Downloaded 07/18/23 to 158.132.175.50 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

SIAM J. MATH. ANAL. © 2023 Society for Industrial and Applied Mathematics
Vol. 55, No. 4, pp. 28382876
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Abstract. This paper is concerned with the global boundedness and stability of classical solu-
tions to an alarm-taxis system describing the burglar alarm hypothesis as an important mechanism
of antipredation behavior when prey species are threatened by predators. Compared to the existing
prey-taxis systems, the alarm-taxis system has more complicated coupling structure and additionally
requires the gradient estimate of the primary predator density to attain the global boundedness of so-
lutions. By the sophisticated coupling energy estimates based on the Neumann semigroup smoothing
properties, we establish the existence of globally bounded solutions in two dimensions with Neumann
boundary conditions and furthermore prove the global stability of coexistence homogeneous steady
states under certain conditions on the system parameters.

Key words. alarm-taxis, global boundedness, global stability, coexistence steady states
MSC codes. 35A01, 35B40, 35B44, 35K57, 35Q92, 92C17

DOI. 10.1137/22M 1477143

1. Introduction and main results. Alarm calls are an important mechanism
of antipredation behavior when species are approached by predators, where alarm
call signals may be chemical, acoustic, sound, visible movement, or any other changes
that are detectable by the receiver (cf. [16, 33]). There are numerous hypotheses
on the structure and function of alarm calls, among which is the “burglar alarm”
hypothesis (cf. [12]): a prey species renders itself dangerous to a primary predator by
generating an alarm call to attract a second predator at higher trophic levels in the
food chain that prey on the primary predator. This attraction of a secondary predator
has been observed in the marine environment where dinoflagellates bioluminesce when
stimulated by disturbances from copepod feeding currents may attract a secondary
predator like fish (cf. [1]), and in many other species (like plants [18], birds [26], and
primates [20]). To test this hypothesis, a mathematical model was recently proposed
in [23], which reads in its multidimensional form as

Ut = dlAu + f(uvvaw)v
(1.1) v =doAv — V- (EvVu) + g(u,v,w),
wy =Aw — V- (xwV(u,v)) + h(u,v,w),
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where u,v, and w represent resource or prey (e.g., dinoflagellate), primary predator
(e.g., copepod), and secondary predator (e.g., fish), respectively; dq,ds are positive
constants representing the random dispersal rates, the positive constants £ and y
are referred to as the prey-taxis and alarm-taxis coefficients, respectively; the reac-
tion functions f, g, h describe the interspecific and/or intraspecific interactions among
the prey, the primary predator, and the second predator, and ¢(u,v) is a signalling
function describing the intensity of the alarm signal which is produced as a result of
interaction between the prey and primary predator to act as a burglar alarm attract-
ing the secondary predator. While there are many ways one could postulate the signal
intensity function ¢(u,v), a simple but plausible assumption is that the signal inten-
sity is proportional to the encounter rate between the prey and the primary predator,
that is (cf. [23]),

d(u,v) < uv.
Generally the reaction functions f, g, h have the prototypical forms
fu,v,w) = ¢1(u) —bivFy (u,v) — bswFa(u, w),
(1.2) 9(u,v,w) = ¢2(v) + c1vF1 (u,v) — baw F3 (v, w),
h(u,v,w) = ¢3(w) + cowFs3(v,w) + cgwFa(u,w),

where by,ba,¢1,¢2 > 0 and bs,c3 > 0 are constants, and ¢; (i = 1,2,3) describes the
intraspecific interactions of species. For the prey species, the population dynamics
¢1(u) in the absence of predators is usually described by the logistic growth as prey
species usually are prolific breeders and, if left alone, their populations would rise
to the ability of their ecosystem to feed them, that is, ¢1(u) = piu (1 — %) , where
11 > 0 denotes the intrinsic growth rate and K > 0 is the carrying capacity. The
population dynamics of predators in the absence of prey species are usually described
by the function

¢’i(s):,ui5_9i327 16{273}7

where s = v if i =2 and s = w if ¢ = 3, p; > 0 (resp., < 0) denotes the intrinsic
growth (resp., death) rate of species and 6; > 0 denotes the intraspecific competition
strength (f; = 0 means there is no intraspecific competition between species). In
particular, if p;(i =2,3) >0 (resp., < 0), then the corresponding predator is called a
generalist (resp., specialist) predator. F; (i =1,2,3) are called the functional response
(or trophic) functions describing the consumption rate of a prey by a predator, which
may have various forms such as Holling type I, IT, and III [27], ratio-dependent [7, 22],
Beddington-DeAngelis type [9, 17], and so on (cf. [40, 48]). We remark that without
prey-taxis and alarm-taxis, the model (1.1) is generally called a food chain model (cf.
[24]) if b3 = ¢3 = 0 (i.e., the second predator w does not utilize the resource), and
an intraguild predation model (cf. [28]) if b3, c3 > 0 (i.e., the second predator w can
utilize the resource of its prey v). For the alarm-taxis model, the first qualitative
result was obtained in [23] for the following one dimensional form with Neumann
boundary conditions:

ug = dyUge + pru(l —u) — byuv — byuw, x€(0,L), t>0,
vy = doVzg — (§0UL) + p2v(1 — v) 4+ cruv — bavw, xz€(0,L), t>0,

(1.3) S wy = wge — (xw(vug + uvy))z + psw(l —w) + covw + cguw, =z € (0,L), t >0,
Uy = Vy =Wy =0, z=0,L, t>0,
(u, v, w)(z,0) = (ug, vo, wo)(x), z€(0,L),
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where L > 0, dy,do, p1, p2, i3,01,02,&,x > 0, and b3,c3 > 0 are constants. The ex-
istence of global bounded solutions of (1.3) was established in [23], and the global
stability of coexistence steady state for the case bs = c3 =0 was further proved under
certain conditions (which will be mentioned later).

The system (1.1), as the first mathematical model for alarm-taxis proposed in
[23], provides basic theoretical framework to understand the mechanism of antipreda-
tion behavior of the prey by releasing alarm call signals. The mathematical studies of
the alarm-taxis model (1.1) was initiated in [23] for the specialized form (1.3) in one
dimension only. Hence there are many interesting questions worthwhile to explore
so as to gain more insights into the understanding of the alarm-taxis mechanism, for
instance the global dynamics of alarm-taxis models in a more realistic multidimen-
sional spatial domain with different functional response functions F; and so on. This
motivates us, among other things, to consider the following alarm-taxis system

ut:dlAu—F,ulu(l—u)—bluv—bglﬂ—ww, z€Nt>0
v =doAv — V- (EvVu) + pov(l — v) + uv — bevw, zeQ,t>0

(1.4) we = Aw =V - [xw(wVu +uVo)] + pzw(l —w) +vw + c3 2%, €Q,t>0,
%:%:%:0’ red, t>0,
(u, v, w)(x,0) = (ug, vo, wo)(x), €N

in a bounded smooth domain Q C RN(N > 2) with parameters dy,ds, p1, 2, fi3,
b1,02,&,x > 0 and b3,c3 > 0, where v denotes the outward normal vector of Of).
Particularly, when b3 = ¢3 = 0 (case of food chain), the model (1.4) is nothing but
the multidimensional version of (1.3). The difference is that when bs,cs > 0 (case
of intraguild predation), the model (1.4) employs the ratio-dependent functional re-
sponse while (1.3) uses the Lotka—Volterra functional response. The food chain model
with spatial movements has not been investigated in the literature to the best of our
knowledge though its ODE counterpart (i.e., the temporal model) has been extensively
studied (cf. [32, 37, 41] and references therein). Without prey-taxis and alarm-taxis,
the intraguild predation models with some particular functional response functions
have been analytically studied in [14, 43]. Same as [23], here we have assumed both v
and w are generalist predators with intraspecific competitions and other possible cases
will not be considered in this paper. The main goal of this paper is to investigate the
global dynamics of the alarm-taxis model (1.4) by establishing the global boundedness
of solutions in multidimensions and the global stability of coexistence steady states for
both b3 =c¢3 =0 and b3, c3 > 0. To compare, we recall that the work [23] obtains the
global boundedness of solutions for the one dimensional model (1.3) and establishes
the global stability of coexistence steady states for the case b3 = c3 = 0 only. The
global boundedness of solutions to (1.3) in multidimensions still remains open and our
results show that the global boundedness of classical solutions can be ensured if the
interaction between v and w is described by the ratio-dependent functional response.

