)
-

+ ove, T) [V 2195 22 + (oa TV 12102 2

% (Ioh2 e + V2 QE e + B2l e + b llge + 19205 1 )
< e DIVl |18 l1z2 (1005 e + 1€k 1)

+ ove, T)[VEllze (195 22 + 2] 2)
< Sl + o Y1232 + IV]32).

<[IVFl2

For the last term on the right-hand side of (4.38), from (3.27), (3.61), (4.3b), (4.12),
(4.13), (C.4), the Hardy inequality (C.5), and the Cauchy—Schwarz inequality, we get
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(4.40)
- / PEPEVAdr = — / =0 (v +020) dz
T T

= [ Bas [ul0 Sl 0B o) 4000
A
(bE
_l’_

el z(l—x) B0 z(l—x) b,0
(1_@ ||<I> I ( L Loo)

o172 Uz Tz Y%
15951 (Il 0l + o2 g + e e + 2ol o + 10205 1)
< o053 (1202l + IENE e ) + v, T3 0]
< (5 BT ) 195 s + o, T

where K (T,v,) := Ko(T,v.)co > 0 is constant with Ko(vs,T) as in (4.13). Thus,
plugging (4.39)—(4.40) into (4.38), it follows that

(4 A1)
G Lo+ [ 10sPan < S [ vepde s e, DS +1VEIE) + clon 7)1

provided c¢pd < 1/8 in (4.39) and K1 (T,v.)v, <1/8 in (4.40). To proceed, multiplying

the second equation in (4.8) by V¢ and integrating the resulting equation over Z, we
get

2dt/ Vel da:+€/ \A dx——/151/2<1>§V€V€dx—/(DiVAVde

(4.42) /(<I>A+M)|V€| dx+/w 1/2R5dm—ZM,

=1

where, due to (4.36), integration by parts, and the Cauchy—Schwarz inequality,
N :51/2/<I>€V;V5dx§ %/ |VE2da + c(ve, T) || ®°||% / |VE|2da
z z z

(4.43) g%/I|V;|2dx+c(v*,T)|\vs||2L2,

provided ¢ < 1. For Ay and N3, the estimates in (4.14) along with the Cauchy—Schwarz
inequality yield that

1
No < [VA | |5 22 Ve 22 < SIPSNZe + clon, TIVEIZ2, Ns < v, TV 22

For the last term N, by the Cauchy—Schwarz inequality, one has Ny < [|[V¥||2, +
c(vs, T)e | R5]|3.. Inserting the estimates on N; (1 <i<4) into (4.42), by virtue of
Lemma 4.3 we get that

(4.44)
2C1t/|vs| dx+e/|VE| dz < 1/|<p€\ dz + c(ve, T)|[VE|2a + c(v,, T)eM2.
Combining (4.44) with (4.41), we obtain that
G L VR0 do+ [ (0 +elviP) as

< C(U*’T)/ (|V6|2 + ‘q)s|2) da + C(U*vT)El/Qv
z
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which, along with the Gronwall inequality, entails for any ¢ € [0,7] that
t
IVECOIZ2 + 19°C, 1)1 7 +/ (ElVElZ: + 195 ]17:) d7 < (v, T)H2.
0

The proof of Lemma 4.4 is complete. ]
We proceed to establish the H' estimate for (®°,V¢).
LEMMA 4.5. Under the conditions of Lemma 4.4, it holds that

(4.45)
t
el @507 +ellVE (017 +/0 (@517 + 1VE(172) dr < e(w., T)eV? Vi€ (0,T),

where the constant c(v.,T) >0 is independent of € and .

Proof. Multiplying the second equation in (4.8) by V¢ and integrating the result-
ing equation over Z, we have

(4.46)
ed 2 2
—— °1°d !
sap Lverdes [vePas
= —/(cb;;‘ + M)VEVEda — / PEVAVEds —51/2/<I>§V5Vfdx +s—1/2/7z§v;fdx,
z z z z
where, due to ||<I>f||L%oLoo < ¢(vs,T) from (4.14a) and the Cauchy—-Schwarz inequality,

(4.47)
1
—/I(<I>;Z‘ + M)VEVEds < |07+ Moo |[VE 2| Vi [z < VT2 + e, TV -

By (4.14b) and the Cauchy—Schwarz inequality, we get
1
(4.48) —/I‘biVAVfdx <NVA poe |95 2 Vi | 22 < Z”VfHQL? + (v, T) |95 172

Thanks to (4.37), the Cauchy—Schwarz inequality, the Sobolev inequality (C.2), and
Lemma 4.3, we deduce that

1
—61/2/<I>§V5Vfdx§f/|Vf|2dx+c(v*,T)5||Vs||%oo/|<I>i|2dx
A 8 T v

1

<5 [WVePde o DNVl Ve e [ 185

T T

1

<5 [ WVePde o DVE s [ [03Pda
8 T T

1
< g/I|‘/t5|2dx+C(U*7T)E||V;||%2Hq)§:”%2 + (v, T2 512

and that
(4.49)
1 1
02 [ RiVede < g [ WePde ol T IRSIE < 5 [ VP A+ o0, T,
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With (4.47)—(4.49) and the fact 0 < e < 1, we thus update (4.46) as

d
G Ve R + Ve < el TR EIVE ) + CIOS s +clo. T2

which, followed by an integration over [0,¢] for any t € (0,71, gives
(4.50)
t t
AVECOIE: + [ IVEdr < clwnT) [ 10 EIVE )T + el T)E12,

where we have used Lemma 4.4. Applying the Gronwall inequality to (4.50), we then
obtain that

t
(4.51) eV ()l +/0 IVE 7247 < (v, T2,

where we have used (4.37). Now let us turn to the estimate on ®¢. Taking the L?
inner product of the first equation in (4.8) with @5, followed by integration by parts,
we have

