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Abstract. This paper considers the spreading speed of cooperative nonlocal
dispersal systems with irreducible reaction functions and non-uniform initial

data. Here the non-uniformity means that all components of initial data decay

exponentially but their decay rates are different. It is well-known that in
a monostable reaction-diffusion or nonlocal dispersal equation, different decay

rates of initial data yield different spreading speeds. In this paper, we show that

due to the cooperation and irreducibility of reaction functions, all components
of the solution with non-uniform initial data will possess a uniform spreading

speed which decreasingly depends only on the smallest decay rate of initial

data. The decreasing property of the uniform spreading speed in the smallest
decay rate further implies that the component with the smallest decay rate can

accelerate the spatial propagation of other components.

1. Introduction. The long-range dispersal, such as the spread of infectious disease
across countries and continents by the travel of infected humans [22], has increas-
ingly become an important phenomenon nowadays, and it has attracted extensive
attention of researchers (see [7, 36, 40]). Mathematically the long-range dispersal
can be modelled by a nonlocal dispersal operator that describes the movements be-
tween not only adjacent but also nonadjacent spatial locations. A typical nonlocal
dispersal equation with reaction is given by

ut = k ∗ u− u+ f(u), t > 0, x ∈ R, (1)

where u(t, x) stands for the population density at time t and location x, f(u) is a
reaction function, and the nonlocal dispersal operator is represented by

k ∗ u(t, x)− u(t, x) =

∫
R
k(x− y)u(t, y)dy − u(t, x).

Here k : R → R is a nonnegative and continuous function with
∫
R k(x)dx = 1. As

stated in [18], k(x − y) can be viewed as the probability for individuals to move
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from location y to location x, k ∗ u(t, x) =
∫
R k(x − y)u(t, y)dy stands for the

rate at which individuals arrive at location x from other locations, and −u(t, x) =
−
∫
R k(y − x)u(t, x)dy is the rate at which individuals leave location x and move

to other locations. One of the significant research topics in the literature for (1) is
the wave propagation phenomena which are associated with the studies of traveling
wave solutions, entire solutions and spreading speeds. These results can be used to
describe the spreading process of populations, such as the spatial spread of infectious
diseases and the invasion of species. For the traveling wave solutions of (1), we refer
to the classical works by Bates et al. [5], Carr and Chmaj [9], Chen [10], Chen and
Guo [11], Coville, Dávila and Mart́ınez [14], Schumacher [43], Yagisita [55], etc. For
the entire solutions of (1), we refer to, for example, Li, Sun and Wang [29]. For the
spreading speeds of (1), we refer to the works by Lutscher, Pachepsky and Lewis
[35], Shen and Zhang [44], Zhang, Li and Wang [57], Rawal, Shen and Zhang[41],
Finkelshtein, Kondratiev and Tkachov [19, 20], Liang and Zhou [33], etc. For the
results on nonlocal dispersal equations with free boundary, we refer to Cao et al.
[8], Du, Li and Zhou [15], and Du and Ni [16], etc.

In this paper, we are concerned with the spreading speed of the following m-
component nonlocal dispersal system{

Ut = D(K ∗ U − U) + F (U), t > 0, x ∈ R,
U(0, x) = U0(x) = (u1,0(x), . . . um,0(x)), x ∈ R,

(2)

where U = (u1, . . . , um), K = (k1, . . . , km), F = (f1, . . . , fm), D = diag{d1, . . . , dm}
with dj > 0, and 2 6 m ∈ Z+. The nonlocal dispersal is represented by

K ∗ U(t, x)− U(t, x) , (k1 ∗ u1(t, x)− u1(t, x), . . . , km ∗ um(t, x)− um(t, x)).

We assume that F (U) is cooperative (namely ∂
∂ui

fj(U) > 0 for any j 6= i) and
monostable with an unstable equilibrium U ≡ 0 ∈ Rm and a stable equilibrium
U ≡ P ∈ (R+)m. Assume that

U0(·) 6≡ 0, 0 6 U0(x) 6 P for all x ∈ R.

The kernel K ∈ C(R,Rm) is symmetric on R and satisfies the Mollison condition
(see [14, 39, 40]), in the sense that, there exists Λ > 0 such that∫

R
kj(x)eΛ|x|dx < +∞, j ∈ {1, . . . ,m}.

The local dispersal system, as a counterpart of (2), is called the reaction-diffusion
system which reads as{

Ut = D∆U + F (U), t > 0, x ∈ R,
U(0, x) = U0(x), x ∈ R.

(3)

When m = 2, traveling wave solutions and entire solutions were obtained for (2)
by Li, Xu and Zhang [30], Meng, Yu and Hsu [38], and for (3) by Hsu and Yang
[24], Zhao and Wang [58], Xu and Zhao [50], Wu and Hsu [49]. When the initial
data U0 are compactly supported (or equivalently U0(x) ≡ 0 for large x > 0), there
are numerous results on the spreading spread of (2) and (3). For the nonlocal
dispersal system (2), we refer to Bao et al [3], Bao, Shen and Shen [4], Hu et al.
[25]. For the local dispersal system (3) and its discrete-time counterpart, we refer
to Kolmogorov, Petrovsky and Piskunov [26] and Aronson and Weinberger [1, 2]
for the case m = 1 (i.e. classical reaction-diffusion equation), and Weinberger [47],
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Lui [34], Weinberger, Lewis and Li [48], Li, Weinberger and Lewis [28], Liang and
Zhao [31, 32], Fang and Zhao [17], and Wang [46] for the case m > 2.