From mathematical point of view, the structure of (1.1) with (1.2) is analogous
to the following prey-taxis system:

up = d1Au — vF (u,v) + f(u), reQ, t>0,
(1.5) vy =daAv —V - (xvVu) + yoF (u,v) —vh(v), x€Q, t>0,
gu — v —, z €0, t>0,

where F(u,v) is the functional response function which may depend on w only like
Holling type I, II, and III or on both w and v like the ratio-dependent response
(cf. 1[40, 48]). The system (1.5) is a simplified version of the original prey-taxis
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system proposed in [31], and has been studied from different analytical perspectives
for different functional response functions in the literature (cf. [3, 45, 25, 35, 51,
49]). Among other things, if F'(u,v) is prey-dependent only (i.e., depends on u only),
small-data global solutions in three or higher dimensions were attained in [49, 51].
However, if F'(u,v) is ratio-dependent, large-data global solutions can be attained in
any dimensions [13]. For results of other classes of taxis models in the predator-prey
system such as indirect prey-taxis or predator-taxis systems, we refer to [2, 21, 38,
47, 52] and references therein. Compared to the prey-taxis system (1.5), the alarm-
taxis system (1.4) has more intricate coupling structures where, in particular, a priori
IVu||p estimate is required to derive ||wl||p- which, however, in turn affects the
gradient estimates of u. Hence, how to untie these tangled coupling estimates to
deduce the a priori estimates of ||[Vul/p~ and ||Vv||p~ is the key to obtaining the
global boundedness of solutions for (1.4), where the estimate of ||Vv||p~ is the main
new challenge arising in the model to overcome. We have not found existing works
addressing how to obtain the L°°-estimates for the gradient of predator densities.
In this paper, we shall first fully capture the ratio-dependent functional response
structure to get the global estimate of || Vu| e and hence ||v|| . Then we start from
some elegant estimates on the second-order derivative estimate of v based on works
[15, 30] to derive the global estimate of ||[Vv| pe from which the estimate of ||w]| g
follows alongside the application of Neumann semigroup smoothing properties. We
remark that a conventional method used to study the global boundedness of solutions
to taxis equations (cf. [46]) by resorting to the entropy estimates is also applicable
to establish the boundedness of v and v, but with more complicated estimates. In
this paper, we provide a simpler approach by utilizing the local-in-time integrability
of L?-norm of v,w (see Lemmas 2.3 and 2.4) resulting from the quadratic decay in
the kinetics terms and by using a second-order estimate (see Lemma 3.7).

Our first result concerning the global existence and boundedness of classical so-
lutions of (1.4) is stated in the following theorem.

THEOREM 1.1 (global boundedness). Let Q C R? be a bounded domain with
smooth boundary. Assume (ug,vo,wo) € [W(Q)]* with ug,vo,wo Z 0. Then the
problem (1.4) has a unique global classical solution (u,v,w) € [C°(Q x [0,00)) N
C?H(Q x (0,00))]® satisfying u,v,w > 0 for all t > 0. Furthermore, there exists a
constant C' > 0 independent of t such that

[u(st)llwree + o) lwree + lw(- D)L < C,
where, in addition, ||u|lp~ is independent of & and x while ||v||p~ is independent
of x.

Our next results are concerned with the asymptotical behavior of solutions to
the system (1.4). In particular, we shall explore under what conditions the positive
coexistence steady state can be asymptotically achieved. In our analysis, we just
need the positivity of parameters p; (i = 1,2,3) to ensure the global boundedness of
solutions and the specific values of p1, 2, and ps are not of importance. Hence for

simplicity, we assume that py = po = ug = 1 without loss of generality for the stability
analysis. Then the system (1.4) can be rewritten as

ut:dlAu—}—u(l—u—blv—bgu%U), xEeN,t>0,
vy =daAv —V - (uVu) +v(1 — v+ u — bow), zeNt>0,

(1.6) qwi=Aw—V-[xw@Vu+uVo)l+w(l —w+v+esgy), ©€QE>0,
%:%:%:07 x e, t>0,
(u, v, w)(z,0) = (ug, vo,wo)(x), xz e
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Depending on whether or not the secondary predator w consumes the resource u, we
divide our analysis into two cases:
(1) b3 =c3 =0: the secondary predator w does not consume the (prey) resource
u; that is, the temporal dynamics is a case of food chain.
(2) bs,cs > 0: the secondary predator w consumes the resource u; that is, the
temporal dynamics is a case of intraguild predation.
We first consider the case bs = ¢z = 0, for which one can check that (1.6) has three
types of homogeneous (constant) steady states as follows:
1. Trivial steady states: (0,0,0), (1,0,0), (0,1,0), (0,0,1).
2. Semitrivial steady states:

1-b 2 1-b 2
(1707 1)) (ﬁ? ﬁ70>7 (07 ﬁ7 ﬁ)

3. Coexistence steady state: (u*,v*,w*) with
” 14 b1by + by — by N 2 — by " 3+ b1
= s Vo= —_—, w = I
14061+ b 14061+ b 1461+ by

where u*,v*, w* are all positive if

(1.7)

(18) 0<by<?2 and 0<b; <1+4biby+ bs.

For the positive coexistence steady state (u*,v*,w*) defined in (1.8), we have the
following global stability result.

THEOREM 1.2 (global stability for the case of food chain). Assume the assump-
tions in Theorem 1.1 hold, and let (u,v,w) be the solution of (1.6) with by =c3=0.
If the parameters by, by satisfy (1.8) with

(1.9) (by —1)? + (by — 1)? < 4,

then there exist & > 0 and x1 > 0 such that whenever £ € (0,&1) and x € (0,x1) it
holds that

lu(-,t) —u*| g + [[v(-, ) — v*|| g + Jw(-,t) — w*|| g < Cre” 7" for all t > to,
with some tg >0, where Cy and o1 are positive constants independent of t.

Remark 1.3. We underline that the admissible regime for the parameters b1,b2 >0
satisfying (1.8)—(1.9) is nonempty and can be explicitly identified; see Figure 1.

Next, we explore the global stability of solutions in the case b3,c3 > 0. For
simplicity, we further assume that c3 = 1 without loss of generality. Then there are
also three types of homogenous steady states as follows:

1. Trivial steady states: (0,0,1) and (1,0,0).

2. Semitrivial steady states: (0, };2’;‘7 143172)7 (};gi,lf—bl,O) and (1 — 2bs +

202 +b3+/2(1—b3) 0 2b3+,/2(1—b3))

1+b3 1463
3. Coexistence steady state: (uy,vs,wy), where u,, v, w, satisfy the following
equations:
1—uy —bivs, — b3 u:i*w* =0,
(1.10) 1— v, 4+ uy — bow, =0,
l—wi+v+ - =0.

We note that (u.,vs,w,) can be explicitly solved and, furthermore, if b; and b3 are
sufficiently small, (1.10) has a unique positive solution (u.,v.,w,) (see the appendix
for details), for which we have the following global stability result.
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Fi1G. 1. lllustration of the admissible regime (shaded region) for parameters bi,ba > 0 satisfying
(1.8)—(1.9).

THEOREM 1.4 (global stability for the case of intraguild predation). Let the
assumptions in Theorem 1.1 hold, and let (u,v,w) be the solution of (1.6) with bs >0
and cs = 1. Assume that (u., v, w,) is the positive coexistence steady state satisfying
(1.10). If

1
(1.11) b1 and by are sufficiently small, 0 <by < V2,

then there exist £&o > 0 and x2 > 0 such that whenever £ € (0,&2) and x € (0,x2) it
holds that

(-, t) — s Lo + [[V(-, ) = vi|| Lo + |Jw(-, ) — wa| Lo < Coe™2t  for all t > Ty,
with some Ty > 0, where Cy and oo are positive constants independent of t.

The rest of this paper is arranged as follows. In section 2, we show the local
existence of solutions and prove some basic properties of solutions. In section 3,
we demonstrate the details of obtaining the necessary a priori estimates of solutions
and prove Theorem 1.1. Then in section 4, we prove the global stability of coexis-
tence steady states under certain conditions stated in Theorems 1.2 and 1.4 by em-
ploying the Lyapunov functional method alongside Barbalat’s lemma. The appendix
shows the existence of positive coexistence steady state under conditions imposed in
Theorem 1.4.

2. Local existence and preliminaries. In what follows, we shall use C; (i =
1,2,...) to denote a generic positive constant which may vary in the context.
Without confusion, the integration variables x and ¢ will be omitted, for instance,
fot Jo f(z, s)dzds will be abbreviated as fot Jo f(x,s). The existence and uniqueness
of local solutions of (1.4) can be readily proved by Amann’s theorem [4, 6].

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.
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LEMMA 2.1 (local existence). Let the assumptions in Theorem 1.1 hold. Then
there exists Tpnaqr € (0,00] such that the problem (1.4) has a unique classical solution

(u,v,w) € [CO(Q X [0, Thnaz)) NC*H(Q x (0, Trnaz))]?
satisfying u,v,w >0 for all t > 0. Moreover,

(2.1) if Tyax <00, then t/liTm (luC ) llwres + 0G0 lwre + Jw (-, t)]| L) = .

max

Proof. Denote z = (u,v,w). Then the system (1.4) can be written as

2=V - (P(2)Vz)+Q(z), z€Q,t>0,

(2.2) 2z —, € 0Q,t>0,
2(+,0) = (uo, v, wo), x €,
where
dy 0 0 u(py —ulu—blv—ﬁ—fv)
Pz)=| —¢v do 0], Q»)= v(pe — v + u — bow)
—xvw  —xuw 1 w(ps — psw + v+ 320)

The matrix P(z) is positive definite for the given initial data, which means the system
(2.2) is uniformly parabolic. Then the application of [4, Theorem 7.3] yields a Tpqz >
0 such that the system (2.2) possesses a unique solution (u,v,w) € [C®(Qx [0, Traz))N
C?H(Q x (0, Trnaz))]?-

