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Abstract. Because of the significance of remediating contaminated ecosystems, many mathe-
matical models have been developed to describe the interactions between populations and toxicants in
polluted aquatic environments. These models typically neglect the consequences of toxicant-induced
behavioral changes on population dynamics. Taking into account that individuals may flee from
areas with high toxicant concentrations to areas with low toxicant concentrations in order to im-
prove their chances of survival, growth, and reproduction, we develop a diffusive population-toxicant
model with toxicant-taxis. We establish the global well-posedness of our model and prove the global
stability of spatially homogeneous toxicant-only steady states and population-toxicant coexistence
steady states under some conditions. We find conditions under which stable spatially inhomoge-
neous steady states become unstable to trigger spatial pattern formations as the toxicant-taxis is
strong. We also identify a narrow parameter regime in which toxicant-only and population-toxicant
coexistence steady states are bistable. Numerical simulations are performed to illustrate that spatial
aggregation and segregation patterns between the population and the toxicant will typically emerge.
Our study highlights the important effects of toxicant-induced movement responses on the spatial
distributions of populations in polluted aquatic environments.

Key words. population-toxicant model, toxicant-taxis, global dynamics, pattern formation,
spatial segregation
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1. Introduction. Rapid industrial development and a variety of human activ-
ities have brought a slew of contaminants (e.g., heavy metals, plastic waste, pesti-
cides, etc.) into aquatic environments in recent decades. The detrimental effects of
contaminants on the health of aquatic ecosystems, which a large number of species
inhabit, are a major concern worldwide. Many countries have enacted water quality
standards and regulatory measures to protect aquatic species and ecosystem biodiver-
sity [10, 12, 13, 18, 34, 39, 40]. Toxicants in polluted aquatic environments endanger
all levels of the biological hierarchy, from individuals to populations, communities,
and entire ecosystems. Understanding the mechanisms of toxicant effects on aquatic
species population dynamics, as well as finding the essential factors that determine
population persistence and extinction, is crucial from the standpoints of the environ-
ment and conservation.
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DIFFUSIVE POPULATION-TOXICANT MODEL 2213

Much of the previous experimental research on the ecological risks of toxicants
was performed on individual organisms (e.g., reproduction, survival, and growth) in
controlled laboratory settings over relatively short time periods. The design of envi-
ronmental management strategies, however, requires an understanding of toxicants'
impact on the health of entire exposed natural populations in the long term. Mathe-
matical models play a vital role in translating individual responses to population-level
consequences. These models include population models (scalar abundance, life his-
tory, individual-based, and metapopulation), ecosystem models (food-web, aquatic,
and terrestrial), landscape models, and toxicity-extrapolation models [14, 28, 6, 29].
Bartell et al. [6] and Pastorok et al. [29] made a comprehensive review of the real-
ism, relevance, and applicability of various types of models for assessing toxicant
risks. Over the last several decades, some (impulsive) differential equation models
[15, 16, 17, 20, 21, 25, 27, 36] have been developed to study the dynamical nature of
population-toxicant interactions in a polluted aquatic environment. These models
usually consist of ordinary differential equations (ODEs) that describe the rates of
change of population biomass, the toxicant concentrations in populations, and toxi-
cant concentrations in environments.

The above-mentioned ODE models that describe how toxicants affect population
dynamics generally ignore population and toxicant spatial dispersal, whereas both
populations and toxicants can spread spatially due to factors such as active mobil-
ity and passive diffusion driven by turbulent water. Furthermore, toxicant-induced
behavioral changes (e.g., habitat preference, predator avoidance, body tremors, mi-
gration) have been well documented [5, 7, 32]. Individuals, for example, may flee from
areas with high toxicant concentrations to areas with low toxicant concentrations in
order to improve their chances of survival, growth, and reproduction [38]. In this
paper, we develop a spatiotemporal model with toxicant-taxis to describe interac-
tions between a population and a toxicant in a contaminated aquatic habitat. The
model is made up of two reaction-diffusion equations, one of which governs the growth
and movement of the population under the influence of the toxicant, and the other
of which describes the toxicant's input, degradation, and dispersal. The model is
then used to investigate the effects of toxicants on population persistence and spatial
distribution. As far as we know, this model represents the first effort modeling the
impact of toxicant-caused behavioral changes on population dynamics by including a
toxin-taxis term.

The rest of the paper is organized as follows. In section 2, we formulate a spa-
tiotemporal model with toxicant-taxis for the interaction dynamics between a popu-
lation and a toxicant in a contaminated aquatic ecosystem and state main analytical
results obtained in this paper for our concerned model including global existence of
classical solutions and global stability of spatially homogeneous steady states. We
then prove the global existence of classical solutions stated in section 3 and show the
detailed proofs for the global stability of spatially homogeneous toxicant-only steady
states and population-toxicant coexistence steady states in section 4. In section 5, we
perform linear stability analysis to identify the parameter regimes under which the
stable spatially homogeneous steady states become unstable, and hence pattern for-
mation can be expected. Furthermore, we numerically demonstrate that the spatial
aggregation and segregation patterns will typically arise from our model. Finally, in
section 6, we discuss model development, outcomes, limitations, and future research
directions.
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2214 XIUMEI DENG, QIHUA HUANG, AND ZHI-AN WANG

Table 2.1
Meanings and units of variables and parameters in model (2.1).

Symbol Meaning Unit

u(t) population density at time t mass/length
w(t) toxicant concentration at time t mass/length

d1 diffusion coefficient of the population length2/time
\chi taxis coefficient length3/(mass\cdot time)

r intrinsic growth rate 1/time

m effect coefficient of toxicant on population growth length/(mass\cdot time)
a competition coefficient length/(mass\cdot time)

d2 diffusion coefficient of the toxicant length2/time

h(x) input rate of the toxicant mass/(length\cdot time)
g per unit decay rate of the contaminant 1/time

b uptake coefficient length/(mass\cdot time)

2. Model formulation and main results. In this section, we shall first intro-
duce our model describing population-toxicant interaction dynamics with toxicant-
taxis and then present the main analytical results obtained.

2.1. The model. We consider an aquatic population that inhabits a polluted
environment. We use \Omega to represent the population habitat, which is a bounded
domain in \BbbR 2 with smooth boundary, denoted by \partial \Omega . Let u(x, t) be the population
density at location x and time t. Let w(x, t) be the toxicant concentration at location
x and time t. A mathematical model that describes the interaction between the
population and the toxicant in the habitat \Omega is given by\left\{           

ut = d1\Delta u+ \chi \nabla \cdot (u\nabla w) + u(r - mw) - au2, x\in \Omega , t > 0,

wt = d2\Delta w+ h(x) - gw - buw, x\in \Omega , t > 0,

\partial u

\partial \nu 
=

\partial w

\partial \nu 
= 0, x\in \partial \Omega , t > 0,

u(x,0) = u0(x)\geq \not \equiv 0,w(x,0) =w0(x)\geq \not \equiv 0, x\in \Omega .

(2.1)

The model parameters, d1, \chi , r,m,a, d2, g, b, are all positive constants. Refer to Ta-
ble 2.1 for meanings and units (for the one-dimensional domain) of the variables and
parameters.

The first equation of (2.1) describes the growth rate of the population under
the influence of the toxicant. The term d1\Delta u denotes the random diffusion of the
population with coefficient d1. The toxicant-taxis term \chi \nabla \cdot (u\nabla w) means that the
individuals move from locations with high toxicant concentrations to locations with
low toxicant concentrations; the direction of population movement is hence inversely
proportional to the negative gradient of toxicant, where \chi is the taxis coefficient. The
term r - mw, a linearly decreasing function with respect to the toxicant concentration
w, is a toxicant-dependent intrinsic growth rate, where the parameter m is the effect
of the toxicant on population growth. If there is no toxic effect, i.e., w = 0, then the
growth rate is the natural growth rate, r. The term au2 represents the interspecific
competition between individuals, which follows the mass action law, where a is used
to describe the effect of competition.

The second equation of (2.1) represents a balance equation for the toxicant con-
centration in the habitat. The parameter d2 denotes the diffusion coefficient of the
toxicant. The function h(x) is the (inhomogeneous) input rate of exogenous toxicant
into the environment. The toxicant uptake rate by the population from the environ-
ment, buw, is modeled according to the law of mass action and hence is proportional

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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DIFFUSIVE POPULATION-TOXICANT MODEL 2215

to both the toxicant concentration and the population density, where b is the uptake
coefficient. The parameter g denotes the per unit output rate of toxicant due to a
variety of factors, such as environmental detoxification, microbial degradation, and so
on.

The third line of (2.1) is the Neumann boundary conditions corresponding to the
first two equations, where \partial u/\partial \nu =\nabla u(x) \cdot \nu (x) is the out-flux of u, and \nu (x) is the
outward unit normal vector of \partial \Omega at x, which implies that no individuals enter or
leave the habitat \Omega across the boundary. A similar meaning is applied for \partial w/\partial \nu = 0.
The last line of (2.1) gives the initial distributions of the population and the toxicant.

2.2. Main results. The main analytical results obtained for the problem (2.1)
consist of two parts: global existence/boundedness of solutions and global stability of
spatially homogeneous steady states (i.e., constant equilibria). The former validates
that the proposed model (2.1) is globally well-posed, and the latter characterizes the
global dynamics of model (2.1). For the toxicant input rate function h(x), we impose
the following conditions:

(H) h(x)\in C(\=\Omega ) and h(x)\geq 0
We first state the global existence and boundedness of solutions in the following

theorem.