Note that the aforementioned existing results on the spreading speeds of (2)
and (3) essentially assume that the initial data U0(x) are compactly supported.
However, when the initial data U0(x) are not compactly supported, the results of
spreading speed are much fewer. Especially, when the initial value function decays
exponentially, namely

u(0, x) ∼ Ce−σ|x| as |x| → +∞ with σ > 0, C > 0, (4)

the system (2) with m = 1, namely (1), has a spreading speed

s(σ) =
1

σ

{∫
R
k(x)eσxdx− 1 + f ′(0)

}
for σ ∈ (0, σ∗), (5)

where σ∗ = min{σ > 0 | s(σ) = min{s(σ);σ > 0}}, see e.g. [13, 45, 54]. In (4),
the symbol “∼” means lim|x|→∞ u(0, x)/(Ce−σ|x|) = 1. Similar results for (3) with
m = 1 (i.e. reaction-diffusion equation) and exponentially decaying initial data
were previously obtained by Booty, Haberman and Minzon [6], Hamel and Nadin
[23], McKean [37], and Sattinger [42], etc. When m = 2, a recent work by Xu, Li
and Ruan [53] studied the spreading speed of (2) for initial data u1,0(x) and u2,0(x)
decaying exponentially with the same decay rate.

The purpose of this paper is to study the spreading speed of (2) where m > 2 and
all components of initial data U0 decay exponentially but their decay rates may be
different. We assume that each component of U0(x) has its own decay rate, namely

uj,0(x) ∼ Cje−λj |x| as |x| → +∞ with Cj > 0 for any j ∈ J , {1, . . . ,m}. (6)

We call the initial data U0(x) are non-uniform if there exist some i, j ∈ J with
i 6= j such that λi 6= λj . The case of non-uniform initial data considered in this
paper is essentially different from the case in [53] where m = 2 and λ1 = λ2. From
(5) and other results mentioned above, we conclude that the spreading speed of
scalar dispersal equations essentially depends on the decay rate of exponentially
decaying initial data. For the dispersal system, if all components of initial data U0

have the same decay rate (i.e. uniform initial data), the spreading speed can still be
determined by this single decay rate as shown in [53] form = 2. But now if the initial
data are non-uniform, an immediate question is whether all components of (2) have
the same spreading speed, and if so, which component will paly a prevailing role
in determining this spreading speed. To proceed, we give the definition of uniform
spreading speed of (2).

Definition 1.1 (Uniform spreading speed). Given initial data U0 satisfying (6), a
positive constant c0 is called the uniform spreading speed of the solution of (2), if
for any j ∈ J and ε ∈ (0, c0), there is a constant ν > 0 such that

lim
t→+∞

sup
|x|>(c0+ε)t

uj(t, x) = 0,

lim inf
t→+∞

inf
|x|6(c0−ε)t

uj(t, x) > ν.

We will show that when the reaction function F is cooperative and F ′(0) is
irreducible, all components of the solution U of (2) with non-uniform initial data
(different decay rates) satisfying (6) have a uniform spreading speed (the same
spreading speed), see Theorem 2.2. Furthermore, this uniform spreading speed

depends only on the smallest decay rate λ0 , min{λj , j ∈ J} and is decreasing with
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respect to λ0, which implies that the component with the smallest decay rate can
accelerate the spatial propagation of other components of U (see details in Section
2). We also refer to a recent work by Xu, Li, and Ruan [52] where the acceleration
propagation of (3) was obtained for non-uniform non-exponentially decaying initial
data, and other works by Coulon and Yangari [12], Yangari [56], and Xu, Li and
Lin [51] for the acceleration propagation with non-uniform nonlocal dispersal kernels
and compactly supported initial data.

Remark 1.2. The problem how the dispersal kernel affects the spreading speed
has attracted wide attention of researchers, and there are mainly two directions.
First, some works study the effect of the decaying behavior of the dispersal kernel
as x→ ±∞. In (2), it is shown that the spreading speed is finite when K satisfies∫
R kj(x)eΛ|x|dx < +∞ for j ∈ J and some Λ > 0 (see [25, 35]), but infinite when

the condition fails (see [21, 51, 55]). Second, the authors of [53, 54] study the effect
of asymmetric dispersal kernel on the sign of spreading speed, and obtain a direct
relationship between them.

The rest of this paper is organized as follows. In Section 2, we present the main
assumptions and results. In Section 3, we study a special case where all components
of initial data have the same decay rate λ, and prove that (2) has a uniform spreading
speed dependent on λ. In Section 4, we focus on the general case that the initial
data satisfy (6) and complete the proof of our main result.

2. Main assumptions and results. In this section, we give the main assumptions
and results. Let us introduce some notations first. For U = (u1, . . . , um) ∈ Rm,
V = (v1, . . . , vm) ∈ Rm, we write U > V if uj > vj for any j ∈ J ; U � V if uj > vj
for any j ∈ J . Denote

[U, V ] = {φ ∈ Rm;U 6 φ 6 V }.