Next, we prove the positivity of u,v, and w. Applying the strong maximum prin-
ciple to the first equation in (1.4), we have u(z,t) > 0 for all (z,t) € Q x (0, Thnaz),
due to the fact ug = 0. Moreover, we can rewrite the equation of v as follows:

ve —doAv+EVu - Vo+ U(z,t) =0, x€Q,t€ (0, Thax),

(23) % :0’ IE@Q,tE (O,Tmax)7
v(2,0) = vo(z) > 0, zeQ,

where U(z,t) = EvAu — v(pue — pov + u — bow). Then the strong maximum principle
applied to (2.3) yields v(z,t) > 0 for all (x,t) € Q X (0, Tpqaq)- Similarly, we can derive
that w > 0 for all (x,t) € Q x (0, Tnae)- In addition, since P(z) is a lower triangular
matrix, the blow-up criterion (2.1) follows from [5, Theorem 5.2] directly. Then the
proof of Lemma 2.1 is completed. ]

LEMMA 2.2. Let the assumptions in Theorem 1.1 hold. Then the solution of (1.4)
satisfies
(2.4) Ju(,0)ll e < K

for all t >0, where K :=max{1, ||ug||p=}, and

(2.5) limsupu(-,t) <1 forall x € Q.

t—o0

Proof. The results can be easily obtained based on a comparison principle applied
to the first equation of (1.4) along with the nonnegativity of u,v, and w, but we omit
the details for brevity. |

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/18/23 to 158.132.175.50 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

SOLVABILITY AND STABILITY OF AN ALARM-TAXIS SYSTEM 2845

LEMMA 2.3. Suppose the assumptions in Theorem 1.1 hold. Then the solution of
(1.4) satisfies

(2.6) lo(, )|z < Kp  for all t€ (0, Thaz),
and

t+7 .
(2.7) / / 2< —1 for all t€ (0,Tmaz),

where Ky = ||vg| 1 + 42

K+1)%|Q .
%ﬂl, T s a constant such that

i~ Tmaz_ if Tmaw )
(28)  O<r<min{l,Tpe} and Tpee = T s
%) if Tyae = 00.

Proof. Integrating the second equation of (1.4) by parts with respect to x € {2,
and using the fact (2.4) as well as the positivity of (u,v,w), we end up with

v—i—/v—i—ug/ ug—l—l/v—i—/uv—bg/vw

S(Mz—l—K—i—l)/v

Q
2
S@/U2+(u2+K+1) \QI’
2 Jo 2412

which gives

d/ / pe [ o _ (p2+ K+1)%9
2.9 — v+ | v+— [ vV < .
29) dt Jo Q 2 Ja 210

Applying the Gronwall inequality to (2.9), we derive

+K+1)%9
(2.10) /Uguvo||y+ (2 : DA _ g,
Q H2

which yields (2.6). Integrating (2.9) over (¢,¢+ 7) and using (2.10), one has

/t+r/v <7 vt (M2+K-‘r1) |Q‘T < 2“@0”[} i 2(M2+K+1)2|Q| - 4K,

13 T e 13 T ope

which gives (2.7). o

LEMMA 2.4. Suppose the assumptions in Theorem 1.1 hold. Then there exist two
constants Ko >0 and K3 >0 which are independent of & and x such that the solution
of (1.4) satisfies

(2.11) |w(-,t)||pr < Ko for all t€ (0, Thar),
and
t+7 _
(2.12) / /w2§K3 for all t € (0, Tynaz),
Q

where T and Tm(w are defined by (2.8).
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Proof. Multiplying the third equation in (1.4) by bs, adding the result to the
second equation in (1.4), followed by an integration, we have

d
7 (v+bgw)+u2/v2+b2u3/w2
Q Q Q

uw
=,u2/v—|—/uv+bg,u3/w—|—b263 _
Q Q Q QUtwW

Adding [,(v+ bow) to both sides of (2.13), along with (2.4) and (2.6), one obtains

d
7 (v+bgw)+/(v+bgw)+u2/v2+b2u3/w2
tJa Q Q Q

uw

:(uz-i-l)/v—i—/uv+bg(u3+1)/w+b203 —
Q Q Q

QuU+w

(2.13)

v+b2(u3—|—1+03)/w

S(u2+1+K)/ i

Q

S(u2+1+K)K1+b2(M3+1+C3)/w
Q

b ba(ps + 1+ ¢3)?|Q2
S(uz+1+K)K1+2—“3/w2+ 2(1s 3)°| |7
2 Ja 243

which gives

(2.14)

d b b 14 ¢3)2|0)
I (U+b2w)+/(v+b2w)+2—u3 w? < (e +1+ K)K; + 2(ps+1+c3)”| |.
dt Jq Q 2 Jo s

With Gronwall’s inequality applied to (2.14), one has

ba(ps +1 2|0
(2.15) /(U+b2w)§/(U0+bzwo)+(ﬂz+1+K)K1+ 2(4t3 2;_63) | |,
Q Q 3

which gives (2.11) by defining

L \2
*lwollzy + ballwoll oy + (2 + 1+ K) Ky 4 22leeteal 12
= ;s

(2.16) Ky:

Then integrating (2.14) over (¢,t + 7), and using (2.15) and (2.16), we derive that

b t+1 b t14 2Q
2%/ /wZS/(Hbsz {(u2+1+K)K1+ 2(p2 ¢s)] qT
2 Q Q 23

ba(ps + 1+ ¢3)%[9)
2p3 ’

<by Ko+ K1+ (p2+1+K)K; +

which gives (2.12) by letting

2 b +14¢3)%Q
(2.17) K5 := . <b2K2 + (e +2+ KK + 2 (13 3)°| |) _
bapus 23
The proof of Lemma 2.4 is now completed. O

For later use, we list some well-known LP-L9 estimates for the Neumann heat
semigroup (cf. [50]).
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LEMMA 2.5. Let (et‘m)tzo be the Neumann heat semigroup in ), and let Ay >0
denote the first nonzero eigenvalue of —A in Q under Neumann boundary conditions,
where d is a positive constant. Then for all t > 0, there exist some constants ~; (i =
1,2,3,4) depending only on Q such that

(i) If 2<p< o0, then

(2.18) Ve 2 o < (1 +¢ 3G 8))e M| V2| 1

for all z€ WH1(Q).
(ii) If 1 <q¢<p< o0, then

1

(2.19) Ve 2| o < o (1 +t—r%(%—%)) e~ 2| Lo

for all z € L1(Q).
(iii) If 1 <g<p<oo, then

_n(l_1
(2.20) ez e <5 (14472675 |2l

for all z € LI(Q).
(iv) If 1 <g<p<oo, then

1 n (1

(2.21) 1494 - 2| 1o < 74 (1 pphE r%>) e~ 1|2 L

for all z € (C§°(Q2))™.

3. Proof of Theorem 1.1. In this section, we shall derive the global a priori
estimates of solutions to (1.4) which enable us to extend local solutions to global ones.
Since the global stability analysis in the next section requires us to elucidate how the
upper bounds of |[v||~ and ||w|/p~ depend on the system parameters, we shall keep
the dependencies of relevant estimates on the system parameters for later use although
estimates uniformly in time will suffice to obtain the global existence/boundedness of
solutions.

3.1. Boundedness of ||v(+,1)|| L. Since the conditions imposed for the global
stability of coexistence steady states shown in section 4 depend on ||v(,t)]|| L, we shall
detail the dependencies of the upper bound of ||v(+, )|/~ on the system parameters
as transparent as possible for later use.

LEMMA 3.1. Let the assumptions in Theorem 1.1 hold, and let (u,v,w) be the
solution of (1.4). Then there exist two positive constants Ky and K5 which are inde-
pendent of & and x such that

(3.1) IVullpz < K4 for all t € (0, Trax),
and
t+71 .
(3.2) / / |Aul? < K5 for all t € (0, Tas),
t Q

where T and Tm(w are defined in (2.8).
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Proof. Multiplying the first equation of (1.4) by —Auwu and using the fact that
llu(- t)||pee < K in Lemma 2.2, we end up with

th/ |Vu‘2_|_d1/ | Au|? Z—Ml/ (1—u)Au+b1/quAu+b3/Q;j_7wwAu
SK[u1(1+K)+b3]/ |Au|+b1K/v\Au\
Q Q

d K2 14 K) 4521210 B2K2
<= [ |Au)?+ [ ( +d ) +b5]°| ‘_~_ 1d /1}27
Q 1 1 Q
which gives
d 23 K> 9Ky (1 4+ K) + bal2|O
(3.3) i/ |Vu|2+d1/ |Auj? < 21 /1)2—1— (1 (14 K) + b3]?| |
dt Jq Q dy 0 a1

On the other hand, using (2.4) and Young’s inequality, we have

K2
/|Vu|2:/Vu-Vu=—/uAu§K/|Auléﬁ/|AU|2+7\Q|7
Q Q Q Q 4 Jo d

which, substituted into (3.3), gives

G Lt [ v 2 [ jaup

2b2K2/ . K2(2 [m L+ K) + 03?0 +[9)
< Ve +
d1 Q dl

(3.4)

Then applying Gronwall’s type inequality (e.g., see [44, Lemma 3.4]) and using the
fact (2.7), from (3.4), we obtain (3.1) with

(3.5)

K4 =

2r+1 [(4b?K2K; K2 (2[ui(1+ K) +bs3)?|Q| + |Q
HVUO”%}"‘ T ) 1 1 + ( [.ul( ) 3] | | | |)
d1M2 dy

Now we integrate (3.4) over (t,t+7), and use (2.7) as well as (3.1) to obtain for all
t € (0, Thnaz) that

t+7 22 [ttT 1+ K bs]<(2 Q
3d1/ /\Au|2 /\V 24 2bK/ / (2[pa (1 + ;+ 3)21Q] + |Q])
1