Theorem 2.1 (global existence). Let \Omega \subset \BbbR 2 be a bounded domain with smooth
boundary and the hypothesis (H) hold. Assume that (u0,w0) \in [W 1,p(\Omega )]2 with
u0,w0 \geq 0(\not \equiv 0) and p > 2. Then system (2.1) has a unique global classical solu-
tion (u,w) \in [C(\Omega \times [0,\infty )) \cap C2,1(\Omega \times (0,\infty ))]2 satisfying u,w > 0 for all t > 0
and

\| u(\cdot , t)\| L\infty (\Omega ) + \| w(\cdot , t)\| W 1,\infty (\Omega ) \leq C,(2.2)

where C > 0 is a constant independent of t. In particular,

0<w\leq Q :=max\{ \| w0\| L\infty , \^w\} ,(2.3)

where \^w :=
\=h
g with \=h :=maxx\in \=\Omega h(x).

Now, we assume that h(x)\equiv h is a positive constant, which leads to the following
system: \left\{           

ut = d1\Delta u+ \chi \nabla \cdot (u\nabla w) + u(r - mw) - au2, x\in \Omega , t > 0,

wt = d2\Delta w+ h - gw - buw, x\in \Omega , t > 0,

\partial u

\partial \nu 
=

\partial w

\partial \nu 
= 0, x\in \partial \Omega , t > 0,

u(x,0) = u0(x)\geq \not \equiv 0,w(x,0) =w0(x)\geq \not \equiv 0, x\in \Omega .

(2.4)

Then the conclusions of Theorem 2.1 hold true for (2.4) with

0<w\leq \=Q :=max\{ \| w0\| L\infty ,w\} ,(2.5)

where w := h
g .

The next result is about the global stability of spatially homogeneous steady
states of model (2.4), which satisfies the corresponding ODEs\left\{     

du

dt
= u(r - au - mw),

dw

dt
= h - buw - gw.

(2.6)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2216 XIUMEI DENG, QIHUA HUANG, AND ZHI-AN WANG

We may write the reaction term in the first equation of (2.4) as

u(r - au - mw) = ru
\Bigl( 
1 - u

k

\Bigr) 
 - muw,

where k := r/a is called the carrying capacity (i.e., the maximum population size of
species that can be sustained by the environment). In what follows for the sake of
simplicity the following notation will be frequently used:

k :=
r

a
, k0 :=

(
\surd 
2 - 1)g

b
, k1 :=

g

b
, h1 :=

gr

m
,

h2 :=
(ag+ br)2

4abm
, h3 :=

2agr+ br2

am
, \^h1 :=

ag2

bm
.

(2.7)

Then it is straightforward to check that the ODE system (2.6) has the following three
possible constant solutions:

(0,w) :=

\biggl( 
0,

h

g

\biggr) 
, (u\ast ,w\ast ) :=

\Biggl( 
br - ag+

\surd 
\Delta 

2ab
,

h

bu\ast + g

\Biggr) 
,

(u\ast ,w\ast ) :=

\Biggl( 
br - ag - 

\surd 
\Delta 

2ab
,

h

bu\ast + g

\Biggr) 
,

(2.8)

where \Delta = (ag+ br)2 - 4abmh\geq 0 (i.e., h\leq h2). The toxicant-only equilibrium (0,w)
always exists, while the coexistence equilibria (u\ast ,w\ast ) and (u\ast ,w\ast ) conditionally exist
as specified below:\biggl\{ 

(u\ast ,w\ast ) exists only if either h< h1 or k > k1 and h1 \leq h\leq h2,
(u\ast ,w\ast ) exists only if k > k1 and h1 <h\leq h2,

(2.9)

where (u\ast ,w\ast ) = (u\ast ,w\ast ) when k > k1, h = h2. By elementary methods and calcula-
tions, one can easily obtain the stability (local or global) results of these equilibria. We
summarize the stability results in Table 2.2 and postpone the proof to Appendix A.

Remark 2.1. Among various parameters in the model (2.4), in what follows, we
shall explore how the global dynamics is related to the carrying capacity k and input
rate h by fixing other parameters. Then we rewrite some constants defined in (2.7)
in terms of k as follows:

h1 =
agk

m
,h2 =

a(g+ bk)2

4bm
,h3 =

2agk+ abk2

m
,\^h1 =

rg2

bmk
.

One can easily check that h1 \leq h2 for any k > 0, where h1 = h2 iff k= k1. Furthermore
\^h1 = h3 iff k = (

\surd 
2 - 1)k1 = k0, and \^h1 > h3 if k < k0 while \^h1 < h3 if k > k0. Fixing

all parameters except k, we depict the graphs of these quantities in terms of k in
Figure 2.1.

Table 2.2
Stability of the equilibria of the ODE system (2.6), where k = k1 \leftrightarrow h1 = h2 and LAS= locally

asymptotically stable, GAS= global asymptotically stable, US= unstable, MS=marginally stable.

h < h1 h = h1 h1 < h < h2 h = h2 h > h2

k > k1 (0, w) : US
(u∗, w∗) : GAS

(0, w) : MS
(u∗, w∗) : LAS

(0, w) : LAS
(u∗, w∗) : LAS
(u∗, w∗) : US

(0, w) : LAS
(u∗, w∗) =

(u∗, w∗) : MS (0, w) : GAS
k = k1 (0, w) : MS

not applicable (0, w) : MS
k < k1 (0, w) : GAS (0, w) : GAS

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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DIFFUSIVE POPULATION-TOXICANT MODEL 2217

k0 k1k0

h

χ ≤ χc

k0 k1k0

h

χ > χc

(u∗, w∗): GAS

(0, w): GAS

h1

h2

h3

ĥ1

Fig. 2.1. A schematic of global stability regions for the toxicant-only equilibrium (0,w) and the
coexistence equilibrium (u\ast ,w\ast ).

We are now ready to state the results of global stability of the spatially uniform
toxicant-only steady state (0,w) and coexistence steady state (u\ast ,w\ast ) for the model
(2.4), which will be proved in section 5 by using the Lyapunov functional method and
LaSalle's invariant principle.

Theorem 2.2 (global stability). Assume that the assumptions in Theorem 2.1
hold and (u(x, t),w(x, t)) is the solution of (2.4) obtained in Theorem 2.1. Let k1, hi (i=
1,2,3) and \^h1 be defined in (2.7). Then the following results hold:

(i) If the model parameters satisfy h> h3 or

0<k\leq k1 and

\Biggl\{ 
h1 <h\leq h3 if k < (

\surd 
2 - 1)k1,

h1 <h< \^h1 if (
\surd 
2 - 1)k1 \leq k < k1,

(2.10)

then the steady state (0,w) is globally asymptotically stable. Moreover, there
exist positive constants C1 > 0, \lambda 1 > 0, and t1 > 0 such that

\| u\| L\infty + \| w - w\| L\infty \leq C1e
 - \lambda 1t for all t > t1.(2.11)

(ii) If h< h1, then the coexistence steady state (u\ast ,w\ast ) is globally asymptotically
stable provided that

0<\chi \leq \chi c :=

\sqrt{} 
4md1d2(br+ ag+

\surd 
\Delta )

h(br - ag+
\surd 
\Delta )

(2.12)

with \Delta = (ag+ br)2 - 4abmh. Moreover, there exist constants C2 > 0, \lambda 2 > 0,
and t2 > 0 such that

\| u - u\ast \| L\infty + \| w - w\ast \| L\infty \leq C2e
 - \lambda 2t for all t > t2.(2.13)

Due to the technical obstacles, we are unable to prove global stability results
for the PDE model (2.4) as complete as those for the corresponding ODE system
summarized in Table 2.2. For the convenience of comparison, we plot the parameter
regimes for the global stability of constant steady states (0,w) and (u\ast ,w\ast ) in Fig-
ure 2.1 indicated by the shaded regions, where h2 < h3 if k > k1. This indicates that
the pattern formation can only be possible when parameter values fall outside the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2218 XIUMEI DENG, QIHUA HUANG, AND ZHI-AN WANG

shaded regions of Figure 2.1. In section 5, we shall perform linear stability analysis
to identify the possible pattern formation parameter regimes as \chi > 0 is large and
numerically illustrate the generated patterns along with their biological implications.

3. Global existence (proof of Theorem 2.1). The global existence of solu-
tions consists of two parts: local existence and a priori estimates. In what follows,
we shall use C or Ci (i = 1,2, \cdot \cdot \cdot ) to denote a generic positive constant which may
vary in context. Below we first give the local-in-time existence of classical solutions of
problem (2.1) proved by the abstract theory of quasilinear parabolic systems in [3, 4].