Let ‖U‖ =
√
u2

1 + . . .+ u2
m denote the norm of Rm. We write 0 = (0, . . . , 0) ∈ Rm

and 1 = (1, . . . , 1) ∈ Rm. Assume that

(A1) (a): there is a strictly positive equilibrium P = (p1, p2, ..., pm) such that
F (0) = F (P ) = 0 and F ∈ C1([0, P ],Rm); there is no other equilibrium
φ in [0, P ] such that F (φ) = 0.

(b): F is cooperative in [0, P ], namely ∂
∂ui

fj(U) > 0 for any U ∈ [0, P ] and
j 6= i.

(c): F ′(0) is an irreducible matrix satisfying

max{Re λ|det(λI − F ′(0)) = 0} > 0.

(d): for any j ∈ J , the function kj is nonnegative, continuous, symmetric
on R, and decreasing on R+. Moreover,

∫
R kj(x)dx = 1 and there exists

Λ > 0 such that ∫
R
kj(x)eΛ|x|dx < +∞. (7)

Note that (2) is monostable on [0, P ] under (A1)(a) and (c); namely, the equilibrium
U ≡ 0 is unstable and U ≡ P is stable. From (A1)(b), the matrix F ′(0) is essentially
nonnegative. Note that a matrix A = (aij)m×m is essentially nonnegative if all
coefficients of the matrix (A−mini∈{1,...,m}{aii}Im) are nonnegative.
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We define

Λ = sup

{
λ > 0

∣∣∣ ∫
R
kj(x)eλxdx < +∞, j ∈ {1, . . . ,m}

}
∈ (0,+∞) ∪ {+∞}.

For λ ∈ (0,Λ), let K(λ) denote the m×m matrix as follows

K(λ) = D · diag

{∫
R
k1(y)eλydy, . . . ,

∫
R
km(y)eλydy

}
−D + F ′(0). (8)

Since F ′(0) is irreducible, so is K(λ). By the Perron-Frobenius theorem (see [27]),
K(λ) has an eigenvalue γ(λ) with algebraic multiplicity one, and we denote by V (λ)
the positive unit eigenvector corresponding to γ(λ), namely K(λ)V (λ) = γ(λ)V (λ)
and

V (λ)� 0 for λ ∈ (0,Λ). (9)

From the symmetry of kj , it follows that
∫
R kj(y)eλydy > 1 for any λ ∈ (0,Λ). Then

(A1)(c) implies that γ(λ) > 0. For λ ∈ (0,Λ), denote

c(λ) = γ(λ)/λ > 0. (10)

Obviously, c(λ) is continuous on (0,Λ) and

c(λ)λV (λ)−K(λ)V (λ) = 0 for any λ ∈ (0,Λ). (11)

Define
c∗ , inf

λ∈(0,Λ)
{c(λ)} < +∞. (12)

It was shown in [25, Lemma 2.4] that λ∗ < +∞, where λ∗ is the smallest positive
number at which the above infimum is attained, namely

c∗ = c(λ∗) = γ(λ∗)/λ∗ > 0.

Remark 2.1. The function c(·) defined by (10) is strictly decreasing on (0, λ∗).
Indeed, by Lemma 6.5 and (6.5) in Lui [34], c(λ) is twice continuously differentiable
and decreasing (i.e. c′(λ) 6 0) on (0, λ∗), and it satisfies

(λ2c′)′ = 2λc′ + λ2c′′ > 0.

Then c′′(λ) > 0 for λ ∈ (0, λ∗). Suppose that c(λ) is decreasing but not strictly
decreasing on (0, λ∗). Then there exists µ ∈ (0, λ∗) such that c′(µ) = 0. From
c′(λ) 6 0 and c′′(λ) > 0 on (0, λ∗), we get that c′(λ) = 0 for any λ ∈ [µ, λ∗),
which implies by the continuity of c(λ) that c(λ) = c(λ∗) for λ ∈ [µ, λ∗]. On the
other hand, recall that λ∗ is the smallest positive number at which infλ>0{c(λ)} is
attained, and we have c(λ) > c(λ∗) for λ ∈ (0, λ∗). It is a contradiction.

There are some additional assumptions on F .

(A2): for λ ∈ (0, λ∗], F (min{P, qV (λ)}) 6 qF ′(0)V (λ) for any q > 0.
(A3): there are positive numbers q0, δ0, and M such that

F (U) > F ′(0)U −MU1+δ0 for any U ∈ [0, P ] with ‖U‖ 6 q0,

where U1+δ0 = (u1+δ0
1 , . . . , u1+δ0

m ) ∈ Rm.

The assumptions (A2) and (A3) correspond to the Fisher-KPP assumption in the
scalar case, namely f ′(0)u −Mu1+δ0 6 f(u) 6 f ′(0)u. The assumption (A3) can
be easily satisfied, for example, when F ∈ C1+δ0 [0, q01]. As stated in [25], under
(A1)-(A3), c∗ is the spreading speed of (2) with compactly supported initial data.
Denote

λ0 , min{λj | j ∈ J}.
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The following theorem about the uniform spreading speed for non-uniform initial
data is the main result of this paper.