L8 2K2K, +K2 [ (1+ K) + b3]?|Q] +[Q])

< K2 7
4 d1M2 d1
which gives (3.2) with
4 SVEK2K, K2 (2Qui(1+ K)+b3)%|Q| + |
3d; dy s dq

Then we complete the proof of Lemma 3.1. O

LEMMA 3.2. Let the assumptions in Theorem 1.1 hold, and let (u,v,w) be the
solution of (1.4). Then there exists a positive constant Kg independent of x such that

(3.7) oG, )|z < Kg  for all t € (0, Thaz)-
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Proof. Multiplying the second equation of the system (1.4) by v, integrating the
result by parts, and appealing to Young’s inequality, we obtain

1d
3% v +d2/\Vv| +,u2/v +b2/ w
—§/vVu Vv+u2/v +/uv
§—/ |V’u|2+—/v2|Vu|2+(K+u2)/v2
2 Ja Q
da 2 52 4 2 4 2 2
<3 [ 9o+ v Vul') "+ (K + ) [ 02
2 Q Q Q
which gives

d 3 3
v +d2/ Vo] < </ 114) (/ |Vu|4> +2(K+u2)/v2.
dt Q Q Q

Using the Gagliardo—Nirenberg inequality in two dimensions, we can find two positive
constants Cy and Cy such that

(3.8)

(3.9) [ol[7e < CL(IVol L2 [[v]l 22 + (o)1)
and
(3.10) IVul|7a < Col|Aul| 2| Vul| L2 + [Vl 72),

where the boundary condition 3“ |ao =0 has been used to obtain (3.10). Then using
the fact ||Vu|p2 < K4 (see Lemma 3.1), (3.9), and (3.10), one has

S (L) ()

£2C1Cy 2 2
< a ([IVol[el[v]lz + [[v][72) ([[Aul 2 [Vul L2 + || Vul[72)
(3.11) €2C1C, Ky 20,0, K2
< diz|\V11||L2||11HL2||AUHL2 + d724||Vv|IL2 vz
010K, €20,0,K2
+ T”UHQLQHAUHLQ + TW”H%Z
< dao|| V|72 + Csllv[|7:2 (| Aul|Z2 + Callv]|72
with C3 = 52010252“2 (Ltd3) and Cy = (£C10:K7) +;;+2d§5 C102K4 Substituting

(3.11) into (3.8) and using Young’s inequality, we derive “for all t € (0, Tmm) that
d, 2 2 2 2
(3.12) 7 10lz2 < Csllvliza [ Aullze +[Co +2(K + pa)][lv]| 7.

By virtue of (2.7), there exits a constant tg € [(t — 7)4,t) for any ¢ € (0, Tyaz) such
that

4K
(3.13) o to) 2 < Cs o= max{nvon%z,l}
HaT
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in both cases t € (0,7) and ¢ > 7, where 7 is defined in (2.8). We can also derive from
(3.2) that

to+71
(3.14) / /|Au(-,s)\2gK5.
to Q
Noticing the fact to < t < to + 7 < to + 1, we integrate (3.12) over (to,t) alongside
(3.13)—(3.14) and get
t 2
||v(-,t)\|%2 < ||v(-,t0)||2LgeC3 Jig 1Au ()} 2 ds+Cat2(K +p2) < 05603K5+C4+2(K+u2)

for all ¢ € (0, Tynas), which gives (3.7) by defining

C3K5+Cy+2(K+ua)
2

(3.15) Kg:= 05%6

This completes the proof. 0

LEMMA 3.3. Let the assumptions in Theorem 1.1 hold, and let (u,v,w) be the
solution of the system (1.4). Then there exists a positive constant K7 independent of
X such that

(3.16) IVu(-,t)||ps < Ky for all t € (0, Thnaz)-
Proof. To begin with, we rewrite the first equation of (1.4) as follows:
(3.17) ug — di Au+u=F(x,t)

with F(z,?) == pu(l — u) — byuv — by 4% + u. Then by (2.4) and (3.7), for all
t € (0,Tynaz), one has

uw
I CDlee = [l =) —bruv = by =+ ul|
(3.18) <K+ E)|QF + b K| 12 +b:K|Q[% + K|Q|F

<[ (14 K) 4 bg + 1]K|Q% 4 by K K.

We apply the variation-of-constants formula to (3.17) and obtain
t

(3.19) u(-,t) = e Aty 4 / el A=DE=s) p(. g)ds.
0

Then using the estimates (2.18) and (2.19), one can derive from (3.19) that
IVu(-,t)] s

< || Vel A=ty || o + /Ot [VeldA=DUE=) P (. 5)|| ads

<e | Ve Bug| s + /0 VeI ) ads

< 271e_d1)‘1t||Vu0||L4 + ¥ /Ot (1 +(t— s)_%)e_dlh(t_s)||F(-,s)||des

< 271||Vuo| £+ + 72 ([m(l + K) + by + 1K|Q|* +b1KK6) /OOO (1427 1)e hNzg;

<oV lze + 75 (I (L4 K) + b5+ UKIQJ +6KKs) (14 T/4) (A1)
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where T" denotes the usual Gamma function defined by I'(z) = fooo t*~te~tdt. This
gives (3.16) with
(3.20)

K7 :=27|Vug|ps + =5 ([11 (1 + K) + b3 + 1K|Q[% + b KKg) (1 +F(1/4)(d1/\1)%)7

dq )\
and completes the proof of this lemma. O

LEMMA 3.4. Let the assumptions in Theorem 1.1 hold, and let (u,v,w) be the
solution of (1.4). Then there exists a positive constant Kg independent of x such that

(3.21) o)l ps < Ks  for all £ € (0, Thnag)-

Proof. Multiplying the second equation of (1.4) by v? and integrating the result
over ) along with (2.4) and (3.16), we get

1d
3dt/” +2d2/v|Vv|2+u2/
_25/ v*Vu - Vv—l—,uz/v +/ uv —bg/vw
Sdg/v|VU|2 / v?|Vul® + (u2+K)/
Q

gdg/v|Vv|2 & (/ ) </|Vu|) —&-uz—i—K)/Qv?’

52
S@Agww 7Hﬂm+wﬁmwﬂm

which implies

d 4dy 3 52
(322 ol + 22 IVoEIs + 3mlelbs < ST ol + (s + K)ol
From (3.7), it follows that |v2(-,¢ [l (-, )”1%2 Kg Then applying the
Gagliardo—Nirenberg inequality and Y(gung s inequality, we can derive that
3K2€2 3K2¢%
ol = o
3K2¢2C 4 2
< PG out Lt + ot
(3.23) 2 L3
3K35201K6 3, 4 3K$§201Kg
< SIS0, 4 2T
ds do
4d
< —2||sz 7> + Cs,
where Cy = (K754 ;11{6)3 3K2¢ dZClKG . On the other hand, using Young’s inequality,
one has
(3:24) [3(p2 + K) + 1[[vl|7a < 3pavllzs + Cs,

where C3 = 47415 [3(u2 + K) + 1]4|Q|. Then adding [|v]|35 on both sides of (3.22)
and substituting (3.23)—(3.24) into the resulting inequality, we obtain

d
Il + [IvllZs < Ca + Cs,

1
which immediately gives (3.21) with Kg:= (||vg||3s + C2 + C3)* . This completes the
proof of Lemma 3.4. 0
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LEMMA 3.5. Let the assumptions in Theorem 1.1 hold, and let (u,v,w) be the
solution of system (1.4). Then there exists a positive constant Ko independent of x
such that

(3.25) [[o(;t)]|pe < Ko  for all t € (0, Thnaz)-

Proof. Using Lemma 3.4 and the fact 0 < u < K (see Lemma 2.2), one has

uw
NE(G, )]s = ||/1,1’U,(1 —u) — byuv — b3U+U} —|—u||L3
(3.26) <K+ EK)|Q5 4+ b1 K ||| zs + bsK|Q5 + K|Q3

<[ (1 + K) + b3+ 1]K|Q|5 + b K Ks.

Taking V on both sides of (3.19) and using LP-L? estimates (2.19), we have from
(3.26) that

IVu(, 8] L~

t
< Vet A D+ [ VA ) s
0
t
< el + [ ITIEAPC 8 s
0
t
Sarllollse 72 [ (14 (¢ 5 BB ) 10ds
0

Sclllu()l\Wl,oo+72([u1(1+K)+b3+1]K\Q|%+b1KK8)/ (1427 8)e BMzg,
0

< exlfug w5 (I (14 K) by + KO 401 KEKs) (14 (i) T (1/6)),

which gives
(3.27) [Vu(, )L~ < K
with

K := cifluowr.

We rewrite the second equation of (1.4) as follows:

(3.28) vy — daAv +v=—EV - (V) + pev(l — v) + uv — bavw + v.