1d
7—/|<I>§|2dx+/|<I>§\2dx:—/@f@inAdx—/Hm@f@;Vfdx
2dt

A T A T

4
(4.52) —/Ivf@f(@f—&-M)dx—i—/zs_l/QRitbfdx =) Q.
i=1

Next, we estimate Q; (1 < i <4). From (4.14) and the Cauchy—Schwarz inequality,
we deduce that

1 _
Q1 < [V oo 195122195 2 < SIPEINZ: + e(ve, T)eH | E 7z,

Qs <|@7 + ML Vi [l 2l1®el 22 < ZIRENZ + clva, T VE]I7.

|
8
By the Cauchy—Schwarz inequality, we get

1 1
(453 Qo< [ (0P +ce [ o, PiviPae < [ oPde -+ eod V< 515
Similarly, we have

1 1
(4.54) Q4 < §/1|<I>ﬂ2dx+00671||7€ﬂ\%2 < §/1|<I>ﬂ2dx—|—c(v*,T)sl/2,

where we have used Lemma 4.2. Therefore, inserting the estimates on Q; (0 <i <4)
into (4.52), we get

1d 1
77/ 19 2z + f/ |5 2dar
2dt J; 2/,
< (o TV IO s + el TR s + [VE ) + clon )2,
Integrating the above inequality over (0,¢) for any ¢ € [0,7], we arrive at
(4.55)
t t
90+ [ 195 1adr <clo,T) [ Ve 195 o+ e, T)12,
0 0
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where we have used (4.37) and 0 < € < 1. To close the estimate, it now suffices to
show that

T
(4.56) [ IWER i< o)
0

for some constant ¢(v,,T) > 0 independent of € and §. Indeed, if (4.56) holds true,
then by the Gronwall inequality, we get from (4.55) that for any ¢ € [0, T,

t
105, 6) 12 + / 10527 < (o, T)e V2.

This, along with (4.51), yields (4.45). To prove (4.56), we first derive from the second
equation in (4.8) that

IVillze IVENL: + el V< 195172 + clv, T RE 172
(4.57) + (v, T)|[VEIIL: + 7RSI,

where (4.14) has been used. Therefore,
T T T T
&2 / V2 [2adt < / IVE|2dt + / 195220t + (0., T) / 05 2.t
0 0 0 0

T T
de(wnT) [ IVeIadt e [ RS aar
0 0
(4.58) < c(v,,T)eV/?,
where we have used (4.14b), (4.37), (4.51), Lemma 4.3, and the following fact:

(4.59)
Vi < cwe T) (IVEII72 + Vo2 lVy | 22) < e(va, T + e(v., T) < e(v., T),

due to (4.37), (4.51), 0 < & < 1, and the Sobolev inequality (C.2). Therefore, we
utilize the Sobolev inequality (C.2) again, along with (4.37), to derive that

T
/ Ve 2 dt
0

T T
<elon) [ Vel IVE et + (v T) [ V2t
0 0
T T
< (0., T)E? / IVEN2adt + (o, T)e 72 / IVE2adt < (0, T)e
0 0

where the constant ¢(v.,T) > 0 is independent of € and §. This gives (4.56). Thus we
finish the proof of Lemma 4.5. ]

As a direct consequence of Lemmas 4.4 and 4.5, we have the following corollary.

COROLLARY 4.6. Assume the conditions of Lemmas 4.4 and 4.5 hold. Then for
any solution (P, V) to (4.8) on [0,T] satisfying (4.36), we have

T
(60) [ (B 18 e+ VIR e < o ),
0

where ¢(vy, T) >0 is a constant depending on T but independent of € and 9.
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Proof. The estimate on V7, follows from (4.58) directly. We now show estimates
on ¢ and ®S. By the first equation in (4.8), we have

1950 )72 < I9F1172 + el @5 NZ < IV + IV 12 19512 + clvs, DIVE ]2
(4.61)  + e R|Le,

where we have used (4.14a). Therefore we derive that

(4.62)
T
/ |05, |2t
0

T T T
< [ 10ildt v sup (@51 [ IVEede+ clon D) [ 05 e
0 t€[0,T] 0 0

T T
+c(v*,T)/ ||V;||2L2dt+s’1/ RS2, dt
0 0

< ey, T)e 2 + ¢(vs, T)e? < ¢(v,, T)e /2

for some constant ¢(v,,T) > 0 depending on T but independent of € and §, where we
have used (4.14), (4.37), (4.51), (4.56), 0 < e < 1, and Lemma 4.2. This, along with
(4.37) and the Sobolev inequality (C.2), further entails for 0 <e <1 that

T T
/0 165 |2 dt < (v, T) / (185122 + |05 12| @5, 22) dt

T T
gc(v*,T)(1+s’1/2)/ ||<I>;|\§2dt+c(u*,T)gl/2/ (| @5, [17-dt
0 0
<c(vy,T).
The proof is complete. 0

4.2.4. Higher-order estimates. To prove the convergence result in Theorem 2.1,
we derive some higher-order estimates for (®¢,V*) in this subsection.