Lemma 3.1 (local existence with extension criterion). Let \Omega \subset \BbbR 2 be a bounded
domain with smooth boundary and the hypothesis (H) hold. Assume (u0,w0) \in 
[W 1,p(\Omega )]2 for p > 2 and u0,w0 \geq 0( \not \equiv 0). Then there exists a constant Tmax > 0
such that the problem (2.1) has a unique classical solution (u,w)\in [C(\Omega \times [0, Tmax))\cap 
C2,1(\Omega \times (0, Tmax))]

2 satisfying u,w > 0 for all t \in (0, Tmax) and the following exten-
sion criterion:

either Tmax =\infty or lim
t\nearrow T\mathrm{m}\mathrm{a}\mathrm{x}

(\| u(\cdot , t)\| L\infty + \| w(\cdot , t)\| L\infty ) =\infty .(3.1)

Proof. With \BbbV = (u,w), the system (2.1) can be rewritten as\left\{       
\BbbV t =\nabla \cdot (B(\BbbV )\nabla \BbbV ) +\Phi (\BbbV ), x\in \Omega , t\in (0,Tmax),

\partial \BbbV 
\partial \nu 

= 0, x\in \partial \Omega , t\in (0,Tmax),

\BbbV (\cdot ,0) = (u0,w0), x\in \Omega ,

(3.2)

where

B(\BbbV ) =
\biggl[ 
d1 \chi u
0 d2

\biggr] 
, \Phi (\BbbV ) =

\biggl[ 
u(r - au - mw)
h(x) - buw - gw

\biggr] 
.

Clearly the matrix B(\BbbV ) is positive-definite, which indicates that (3.2) is normally
parabolic. It follows from [3, Theorem 7.3] that there exists a Tmax > 0 such that
the system (2.1) possesses a unique solution (u,w) \in [C(\Omega \times [0,Tmax)) \cap C2,1(\Omega \times 
(0,Tmax))]

2. Next, we show that u(x, t) > 0 for all t \in (0,Tmax) by the maximum
principle. To that end, we rewrite the first equation of (2.1) as

ut = d1\Delta u+ \chi \nabla u \cdot \nabla w+ \chi u\Delta w+ u(r - au - mw).(3.3)

Hence, we assert that u > 0 for all (x, t) \in \Omega \times (0, Tmax) due to u0 \not \equiv 0 by using
the strong maximum principle. In the same way, we can get that w > 0 for all
(x, t)\in \Omega \times (0, Tmax) by the strong maximum principle applied to the second equation
of (2.1). Since B(\BbbV ) is an upper triangular matrix, the assertion (3.1) follows from
[2, Theorem 5.2] directly. This completes the proof.

Next, we are devoted to deriving the a priori estimates needed in the extension
criterion of Lemma 3.1 to extend local solutions to global ones. To this end, we first
derive some basic properties of solutions to system (2.1).

Lemma 3.2. Under the assumptions in Theorem 2.1, the solution of (2.1) satisfies

w(x, t)\leq max\{ \| w0\| L\infty , \^w\} :=Q for all x\in \Omega and t > 0,(3.4)

where \^w is defined by Theorem 2.1.
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DIFFUSIVE POPULATION-TOXICANT MODEL 2219

Proof. Noticing that u,w > 0 for all t > 0, we can show the above result by a
comparison principle applied to the second equation of (2.1) and omit the proof for
brevity.

Lemma 3.3. Let the conditions in Lemma 3.1 hold and let (u,w) be a solution of
system (2.1). Then there exists a constant C > 0 independent of t such that

\| u(\cdot , t)\| L1 \leq C for all t\in (0, Tmax),(3.5)

and \int t+\tau 

t

\int 
\Omega 

u2dxds\leq C for all t\in (0, Tmax  - \tau ),(3.6)

where \tau is a constant such that

0< \tau <min\{ 1, Tmax\} .(3.7)

Proof. Integrating the first equation of (2.1) over \Omega alongside the integration by
parts and Young's inequality with 0<w(x, t)\leq Q, we have

d

dt

\int 
\Omega 

udx+

\int 
\Omega 

udx=

\int 
\Omega 

(r+ 1)udx - a

\int 
\Omega 

u2dx - m

\int 
\Omega 

wudx

\leq (r+ 1+mQ)

\int 
\Omega 

udx - a

\int 
\Omega 

u2dx

\leq 
\int 
\Omega 

\biggl[ 
au2

2
+

(r+ 1+mQ)2

2a

\biggr] 
dx - a

\int 
\Omega 

u2dx,

(3.8)

and then

d

dt

\int 
\Omega 

udx+

\int 
\Omega 

udx+
a

2

\int 
\Omega 

u2dx\leq C1 :=
(r+ 1+mQ)2| \Omega | 

2a
,(3.9)

where | \Omega | denotes the measure of \Omega . Then we obtain (3.5) by the Gronwall inequality.
Finally integrating (3.9) over (t, t+ \tau ) yields (3.6) directly.

Regarding the solution component w, we have the following a priori estimates.

Lemma 3.4. Let the conditions in Lemma 3.1 hold, and let (u,w) be a solution
of the system (2.1). Then there exists a positive constant C > 0 such that

\| \nabla w\| L2 \leq C for all t\in (0, Tmax)(3.10)

and \int t+\tau 

t

\int 
\Omega 

| \Delta w| 2dxds\leq C for all t\in (0, Tmax  - \tau ),(3.11)

where \tau is given by (3.7).

Proof. Multiplying the second equation of system (2.1) by w, integrating the
result by parts, and recalling \=h=maxx\in \=\Omega h(x) and (3.4), we have

1

2

d

dt

\int 
\Omega 

w2dx+ d2

\int 
\Omega 

| \nabla w| 2dx=

\int 
\Omega 

(h(x) - buw - gw)wdx\leq 
\int 
\Omega 

\=hwdx\leq \=hQ| \Omega | .

(3.12)
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2220 XIUMEI DENG, QIHUA HUANG, AND ZHI-AN WANG

Integrating (3.12) over (t, t+ \tau ), we get\int t+\tau 

t

\int 
\Omega 

| \nabla w| 2dxds\leq 1

2d2

\int 
\Omega 

w2dx+
\=hQ| \Omega | \tau 

d2
\leq C1 for all t\in (0, \widetilde Tmax),(3.13)

where C1 =
Q2| \Omega | +2\=hQ| \Omega | \tau 

2d2
. Multiplying the second equation of system (2.1) by  - \Delta w,

integrating the result by parts, and using Young's inequality and (3.4), one has

1

2

d

dt

\int 
\Omega 

| \nabla w| 2dx+ d2

\int 
\Omega 

| \Delta w| 2dx=

\int 
\Omega 

( - h(x) + buw+ gw)\Delta wdx

\leq 
\int 
\Omega 

(\=h+ buw+ gw)| \Delta w| dx

\leq d2
2

\int 
\Omega 

| \Delta w| 2dx+
3b2Q2

2d2

\int 
\Omega 

u2dx+C2,

(3.14)

where C2 =
3| \Omega | 
2d2

(\=h2 + g2Q2). This immediately gives

d

dt

\int 
\Omega 

| \nabla w| 2dx+ d2

\int 
\Omega 

| \Delta w| 2dx\leq 3b2Q2

d2

\int 
\Omega 

u2dx+ 2C2,(3.15)

which implies

d

dt

\int 
\Omega 

| \nabla w| 2dx\leq 
\int 
\Omega 

| \nabla w| 2dx+
3b2Q2

d2

\int 
\Omega 

u2dx+ 2C2.

Then with (3.6) and (3.13), one may obtain (3.10) by applying the uniform Gronwall
inequality [35, Lemma III1.1] to the above inequality. Integrating (3.15) over (t, t+\tau )
along with (3.6) and (3.10), we get (3.11) and complete the proof of Lemma 3.4.

Lemma 3.5. Let the conditions in Lemma 3.1 hold. Then there exists a constant
C > 0 independent of t such that

\| u(\cdot , t)\| L2 \leq C for all t\in (0, Tmax).(3.16)

Proof. Multiplying the first equation of (2.1) by 2u and integrating the result
with respect to x over \Omega alongside Young's inequality and the H\"older inequality, we
have

d

dt

\int 
\Omega 

u2dx+ 2d1

\int 
\Omega 

| \nabla u| 2dx+ 2a

\int 
\Omega 

u3dx

= - 2\chi 

\int 
\Omega 

u\nabla u \cdot \nabla wdx+ 2r

\int 
\Omega 

u2dx - 2m

\int 
\Omega 

u2wdx

\leq 2

\int 
\Omega 

\biggl( 
d1| \nabla u| 2

2
+

\chi 2u2| \nabla w| 2

2d1

\biggr) 
dx+ 2r

\int 
\Omega 

u2dx

\leq d1

\int 
\Omega 

| \nabla u| 2dx+
\chi 2

d1
\| u\| 2L4\| \nabla w\| 2L4 + 2r\| u\| 2L2 .