Theorem 2.2. Assume (A1), (A2), and (A3) hold. For the non-uniform ini-
tial data U0(x) satisfying (6) with λ0 ∈ (0, λ∗), the solution of (2) has a uniform
spreading speed c(λ0), which is independent of the decay rate λj satisfying λj > λ0.
Moreover, c(λ0) is strictly decreasing with respect to λ0 ∈ (0, λ∗).

From Theorem 2.2, the cooperation and irreducibility of reaction functions can
ensure that all components of the solution of (2) with non-uniform initial data have
a uniform spreading speed. In fact, if F ∈ C1[0, P ] and ∂

∂ui
fj(0) > 0 with i 6= j,

then as seen from the jth equation of (2), namely

∂

∂t
uj = dj(kj ∗ uj − uj) + fj(U),

the component ui of U has a direct positive effect on the growth of the component
uj , when uj is small enough. We say ui has an indirect positive effect on the

growth of uj , if ui does not directly affect the growth of uj (i.e. ∂
∂ui

fj(0) = 0), but

through other components of U , in the sense that there exists a set {j1, j2, . . . , jk}
with j1 = i and jk = j such that ∂

∂ujp−1
fjp(0) > 0 for any p = 2, . . . , k. The

irreducibility of F ′(0) = ( ∂
∂ui

fj(0))m×m means that a direct or indirect positive
effect exists between any two components of U , and hence, all components of the
solution with non-uniform initial data can have a uniform spreading speed.

Theorem 2.2 shows that the uniform spreading speed depends only on the small-
est decay rate λ0. This conclusion, along with the fact that the spreading speed
c(λ0) is strictly decreasing on (0, λ∗) in Remark 2.1, means that the component with
the smallest decay rate can accelerate the spatial propagation of other components.
To understand this, we assume the j0th component of initial data U0 has the small-
est decay rate, namely λj0 = λ0 ∈ (0, λ∗). Let the decay rate of the j0th component
uj0,0 become smaller and fix the decay rates of other components of initial data U0.
We denote the new decay rate of uj0,0 by λ′ ∈ (0, λ0). Then the uniform spreading
speed becomes c(λ′) from c(λ0). Since c(·) is strictly decreasing on (0, λ∗), we have
that c(λ′) > c(λ0), which means that the decrease of the smallest decay rate in the
initial data can increase the spreading speed of other components of the solution.

Our idea to prove Theorem 2.2 consists of two steps. First, we focus on the
special case that all components of initial data U0 have the same decay rate λ ∈
(0, λ∗) (namely λj = λ for any j ∈ J) and prove that the solution has a uniform
spreading speed c(λ) in Section 3. Second, the general case that U0 satisfies (6)
with λ0 ∈ (0, λ∗) is considered in Section 4. By constructing a lower solution,
we show that after a period of time T > 0, all components of U(T, ·) are larger
than an exponentially decaying function with the decay rate λ0. This case is then
transformed into the special case considered in Section 3 as long as uj(T, x) is set
as the new initial data.

Moreover, from Theorem 2.2 and its proof in Section 4, the components of initial
data U0 whose decay rates are not λ0 affect neither the result of uniform spreading
speed nor its proof method. Therefore, Theorem 2.2 also holds if (6) is changed to
the following assumption

(H): there exist j0 ∈ {1, 2, . . . ,m} and λ0 > 0 such that

uj0,0(x) ∼ Ce−λ0|x|, uj,0(x) 6 e−λ0|x| for j 6= j0 and |x| large enough.
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In this assumption, the component uj,0 of U0 with j 6= j0 is not restricted to

exponentially decaying functions, but any function that is smaller than e−λ0|x| when
|x| is large enough.

Remark 2.3. The methods in this paper are also applicable to the reaction-
diffusion cooperative system (3). Therefore, no matter whether we consider a non-
local or local dispersal system, the cooperation and irreducibility of F can ensure
that the solution has a uniform spreading speed and the component of U with the
smallest decay rate can accelerate the spatial propagation of other components.

3. Case of the same decay rate. In this section, we consider the case that all
components of initial data have the same decay rate λ ∈ (0, λ∗). First, we state two
important lemmas that are proved in [53, Theorem 4.1] (for Lemma 3.1) and [25,
Theorem 4.5] (for Lemma 3.2).

Lemma 3.1. (Symmetry and monotone property) If the functions kj(·) and uj,0(·)
are symmetric on R and decreasing on R+ for any j ∈ J , so is uj(t, ·) for any t > 0
and j ∈ J .

Lemma 3.2. (Comparison principle) Assume that Ū is an upper solution and U
is a lower solution of (2); namely ∂

∂t Ū(t, x) and ∂
∂tU(t, x) exist and

∂

∂t
Ū −DK ∗ Ū +DŪ − F (Ū) > 0 for t > 0, x ∈ R,

∂

∂t
U−DK ∗U +DU− F (U) 6 0 for t > 0, x ∈ R.

If Ū(0, x) > U(0, x) for x ∈ R, then Ū(t, x) > U(t, x) for any t > 0 and x ∈ R.