Then applying the variation-of-constants formula to (3.28), one has
v(-,t) = el Dty f/ot el 22Dy . (yTu)(-, s)ds
+ /Ot el 2D 1)1y + 1 — pigv + u — bow)](-, s)ds
<elRA—Dty f/t eld2A=1)(t=5)y7 . (vVu) (-, s)ds
0

t
_|_/ e(d2A-1)(t~s) [U(Mz + 1+ U)]('v s)ds,
0

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/18/23 to 158.132.175.50 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

SOLVABILITY AND STABILITY OF AN ALARM-TAXIS SYSTEM 2853
which implies

t
[0(-,8)l| Lo <[let® 2D ug|| oo +€/ e =ADE=)T - (0Vu) (-, 5) || L~ ds
(3.29) . 0
- / et =AD" (g + 1+ w))(-, )| Lo ds.
0

Using (2.20) and (3.21), we have
(3.30) et %227V g | Lo < 23] Juo| o

and

t
/ [|e(2A=DE=) 41y 4+ 1 4 )] (-, 8)|| Lo ds
0

(3.31) Sl 1 H (0040 ) R

+oo
< (M2+1+K)K8’Y3/ (1+273)e ?dz
0
= (p2 + 1+ K)Kgy3[1+T'(2/3)].

On the other hand, using the LP-L? estimate (2.21) alongside the fact that C§°(2) is
dense in LP(Q) for any 1 <p < oo and estimates (3.21) and (3.27), we have

t
5/ el =ATVEIT - (0Vu) (-, )| e ds
0

Sém/ (L4 (t— )78 )e™ =M o, 8) || 1|Vl 8) || L~ ds
(3.32) 0

5

<& KsKj / (1+ z_ﬁ)e_dﬁ‘lzdz
0

= SRSy R (1/6) (daA) )
211

Substituting (3.30), (3.31), and (3.32) into (3.29), one has (3.25) with
Ko :=27ys[vol| L + (p2 + 1+ K) Kgys[1 +T(2/3)]

SRS (14 r/6) (@:a0?). 0

+ do X1

Remark 3.6. From the definitions of K4, K5, and K7, we see that ||v(-,t)||p= <
Ko <co(l+b+ b%) with some constant ¢y > 0 independent of b;. This result will be
used later in the stability analysis in section 4.

3.2. Boundedness of ||w(:,t)|| . To obtain uniform-in-time boundedness of
[lw(-,t)|| <, we first give some higher order derivative estimates of u,v below.

LEMMA 3.7. Let the assumptions in Theorem 1.1 hold, and let (u,v,w) be the
solution of (1.4). Then there exists a constant K19 >0 independent of t such that for
allp>1

t+1 -
(3.33) / ID2ul?, < Ko for all ¢ € (0, Tas)
t
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and

t
(3.34) / e P Aullh, < Kig for all t € (7, Thnaz),

where T and Tmax are defined in (2.8).

Proof. We rewrite the first equation of (1.4) as follows:

up —diAu+u=F(x,t), z€Qt>0,

gu =0, z €N t>0,
u(z,0) =up(x), r €,
where
F(x,t):=pu(l —u) +u—bruv — bsuw
)= 1 wtw

Then by the boundedness of |F(z,t)|(due to the boundedness of u and v; see (2.4)
and (3.25)), we can obtain (3.33) by [30, Lemma 2.3]. Moreover (3.34) follows from
the maximal Sobolev regularity property; see [15, Lemma 2.5]. d

Next, we shall show the following lemma.

LEMMA 3.8. Let the assumptions in Theorem 1.1 hold, and let (u,v,w) be the
solution of (1.4). Then there exist two positive constants K11 and Ko independent of
t such that

(335) HV’U(',t)HLZ S K11 fOI‘ all te (O,Tm(n«)
and
t+7 _
(3.36) / |Av||2: < K12 for all t € (0, Traz ),
t

where T and Tmaw are defined in (2.8).

Proof. Multiplying the second equation of (1.4) by —Awv and integrating the result
by parts, we have

d
&/ |Vv\2+d2/ |Av)?
) Q Q

(3.37
=¢ | V- (wVu)Av — H2/ vAv + ug/ v2 Ay — / uvAv + bg/ vwAD.
Q Q Q Q Q

Noting the facts (2.4), (3.25), and (3.27), and using Young’s inequality, we can derive
that

Ef V-(wWVWuw)Av=¢ [ Vv -VuAv+E€ | vAulAv
Q Q Q

(3.38) < ¢K: / Vol | A] + €K / |Aul|Av|
Q Q

2 K* 2 2K2
§@/|AU|2+£( 8) /|V’U‘2+£ 9/|Au|2
2 Ja do Q d2  Jo
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fug/’uAv+p2/UQAvf/uvAerbQ/vav
Q Q Q Q

(339) S(M2K9+M2K§+KK9)/ ‘A’U|+b2K9/U}|AU|
Q Q

d W2K2
gi/|m|’2+72 9/w2+Cl,
4 d>  Jo

2 K K5+ KKo)“|Q
WlthC (2 9+N2d29+ 9)%19|

(SUSF ) [ (S0 1) [ oa,

(3.40) < (52%28) + 1) Kg/ﬂ |Av)|

s@/mvm@
8 Jo

and

. On the other hand, Young’s inequality gives us

with Cy := 2EEDTHBITRI0 gpgtituting (3.38), (3.39), and (3.40) into (3.37), one

2

has
d 2K2 202K 2

(3.41) 7/ Vo2 + /|W|2 /\A <& |Au|2+g/w2+01+02.
dt O d2 Q Q

2
Using (2.12) and (3.2), and applying Gronwall’s type inequality (cf. [44, Lemma 3.4])
0 (3.41), one gets (3.35) directly. Then integrating (3.41) over (¢,t + 7), we obtain

d t+7 2K2 t+7 2b2K2 t+7
l/ /\AU|2§/ |Vv|2+5—9/ /|Au|2+ﬁ/ /w2+(C’1+C'2)T,
8 Ji Q Q d2 Jy o da Q

which gives (3.36) due to (2.12) and (3.2). Then we complete the proof of this
lemma. d

Next, we give the estimate of |Jw(-,t)] 2.

LEMMA 3.9. Let the assumptions in Theorem 1.1 hold, and let (u,v,w) be the
solution of (1.4). Then one can find two positive constants K13 and K4 independent
of t such that

(3.42) lw(,t)|lp2 < Ki3 for all t € (0, Thaz)
and
t+7 t+7 .
(3.43) / IV (-, 5)|% +/ Jw(ss)|3s < Kis for all £ € (0, Tynas),
t t

where T and Tmaz are defined in (2.8).

Proof. Multiplying the third equation of (1.4) by w followed by an integration by
parts, one has

2
m/ /|Vw| wg/

(3.44) o
zx/(vau+wuV1})-Vw+u3/w2+/vw2+03/ .
Q Q Q owtu

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/18/23 to 158.132.175.50 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

2856 HAI-YANG JIN, ZHI-AN WANG, AND LEYUN WU

Since [Ju(-,t)||r~ < K (see Lemma 2.2), ||v(-,t)]r~ < Kg (see Lemma 3.5) and
IVu(-,t) || < Kj (see (3.27)), one can use Young’s inequality to obtain

(3.45)
X/(vau+wqu)-ngxKgKg/w|Vw\+XK/w|Vv||Vw|
Q Q Q

1
<1 / IVl + (K22 K3 / W K> / w?|Vuf?
2 Jo Q Q

and
2 2 uw? 2
(3.46) us [ w'+ [ vw® +c3 <(us+ Kg+c3) | w”.
Q Q QW+u Q

Then substituting (3.45) and (3.46) into (3.44), we obtain

d
(3.47) —/wer/ \Vw\2+2u3/w3§2X2K2/w2|Vv\2+Cl/w2,

dt Jo Q Q Q Q

where O :=2[x?(K})?K3 + 3 + Ko + c3).

Using the Gagliardo—Nirenberg inequality in two dimensional spaces, one can find
two positive constants Cy and C3 such that

(3.48) wl|7s < Cs (Vw2 llwl| 2 + [[w]|72)
and
(3.49) IVol|7a < Cs (|Av] 2Vl 22 + [[V][72) < CsKii([|Av] 2 + K1),

where we have used the fact |[Vv(-,t)||r2 < K11 in (3.35) and a result in [10, Lemma
1] for Neumann boundary conditions. Then we can use (3.48) and (3.49) alongside
Young’s inequality to obtain

2K [ w?Vol? <2 K2l |Vl
Q

<Cy (Ve flwlze + wlz:) (1Av] L2 + K1)

(3.50) S Cu|Vwl|p2[lwl| g2 (| Avl| > + CaKn [[Vwl| L2 Jwl| >
+ Callwl| 22| Av] r2 + CaKa Jwl|7

1+4C3 K3

A 2,

1
<5 IVwliZe + 28 w7z ]| AvlZ: +

where Cy = 2y?2K?K11;C2Cs. Then substituting (3.50) into (3.47) yields

(3.51)

d 1
Zllwlie + SIVwlze +2usllwlzs < 208wl AvlfZ: +

< Csllw||Z> ([Av]|Z> +1)

1+ 4C2K2, +4C,
4

lwl|Z

. 14+4C2 K2, +4C1+8C?
with Cy = 124 11: L8C3

Since ftt+T |w||2. < K3 (see (2.12)) and ftH_T |Av||2, < K12 (see (3.36)), by using

the similar argument as in Lemma 3.2, we can obtain from (3.51) that

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/18/23 to 158.132.175.50 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

SOLVABILITY AND STABILITY OF AN ALARM-TAXIS SYSTEM 2857

lw(,t)122 < Kae@sF2tes,

1

which gives (3.42) with K3 = (K3e“sf12+C)2
Integrating (3.51) over (¢,t+7), using (3.42) and ft+T [Av]|3, < K1z (see (3.36)),
one has

1 t+71 t+71 t+1
2 2 2 2
7/’ Hth2+mw/' meﬁsnwmg+ce/’ w22 (| Av2, + 1)
t t t

2
S K123 + C5K%3(K12 + 1) = K14,

which gives (3.43). d

LEMMA 3.10. Let the assumptions in Theorem 1.1 hold, and let (u,v,w) be the
solution of system (1.4). Then there exists a constant Ki5 > 0 independent of t such
that

(3.52) IVo(,t)]|pe < K15 for all t € (0, Thnaz)-

Proof. By the second equation of (1.4), one has

4
4dt/w | /|W| Vo Vo

= . _ 29, . )
(3.53) —d2/Q|W| Vo - VA §/Q|Vv| Vo V(V - (1Y)

+/V[uw(l—v)—kuv—bww]~VU|VU|2
Q
=10 + 1+ Is.