LEMMA 4.7. Assume that the conditions of Lemmas 4.4 and 4.5 hold. Then it
holds for any t € (0,T] that

195 (-, Ol 72 + IV 1)l[72 + 21 @5 (L 1)1 +ellViaa ()17
t

(4.63) +/ (1951172 + ellVarlIZ2) dr < (v, T)e™'2, 1€ (0,71,
0

where ¢(vi,T) >0 is a constant independent of € and 4.

Proof. Differentiating the equations in (4.8) with respect to ¢, we end up with

(4.64)
05, =B5,, — 305, VE — e BEVE — BL VA — DIV — VE (2 + M) — ViDL,
+57%8t i,
Vi =V, — et @5, Ve —e35VE — @5, VA — VA — DAVE — (0 + M)V
+e 20, R5.
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Multiplying the first equation in (4.64) by ®%, and then integrating the resulting
equation over Z, after using the integration by parts we get that

(4.65)

2dt/|<1>€| dach/\(I)it\de

1/2/<1>f VEDEdr — / 1/2<1>§V§tq>€dx—/@;V;:@Edm—/VE@A o5da
T

+/s—1/2at7zicl>§dx—/@;tv;‘@;dx—/VE ®2 + M)dsda =: Z?—l“
A A

i=1

where, in view of the Cauchy—Schwarz inequality, H; (1 <4 < 5) can be estimated as
follows:

(466)
052+ cocllVEIR < 195122, Ha < VAN + coll 0513195 13
HBSCOH Al (72051 +51/2H‘1>5||L2>7H4<00H‘I) e (IVE 132 +19512),
Ha < 195132 + coc ™ 0RS 2.

For He and Hyz, it follows from (3.27), (3.61), (4.3b), (4.12), (4.13), (C.4), integration
by parts, and Hardy inequality (C.5) that
He = — / @its_l/z(vf’o + Ué)’o)‘bﬁdx
T
— /Itbit(vi’o + Uf’l + U?l + 61/2v£’1 + 0,xb) @i dx
7 z(l—z) g z(1—2) 4o
m ||q; tllze ( W”z T”g
+ H‘I)EHLQH‘I’ t||L2
X (20l + 0B e + ot
b,0
< col| @517 (ll( 2 L + [[{€)ve ||Lg°) + c(ve, T) || @54l 2 [ D7 [ 2

1 1> (>
(467) <5+ KT e )05 +c(v., T) 053

+
1o

)

V2ol e+ (10,05 1 )

with K (T,v,) >0 as in (4.40), and that
[t [t
T z

(4.68) < —¢!/? / VED; (! + ol )dar
T

*/Vﬁpf (wif+61/2<p1 oy +ephs +32b€)

+ 107 + M| oo V| 22|95 2
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il )
z(l—x)| - oo

+ (0 TV 219122

Vel 22 1952
b,2

% (5N + 122 nee + ke e+l + 1026 120 )

b,1

< collVE 2 195 (16205 e + 1€k Nz )

1
+ c(ve, DIVE ||z (19512 + 195]112) < Gl @atl|Ze + e(vr, TYIPEIZ: + VE1Z2),

z(l—x) b,1

z(l—z) g,
cl/2 Pee

51/2 SDZZ +

Lo

<[V llze

where the constant C' > 0 is independent of € and 6. Plugging (4.66)—(4.68) into (4.65)
followed by an integration over (0,t) for any ¢ € (0,77, it follows that

(4.69)

t
105 ()22 + / 195 2.dr
t t
E _
<t / 1Var Badr + (v, T) / (VIR e+ 821 ) 105, )| B +-efvn, T)e V2,

provided that K (v, T)v. <1/16 in (4.67), where we have used (4.14), 0 <e < 1, and
Lemmas 4.2, 4.4, and 4.5.

To proceed, multiplying the second equation in (4.64) by V5, after integrating
the resulting equation over Z we get that

(4.70)

1d
ga/\Vf|2dx+6/|Vft|2dx+/(<I>;;‘+M)|Vf|2dm
z z z

:—51/2/<I>§tV5Vfd:c—/51/2<I>§Vfodx—/<I>§tVAVfdx—/<I>§VtAVfdx
z T z z

6
—/@ftVdeerg—l/?/atR;de =Y L,
z z i=1

where, similar to (4.66), £; (1 <i<6) enjoy the following estimates:
(4.71)
1
L1 < L1954 N72 + clve, eVl IVENT2, Lo < eM2|R5 ]| o [IVallZ2,

1
L3 < L1957 + o DIVAL<IVEIT2: Lo < IV~ (195172 + 1VENIZ2)
Ls <@gl (IVEI72 +IVENZ2) . Lo < IVEIIZ2 + (v, T)e ™0 RS 22

Therefore, we integrate (4.70) over (0,t) C (0,7 to get
t
eI+ [ [ Ve andr
0 JzI
t
<clonT) [ (1+elVIRe + 205 1 ) IVEC, ) B