(3.17)

Next we estimate the term \| u\| 2L4\| \nabla w\| 2L4 . First one can use the Gagliardo--Nirenberg
inequality to derive that

\| u\| 2L4 \leq C1(\| \nabla u\| L2\| u\| L2 + \| u\| 2L2).(3.18)
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DIFFUSIVE POPULATION-TOXICANT MODEL 2221

With (3.10), we apply the Gagliardo--Nirenberg inequality along with an inequality
in [8, Lemma 1] to obtain

\| \nabla w\| 2L4 \leq C2(\| \Delta w\| L2\| \nabla w\| L2 + \| \nabla w\| 2L2)\leq C3(\| \Delta w\| L2 + 1).(3.19)

From (3.18), (3.19), and Young's inequality, we get

\chi 2

d1
\| u\| 2L4\| \nabla w\| 2L4 \leq C4(\| \nabla u\| L2\| u\| L2 + \| u\| 2L2)(\| \Delta w\| L2 + 1)

=C4(\| \nabla u\| L2\| u\| L2\| \Delta w\| L2 + \| \nabla u\| L2\| u\| L2

+ \| u\| 2L2\| \Delta w\| L2 + \| u\| 2L2)

\leq d1\| \nabla u\| 2L2 +
C2

4

d1
\| u\| 2L2\| \Delta w\| 2L2 +C5\| u\| 2L2

(3.20)

with C4 =
\chi 2C1C3

d1
and C5 =

C2
4+d2

1+2C4d1

2d1
. Substituting (3.20) into (3.17), we obtain

d

dt
\| u\| 2L2 \leq 

C2
4

d1
\| u\| 2L2\| \Delta w\| 2L2 + (2r+C5)\| u\| 2L2 \leq C6\| u\| 2L2(\| \Delta w\| 2L2 + 1)(3.21)

with C6 =max\{ C2
4

d1
,2r+C5\} , which yields (3.16) by the uniform Gronwall lemma [35,

Lemma III1.1] and (3.11). This completes the proof of Lemma 3.5.

Now we are in a position to derive the uniform estimate for \| u(\cdot , t)\| L\infty .

Lemma 3.6. Let the conditions in Lemma 3.1 hold. Then there exists a positive
constant C > 0 independent of t such that

\| u(\cdot , t)\| L\infty \leq C for all t\in (0, Tmax).(3.22)

Proof. We first show that if \| u(\cdot , t)\| Lp \leq M(p\geq 1), then it follows that

\| \nabla w(\cdot , t)\| Lq \leq C1 for all t\in (0, Tmax)(3.23)

with

q \in 

\left\{   
[1, np

n - p ) if p < n,

[1,\infty ) if p= n,
[1,\infty ] if p > n.

(3.24)

Indeed, it follows from the second equation of (2.1) that w solves the following problem

wt = d2\Delta w - w+K(u,w) in \Omega ,
\partial w

\partial \nu 
= 0,(3.25)

where K(u,w) :=w(1 - g - bu) + h(x). We have from (3.4) that

\| K(u,w)\| Lp \leq C2(\| u\| Lp + 1)\leq C2(M + 1) :=C3.(3.26)

Hence, by the results of [23, Lemma 1] to the problem (3.25) with (3.26), we have
(3.23) with (3.24).

Next we show that there is a constant c > 0 independent of t such that \| u\| Lp \leq c
for p > 2. Multiplying the first equation of (2.1) by up - 1 with p > 2 and integrating
the result by parts, we have

1

p

d

dt

\int 
\Omega 

updx+ d1(p - 1)

\int 
\Omega 

up - 2| \nabla u| 2dx+ a

\int 
\Omega 

up+1dx

= - (p - 1)\chi 

\int 
\Omega 

up - 1\nabla u \cdot \nabla wdx+ r

\int 
\Omega 

updx - m

\int 
\Omega 

upwdx.

(3.27)
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2222 XIUMEI DENG, QIHUA HUANG, AND ZHI-AN WANG

Applying Young's inequality, we update (3.27) as

1

p

d

dt

\int 
\Omega 

updx+ d1(p - 1)

\int 
\Omega 

up - 2| \nabla u| 2dx+

\int 
\Omega 

updx

\leq (p - 1)\chi 

\int 
\Omega 

up - 1| \nabla u| | \nabla w| dx+ (r+ 1)

\int 
\Omega 

updx

\leq d1(p - 1)

2

\int 
\Omega 

up - 2| \nabla u| 2dx+
\chi 2(p - 1)

2d1

\int 
\Omega 

up| \nabla w| 2dx+ (r+ 1)

\int 
\Omega 

updx.

(3.28)

Noting that
\int 
\Omega 
up - 2| \nabla u| 2dx= 4

p2

\int 
\Omega 
| \nabla u

p
2 | 2dx, one derives that

d

dt

\int 
\Omega 

updx+
2d1(p - 1)

p

\int 
\Omega 

| \nabla u
p
2 | 2dx+ p

\int 
\Omega 

updx

\leq \chi 2p(p - 1)

2d1

\int 
\Omega 

up| \nabla w| 2dx+ p(r+ 1)

\int 
\Omega 

updx

(3.29)

for all t \in (0, Tmax) and p > 2. It follows from Lemma 3.5 that \| u
p
2 (\cdot , t)\| 

L
4
p

=

\| u(\cdot , t)\| 
p
2

L2 \leq C
p
2 , and hence \| \nabla w\| L4 \leq C4 by using (3.23). Employing the H\"older

inequality, the Gagliardo--Nirenberg inequality and Young's inequality, one derives
that

\chi 2p(p - 1)

2d1

\int 
\Omega 

up| \nabla w| 2dx\leq \chi 2p(p - 1)

2d1

\biggl( \int 
\Omega 

u2pdx

\biggr) 1
2
\biggl( \int 

\Omega 

| \nabla w| 4dx
\biggr) 1

2

\leq \chi 2p(p - 1)C2
4

2d1
\| u

p
2 \| 2L4

\leq C5

\biggl( 
\| \nabla u

p
2 \| 2(1 - 

1
p )

L2 \| u
p
2 \| 

2
p

L
4
p
+ \| u

p
2 \| 2

L
4
p

\biggr) 
\leq C5C\| \nabla u

p
2 \| 2(1 - 

1
p )

L2 +C5C
p

\leq (p - 1)d1
p

\| \nabla u
p
2 \| 2L2 +

d1
p

\biggl( 
C5C

d1

\biggr) p

+C5C
p.

(3.30)

Similarly, by the Gagliardo--Nirenberg inequality and Young's inequality, we have

p(r+ 1)

\int 
\Omega 

updx= p(r+ 1)\| u
p
2 \| 2L2

\leq C6

\biggl( 
\| \nabla u

p
2 \| 2(1 - 

2
p )

L2 \| u
p
2 \| 

4
p

L
4
p
+ \| u

p
2 \| 2

L
4
p

\biggr) 
\leq C6C

2\| \nabla u
p
2 \| 2(1 - 

2
p )

L2 +C6C
p

\leq (p - 1)d1
p

\| \nabla u
p
2 \| 2L2 +

2

p

\biggl[ 
d1(p - 1)

p - 2

\biggr] 2 - p
2

(C6C
2)

p
2 +C6C

p.

(3.31)

Substituting (3.30) and (3.31) into (3.29) gives

d

dt

\int 
\Omega 

updx+ p

\int 
\Omega 

updx\leq C7

with C7 = d1

p (C5C
d1

)p + 2
p [

d1(p - 1)
p - 2 ]

2 - p
2 (C6C

2)
p
2 + (C5 + C6)C

p. It follows from the
Gronwall inequality that

\| u(\cdot , t)\| pLp \leq e - pt\| u0\| pLp +
C7

p
(1 - e - pt)\leq \| u0\| pLp +

C7

p
.(3.32)
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DIFFUSIVE POPULATION-TOXICANT MODEL 2223

Hence, choosing p= 4 in (3.32) and using (3.23), we can find a constant C8 > 0 such
that

\| w(\cdot , t)\| W 1,\infty \leq C8.(3.33)

Noting (3.33), and applying the Cauchy--Schwarz inequality, we get from (3.27)

1

p

d

dt

\int 
\Omega 

updx= - 4d1(p - 1)

p2

\int 
\Omega 

| \nabla u
p
2 | 2dx - (p - 1)\chi 

\int 
\Omega 

up - 1\nabla u \cdot \nabla wdx

+ r

\int 
\Omega 

updx - m

\int 
\Omega 

upwdx - a

\int 
\Omega 

up+1dx

\leq  - 4d1(p - 1)

p2

\int 
\Omega 

| \nabla u
p
2 | 2dx+C8(p - 1)\chi 

\int 
\Omega 

up - 1| \nabla u| dx+ r

\int 
\Omega 

updx

= - 4d1(p - 1)

p2

\int 
\Omega 

| \nabla u
p
2 | 2dx+

2C8(p - 1)\chi 

p

\int 
\Omega 

u
p
2 | \nabla u

p
2 | dx+ r

\int 
\Omega 

updx

\leq  - 2d1(p - 1)

p2

\int 
\Omega 

| \nabla u
p
2 | 2dx+

\biggl( 
C2

8\chi 
2

2d1
+ r

\biggr) 
(p - 1)

\int 
\Omega 

updx

for all t\in (0, Tmax). This further yields

d

dt

\int 
\Omega 

updx+ p(p - 1)

\int 
\Omega 

updx\leq  - 2d1(p - 1)

p

\int 
\Omega 

| \nabla u
p
2 | 2dx+C9p(p - 1)

\int 
\Omega 

updx

(3.34)

for all t\in (0, Tmax) and p > 2, where C9 =
C2

8\chi 
2

2d1
+ r+1. With (3.34), one can use the

Moser--Alikakos iteration (see [1]) to derive (3.22). Since the procedure is routine, we
omit the details for brevity and complete the proof.

Proof of Theorem 2.1. The extension criterion in Lemma 3.1 with Lemma 3.6
immediately gives the global existence and boundedness of the solutions of system
(2.1), namely Theorem 2.1.