Since VAv - Vo = 2A|Vv|? — |D%v|?, we can estimate the term I; as follows:

I :dQ/ |Vo]2Vo - VA
Q

d
(3.54) :52/ |Vq;\2A|VU|27d2/ |Vo|?|D?v|?
Q
d
= 22/ |Vu |28‘W| S——/ |V |Vol? |2 — dz/ |Vl D?v|%.

Using the facts ||u(-,t)||p=~ < K (see Lemma 2.2), ||v(-,t)||r~ < Ko (see Lemma 3.5),
and ||Vu(-,t)||L~ < K§ (see (3.27)), one can estimate terms Iy and I3 as follows:

(3.55)
I = —g/Q |Vo]Vo - V(V - (vVu))

:£/V\VU|Q~VUV-(UV1L)—|—§/ |Vu|2?AvV - (vVu)

Q Q

SE/ |Vv||V|V’U|2|(K§|V”U|+K9|Au\)+\@€/ [Vol?| D?0| (K5 [Vu| + Kol Aul)
Q Q

d d 462 (K52 462 K2
<Zz/ |V|Vv|2|2+£/ |V’U|2‘D2U|2+7§( 3) /\Vv|4+7g 9/|Vv\2|Au\2
Q

d 4&-2 * _|_ K 52
<& [ 0wep+ 2 [ opipnep + SAESEEEE gy £ [ ay
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and

I3 :/ V(pov(1 —v) 4+ uv — byvw) - Vu|Vu|?
Q

ZMQ/ \Vv|4—2u2/v|Vv|4+/vVu-Vv|Vv|2+/u|Vv\4
Q Q ) Q

—bg/w|Vv\4—b2/v\Vv|2Vw-Vv
o Q

§(u2+K)/ \Vv|4+K§K9/ |Vv|3+b2K9/ |Vol3 | Vw].
Q Q Q

(3.56)

Substituting (3.54)—(3.56) into (3.53), and using Young’s inequality, we end up with

d
il |w|4+d2/ \Vle|2\2+2d2/ \Vv|2|D2v|2
Q

2
(3.57) <2d, / Vo |25|V“‘ s+ /|v "

+4b2K9/ Vof? \Vw\+4K§K9/ Vo,
Q Q

where C = %Zm + 4(pe + K). With the inequality 8‘27;42 < 20|Vv|? on 00
for some constant o > 0 (see [39, Lemma 4.2]), and the trace inequality ||¢||L2(90) <
ellVellr2 ) + Cell¢llL2(q) for any € >0 (see [42, Remark 52.9]), we derive

‘25|VU|

(3.58) 2d2/ Vo dS < 40 dQ/ Voltds < & /|V|Vv|2|2+02/ Vo[,
o0

On the other hand, using Young’s inequality, we have

(3.59) 4K;K9/ |Vv|3§C’1/ Vol* + Cs
Q Q
with C3 = 27(K807K39)4|m We substitute (3.58) and (3.59) into (3.57) to obtain

d
/|v 1t 4+ 2/|V|Vu|2|2+2d2/ V|2 D?v?

(3.60) ey
< (201 + ) /|vu|4 9/|A |4+4b2K9/ Vol*[Vaw| + Cs.

Moreover, integrating by parts, noting |[v(-,t)||~ < Ky and using Young’s in-
equality, one has

(2C1+Cg+2)/ |Vt = /|Vv| Vo - Vo
:—04/UV\VU|2~VU—C4/U|V7)|2AU
Q Q
§C4K9/ |V|Vv|2||Vv|+C4K9\/§/ Vo[2[D2|

202 K2
<2 [ VIR + G [ (vepiprop+ 2R [ o
2 Q

CiK3|Q
<2 [ [9vepp+ 2 [ (vopiotel+ [ oo+ S,
2
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which gives
(3.61) (201+02+1)/Q\WI4§%/QIV\WIQ\Q /\W| |D?v)? + C4K4|Q|
Similarly, one can derive that
/|Vv|6 /|Vv\4Vv Vo
= /U|Vv| V|Vol?- Vv—/v|Vv|4Av
§2K9/Q|Vv| |V|Vol? |+\/§K9/Q|VU|4\D27J|

3
gf/ |Vo|® +4K3 </ |V|Vv|2|2+/ |Vv|2|D2v2>,
8 Ja Q Q

which entails us that

5
22 2192,,12 > 6
(3.62) /QIVIW\ | +/Q|Vv\ D202 > 32F,3/Q|Vv| .

Then substituting (3.61) and (3.62) into (3.60), we obtain

d/ i
— IVv|4+/|W| /I
dt Jo 0 128K2

CiK5|Q

2K2 .
f 9/|Au‘4+4b2K9/‘VUP‘VU/‘*FO:;‘F d2

52K9 / 1, 5dy o4 512b2K4 ) CAKE|Q)
|Aul* + \ IV >+ Cs+ 25—,
128K2 d3

and hence
(3.63)

d . . 1682K2 / o 4 B12B2KE / , 40K
e <2572 [p 229 C
dt/QWvl +/Q|Vv\ <=4 Q\ ul* + 5y Q\Vw| +C5+ iZ

where we use the fact |Au| < /2| D?u|. Then applying Gronwall’s type inequality (cf.
[44, Lemma 3.4]), and using (3.33) and (3.43), from (3.63), we get (3.52). d

LEMMA 3.11. Let the assumptions in Theorem 1.1 hold, and let (u,v,w) be the
solution of system (1.4). Then it holds that
(364) Hw(7t)||L3 §K16,

where K16 >0 is a constant independent of t.

Proof. Multiplying the third equation of (1.4) by w?, and integrating the result
by parts, we obtain

3dt/ +2/w|Vw|2+,u3/

(3.65) -
:2x/w2(vVu—|—qu)-Vw+u3/w3+/vw3+(:3/ .
Q Q Q Quwtu
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By the facts ||u(-,t)]|pe < K (see Lemma 2.2), |[v(-,t)||p=~ < K9 (see Lemma 3.5),
IVu(-,t)|| e < K§ (see (3.27)), and ||Vv||za < K15 (see Lemma 3.10), one can derive
that
QX/ w? (vVu +uVv) - Vw
Q
(3.66) §2XK§K9/ w2|Vw|+2XK/ w?| Vo] | Vw]|
Q o
S/w\Vw\ZJrZXQ(Kg)Zng/w3+2x2K2/w3|V1}\2
Q Q Q
and

3
(3.67) ug/w3+/vw3+03/ uw S(M3+K9+C3)/w3.
Q Q Q

w+u Q

Substituting (3.66) and (3.67) into (3.65) gives

d
(3.68) —/w3+3/w|Vw|2+3u3/w4§6X2K2/w3\VU|2+Cl/w3,
dt Jo Q Q Q Q

with C; := 6x?(KZ)?K3 + 3(us + Ko + ¢3). Then using the Gagliardo-Nirenberg in-
equality and Young’s inequality, and utilizing the facts [|w(-,t)]| 2 < K13 (see (3.42))
and ||Vvl||ps < K15 (see Lemma 3.10), one has

6X2K2/ w?|Vo|? < 62 K> (/ w6> (/ |Vv4>
Q Q Q

<6 K2R w? |3,

(369 <6 K RECH (Vo [ w1 + o?24)
= 6X K2R Co K ys |V || 2, + 6x 2 K2K 2, Co K,
S/Qw|Vw|2+Cg.

Then substituting (3.69) into (3.68), and adding [, w® on both sides of the resulting
inequality alongside the Young’s inequality: (C1+1) [, w® < pg [, w*+Cy, we obtain

d
—/w3+/w3§03+04,

which gives (3.64) directly upon an application of Gronwall’s inequality. 0

Next, we shall show the boundedness ||Vuv(-,t)|| . Precisely, we have the follow-
ing lemma.

LEMMA 3.12. Let the assumptions in Theorem 1.1 hold, and let (u,v,w) be the
solution of (1.4). Then there exists a constant K17 >0 independent of t such that for
all t € (0, Trnax)

(370) ||V’U(',t)||Leo §K17.

Proof. From Lemma 2.1, we know that (3.70) holds for all ¢ € (0, 7], where 7 is
defined by (2.8). Hence to prove Lemma 3.12, we need only show (3.70) holds for all
t € (7, Tmax)-
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To this end, we rewrite the second equation of (1.4) as follows:
(3.71) vy — daAv +v ==&V - (V) + pev(l — v) + uv — byvw + v.