1 t
(4.72) +§/ 192 [2adr + c(v., T)EV2,
0
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where we have used (4.14), (4.37), (4.45), 0 < & < 1, and Lemma 4.3. Combining
(4.72) with (4.69), we arrive at

t
195012 + 1V Ol + [ (1953 + €IV ) ar
t
<elon D) cfon ) [ (V[ + 1851 ) 105 7)
0
t
(473) e(wnT) [ (L ellVe e + 22105 1 ) V) ad
0

Applying the Gronwall inequality to (4.73), alongside (4.56), (4.59), and (4.60), we
get that

t
195 ()17 + IVEC )72 +/0 (1951172 +ellVi,l172) dr < e(vs, T)e™ V2,

This, along with (4.14), (4.37), (4.45), (4.57), and Lemmas 4.2 and 4.3, further entails
that

2 \Villig 2 < elvs, T).

It now remains to derive the estimate for ® . Multiplying the first equation in (4.64)

by ®¢,, followed by an integration over Z, we get
(4.74)

1d

- Pc 2d

5ai 195

tJz

= / 5D dx + /2 / e, VEDE dx + / 2P VEDE dx + / PEVADE du
T z T z

+ / VEOADE dx — / e V29,R5 @2, da + / e, VADE dx
T T T
7
—s—/V;t(cI);‘+M)<I>i$dx::/<l>§t<1>§$dx+z7-li,
z z i=1

where, thanks to integration by parts, we have

d d
(4.75) /@ftq)ixdx:—/@f@ixdx—/dﬁ@im:—/@f@ixder/|<I>it|2dx.
T dt Jz T dt Jz T

For H; (1 <i<7), we get by the Cauchy—Schwarz inequality that

Hy <ol P5el7 +ellVElF < 195:072), Ho < colellVilZa + 19517 < 195, 172),
Hs < co(IVarl7< 12507 + 195,1172), Ha < coll @7 IVi 172 + 195, 1122),
Hs < co(| 250172 + e M NARIIT2), Ho < IVl (1951172 + [1952172)

Hy < coe!?] @7 + MIIT~ Vi + 72125, ]172)-

Inserting (4.75) and estimates on 74; (1 <i < 7) into (4.74), followed by an integration
in ¢, we get
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195, (- £)1Z-

t
S/@i@izdl’+0(v*,T)€*l/2+C(v*,T)E*1/2/ (1251172 + |95, ]172) dr
T 0

t

e(wnT) [ (PIVEI + e 105 )ar
0
t

(0 T) [ EIVEIE + 105 ) [0, adr

< 05, ()72 + clv, TIRF]I72 + vy, T)e™

ol—=  +

+

t
c(vs, T) / EIVE 2 + [92]2) @5, ]22dr

t
< II‘Pix(vt)llﬁ+C(v*7T)€_1+C(U*,T)/ NVl + 1957 ) 195 172dT,
0

N | =

where we have used (4.14), (4.37), (4.45), (4.60), and Lemma 4.2. That is,
¢
195, (- B)lI72 < (v, T)e™ +c(v*,T)/ Vi~ + 12517 ) 195, 1 Z2dr,
0

which, along with (4.60) and the Gronwall inequality, gives
1950 (172 < e(va, T)e™, e (0,7,

for some constant ¢(v.,T) > 0 independent of ¢ and § and thus ends the proof of
Lemma 4.7. O

With Lemma 4.7, we can get an improved estimate for ®5.

COROLLARY 4.8. Assume the conditions in Lemmas 4.4-4.7 hold. Let (®°,V¢)
be the solution of the problem (4.8) on [0,T] satisfying (4.36). Then we have

t
(4.76) @S (-, 1) ||32 +/O /I|<I)i|2dxd7'§c(v*,T)7 t€ (0,77,

where c(vy,T) >0 is a constant independent of € and ¢.

Proof. Recalling (4.52), (4.53), and (4.54), we have

(4.77)

ld/ 9 9
—— [ 9] dx+/|<I>€\ dz
2dt J; P

:—/<I>§<I>§VIAdm—/Vf<I>§(<I>;“+M)dx—/51/2<1>§<1>§dex+/5_1/2R§<I>§d:v
z T s s

1
g—/(I)jtl);VwAdx—/V;@i((I)f—i—M)dm—&—f/ 5] dx
s s 4 T
e, TIEVE 195 132 +cfo., T2
A A 1
=0t Qo [ IO+ el DOV o 95 s+ e 7)1,
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where, thanks to (3.27), (3.61), (4.3b), (4.12), (4.13), (C.4), integration by parts, and
Hardy inequality (C.5), Q1 and Qs enjoy the following estimates:

Q)= —/ @f@isflm (vf’o + vg’o) dx
z

— / ;DL (vi’o + vf’l + vg’l + 51/21131;’1 + mei) dz
z

@7 e z(1—x) g z(l—z) 40
<o chpxnm( e I e
b,1 ,
1195 12125 12 (1o =+l V2] NAPS

5 b,0 € e
< col| @122 oz (1202 Pl + DL ez ) + v TS o1

< gl\‘l’illiz + (0, TV 295,172 + e, T) (L +e712) |05 |72,

Qz_/vfcpfcpf‘ dx+/(¢>;3+M)VEq>;tdx
<o [ Voot + ohl)ao

+ /VE‘I’? (@i£+61/2s0££ +eppy’ +ephy +82bg>
+ 12 + M| Loe V| L2 |95, 2

Q7 z(l—x) (pB,l
e(1—2)| c1/2 722

+ (s, TV 2| D5l 2
+ col[VE 2195 ]| 22

x (IpELl e +€/2
< oV 2195, 12
b,1
% (102 s + 1002k g ) + (o, TIVElL2 (195 12 + 1951 22)

1 -
< SII1Z2 + c(ve, TI 2N @5 172 + (0, TY(1 472 IVE 2,

z(1 - 95) B,1

€
<|[VE| L2 EESYERRY:

+
Lo

)

b,2
v 12 e + 0205 1 )

o + lp2s?

x

Therefore, we update (4.77) as

1d

—— [ |®:2d ¢ |?dx

5at L 1osPda 5 [ 1o

< (v, T Vi 7 105172 + c(ve, TN + (v, T)e 2|05, |72

(4.78) +c(v,, T)e 2 (@172 + 1VE|72)-
Integrating (4.78) with respect to ¢ gives
t t
[10zP e [ 105 Pdadr < v T) 4 v T) [V~ [851adr, e (0.7),
z 0 0
for some constant c¢(v,,T) > 0 independent of £ and §, where we have used (4.37),

(4.63), and 0 < & < 1. This, alongside the Gronwall inequality and (4.56), immediately
implies (4.76), and the proof is complete. O
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Remark 4.1. In view of (4.37) and (4.76), the a priori assumption (4.36) is verified.
Indeed, from (4.37), (4.76), and the Sobolev inequality (C.2), we get for 0 < e < 1
that

sup [[@°(, 1)1~ < (v, T) sup (195, 6)]1Z2 + 195(, 1)l 22l19°( £)]l 2)
te[0,T te[0,T]

(4.79) <c(vi,T) (51/2 + 51/4) < c(v*,T)€1/47

where the constant c¢(v.,T’) > 0 is independent of ¢ and 4. Furthermore, if we take
& =9 with 6; as in Lemma 4.4, then we have supyepo, 7] 12 (1) [z < c(vs, T)eM® < §
provided c(v,,T)e'/® < §;/4. Hence, all the estimates in Lemmas 4.4-4.7 and Corol-
laries 4.6 and 4.8 exactly hold true with the constant c(v.,T) independent of .

4.3. Proof of Proposition 4.1. Thanks to the analysis and results in the
preceding subsection, we know that for any 7' > 0 such that Cy(T,v.)v. < 1/16
with K1(T,v.) presented in (4.40) and (4.67), the solution (®¢,V¢) satisfies, for any
te (0,77,

(4.80) @°(-, )17z + 22 5 (, )72 + 205,172 + e |OVE( )72 < clvs, T2

and
(4.81)
t
(150 + 210 s+l 32+ €IV2I + IVER + 2Viarl ) dr
0

<c(vy, T)e'?,

where £ =0,1,2, and ¢(v,,T) > 0 is a constant depending on T' but independent of
e. In particular, since Ki(T,v,) is increasing in T, if v, is fixed, then there exists
an increasing function ¢(-,v,) = K; (-, v,) such that K;(T,v,)v, < 1/16 provided
T< ¢(ﬁ,v*) =:Ty. Then the estimates (4.80) and (4.81) hold for any t € [0, 7).
This, along with the local existence result and the continuation argument, implies that
the problem (4.8) admits a unique solution (®¢,V¢) € L°°(0,Ty; H? x H?) satisfying
(4.80) and (4.81). In what follows, we shall show that Ty — oo as v, — 0. To achieve
this, without loss of generality, we first assume that v, <1. Then we may strengthen
the condition Ki(T,v.)v. < 1/16 for (4.40) and (4.67) as K1(T,1)v, < 1/16. Here
we write K1(T) := K1(T,1) for simplicity. Clearly, since K;(T,v,) is increasing in
Vi, we have K (T, v.)v. < 1/16 as long as K1 (T)v, <1/16. Therefore we know that
the estimates (4.80) and (4.81) hold for any ¢ < Kfl(ﬁ) =: Ty with Ty — oo as
vy — 0 due to the increasing monotonicity of K '(.). This completes the proof of
Proposition 4.1. 0

4.4. Proof of Theorem 2.1. From Proposition 4.1, we know that for any v, > 0,
there exist constants Ty > 0 and ¢ > 0 such that for any € € (0, &), the problem (2.2)—-
(2.3) admits a unique solution (p°,v¢) € L°°(0,Tp; H* x H?). To finish the proof of
Theorem 2.1, now it remains only to show the estimates in (2.21). Recalling (4.1) and
Lemma 3.5, it suffices to show the estimates of £ and &5 stated in (4.2). Thanks to
(4.11), (4.12), (4.24), (4.25), Lemma 3.5, and the fact that 0,b, is independent of x,
there holds that
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(4.82)