The following result is a special case of Theorem 2.2 where all components of U0

have the same decay rate λ ∈ (0, λ∗).

Proposition 3.3. Assume (A1), (A2), and (A3) hold. Let U0(x) satisfy (6) with
λj = λ ∈ (0, λ∗) for any j ∈ J . Then the solution of (2) has a uniform spreading
speed c(λ).

Proof. Let U = (u1, . . . , um) be the solution of (2) with initial data U0. By (6) and
(9), there is a constant Γ > 0 large enough such that

U0(x)� Γe−λ|x|V (λ).

For λ ∈ (0, λ∗), define

Ū(t, x) = min
{
P, Γe−λzV (λ)

}
with z = |x| − c(λ)t, t > 0, x ∈ R. (13)

Now we check that Ū = (ū1, . . . , ūm) is an upper solution. Let vj(λ) denote the jth
component of V (λ), namely V (λ) = (v1(λ), . . . , vm(λ)). For any j ∈ J , when z <
λ−1 ln(Γvj(λ)/pj), we have that ūj(t, x) = pj . Then by (A1)(b), from ūi(t, x) 6 pi
for any i ∈ J we can get that

∂

∂t
ūj − djkj ∗ ūj + dj ūj − fj(Ū) > −fj(P ) = 0.

When z > λ−1 ln(Γvj(λ)/pj), it holds that ūj(t, x) = Γe−λzvj(λ). We denote

fj,i = ∂
∂ui

fj(0) and (A1)(b) implies fj,i > 0 for i 6= j. By (A2) and (11), we have
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that

∂

∂t
ūj − djkj ∗ ūj + dj ūj − fj(Ū)

> Γe−λz
[(
c(λ)λ− dj

∫
R
kj(y)eλydy + dj

)
vj(λ)−

m∑
i=1

fj,ivi(λ)
]

= 0.

Thus Ū = (ū1, . . . , ūm) is an upper solution of (2). Lemma 3.2 implies that

U(t, x) 6 Ū(t, x) 6 Γe−λzV (λ) for any t > 0 and x ∈ R.

Then for any ε > 0 and j ∈ J , we have that

lim
t→+∞

sup
|x|>(c(λ)+ε)t

uj(t, x) 6 lim
t→+∞

sup
|x|>(c(λ)+ε)t

Γe−λ(|x|−c(λ)t)vj(λ)

6 lim
t→+∞

Γe−λεtvj(λ)

= 0.

Now we just need to prove that for any ε ∈ (0, c(λ)) and j ∈ J , there exists ν > 0
such that

lim
t→+∞

inf
|x|6(c(λ)−ε)t

uj(t, x) > ν. (14)

The proof of (14) consists of the following two steps.
First, we prove that there exist two positive constants γ and y0 such that

U(1, x) > γmin
{
e−λ|x|, e−λy0

}
V (λ), x ∈ R. (15)

From (6) it follows that U0(x)� 0 for sufficiently large |x|. Then by (A1)(d), there
exists N0 ∈ N+ such that

K ∗K ∗ . . . ∗K︸ ︷︷ ︸
N0

∗U0(x)� 0 for any x ∈ R. (16)

For j ∈ J , let πj : Rm → Rm denote the function

πj : (u1, . . . , um) 7→ (0, . . . , uj , . . . , 0);

namely the jth component of πj(U) is uj while others are zero. We define

bj = inf
uj∈(0,pj ]

{fj(πj(U))/uj}. (17)

Let n ∈ N+ and we divide equally the time period of [0, τ ] into n parts, namely
[0, τ/n], [τ/n, 2τ/n],. . ., and [(n− 1)τ/n, τ ]. In [0, τ/n], we consider

W (t, x) = (w1(t, x), . . . , wm(t, x)), t ∈ [0, τ/n], x ∈ R,

where

wj(t, x) = Mj

[
uj,0(x) + tdjkj ∗ uj,0(x)

]
e(bj−dj)t, j ∈ J (18)

and

Mj = (1 + djτ/n)−1(1 + e(bj−dj)τ/n)−1, j ∈ J.
It is easy to check that

∂twj − djkj ∗ wj + djwj − bjwj 6 0 for j ∈ J.

For t ∈ [0, τ/n], by uj,0(x) 6 pj we have that

wj(t, x) 6Mjpj [1 + djτ/n]e(bj−dj)τ/n 6 pj for x ∈ R.
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From (A1)(b) and (17), it follows that

W t −DK ∗W +DW − F (W )

6 W t −DK ∗W +DW − (f1(π1(W )), . . . , fm(πm(W )))

6 W t −DK ∗W +DW − diag{b1, . . . , bm}W 6 0.

By W (0, x) 6 U0(x) for x ∈ R, from Lemma 3.2 we get that

U(τ/n, x) >W (τ/n, x). (19)

Denote C1 , min
j∈J
{Mjdje

(bj−dj)τ/nτ/n} and then

U(τ/n, x) > C1K ∗ U0(x).

Repeat this argument for t ∈ [τ/n, 2τ/n] and substitute K ∗ U0(x) for U0(x). We
can find a constant C2 > 0 such that

U(2τ/n, x) > C2K ∗K ∗ U0(x).