With the variation-of-constants formula for (3.71), we obtain

¢
Vo(-,t) = Veld2A=DE=) (7)) - f/ VeldzA=DI=) 7 . (yVu)]ds

¢
—|—/ Veld2A=DE=) [0 0(1 — v) 4 uv — byvw + v]ds,

which gives

(3.72)
t
V(1) || e < [|Vel @22 DEDp( 1) || e +€ / [Vel=A=DE=) G . (vVu)]|| L~ ds

t
+ / [Veld2A=DE=9)[100(1 — ) + uv — byvw + v]|| pods

=01 4+ 0y + 3.

Using the semigroup smoothing estimates in Lemma 2.5, we first estimate the term
{1 as

(3.73) 01 =||Vel2A=DE=T)y (. 7)|| L < Ch,
and estimate the term #o as

(3.74)
t
Lo 25/ |Veld2A=DE=9)(Ty . Vu + vAw)|| Lo ds

t t
gg/ ||Ve<d2A*1><t*8>(w.vu)\|mds+5/ |Veld2A=DE=9) (y Au)|| oo dss

i=Vl1 + {2o.

Then from Lemmas 2.5, 3.5, and 3.10, and (3.27), it follows that

t
Uy Zf/ Hve(dzA_l)(t_s)(vv'VU)”LOOdS
t
gcg/ (1+ (t—s) 27 1) ([@MADE=9)|7y . V| fads
3.75 t
( ) gCQ/ (1+(t—s)_%)e_(dQ)‘IH)(t_S)HVUHLz;||Vu||Loods

t
SC?,/ (14 (t—s)~1)e (@M D=5) g

<(Cy
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and
t
lo=¢ / [Vel®=ADE9) (pAw)|| o ds
t
< 6’5/ (14 (t - s)_%_%)e_(dz)‘lﬂ)(t_s) lvAu|| Lrds
(3.76) T
gc*ﬁ/ (14 (t — 5)" 77 )e~ (@MFDE=) | Ay|| ,ds
¢ 1_1 ﬁ d2A1p (4 t
§C7/ (14— 73) " e <*8>ds+c7/ et Au? , ds.
Choosing p > 4, we can check that 2(’%_21) <1, and hence
t 11\ A _d2Mp t _ _p+2 _daMip g g
(1+(t—s) 2 P) e p1 ds <Cs (1+(t—s) 2<P*1))e pI ds

gC’Qa

which, alongside (3.34), gives £oo < Oy for some constant Cyg > 0 from (3.76). This
entails that

(377) by < Cy+ Chp.

Finally, using the boundedness of |[v(:,t)| L=, [|u(-,)|| L, and [Jw(-,t)||zs, we get the
estimate for /3 as follows:

(3.78)
¢
ly = / |Veld2A=DE=9)[100(1 — v) + uv — byvw + v]|| o ds

t
<Ci / (1+(t— s)f%fé)ef(dﬁ‘lﬂ)(t*s)||u211(1 —v) + uv — bovw + v||3ds
< Cia.

Then, substituting (3.73), (3.77), and (3.78) into (3.72), we obtain (3.70). The proof
of Lemma 3.12 is now completed. 0

LEMMA 3.13. Let the assumptions in Theorem 1.1 hold, and let (u,v,w) be the
solution of system (1.4). Then one can find a constant K1z > 0 independent of t such
that

(3.79) lw(-,t)||pe < Kyg for all t € (0, Trnaz)-

Proof. By the variation of constants formula, w can be represented as

¢
w(-,t) =eA Dy, — x/ eAVE)Y L (woVu + wuVo)
0

¢
+/ e(A=D(E=s)y, (M3+1—M3w—v+63 “ )
0 U+ w

t
<A1ty — X/ eAVUE=Y L (woVu + wuVo)
0

t
u
+/ B D=8y <M3 +1+cs > ;
0 U+ w
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and hence

t
[|w(-,t)]| Lo §||e(A*1)tw0||Loo +X/ ||e(A*1)(t*S)V (wvVu + wuVv)|| L
0

/
0

Using the well-known semigroup smoothing estimates (see Lemma 2.5), we have

(3.80)

=J1+ Jo+ J3.

u
S (M?) L “u + w)
LOO

(3.81) Jy = [le@ D twg|| Lo < Cy[|wo Lo

for some constant C > 0. Noting the facts ||u(-,t)||p~ < K (see Lemma 2.2),
lv(-,t)||Lee < Kg (see Lemma 3.5), ||[Vu(-,t)|| 1~ < K§ (see (3.27)), |[Vv(-,t)| L < K17
(see Lemma 3.12), and ||w(-,t)|rs < Ki6 (see Lemma 3.11), one can use (2.21) with
the fact that C5°(£2) is dense in LP(Q2) for any 1 < p < oo to obtain

t
Joy < X’y4/ (14 (t— s)*é)e*(/\lﬂ)(t*s) lw(vVu 4+ uVv)| Lsds
0

t
< (KoK + KEar) [ (1 (0= 5) e 800 ds
(3.82) 0

t
< Xa(Ko Ky + KK17)K16/ (14 (t — 5)~ %)~ MHD0=9) g
0

< XVa(KoK§ + KKi7) K6

. (14T (1/6) Af)-

Moreover, we can use (2.20) to derive that

t
hgwa+uww/u+@—ﬁ%w*FWmes
0

3.83 ¢
( ) gyg(u3+1+03)K16/ (1+(t_8)—%)e—(t—s)d8
0
<v3(ps + 1+ c3)Ki6(1+1(2/3)).
Then substituting (3.81), (3.82), and (3.83) into (3.80), one obtains (3.79). d

Proof of Theorem 1.1. The combination of Lemma 2.2, (3.27), and Lemmas 3.5,
3.12 and 3.13 yields a constant C; > 0 independent of ¢ such that

[us ) lwroe +[[o( D) [[wree + [w(, )| < o,

which together with the extension criterion in Lemma 2.1 proves Theorem 1.1. ]

4. Global stabilization of solutions. In this section, we are devoted to study-
ing the global stability of coexistence steady states as asserted in Theorems 1.2
and 1.4 by the Lyapunov functional method along with Barbalat’s lemma as stated
below.

LEMMA 4.1 (Barbalat’s lemma [8]). If h:[1,00) = R is a uniformly continuous
function such that tlim flt h(s)ds exists, then tli}m h(t)=0.
—»00 S

Moreover, we need higher regularity of solutions as follows.
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LEMMA 4.2. Let (u,v,w) be the unique global bounded classical solution of (1.4)
giwen by Theorem 1.1. Then for any given 0 < o < 1, there exists a constant C' > 0
such that

D)l g8 e 1y + 10 s e gy ) s gy < C-
Proof. By the boundedness of (u,v,w) (see Theorem 1.1) and the interior LP

estimate [36], we find a constant Cy > 0 such that

(4.1)

lellwzr @xgiet.itvan + 10wzt @xpiv s ivsy T 1wlwzrxgiss ivsy <C1- forall i>0.

Then the Sobolev embedding theorem with p suitably large gives
< Cs.

14 1ta _
* oM TS (Qx (L 00)) T

oMot (Qx (L 00)) * ||v”cl+a~1§“ (Qx[%,00

(42) lul -+l

Using (4.2) and applying the Schauder estimate [34] to the first equation of (1.4), we
obtain

(43) ||u||02+a’1+%(QX[i+%,i+3]) S CEﬂ for all 4 Z 07
and hence
(14 i+ oo < O

The second equation of (1.4) can be rewritten as
(4.5) ve — doAv 4+ EVu - Vo=G(x,t), z€Q, t>0,
where
G(z,t) = —&Au- v+ v(p2 — p2v + v — bow).
By (4.3) and (4.4), we have
Gl

+ 1€Vl o Cs for all i > 0.

5 (Qx[i+1,i+3]) 5 (Qx[i+1,i+3]) <

Then applying the standard parabolic Schauder estimate to (4.5), one can find a
positive constant Cg > 0 such that Hv||Cz+a,1+%( Ce for all 4 > 0, which
gives

(4.6) [[o

Qx[i41,i43]) <

Hc““v“%((zxu#w)) <Cr.

Finally, similar arguments applied to the third equation of (1.4) give us a con-
stant Cg > 0 such that ||chz+a,1+%(QX[L+OO)) < Cg, which completes the proof of
Lemma 4.2. 0

4.1. Global stability for bs = c3 = 0. In this subsection, we first show the
global stabilization of coexistence steady state in the case of b3 = c3 =0. In this case,
the system (1.6) becomes

uy =d1Au~+ u(l —u — byv), zet>0,

vy =doAv — &V - (V) +v(1 — v +u — baw), z€N,t>0,
(4.7) wy=Aw — xV - (woVu +wuVo) +w(l —w+v), z€Q,t>0,

Gu _ 9v _ Jw _ T €N, t>0,

ov — Ov ~ Ov ’
u(z,0) =up(x), v(z,0) =vo(x), w(z,0)=we(z), =z
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One can easily check that the system (4.7) has a unique constant coexistence steady
state (u*,v*,w*) defined by (1.7) provided

(48) 0<by<?2 and 1-+biby+ by >by.

Our purpose is to study the global stability of (u*,v*,w*). To this end, we introduce
the following energy functional:

(4.9) E1(8) = Tu(t) + Lo (t) + Lo (t),

where
Is(t):/ (s—s*—s*ln%), s € {u,v,w}.
Q S

The energy functional like (4.9) is the Lyapunov functional to the corresponding ODE
(cf. [11, 29]), and it can be extended to PDE models with diffusion (cf. [19, 53]) or
prey-taxis.