18507 2L ree + 1060 L + 03 g roe +e 0005 e roe < e(vs, T),
(4.83)

05 g poe + 10" g rge + 0" g poe + 705 g e < e(vs, T),

where [ = 0,1, and the constant c¢(v.,T") > 0 is independent of . Furthermore, from
(4.79), (C.2), (C.3), Lemmas 4.4-4.7, and Corollary 4.8, we get

g g £ 1/2 £ 1/2
(484) 0% rzre < ove, T) (19%]lng 22 + 10132 12 19512 12 ) < elvi, T)e S,

1/2 1/2 _
(4.85) 195 ) g2 < c(e,T) (195112 + 195112 2|05, 2 2 ) < clvn, T)e 4,
and
1/2 1/2
(4.86) IVEllgpe < VRIVEILR 2 VeIl 12 < (v, T)

for some constant c¢(v.,T’) > 0 independent of €. Therefore we get from (4.6), (4.7),
and (4.82)—(4.86) that
€5 lzse L < coe (llP % (2, t) | Lge e + 1972 (6, 8) | L2 )
+ coe" 2| ®F (2, 1) || Lge 1 + col|b |l Lo oo

< c(v*,T)55/8,

€5 Lge e < Co€1/2(||vl’l($7t)||L%°L°° + [0 (2 0) | nge e + ||vb’1(f»t)||L%°L°°>
+coe' 2|V (@, )| e e + collb (2, 1) | L3 1

<c(v.,T)e'?,

and
b,2
1.5 g e < cos/ (Il 22 (2,0 1 + 102 (E O 1 )
o 25 (@, ) L oo + coll Dbl e
(4.87) < c(v,,T)e'4,

where 0 < € < 1 has been used. Combining the above estimates on & (i = 1,2), we
get (2.21) and thus finish the proof of Theorem 2.1. d

4.5. Proof of Theorem 2.2. Theorem 2.2 follows directly from Theorem 2.1,
except for the estimate (2.24). To prove (2.24), we first notice from (4.1) that

b,
05 =0 + 0PN (2, t) + 0t (€,1) + 200" + 0,EF,
which implies that
(4.88) w =ul 0+ B0 4 20 4 51/290310’1 + 0,€5.

On the other hand, from (4.82) and (4.87), we have ||51/2<p£71||L%oLoo +10:E5 Lo~ <
c(vs,T)e*/* with the constant c(v.,T) >0 independent of . This, along with (4.88),
gives rise to (2.24). o
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Appendix A. Local existence result on v5-0. In this appendix, we detail
the proof of local existence and uniqueness of solutions to the problem (2.12) for the
leading-order boundary layer profile v2°. Equivalently, we study the reformulated
problem (3.34), i.e.,

Oy =0, —ul0e" (9 + ¢) — ul0010(0,¢) (7% — 1)) + o,
(A1) 9(0,¢) =0, ¥(+00,1) =0,
9(z,0) =0.

The solution space for the problem reads
Xr={ue€ L3L2|0ulimo =0, Ojue L3EHS ", 1=0,1,2,k=0,1,2,3}

for some T > 0, where 6y = 0, and 6; := 99|;—0 (I = 1,2) are determined by ug, vo
and 9(z,0) through the equation (A.1);. By (2.20), we know that the initial datum is
compatible up to order two. We shall divide the proof into three steps in the following.

Step 1: Linearization. Given w € Xp, we first consider the following linearized
problem for (A.1):

v = 0., — ul Oy — ul0e® 9y — 1 .0(e¥ T — 1) (v109(0,¢) + w) + o
=0, —ul0v+ F+p,

(A.2) =0, wv(4o0,t)=0,

where ul'0 is as in (3.34). Let V =elo ul%dsy, Then V satisfies

‘/t _ sz +Fef(; ul.0ds + Qefotmds,
V(0,6) =0, V(+00,t)=0,
V(z,0)=0,

which can be solved explicitly by the reflection method:
topeo D, R
\% :/ / I(z—y,t—r1) [F(y,r)efo utds 4 Q(y,r)efo u ds} dydr
o Jo
t 0 - -
- / / T(z—y,t—7) [F(—y, F)ed s Loy r)eld ud] dydr,
0 —0o0

where I'(z,t) = ﬁe_% is the heat kernel. Hence one can recover v from the above
identity along with the definition of V. The uniqueness of solutions to the problem
(A.2) is standard, so the details are omitted here.

Step 2: A priori estimates. We shall show for (A.2) that there exists a suitably

large constant K >0 and a small 7y > 0 such that if
3
(A.3) > ||afw\|§2THS,2k <2K for T <Ty,
k=0
then it holds that
3

(A4) Z‘|8§U||QL%H27% SK \V/TSTQ
k=0
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First, by the Sobolev embedding theorem and (A.3), we have
(A.5) okweC(0,T); H=?), k=0,1,2.
Furthermore, for any ¢ € [0,7] and for £ =0,1,2, it follows that
t
0wt lwss = [o0+ [ 5wt mar]| L, <Ol
0 H4-2k
T
+ [ 10 ) e
0
- 1/2
(A.6) <Co+TV? ( / ||af+1w<-,t>|iwdt)
0