4. Global stability of solutions (proof of Theorem 2.2). In this section, we
shall prove the global stability results in Theorem 2.2 by using Lyapunov functional
method and LaSalle's invariant principle. We first present a basic following result.

Lemma 4.1. For positive constant \~w, we define a function

\zeta (w) =w - \~w - \~w ln
w

\~w
.

Then \zeta (w) is a convex function such that \zeta (w) \geq 0 where ``="" holds if and only if
w= \~w. Furthermore, as w\rightarrow \~w, it holds that

c1(w - \~w)2 \leq \zeta (w)\leq c2(w - \~w)2,(4.1)

where c1 =
1
4 \~w , c2 =

1
\~w .

Proof. Applying the Taylor expansion to \zeta (w) gives the result directly.

The following regularity results as a consequence of Schauder estimates will be
used.

Lemma 4.2. Let (u, v,w) be the unique global bounded classical solution of (2.4)
obtained in Theorem 2.1. Then for any given 0<\alpha < 1, there exists a constant C > 0
such that

\| u\| 
C2+\alpha ,1+\alpha 

2 (\=\Omega \times [1,\infty ))
+ \| w\| 

C2+\alpha ,1+\alpha 
2 (\=\Omega \times [1,\infty ))

\leq C.(4.2)
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2224 XIUMEI DENG, QIHUA HUANG, AND ZHI-AN WANG

Proof. The results are obtained by the parabolic regularity theory (cf. [30, The-
orem 1.3]) and standard parabolic Schauder theory (cf. [24]). The proof details can
follow the same way as the proof of [37, Lemma 3.4], and details are omitted for
brevity.

Proof of Theorem 2.2 (i). We first prove the global stability of (0,w) via the
Lyapunov functional method and LaSalle's invariant principle [26] applied to infinite
dimensional dynamical system (cf. [11, 31]) by interpreting the system (2.4) to an
infinite dynamical system based on the compactness results given in Lemma 4.2. To
this end, we rewrite the quasilinear system (2.4) as a form of semilinear parabolic
system \left\{             

ut = d1\Delta u+ u(r - mw) - au2 + \phi (x, t), x\in \Omega , t > 0,

wt = d2\Delta w+ h - gw - buw, x\in \Omega , t > 0,

\partial u

\partial \nu 
=

\partial w

\partial \nu 
= 0, x\in \partial \Omega , t > 0,

u(x,0) = u0(x)\geq \not \equiv 0,w(x,0) =w0(x)\geq \not \equiv 0, x\in \Omega ,

(4.3)

where \phi (x, t) := \chi \nabla u \cdot \nabla w + u\Delta w. For each initial value y0 = (u0,w0), we use
Y (t;y0) = (u,w)(t) to denote the unique global classical solution of (2.4) (i.e., (4.3))
for t > 0, which defines a semiflow on the Banach space X = [W 1,p(\Omega )]2 with p > 2
(see [2, 19]) from the global existence results in Theorem 2.1 and regularity results in
Lemma 4.2. Now we define a functional

G1(u,w) = \alpha 

\int 
\Omega 

udx+
\beta 

2

\int 
\Omega 

(w - \=w)2dx,(4.4)

where \alpha ,\beta > 0 are chosen appropriately for different cases as shown later. It is easy
to find that G1(Y ) = 0 iff Y = (0,w) and G1(Y )> 0 for all Y \not = (0,w), which implies
that G1(Y ) is a positive definite function. Moreover, by the definition of G1(Y ) and
the results of Theorem 2.1, we get G1(Y )\leq C1 for some constant C1 > 0 independent
of t > 0.

Next, we prove d
dtG1(Y ) := d

dtG1(t)\leq 0 for all Y \in X. Indeed, differentiating the
functional (4.4) with respect to t, using the equations in (2.4) and the integration by
parts, we have

d

dt
G1(t) = \alpha 

\int 
\Omega 

utdx+ \beta 

\int 
\Omega 

(w - w)wtdx

= \alpha 

\int 
\Omega 

u(r - au - mw)dx+ \beta 

\int 
\Omega 

(w - w) (d2\Delta w+ h - buw - gw)dx

=

\int 
\Omega 

[\alpha ru - \alpha au2  - \alpha mu(w - w) - \alpha mwu]dx

+ \beta 

\int 
\Omega 

(w - w)(h - buw - gw)dx - \beta d2

\int 
\Omega 

| \nabla w| 2dx.

(4.5)

Next we proceed with two cases.
Case 1: h > h3. In this case, from the definition of h3 in (2.7), we see that

h > h3 >
2gr
m . Let \alpha = bw2, \beta =mw  - 2r = mh - 2gr

g > 0. Straightforward calculations
give us that
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DIFFUSIVE POPULATION-TOXICANT MODEL 2225

d

dt
G1(t) =

\int 
\Omega 

[ - \alpha au2  - (\alpha m - \beta bw)u(w - w) - \beta g(w - w)2]dx

 - 
\int 
\Omega 

(\alpha mw - \alpha r - \beta bw2)udx - 
\int 
\Omega 

\beta buw2dx - \beta d2

\int 
\Omega 

| \nabla w| 2dx

=

\int 
\Omega 

[ - abw2u2  - 2brwu(w - w) - (mw - 2r)g(w - w)2]dx

 - brw2

\int 
\Omega 

udx - (mw - 2r)

\biggl( 
b

\int 
\Omega 

uw2dx+ d2

\int 
\Omega 

| \nabla w| 2dx
\biggr) 

= - 
\int 
\Omega 

\Theta TA1\Theta dx - brw2

\int 
\Omega 

udx

 - (mw - 2r)

\biggl( 
b

\int 
\Omega 

uw2dx+ d2

\int 
\Omega 

| \nabla w| 2dx
\biggr) 
,

(4.6)

where \Theta T denotes the transpose of \Theta and

\Theta =

\biggl[ 
u

w - w

\biggr] 
, A1 =

\biggl[ 
abw2 brw
brw (mw - 2r)g

\biggr] 
.(4.7)

One can directly check that mw - 2r > 0, and hence the matrix A1 is positive definite
if h > h3. Then d

dtG1(t) \leq 0 for all t > 0 if h > h3, where
d
dtG1(t) = 0 iff Y = (0,w)

from (4.6). Due to the results in Lemma 4.2, we see that \phi (x, t) is uniformly bounded
in \=\Omega \times [1,\infty ). Therefore the Lyapunov function method for PDEs and the LaSalle
invariant principle in the Banach space X = [W 1,p(\Omega )]2 with p > 2 (cf. [11, 31]) assert
that the trajectory Y (t;y0) = (u,w) \rightarrow (0,w) in X as t \rightarrow \infty and hence (0,w) is
globally asymptotically stable in L\infty -topology by the Sobolev embedding inequality
along with Lemma 4.2.

Case 2: h\leq h3. Let \alpha = w
m , \beta = 1

b . Simple calculation yields

d

dt
G1(t) =

\int 
\Omega 

[ - \alpha au2  - (\alpha m+ \beta bw)u(w - w) - \beta g(w - w)2]dx

 - 
\int 
\Omega 

\alpha (mw - r)udx - 
\int 
\Omega 

\beta bu(w - w)2dx - \beta d2

\int 
\Omega 

| \nabla w| 2dx

= - 
\int 
\Omega 

\Theta TA2\Theta dx - h(mh - gr)

mg2

\int 
\Omega 

udx - 
\int 
\Omega 

u(w - w)2dx

 - d2
b

\int 
\Omega 

| \nabla w| 2dx,

(4.8)

where \Theta is as defined in (4.7) and

A2 =

\left[  awm w

w
g

b

\right]  .
It is clear that mh - gr > 0 iff h> h1, and the matrix A2 is positive definite iff h< \^h1.
Noticing that h1 <h3 and h1 \leq \^h1 if 0<k\leq k1 where\biggl\{ 

\^h1 >h3 if k < k0,
\^h1 \leq h3 if k\geq k0,

with k0 = (
\surd 
2 - 1)k1 <k1, and \^h1 <h1 iff k > k1, we have from (4.8) that d

dtG1(t)\leq 0
for all t > 0 if (2.10) is satisfied, where d

dtG1(t) = 0 iff Y = (0,w). By the same
argument as above, we get that (0,w) is globally asymptotically stable.
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2226 XIUMEI DENG, QIHUA HUANG, AND ZHI-AN WANG

We proceed to derive the convergence rate of solutions. Indeed, from the above
analysis shown in Case 1 and Case 2, for h > h3 or (2.10), we can find a positive
constant C2 such that

d

dt
G1(t)\leq  - C2G1(t) for all t > 0.(4.9)

Then solving the above inequality gives G1(t) \leq C3e
 - C4t for all t > 0 for some con-

stants C3,C4 > 0. This along with (4.4) shows that

\| u\| L1 + \| w - w\| L2 \leq C5e
 - C4t for all t > 0.(4.10)

Next we proceed to derive the decay rates of L\infty -norm. It follows from Theorem 2.1
that \chi u\nabla w and u(r - au - mw) are bounded in L\infty (\Omega \times (0,\infty )). The results of Lemma
4.2 yield a positive constant C6 > 0 such that

\| u\| W 1,\infty \leq C6 for all t > 1.