Similarly, there exists Cn > 0 such that

U(τ, x) > CnK ∗K ∗ . . . ∗K︸ ︷︷ ︸
n

∗U0(x) for x ∈ R.

When n = N0, it follows from (16) that U(τ, x) � 0. When n = 1, we get from
(18) and (19) that

U(τ, x) >W (τ, x) > CτU0(x) with Cτ = min
j∈J
{Mje

(bj−dj)τ}.

Then for any τ > 0 there exists Cτ > 0 such that

U(τ, x)� 0 and U(τ, x) > CτU0(x) for x ∈ R. (20)

When τ = 1, by (6) with λj = λ we can find γ > 0 and y0 > 0 satisfying (15).
Let γ be smaller (if necessary) such that γe−λy0 6 q0, where q0 is given by

assumption (A3). Define W0(x) = γmin
{
e−λ|x|, e−λy0

}
V (λ), x ∈ R. Then

‖W0(x)‖ 6 q0 for x ∈ R and

U(1, x) >W0(x) =

{
γe−λ|x|V (λ) for |x| > y0,

γe−λy0V (λ) for |x| 6 y0,
(21)

Let W (t, x) be the solution of (2) with initial data W (0, x) = W0(x). Then we get
from Lemma 3.2 that

U(t+ 1, x) >W (t, x) for t > 0, x ∈ R. (22)

Since W0(·) is symmetric and decreasing on R+, so is W (t, ·) by Lemma 3.1.
Second, we construct a lower solution and prove (14). Now define some notations.

By Remark 2.1, for any λ ∈ (0, λ∗), there is a constant δλ = λ∗/λ− 1 > 0 such that

c(λ+ λs) < c(λ) for any s ∈ (0, δλ).

Denote

µ = λ(1 + δ) > 0 with δ , min{δ0, δλ/2} > 0,

where the positive constant δ0 is given by (A3). Then it follows that

c(µ) < c(λ). (23)
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For j ∈ J , let G(c, λ; j) be the jth component of the vector cλV (λ) − K(λ)V (λ),
namely

G(c, λ; j) ,

(
cλ− dj

∫
R
kj(y)eλydy + dj

)
vj(λ)−

m∑
i=1

fj,ivi(λ), c > 0, λ > 0,

where fj,i = ∂
∂ui

fj(0) and vj(λ) is the jth component of V (λ)� 0. For λ ∈ (0, λ∗),

it follows from (11) that

G(c(λ), λ; j) =

(
c(λ)λ− dj

∫
R
kj(y)eλydy + dj

)
vj(λ)−

m∑
i=1

fj,ivi(λ) = 0. (24)

By (23) we get that

G(c(λ), µ; j) =

(
c(λ)µ− dj

∫
R
kj(y)eµydy + dj

)
vj(µ)−

m∑
i=1

fj,ivi(µ)

> G(c(µ), µ; j) = 0.

(25)

For λ ∈ (0, λ∗), we define U = (u1, . . . , um) as follows

U(t, x) = max
{
0, γe−λzV (λ)− Le−µzV (µ)

}
with z = |x| − c(λ)t, t > 0, x ∈ R,

where L is a positive constant large enough such that

L > max

{
γeλδy0

1 + δ
max
j∈J

(
vj(λ)

vj(µ)

)
, Mγ1+δ max

j∈J

(
v1+δ
j (λ)

G(c(λ), µ; j)

)}
. (26)

Denote

yj = λ−1δ−1 ln

(
L(1 + δ)vj(µ)

γvj(λ)

)
and zj = λ−1δ−1 ln

(
Lvj(µ)

γvj(λ)

)
for j ∈ J.

Then yj > zj for any j ∈ J . Note that yj and zj correspond respectively to the
maximum point of z 7→ γe−λzvj(λ) − Le−µzvj(µ) and the root of γe−λzvj(λ) −
Le−µzvj(µ) = 0, that is

uj(t, x) =


0, when z < zj ,

γe−λzvj(λ)− Le−µzvj(µ) = 0, when z = zj ,

γe−λzvj(λ)− Le−µzvj(µ) > 0, when z > zj ,

(27)

and

max
z∈R
{γe−λzvj(λ)− Le−µzvj(µ)} = γe−λyjvj(λ)− Le−µyjvj(µ) > 0.

From (26), it follows that yj > y0 for any j ∈ J . Then we have that

sup
t>0,x∈R

uj(t, x) = uj(t, c(λ)t+ yj) = γe−λyjvj(λ)− Le−µyjvj(µ) 6 γe−λy0vj(λ).

(28)
Since V (λ) is a unit vector, it holds that

‖U(t, x)‖ 6 γe−λy0 6 q0 for any t > 0, x ∈ R. (29)

Particularly, when t = 0, it follows from (28) that U(0, x) 6 γe−λy0V (λ) for any
x ∈ R. The definition of U(t, x) implies that U(0, x) 6 γe−λ|x|V (λ) for x ∈ R.
Then we get from (21) that

U(0, x) 6W0(x) for x ∈ R. (30)
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In order to verify U(t, x) is a lower solution, namely

U t −DK ∗ U +DU − F (U) 6 0,

we check it holds for each component. For any j ∈ J , when z < zj , since uj(t, x) = 0,
it is easy to check that

∂

∂t
uj − djkj ∗ uj + djuj − fj(U) 6 0.