(A7) <Cy+ CKY?1'/?,

where Cj is a positive constant depending only on the initial data 0;. Hereafter C>0
is a generic constant independent of 7. With (3.27b), (3.35), (A.3), (A.5), and (A.6),
similar to the proofs of (3.54) and (3.57), we proceed to derive for k=0,1,2 that

2
HathHLQTH;"%
k
R R
<> {100uT00 7 (€0 ) |12, ya-an OO0 (e~ 1)]I2, o
§=0

+ 1107 (@I 0(0,0)0F (€0 = D112, oot |

k
<CT Y N0FuT 01 e 0.1 (1077 (€ D)1 pramae N0 (€% = D)2 ¢ o )

§=0
k
- R e w
+CT Y [0 ul 0" (0, 0) [ (0,110 [w(e®® = D][17 < pra—ae
§=0

k
A8) <CKe“KT(1 w2 o ) < CTKeCE(IKT
(A8) <CKe (§||atwL%ng 2 ) € OTKCROKT)

where we have used the fact V7% < e“K due to (A.3), the constant C' > 0 may
depend on u!0, v1:% and ¢, but independent of T and K. Thanks to (3.27b), we get
for k=0,1,2 that

k
(A.9) HathHiZTHj—% <CT+ OZ ||6'§vl*0(0,t)||%2(07T) = éT7
j=0

where C > 0 is a constant independent of K and T. By a procedure similar to the
one in the proof of Lemma 3.3, one can deduce for T' <1 that
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3
k 2
ZHat VHL%HS*%
k=0

§é+§:(‘

2

2 >
L2 HE 2

or (Fefot mds)

|

ok (gefo‘ st>

4—-2k
LZ.H?

2
5 o 2
< C;QCT (|‘65F‘|L%H;1—2k + ||8fg||i%H3_2k>
<C+ C’T(l n KQGCT-FC’K)’

where we have used (A.8) and (A.9), and the constant C' > 0 is independent of K and
T. In view of the definition of V, there holds that

2
> 10U, fo-ae < Cr+ C’T(l + K2eCT+CK)
k=0

for some constants C; and C independent of K and T. Hence, we get
2
(A.10) > ||afv||2L2THg,2k <20y = K,
k=0

provided

- . B |

T <min {1, [C’ + (201)2e0+2001} } =T,.

This gives (A.4).

Step 3: Contraction. Denote

3
Vr = {’U, S XT‘ Z ||8tku||i%Hg_2k < K}
k=0

with K as in (A.10). In the previous steps, we have proved for T' < T that the
solution map © : Yp — Yr for the linearized problem (A.2) is well-defined. To
prove the existence of solutions to (A.1), it now suffices to show the contraction of
© in the norm || - [|¢(o,7;z2) for suitably small 7' > 0. For any w1, we € Yr, denote
v; =0(w;) (i=1,2) and

szl — wa, V:U1 — V3.
Then we have from (A.2) that

Vi =V, — ul OV — ul0e? (et — e“2) (¢ + vT0(0,¢) + wy) — ul0(e¥2T¢ — 1)W,
V(0,t)=0, V(4o0,t)=0,
V(z,0)=0.

The standard L? estimate implies that

d - =
aHV||§E +/ (V2+V?)dz < Ce“F|W 3.

Ry
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It thus holds that

~ 1
sup [VIz2 + VI3 i < OTES sup [ WGz < 5 sup (IWIE: + W15 )
tel0,7] tel0,7] tel0,7] n

provided
: Lrx oCK -1
T < min TO,§ {C’ } =:Ti.

Hence the desired contraction of © is proved.

Finally, based on the analysis in Steps 1-3, we conclude that the problem (A.1)
admits a solution ¥ € Yz, . The uniqueness of the solution is standard, so we omit the
details here. The proof is complete. ]

Appendix B. Proof of (3.98). We shall prove that
(B.1) H<Z>langLgTH372k <c(vg,T) for k=0,1,2,

where the constant is independent of ¢ and é. For this, we first split the function g
into three parts

g="n+ T2+ Js,

Ji=("" =) / (0,600, [(2E0(0,8) + M + o )e™ " | ds(u!0(0,1) +v70)

- / nv"1(0,)9, [(@i’o(Ovt) + M+ wf’l)e’”B'o} dy(v"0(0,t) + v?0),

B,O

Ja=(e""" — 1)/00 [0 (P2 (0,8)y + 031 (0,1)) + 0y g 0(0,8)] e
x dy(v?°(0,t) + vB0)
[ B0y + ek 0

)
T3 = (e (0,8) + M)n(z)o" (0,8) + (=), (0,1) — 9P (07°(0,8)2 + (0, 1))
= (222 (0,8)z + 97 (0,4))070 +1(2)0"1(0,8) (01°(0,8) + M + 1)
x (v10(0,8) +070)
= n"(2)o"1(0,8) + n(2)v"1(0,) 9!

Thanks to (3.27), (3.35), (3.55), (3.57), (3.61b), (4.10), (4.12), and the Holder in-
equality, we get for k=0,1,2 and [ € N that

B.,0
+ gof LI, t)] dy(v1°(0,t) +v530),

(B.2) :

ok [ w009, (60,0 + M + e ay

4—2k
L2.H?