Then from the Gagliardo--Nirenberg inequality and (4.10), we get

\| u\| L\infty \leq C7

\Bigl( 
\| \nabla u\| 

2
3

L\infty \| u\| 
1
3

L1 + \| u\| L1

\Bigr) 
\leq C8

\Bigl( 
\| u\| 

1
3

L1 + \| u\| L1

\Bigr) 
\leq C9e

 - C10t(4.11)

for t > t1 with some t1 > 1. Moreover, from Theorem 2.1, we have w - w \in W 1,\infty (\Omega )
due to w \in W 1,\infty (\Omega ). Thanks to the Gagliardo--Nirenberg inequality and (4.10), we
obtain

\| w - w\| L\infty \leq C11

\Bigl( 
\| \nabla (w - w)\| 

1
2

L\infty \| w - w\| 
1
2

L2 + \| w - w\| L2

\Bigr) 
\leq C12e

 - C13t(4.12)

for all t > t1. Combining (4.11) and (4.12), we get (2.11) with \lambda 1 =min\{ C10,C13\} .
Proof of Theorem 2.2 (ii). Define the following Lyapunov functional:

G2(u(t),w(t)) :=G2(t) = \Gamma 1

\int 
\Omega 

\Bigl( 
u - u\ast  - u\ast ln

u

u\ast 

\Bigr) 
dx+

\Gamma 2

2

\int 
\Omega 

(w - w\ast )2dx,(4.13)

where \Gamma 1 :=
b
m and \Gamma 2 :=

1
w\ast are positive constants. Then it follows from Lemma 4.1

that G2(t)\geq 0 for all u,w > 0 where ``="" holds iff u= u\ast ,w=w\ast . Next differentiating
G2(t) with respect to t and using the equations in (2.4), one has

d

dt
G2(t) = \Gamma 1

\int 
\Omega 

\biggl( 
1 - u\ast 

u

\biggr) 
utdx+\Gamma 2

\int 
\Omega 

(w - w\ast )wtdx := \ell 1 + \ell 2,(4.14)

where

\ell 1 = - \Gamma 1d1u
\ast 
\int 
\Omega 

\bigm| \bigm| \bigm| \bigm| \nabla u

u

\bigm| \bigm| \bigm| \bigm| 2 dx - \Gamma 1\chi u
\ast 
\int 
\Omega 

\nabla u \cdot \nabla w

u
dx - \Gamma 2d2

\int 
\Omega 

| \nabla w| 2dx

and

\ell 2 =\Gamma 1

\int 
\Omega 

\biggl( 
1 - u\ast 

u

\biggr) 
(ru - au2  - muw)dx+\Gamma 2

\int 
\Omega 

(w - w\ast )(h - buw - gw)dx.

Clearly \ell 1 can be rewritten as

\ell 1 = - 
\int 
\Omega 

\Theta TA\Theta dx, \Theta =

\biggl[ 
\nabla u
\nabla w

\biggr] 
, A=

\left[   \Gamma 1d1u
\ast 

u2

\Gamma 1\chi u
\ast 

2u
\Gamma 1\chi u

\ast 

2u
\Gamma 2d2

\right]   .
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DIFFUSIVE POPULATION-TOXICANT MODEL 2227

The matrix A is positive semidefinite (i.e., \ell 1 \leq 0) iff \Gamma 1\Gamma 2d1d2u
\ast 

u2 \geq \Gamma 2
1\chi 

2(u\ast )2

4u2 , which is
equivalent to (2.12). Next, using the facts\biggl\{ 

r - au\ast  - mw\ast = 0,
h - bu\ast w\ast  - gw\ast = 0,

(4.15)

we can rearrange \ell 2 as

\ell 2 = - \Gamma 1a

\int 
\Omega 

(u - u\ast )2dx - (\Gamma 1m+\Gamma 2bw
\ast )
\int 
\Omega 

(u - u\ast )(w - w\ast )dx

 - \Gamma 2g

\int 
\Omega 

(w - w\ast )2dx - \Gamma 2b

\int 
\Omega 

u(w - w\ast )2dx

= - 
\int 
\Omega 

\Lambda TB\Lambda dx - \Gamma 2b

\int 
\Omega 

u(w - w\ast )2dx,

(4.16)

where

\Lambda =

\biggl[ 
u - u\ast 

w - w\ast 

\biggr] 
, B =

\left[   \Gamma 1a
\Gamma 1m+\Gamma 2bw

\ast 

2
\Gamma 1m+\Gamma 2bw

\ast 

2
\Gamma 2g

\right]   .
Since \Gamma 1a> 0, the matrix B is positive definite iff

Det(B) = \Gamma 1\Gamma 2ag - 
(\Gamma 1m+\Gamma 2bw

\ast )2

4
=

b(ag - bmw\ast )
mw\ast > 0,

namely w\ast < ag
bm . By virtue of the definition and existence of w\ast (see (2.8) and (2.9)),

we see that w\ast < ag
bm if h < h1. Then \ell 2 < 0 if h < h1. Therefore, d

dtG2(t) \leq 0 for
all t > 0 if h < h1 and (2.12) holds, where d

dtG2(t) = 0 iff (u,w) = (u\ast ,w\ast ). Hence,
(u\ast ,w\ast ) is globally asymptotically stable by the Lyapunov function method along
with the LaSalle invariant principle and Lemma 4.2.

Next, we proceed to show the decay rate (2.13). First, by the Sylvester criterion,
the fact that the matrix B is positive definite ensures a constant \theta > 0 such that
\Lambda TB\Lambda \geq \theta | \Lambda | 2 = \theta [(u - u\ast )2 + (w - w\ast )2]. Since A is positive semidefinite, there is a
positive constant C1 > 0 such that

d

dt
G2(t)\leq  - C1

\int 
\Omega 

\bigl[ 
(u - u\ast )2 + (w - w\ast )2

\bigr] 
dx.(4.17)

Applying Lemma 4.1, we can find a t2 > 0 such that for all t > t2 the following
inequality holds:

1

4u\ast 

\int 
\Omega 

(u - u\ast )2dx\leq 
\int 
\Omega 

\Bigl( 
u - u\ast  - u\ast ln

u

u\ast 

\Bigr) 
dx\leq 1

u\ast 

\int 
\Omega 

(u - u\ast )2dx.(4.18)

Combining (4.13) with (4.18), we can find constants C2 > 0 and C3 > 0 such that

C2

\bigl( 
\| u - u\ast \| 2L2 + \| w - w\ast \| 2L2

\bigr) 
\leq G2(t)\leq C3

\bigl( 
\| u - u\ast \| 2L2 + \| w - w\ast \| 2L2

\bigr) 
for all t > t2. Hence, one can find a constant C4 > 0 such that

d

dt
G2(t)\leq  - C4G2(t) for all t > t2,(4.19)

which, by the Gronwall inequality, yields the exponential decay

\| u - u\ast \| 2L2 + \| w - w\ast \| 2L2 \leq C5e
 - C6t

for positive constants C5 and C6. Then we use a similar procedure as for (4.11) and
(4.12) to finally obtain the exponential decay rate (2.13) and complete the proof of
Theorem 2.2.
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2228 XIUMEI DENG, QIHUA HUANG, AND ZHI-AN WANG

5. Spatially inhomogeneous patterns. While Theorem 2.2 gives some pa-
rameter regimes (as illustrated in Figure 2.1) in which pattern formation (i.e., spa-
tially inhomogeneous solutions) is impossible, a natural question is what may happen
outside these stability regimes. In this section, we shall perform the linear instability
analysis for the model (2.4) to show that patterns may bifurcate from the coexistence
steady states in some parameter regimes. Moreover, we use numerical simulations
to illustrate the patterns generated by the model (2.4) and discuss their biological
implications.

5.1. Linear instability. Note that the stability of the equilibria of the ODE
system has been summarized in Table 2.2. We shall examine under what conditions
the stable equilibria of the ODE system will become unstable in the presence of
spatial variables. To this end, we linearize the system (2.4) about a constant stable
state (us,ws) and obtain\left\{   \Psi t =A\Delta \Psi + J\Psi , x\in \Omega , t > 0,

\nabla \Psi \cdot \nu = 0, x\in \partial \Omega , t > 0,
\Psi (\cdot ,0) = (u0  - us,w0  - ws)

\sansT , x\in \Omega ,
(5.1)

where

\Psi =

\biggl[ 
u - us

w - ws

\biggr] 
, A=

\biggl[ 
d1 \chi us

0 d2

\biggr] 
, J =

\biggl[ 
r - 2aus  - mws  - mus

 - bws  - bus  - g

\biggr] 
,

and \sansT denotes the transpose. We let 0 = \lambda 0 <\lambda 1 \leq \lambda 2 \leq \cdot \cdot \cdot (\lambda \kappa \rightarrow +\infty as \kappa \rightarrow \infty ) be
the sequence of eigenvalues for the elliptic operator  - \Delta on \Omega subject to the Neumann
boundary condition on \Omega , and we let \varphi \kappa (x) be the eigenfunctions corresponding to
\lambda \kappa , that is, \Biggl\{ 

\Delta \varphi \kappa (x) + \lambda \kappa \varphi \kappa (x) = 0, x\in \Omega ,
\partial \varphi \kappa (x)

\partial \nu 
= 0, x\in \partial \Omega .