When z > zj , we get that

uj(t, x) = γe−λzvj(λ)− Le−µzvj(µ),

ui(t, x) > γe−λzvi(λ)− Le−µzvi(µ) for i 6= j.

From (A3) and (29), it follows that

fj(U) >
m∑
i=1

fj,iui(t, x)−Mu1+δ
j (t, x)

>
m∑
i=1

fj,i
[
γe−λzvi(λ)− Le−µzvi(µ)

]
−Mγ1+δe−µzv1+δ

j (λ).

Then some calculations show that
∂

∂t
uj − djkj ∗ uj + djuj − fj(U)

6 γe−λz
[(
c(λ)λ− dj

∫
R
kj(y)eλydy + dj

)
vj(λ)−

m∑
i=1

fj,ivi(λ)
]

− Le−µz
[(
c(λ)µ− dj

∫
R
kj(y)eµydy + dj

)
vj(µ)−

m∑
i=1

fj,ivi(µ)
]

+Mγ1+δe−µzv1+δ
j (λ)

= γe−λzG(c(λ), λ; j)− e−µz
[
LG(c(λ), µ; j)−Mγ1+δv1+δ

j (λ)
]
.

By (24), (25), and (26), for z > zj , we have

∂

∂t
uj − djkj ∗ uj + djuj − fj(U) 6 0.

Therefore, U(t, x) is a lower solution.
Lemma 3.2 and (30) imply that

W (t, x) > U(t, x) for any t > 0, x ∈ R.

Let ymax , max
j∈J
{yj}. It follows from yj > zj that ymax > max

j∈J
{zj}, which implies

by (27) that

ν , min
j∈J
{uj(t, c(λ)t+ ymax)} > 0.

We denote W (t, x) by (w1(t, x), . . . , wm(t, x)). Then it follows that

wj(t, c(λ)t+ ymax) > uj(t, c(λ)t+ ymax) > ν for any t > 0 and j ∈ J.

Since W (t, ·) is symmetric and decreasing on R+, it holds that

wj(t, x) > ν for any |x| 6 c(λ)t+ ymax and j ∈ J.
By (22) we get that

uj(t+ 1, x) > ν for any |x| 6 c(λ)t+ ymax and j ∈ J,
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which implies (14). This completes the proof of Proposition 3.3.

4. General case. In this section, we give the proof of Theorem 2.2. By construct-
ing a lower solution, we transform the proof for the general case where U0 satisfies
(6) into the special case in Section 3, where all components of the initial data have
the same decay rate.

Proof of Theorem 2.2. The strictly decreasing property of c(λ0) with respect to
λ0 ∈ (0, λ∗) has been obtained in Remark 2.1. By (6) and λ0 6 λj for j ∈ J , there

exists C > 0 such that uj,0(x) 6 Ce−λ0|x| for j ∈ J and large |x|. Then the proof
of

lim
t→+∞

sup
|x|>(c(λ0)+ε)t

uj(t, x) = 0 for j ∈ J

is similar to the counterpart in the proof of Propositions 3.3, and we only need to
substitute λ0 for λ.

Now prove that for any ε ∈ (0, c(λ0)), there is a constant ν > 0 such that

lim
t→+∞

inf
|x|6(c(λ0)−ε)t

uj(t, x) > ν for any j ∈ J.

From the proof of Propositions 3.3, we only need to prove that there exist T > 0
and M0 > 0 such that

uj(T, x) >M0p(x), x ∈ R for any j ∈ J, (31)

where

p(x) = e−λ0|x|.

Now we reorder the equations in the system (2), namely the components of U .
Define

fj,i =
∂

∂ui
fj(0).

Choose the component which has the smallest decay rate as the first component
u1 of U , and then λ1 = λ0 = min{λj , j ∈ J}. Since F ′(0) is irreducible, we can
choose the second component u2 such that f2,1 > 0. Similarly, we can choose
the third component u3 satisfying f3,1 > 0 or f3,2 > 0. Repeat this process, we
reorder the components of U satisfying that for any i ∈ {2, 3, . . . ,m} there exists
j ∈ {1, 2, . . . , i− 1} such that fi,j > 0.

We give an important inequality. Since F ∈ C1[0, P ]), by (A1)(b), we can find a
constant q3 > 0 such that

fj(U) > (fj,j − 1)uj +
1

2

∑
i 6=j

fj,iui for any j ∈ J and U ∈ [0, q31]. (32)

In order to prove (31), we need to construct a lower solution

W (t, x) = (w1(t, x), . . . , wm(t, x)) ∈ [0, q31], t > 1, x ∈ R.

The form of W (t, x) will be given for every component. First, we construct the first
component w1(t, x) of W (t, x). By (20) and (6) with λ1 = λ0, there is a constant
C0 ∈ (0, q3] such that

u1(1, x) > C0p(x) for x ∈ R.
Let

w1(t, x) = M1e
−α(t−1)p(x) for t > 1, x ∈ R,
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where M1 is a constant in (0, C0] and

α > max
j∈J
{dj + |fj,j |}+ 2.