5 2
B,0
<Z>l f/ nvI’l(O,t)ay [(@i’O(O,t) + M + 905’1)6_” } ly

LE L2
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_yB0 2
(v, )| (2 3k[nv (0,1)2. ((@i’O(O,tHMﬂDf’l)e 11 [
k
w1 (1) 20 ) [
J=0 +
k .
o) ] ([ T R [ P ey
=0 ’ Ry
SC(’U*aT)7

where we have used 9Fv’1(0,t) € L>(0,T) (k= 0,1,2) due to (3.61b) and taken the
space-time L°°-norms for the terms involving lower-order spatial derivatives which are
bounded according to (4.10) and (4.12). Therefore, J; can be estimated as follows:

(B.3)

(ELZA -
2
< ¢(vy,T)

@0k [ 10,00, [(¢00.0 + 2 + e dy

4—2k
L2.H?

X (HeUB,O - 1||iooH4—2k 1) (1 ||UB O||LooH4 2k>
Tz
<c(vi,T)

for k =0,1,2, where we have used (3.56), (3.57), (4.10), and (4.12). By arguments
similar to those proving (B.2), we get

2

_yBo
(=)0 / B0 (G100, 1)y + 1 (0, 1)) + B 1ol 0(0, 5] ™ dy
z L2 HZT2k

L2, A2k

T o e ol 0.0+ o4 0.0)a

7=0

k 2
c(ve, T Z / B vL0(0,8)0F I (e ")y
] R L
k B, T —
<clon) [ 7% SN0 o [ [0tk 0.0] + ol )a

Ry 520 0

k .
D N ([ e N O R P R

+

i,5=0
T, 2

x/ 8{8111[’0(0,@‘ dt
0

<c(vs, T),

due to (3.27), (3.61a), (4.10), (4.12), and the Holder inequality. Therefore, for Jo, we
get
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(B.4)

H<Z>l‘72HL%Hf’%

2
0

oo 7,UB,
< c(ve, T) ||(2)' 0y / [0 (P2 (0,8)y + 031 (0,1)) + o 0(0,1) €™y

L2 Hi 2k
B0 _ 2 B,0
x (e UJT oo ppa—ae + 1) (14w
T z

Now let us turn to J3. With (3.35), (3.61a), (3.61b), (4.10), (4.12), and the fact that
71 is a smooth function with compact support, we deduce for k=0, 1,2 that

2 )Sc(v*,T).

4—2k
L H?

k
2 . .
1620k 3 g o <l T) 32 (14 RPN e + KAV oo )
,]=
T . .
(o [ et 0.0+ ptet 0.0 + etz
0

<c(vs,T).
This combined with (B.3) and (B.4) gives (B.1). The proof of (3.98) is complete. 0O

Appendix C. Some analytic tools. In this appendix, we collect some ba-
sic results used in this paper, which include some Sobolev-type inequalities and an
embedding theorem on space-time Sobolev spaces. Let us begin with the Sobolev
inequalities.

LeEMMA C.1 (see [3, p. 236]). Let p > 1. Then for any e > 0, there exists a positive
constant C = C(e,p) such that

(C.1) 17l Lo z) < €llhallLe) + CllbllLr ()
for any h e WHP(I).
LeEMMA C.2. For any h € HY(Z), it holds that
1/2 1/2
(C2) Il @y < © (Wl + IR Il 1)
where C' >0 is a constant independent of h.

We also remark that if h € H}(Z), then

1/2 1/2
(C.3) Ihllze < V2RI RS and (Al ze < Cllha (1) 22,
and that if h € H. (resp., H}), then
(C.4)

1/2 1/2 1/2 1/2
bllzz < CIRILE IR < Cllblliy (vesp- Iallg < ClRI IRell 2 < Cllaly )

where the constant C' > 0 is independent of h.
Next, we introduce the Hardy’s inequality.

LEMMA C.3 (cf. [3, p. 233]). Let ue Wy P () with 1 <p < oco. Then

u

(C.5) g

< Cplluzllpr(z),
Lr(Z)

where Cp, >0 is a constant depending only on p.

The following embedding theorem is also frequently used in our analysis.
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PROPOSITION C.4 (cf. [48, Lemma 1.2]). Let V, H, and V' be three Hilbert
spaces satisfying V. C H C V', with V' being the dual of V. If a function u belongs to
L?(0,T;V) and its time derivatives u; belongs to L*(0,T;V"), then

we C([0,T;;H) and [l o o,r;m < C (lull20,mv) + lluellz0,mv1) 5

where the constant C' >0 depends on T but is independent of u.
Remark C.1. Proposition C.4 implies the following fact for any m € N:

{u|ue L*(0,T; X™*?),u, € L*(0,T; X™) } — C([0,T]; X" ') continuously,

where X" :=H"™, 6 H*, or Hg”

Finally, by the change of variables in (2.4), for any G1(z,t) € H* and G2(§,t) €
H & with m € N, we have the following inequalities:

m €T 1—2m m m
|omen (1), = 10r el 1076 G0l
(C.6a) =" 2|00 G (2, 1) ||,
m x—1 1=2m m
az G2 17/2’t =g ¢ ”8.5 G2(§7t)HLga ||a:c GQ (§7t)HL°°
€ L2
(C.6b) =& FOFGa (1) nge-
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