We then look for solutions of (5.1) of the form

\Psi \kappa (x, t) =

\biggl( 
c1\kappa \varphi \kappa (x)
c2\kappa \varphi \kappa (x)

\biggr) 
e\rho t,(5.2)

where the real numbers c1\kappa and c2\kappa are determined by the Fourier expansion of the
initial conditions and \rho is the temporal eigenvalue. Thus, by the principle of super-
position, the linear system (5.1) has the solution

\Psi (x, t) =

\infty \sum 
\kappa =0

\Psi \kappa (x, t),

where \kappa is called the wave number.
Inserting (5.2) into (5.1) yields

I\rho \varphi \kappa (x) = - \lambda \kappa A\varphi \kappa (x) + J\varphi \kappa (x),

which implies \rho is the eigenvalue of the following matrix:

M\kappa := - \lambda \kappa A+ J =

\biggl[ 
 - d1\lambda \kappa + r - 2aus  - mws  - \chi us\lambda \kappa  - mus

 - bws  - d2\lambda \kappa  - bus  - g

\biggr] 
.
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DIFFUSIVE POPULATION-TOXICANT MODEL 2229

Next we investigate whether the eigenvalues of the matrix M\kappa at stable (0,w)
or (u\ast ,w\ast ) have positive real part, which depends on the sign of the trace and de-
terminant of M\kappa . One can easily check that when h > h1, the eigenvalue \rho for the
toxicant-only steady state (0,w) has negative real part, and hence no bifurcation (i.e.,
no pattern formation) will arise from the equilibrium (0,w). Therefore, the pattern
formation (if any) can only arise from the coexistence steady state (u\ast ,w\ast ), which is
stable if h< h1 or k > k1 and h1 \leq h< h2 in the ODE system (see Table 2.2).

At (u\ast ,w\ast ), we find that

Trace(M\kappa ) = - (d1 + d2)\lambda \kappa  - au\ast  - bu\ast  - g < 0,

Det(M\kappa ) = d1d2\lambda 
2
\kappa + \beta 1\lambda \kappa + \beta 2,(5.3)

where

\beta 1 := d1bu
\ast + d1g+ d2au

\ast  - \chi bu\ast w\ast , \beta 2 := ab(u\ast )2 + au\ast g - mbu\ast w\ast .

Note that \beta 2 =Det(J)> 0 since (u\ast ,w\ast ) is a stable equilibrium of ODE system (2.6).
Thus, if \beta 1 \geq 0 (i.e., \chi \leq d1bu

\ast +d1g+d2au
\ast 

bu\ast w\ast ), then Det(M\kappa ) > 0, and all eigenvalues of
the matrix M\kappa have negative real part, which indicates that (u\ast ,w\ast ) is linearly stable
for the PDE system (2.4).

Next we consider the case where \chi > d1bu
\ast +d1g+d2au

\ast 

bu\ast w\ast (i.e., \beta 1 < 0). By thinking
of (5.3) as a quadratic equation with respect to \lambda \kappa , one can easily find that if \beta 2

1  - 
4d1d2\beta 2 > 0, which is equivalent to

\chi >
2
\surd 
d1d2\beta 2 + d1(bu

\ast + g) + d2au
\ast 

bu\ast w\ast := \chi b,(5.4)

then Det(M\kappa ) has two values of \lambda \kappa where it vanishes, namely,

\lambda \pm :=
 - \beta 1 \pm 

\sqrt{} 
\beta 2
1  - 4d1d2\beta 2

2d1d2
,

and Det(M\kappa ) becomes negative when

\lambda  - <\lambda \kappa <\lambda +.(5.5)

Note that 0 < \lambda  - < \lambda + since \beta 1 < 0, \beta 2 > 0, and \beta 2
1  - 4d1d2\beta 2 > 0. Therefore, if the

conditions (5.4) and (5.5) are satisfied, one of the eigenvalues of the matrix M\kappa is a
positive real number, and the homogeneous steady state (u\ast ,w\ast ) is unstable for the
PDE system. Summarizing the above results, we have the following conclusions.

Theorem 5.1. Assume that the coexistence equilibrium (u\ast ,w\ast ) is locally asymp-
totically stable with respect to the ODE system (2.6) (i.e., the parameters satisfy either
0<h<h1 or k > k1, h1 \leq h< h2). Then

(i) (u\ast ,w\ast ) is linearly stable with respect to the reaction-diffusion system (2.4) if
\chi <\chi b, and

(ii) (u\ast ,w\ast ) is unstable with respect to the reaction-diffusion system (2.4) if both
conditions \chi >\chi b and \lambda  - <\lambda \kappa <\lambda + (for some \kappa ) hold.

Remark 5.1. From the expressions for \chi b and \chi c (see (2.12) and (5.4)), we cannot

completely compare their sizes, but we can assert that \chi b >\chi c if h< 12(ag+br)2

49abm (<h2).
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k0 k1

h

(a) : χ < χb

(u∗, w∗) is LAS; (0, w) is US

Both (u∗, w∗) and (0, w) are LAS

(u∗, w∗) does not exist; (0, w) is LAS

h1

h2

k0 k1

h

(b) : χ > χb

Both (u∗, w∗) and (0, w) are US

(u∗, w∗) is US; (0, w) is LAS

(u∗, w∗) does not exist; (0, w) is LAS

h1

h2

Fig. 5.1. A schematic of local stability and instability regions for \chi <\chi b and \chi >\chi b.

Based on the linear stability results obtained above, we depict the local stability
and instability regions in the (k,h) plane for model (2.4) in Figure 5.1.

5.2. Numerical simulations and applications. In this section, we numeri-
cally solve model (2.4) by the MATLAB solver PDEPE and demonstrate the numerical
solution profiles. We begin by verifying that system (2.4) can exhibit the bi-stability
phenomenon, that is, both toxicant-only steady state (0, \=w) and coexistence steady
state (u\ast ,w\ast ) are locally asymptotically stable. To this end, we choose model pa-
rameters within the grey region in Figure 5.1(a) (i.e., k > k1 and h1 < h < h2). The
corresponding numerical simulations are shown in Figure 5.2, where we see that the
solution will asymptotically converge to toxicant-only steady state (0, \=w) if the initial
value is a small perturbation of (0, \=w) (see the upper row of Figure 5.2). If the initial
value is a small perturbation of coexistence steady state (u\ast ,w\ast ), then the solution
will asymptotically converge to (u\ast ,w\ast ) (see the top row of Figure 5.2). This indi-
cates that in this narrow parameter regimes, the dynamics between the population
and the toxicant is very sensitive to the perturbations from the environment and the
bi-stability phenomenon may occur.

We next numerically explore whether spatially inhomogeneous patterns can be
generated from the model (2.4). As mentioned above, there is no pattern formation
bifurcating from the toxicant-only steady state (0, \=w). Therefore, we shall examine
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0 10 20 30 40 50
0

1
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t

Time evolutionary profile u and w

 

 

u at x=5
w at x=5

0 50 100 150
−2

0

2

4

6

8

10

12

t

Time evolutionary profile u and w

 

 

u at x=5
w at x=5

Fig. 5.2. Numerical simulation for the bistability of the system (2.4) with r = 1, a = 0.1,m =
0.5, b = 0.5, g = 0.1, d1 = 0.1, d2 = 0.1, h = 1, \chi = 0.2, where h1 = 0.2, h2 = 2.6010, k = 10, k1 =
0.2, u\ast = 8.9012,w\ast = 0.2198, \chi b = 0.9422. The initial values for the simulations in the first panel
(row) and second panel (row) are chosen as small random perturbations of (5,4) and (3,9) with 1\%
deviation, respectively.

whether patterns may develop from the coexistence steady state (u\ast ,w\ast ) in the insta-
bility parameter regimes shown in Theorem 5.1, which entails that (u\ast ,w\ast ) becomes
unstable if h< h1 or k > k1 and h1 \leq h< h2 provided that \chi >\chi b as illustrated by the
yellow and purple regions in Figure 5.1(b) (color available online). But we do not ex-
pect patterns in the purple region since (0,w) is stable therein. Hence we shall choose
model parameters satisfying h< h1, \chi > \chi b for numerical simulations with two differ-
ent cases k < k1 and k > k1. The numerical simulations for the case k < k1 are shown
in Figure 5.3, where we do observe the stable spatially inhomogeneous solutions aris-
ing from the initial value, which is a small random perturbation of (u\ast ,w\ast ). Moreover,
we also observe spatial segregation of the population and the toxicant---more (fewer)
individuals eventually inhabit locations with low (high) toxicant concentrations (see
the right column of Figure 5.3). In this case, the population is abundant, and the
toxicant remains at a low level. Next we turn to look at another case k > k1 and
plot the numerical solutions of model (2.4) in Figure 5.4. Interestingly we find that
apparent spatial segregation between the population and the toxicant will occur, that
is, almost all individuals concentrate around the habitat boundary where the toxicant
level is the lowest. This gives a more remarkable spatial segregation than that shown
in Figure 5.3.