Note that M1 will be reselected as a smaller constant later. It is easy to check that

w1(t, x) 6M1 6 C0 6 q3 for t > 1, x ∈ R

and

w1(1, x) 6M1p(x) 6 u1(1, x) for x ∈ R. (33)

From p(x) > 0, it follows that k1 ∗ w1 > 0. By the cooperation of F and (32), we
have that f1(W ) > (f1,1−1)w1 for W ∈ [0, q31]. Then some calculations show that

∂

∂t
w1 − d1k1 ∗ w1 + d1w1 − f1(W )

6 M1(−α+ d1 − f1,1 + 1)e−α(t−1)p(x) 6 0.

Second, we construct the second component w2(t, x) of W (t, x) under the condi-
tion f2,1 > 0. Define

w2(t, x) = M2

(
e−β2(t−1) − e−α(t−1)

)
p(x) for t > 1, x ∈ R,

where

β2 = d2 + |f2,2|+ 1, M2 ,
f2,1M1

2(α− d2 + f2,2 − 1)
.

By α > β2, we get that w2 > 0 for t > 1, which implies that k2 ∗w2 > 0. Let M1 be
smaller (if necessary) satisfying M1 6 2q3/f2,1. From α > d2 − f2,2 + 2, it follows
that

w2(t, x) 6M2 6
1

2
f2,1M1 6 q3 for t > 1, x ∈ R.

Assumption (A1)(b) and (32) show that f2(W ) > (f2,2 − 1)w2 + 1
2f2,1w1 for W ∈

[0, q31]. Then we have that

∂

∂t
w2 − d2k2 ∗ w2 + d2w2 − f2(W )

6
∂

∂t
w2 − d2k2 ∗ w2 + d2w2 − (f2,2 − 1)w2 −

1

2
f2,1w1

6M2

[
(−β2 + d2 − f2,2 + 1)e−β2(t−1) + (α− d2 + f2,2 − 1)e−α(t−1)

]
p(x)

− 1

2
M1f2,1e

−α(t−1)p(x)

6
[
M2(α− d2 + f2,2 − 1)− 1

2
M1f2,1

]
e−α(t−1)p(x) = 0.

Moreover, it is easy to check that

w2(1, x) = 0 for x ∈ R.

Note that e−β2s > 2e−αs for s > τ , ln 2 and then

w2(t, x) >M2e
−α(t−1)p(x) for t > 1 + τ, x ∈ R, (34)

which is a key inequality for the construction of wj with j > 2 when fj,2 > 0.
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Third, we construct the third component w3(t, x) of W (t, x) under the condition
f3,1 > 0 or f3,2 > 0. For the case f3,1 > 0, we can construct w3(t, x) by the same
method as w2(t, x). For the case f3,2 > 0, we define

w3(t, x) =

{
0, 1 6 t 6 1 + τ,

M3

(
e−β3(t−1−τ) − e−α(t−1−τ)

)
p(x), t > 1 + τ,

where

β3 = d3 + |f3,3|+ 1, M3 ,
f3,2M2

2eατ (α− d3 + f3,3 − 1)
.

Let M1 be smaller (if necessary) such that M3 6 q3, and then 0 6 w3(t, x) 6 q3 for
t > 1, x ∈ R. By (32) and (34), we have that

f3(W ) > (f3,3−1)w3+
f3,2

2
w2 > (f3,3−1)w3+

f3,2

2
M2e

−α(t−1)p(x) forW ∈ [0, q31].

Following similar calculations to these for w2, we can prove that

∂

∂t
w3 − d3k3 ∗ w3 + d3w3 − f3(W ) 6 0.

We also have that

w3(t, x) >M3e
−α(t−1−τ)p(x) for t > 1 + 2τ, x ∈ R,

which provides the key inequality for the construction of wj with j > 3 when
fj,3 > 0.

To construct wj for j ∈ {4, 5, . . . ,m}, when fj,1 > 0, we apply the construction
method for w2, and when fj,i > 0 for some i ∈ {2, . . . , j−1}, we use the construction
method for w3 in the case f3,2 > 0. Then we can define every component of W (t, x)
satisfying

∂

∂t
W −DK ∗W +DW − F (W ) 6 0 for t > 1, x ∈ R,

and

wi(t, x) >Mie
−α[t−1−(i−2)τ ]p(x) for t > 1 + (i− 1)τ, x ∈ R, i = 2, . . . ,m.

We obtain two constants

T = 1 + (m− 1)τ and M0 =

{
M1e

−α(T−1), min
i∈{2,...,m}

{
Mie

−α[T−1−(i−2)τ ]
}}

such that

wi(T, x) >M0p(x), x ∈ R for any i = 1, . . . ,m. (35)

The definition of W also shows that wi(1, x) = 0 for any i = 2, . . . ,m. We get from
(33) that

U(1, x) >W (1, x), x ∈ R.

It follows from Lemma 3.2 that

U(t, x) >W (t, x) for t > 1, x ∈ R.

Then we have U(T, x) >W (T, x) for x ∈ R, which implies (31) by (35). It completes
the proof of Theorem 2.2.
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