The global stability results in Theorem 2.2 and local stability/instability results
in Theorem 5.1 alongside the numerical simulations illustrated above indicate that
as long as the toxicant input rate h is suitably small (like h < h1), the popu-
lation and toxicant may coexist homogeneously in space if toxicant-taxis is weak
(i.e., \chi is small) or inhomogeneously in space if toxicant-taxis is strong (i.e., \chi is
large).
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Fig. 5.3. Numerical simulation for the pattern formation and segregation of the system (2.4)
with r = 1, a = 1,m = 5, b = 0.5, g = 1, d1 = 0.1, d2 = 0.1, h = 0.1, \chi = 20, where h1 = 0.2, h2 =
0.2250, k = 1, k1 = 2, u\ast = 0.6180,w\ast = 0.0764, \chi b = 15.2056. The initial value (u0,w0) is a small
random perturbation (1\% derivation) of the positive steady states (u\ast ,w\ast ).
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Fig. 5.4. Numerical simulation for the pattern formation and segregation of the system (2.4)
with r = 1, a = 0.1,m = 0.5, b = 0.5, g = 0.1, d1 = 0.1, d2 = 0.1, h = 0.1, \chi = 11, where h1 = 0.2, h2 =
2.6010, k = 10, k1 = 0.2, u\ast = 9.9010,w\ast = 0.0198, \chi b = 10.7029. The initial value (u0,w0) is a small
random perturbation (1\% derivation) of the positive steady states (u\ast ,w\ast ).

6. Discussion. Toxicants in polluted water bodies have diverse harmful effects
on aquatic species' health. When designing environmental policies to limit the dam-
age caused by water pollution, it is paramount to assess and predict the risk that
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toxicants pose to aquatic species. However, rigorously testing the effects of toxicants
on entire groups of organisms without severely damaging their whole ecosystems is
simply not feasible. Mathematical modeling can provide a flexible way to assess
toxicants' impact on populations without endangering the environment. Traditional
ordinary differential equation models that describe the impact of toxicants on popu-
lation dynamics do not consider the influences of spatial dispersal of populations and
toxicants on population persistence. Taking into account random movements of indi-
viduals and toxicants, as well as individuals actively escaping from locations with high
toxicant concentrations to locations with low toxicant concentrations, we propose and
study a diffusive population-toxicant model with toxicant-taxis. The model can be
utilized to understand how the interplay between several factors (toxicant input and
degradation, population and toxicant dispersal mechanisms, population growth, and
mortality) affects the population dynamics in an aquatic contaminated environment.

We studied the model by analyzing the existence and stability of the toxicant-
only steady state (0,w) at which the population goes extinct as well as the coexistence
steady states (u\ast ,w\ast ) and (u\ast ,w\ast ) at which the population persists. Since the coex-
istence equilibrium (u\ast ,w\ast ) is unstable, we concentrated on the stability analysis of
the other two equilibria. We obtained some sufficient conditions under which (0,w)
and (u\ast ,w\ast ) are globally asymptotically stable (see Theorem 2.2). As expected, the
population can persist only if the toxicant input rate h is small (i.e., h< h1), that is,
we are supposed to take measures to limit the toxicant input at low levels to reduce
the detrimental effects of toxicants on populations.

To examine whether there exist spatially inhomogeneous steady state solutions
driven by spatial dispersal, we further investigate the possibility that the coexistence
equilibrium (u\ast ,w\ast ) becomes unstable, i.e., the emergence of spatially inhomogeneous
patterns. Our findings reveal that random diffusion (i.e., diffusion coefficients) does
not lead to instability of coexistence equilibrium, but sufficiently large toxicant-taxis
does (see Theorem 5.1). In other words, active flee behavior of individuals away
from areas with high toxicant concentrations will generate spatially inhomogeneous
distributions of the population and the toxicant in the habitat. This is verified by our
numerical simulations (see Figures 5.3 and 5.4).

There are still several problems we are unable to address. First, in Theorem 2.2(i),
the global stability of the toxicant-only steady states (0,w) was proved only in the
parameter regime h> h3 or (2.10) but remains open outside these regimes. From the
stability results summarized in Table 2.2 and the instability results in Theorem 5.1
(see also Figure 5.1), we conjecture that (0,w) will be globally asymptotically stable
in the regions not shaded in Figure 2.1 and have to leave it open for future study.
In Figures 5.3 and 5.4, we have numerically illustrated that spatially inhomogeneous
stationary solutions segregated in space exist for the model (2.4). However, how to
prove the existence of nonconstant stationary solutions (2.4) with segregation struc-
tures remains an interesting open problem for future efforts.

The current work could be generalized in various biologically significant ways:
(1) The toxicant input rate is assumed to be spatially heterogeneous in model (2.4).
However, toxicants may be released into water bodies at specific times in real-world
contexts. Including temporally heterogeneous input rates of the toxicant would re-
sult in a more realistic model. (2) A large number of species inhabit an environment
with a unidirectional flow, such as rivers and streams. Recently, Zhou and Huang
[41] proposed a spatiotemporal model for the effects of toxicants on populations in
a polluted river, but their model does not take toxicant-taxis into account. By in-
cluding advection terms in model (2.4), one can obtain a reaction-diffusion-advection
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model with toxicant-taxis. (3) Different species that live in a contaminated environ-
ment may exhibit considerable differences in their susceptibility to toxicants and the
behavioral changes induced by toxicants. Considering two species that compete for
the same resources in a polluted habitat [33], one can extend model (2.4) to a com-
petition model and investigate how the toxicant and population dispersal strategies
affect the competition outcomes. (4) It is also worthwhile to extend our single-species
model (2.4) to a diffusive predator-prey system with toxicant-taxis and investigate
how disparities in toxicant vulnerability between the predator and the prey [22], as
well as toxicant-induced behavioral changes, affect species persistence, coexistence,
and population levels. We anticipate that extending the current model in these ways
will yield some interesting mathematical and ecological problems.

Appendix A. Stability analysis of the equilibria of the ODE system
(2.6). To determine the local stability of an equilibrium (us,ws), we use the following
Jacobian matrix for system (2.6), as long as real parts of eigenvalues of the Jacobian,
evaluated at the equilibria, are nonzero:

J(us,ws) =

\biggl[ 
r - 2aus  - mws  - mus

 - bws  - bus  - g

\biggr] 
.

The Jacobian matrix evaluated at the toxicant-only equilibrium (0, \=w) is

J(0, \=w) =

\biggl[ 
r - m \=w 0
 - b \=w  - g

\biggr] 
,

and the eigenvalues are

\lambda 1 = r - m \=w= r - mh/g, \lambda 2 = - g.

Clearly \lambda 2 < 0 due to g > 0. When h > gr/m = h1, \lambda 1 is negative and consequently
the equilibrium (0, \=w) is a stable node. When h < h1, \lambda 1 > 0 and hence (0, \=w) is a
saddle (hence unstable). If h= h1, then \lambda 1 = 0 and so (0, \=w) is marginally stable. In
particular, if k = k1, then h2 = h1 and hence (0, \=w) is marginally stable in the case
k= k1 and h= h2.

For the coexistence equilibrium (u\ast ,w\ast ) which only conditionally exists (see (2.9)),
one can find that

Trace(J(u\ast ,w\ast )) = r - 2au\ast  - mw\ast  - bu\ast  - g= - au\ast  - bu\ast  - g < 0,

Det(J(u\ast ,w\ast )) = (r - 2au\ast  - mw\ast )( - bu\ast  - g) - mbu\ast w\ast = ab(u\ast )2  - mh+ gr.

Note that (u\ast ,w\ast ) does not exist if k \leq k1 and h \geq h1. When k \leq k1 and h < h1,
one can verify that Det(J(u\ast ,w\ast )) > 0, so (u\ast ,w\ast ) is a stable node. When k >

k1 and h < h2, one can show that h < (ag+br)2+(br - ag)
\surd 
\Delta 

4abm , which is equivalent to
ab(u\ast )2  - mh+ gr > 0 (i.e., Det(J(u\ast ,w\ast ))> 0), so the equilibrium (u\ast ,w\ast ) is also a
stable node.

For the coexistence (u\ast ,w\ast ), which exists only if k > k1 and h1 <h\leq h2, we have

Trace(J(u\ast ,w\ast )) = r - 2au\ast  - mw\ast  - bu\ast  - g= - au\ast  - bu\ast  - g < 0,

but

Det(J(u\ast ,w\ast ))> 0\leftrightarrow ab(u\ast )
2  - mh+ gr > 0\leftrightarrow h< h1.
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DIFFUSIVE POPULATION-TOXICANT MODEL 2235

It can be further checked that if h1 <h< h2, then Det(J(u\ast ,w\ast ))< 0 and (u\ast ,w\ast ) is
a saddle (hence unstable).

As k > k2 and h= h2, (u\ast ,w\ast ) = (u\ast ,w\ast ) and Det(J(u\ast ,w\ast )) = 0 which indicates
that (u\ast ,w\ast ) is marginally stable.

Finally, we show that system (2.6) has no closed orbits. Indeed, choosingB(u,w) :=
1/u, we have

\partial (BF )

\partial u
+

\partial (BG)

\partial w
= - a - b - g

u
< 0

for u> 0 and w> 0. By the Bendixson--Dulac criteria [9], there is no closed orbit lying
entirely in the first quadrant of the uw-plane. Therefore, by the Poincar\'e--Bendixson
theorem, we get the global stability of (0,w) as claimed in Table 2.2.

Acknowledgment. The authors are grateful to the anonymous referees for many
insightful comments that helped improve the exposition of the paper.
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