Then we have the following results.

LEMMA 4.3. Let the condition (4.8) hold. If
(4.10) (by —1)* 4 (by — 1)* < 4,

then there exist & >0 and x1 > 0 such that whenever £ € (0,&1) and x € (0,x1) there
holds for some Ty > 0 that

(4.11) [Ju(-,t)=u*||poe + v (- t) =0 || Loo +||Jw (-, ) —w* || oo < K19e >t for allt > Ty,

where K19 >0 and A >0 are constants independent of t.

Proof. The coexistence steady state (u*,v*,w*) satisfies equations

1—u*—bv*=0,
(4.12) 1—v"4+u* —bw* =0,
l—w*+v*=0.
Then one can check that (4.12) has a unique positive steady state (u*,v*,w*) defined
by (1.7) under the condition (4.8).
Step 1. In this step, we shall show the global stability of (u*,v*,w*) by means

of the energy functional &£;(¢). Using the first equation of (4.7) and the fact that
1—u*—bv* =0, we find

o= (1-5)

2
(4.13) = —du* |V1;| +/(u—u*)(1—u—b1v)
Q u Q

:—dlu*/Q 'VJ;'Q —/Q(u—u*)2—bl/ﬂ(u—u*)(v—v*).

Similarly, we can use the second equation of (4.7) and the fact 1 —v* + u* — bow* =0
to obtain
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(4.14)

fro- (-2

/| ”|2+£ /Vu Vv /(v—v*)(l—v+u—b2w)
Vu-Vu /Q(v—v*)QJr/Q(ufu*)(v*U*)

= —dyv*

—b2/9<v—v*><w—w*>.

Furthermore, with the fact 1 — w* +v* =0 and using the third equation of (4.7), we
have

(4.15)

tr0- [ (-)

2 . .
:—w*/ |Vw]| +XW*/ vVu - Vw +uVo Vw—!—/(w—w*)(l—w—HJ)
Q Q Q

w? w
*/ |Vwl|? */ vVu - Vw+uVu - Vw
=—-w 5 T Xxw
w Q w
- / (w—w*)* + / (v—v")(w—w").
Q Q
Then substituting (4.13), (4.14), and (4.15) into (4.9), we end up with

(4.16) 751 / XA X"~ / YB YT,

where X = (u — u*,v — v*,w — w* = (Vu“, Vv”, ww), and Aj, By are symmetric
matrices denoted by
1 b12—1 0 dlu* _§v2 u _Xw%uv
Al — b12—1 1 b22—1 , B1 — _£v2 u dQ’U* _ Xw2 uv
ba—1 1 xw™* uv xw™ uv *
0 P 7 Tz W

Next, we show that the matrices A; and Bp are positive definite and positive
semidefinite, respectively. Notice (4.10) implies 0 < by < 3. Then

1 Bl (3=b1)(1+b)
b1 B e e——
and
4—(by —1)% = (by — 1)?
A ULk i U St )

4

Therefore, A; is positive definite and there exists a constant a > 0 such that
(4.17) XA, XT > alX)2

On the other hand, after some calculations, one can derive that

dyu* &ty
2 —
_ &v'u -
2

v*(4ddrdou* — E2v*u?) - v*(4dydou — E20*||ul|% )
4 - 4

*

d2'U
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and

|B1| = — [ExPv* w v + 2w (diu* + dov*)uPo? + €2 (v*)?u? — ddidou*v*]

Y

[P v w [ul e [0]|7 0 +x*w™ (dru” + dov*) [ul[ e [[0]| 7]

NERSEINE

(€ ull}~ — ddydyu*v*]

Noticing that ||u||r« and ||v||L~ are independent of parameters £ and x (see Theorem
1.1), we can find appropriate numbers & >0 and x; > 0, for example,

2d1dyu*
§1= *1725 and
v [|ul7 e

X1= \/2d1dzu*v*/IIUH2Loo [0]17 (v w*lull Lo + w* (dyu* + dav*))

such that if 0 <& < &;,0 < x < x1, then
Adydyu™v* > ExPv w* [Jul| 7 0] 2
+xPw* (d2v” + dyw) ul|Fes 0|7 + €2 (07)? [l
which guarantees that B is a positive semidefinite matrix, and hence
(4.18) YB.YT >0.

Substituting (4.17) and (4.18) into (4.16), we obtain
(4.19) %gl () + aFi(t) <0
with
Filt) = [ (=) (0= =),

Moreover, we can show that £;(¢) > 0 for all ¢ > 0. In fact, letting ¢(z) := 2z —u*Inz

for z > 0, one can check that ¢'(z) =1 — 7 and ¢ (z) = 4. By Taylor’s expansion,
there exists a quantity n=0u + (1 — 0)u* with 6 € (0,1) such that

(420)  w—u' —u'In—- = p(u) - p(u*) = AL (u—u*)?= 27:2

_ *2>O
u* 2 (u—u)" 20,

which implies Z,(t) > 0. Similarly, we have that Z,(t) > 0 and Z,(t) > 0. Then it
follows that &1 (t) =7, (t) +Z,(t) + Zw(t) > 0.
Then integrating (4.19) with respect of ¢ over (1,00) along with &;(t) > 0, gives

o0
1
(421) / .7:1(t) < 751(1) < 00.
1 a
Then using the regularity of u,v, w obtained in Lemma 4.2, one can derive that Fi(t)

is uniformly continuous in [1,00). Then using (4.21) and applying Lemma 4.1, we
obtain

]-'1(1&):/Q(u—u*)2—l—/S](v—v*)Q—i-/Q(w—w*)z—)O as t — 00,
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which gives

(4.22) Tim ([Ju— " |2+ flo — 0 22 + w —w*2) =O.

By Lemma 4.2, we find

(4.23) lu — u*lwie + v — 0" ||wieo + [Jw — w*||1.c <Cy  for all £ > 1.

Then applying the Gagliardo—Nirenberg inequality and using (4.23), one has

1 1 1 1
(4.24) lu = u™||Loe < Collu = u™||f ool —w™[|E> < CoOF flu —w™|[ 2,
which together with (4.22) implies
(4.25) tILHOlOHu—u L= =0.
The same argument gives us that

(4.26) Jim (o — "] g + [l — 0" 1) =0.

Step 2. In this step, we shall show that the convergence rate is exponential. In fact,
(4.25) implies there exists 1 > 1 such that
3u*

2

%gn:[equ(lfH)u*]g for all ¢t >¢;.
Then by (4.20), one has

2 9 U 2 9
w2 <u—utf —utln — < = —ut)2.
9u*(u u ) <u—ut—u nu*_u*(u u*)

(4.27)

Similarly, using (4.26), there exist two constants to > 1 and ¢3 > 1 such that

v 2
(4.28) —(u— u*)? <v—ov* — viln— < —(v— v*)?  for all t > to,
v v* T v
and
2
(4.29) S (w—w*)? <w—w* —w* ln% < E(w —w*)? for all t > t3.

By the definition of & (t) and Fi(¢) along with (4.27), (4.28), and (4.29), we can find
two positive constants a; and asg such that

(4.30) a1 Fi(t) <&Ei(t) < anFu(t)
for some t >t =max{t,t2,t3}. Then the combination of (4.19) and (4.30) gives

d « _
— — < fi 1 t>
dtgl(t)+ a251(t)_0 or all t>t¢,

which implies for all ¢t >¢
(4.31) Ei(t) <& (e 2D < Cye st
Then it follows from (4.30)—(4.31) that

1 o
Filt) < —& (1) < %e*@t

aq aq

for all t > ¢,
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which, alongside the definition of Fi(t), gives

b for all t>t.

C3 _o
(4.32) lu—wl[3e + o= o172 + [lw — w||7 < —Se7 7
1
Then combining (4.24) and (4.32), one can find there exist two positive constant Cy
and a3 such that

(4.33) lu(-,t) — u*| L < Cye™ " for all t >¢.
Similarly, it holds that
(4.34) lo(-,t) —v*||ne + [ w(-,t) — w*| L= < Cse™**  for all t>¢.

Combining (4.33) and (4.34) gives (4.11) and hence completes the proof. |

4.2. Global stability for bz > 0, c3 > 0. In this subsection, we investigate
the large time behavior of solutions for the system (1.6) with b3 > 0 and ¢z > 0. For
simplicity, we assume cs = 1. We underline from Remark 3.6 that ||v]| e~ is bounded
by a constant independent of b; as b; is small. Hence, if by > 0 and b3 > 0 are
suitably small, 1 — b3 — b1 ||v|| e > 0 is warranted. To derive the stability in the case
of b3, c3 >0, we first derive a lower bound estimate for u.

LEMMA 4.4. Let (u,v,w) be the unique global bounded classical solution of (1.6).
Let by >0 and bs > 0 be sufficiently small such that 1 —bs — by||v||L~ > 0. Then there
exists a constant to € (0,00) such that

(4.35) u(w,t) >min{a,1 — bz — by ||lv]|z=} for all (x,t) € Q x (tg,00)
and
(4.36) litniinfu(m,t) >1—bg—by|jv||p~ forallze€Q,

where @ =min,cqu(x,to).

Proof. By the strong maximum principle applied to the first equation in (1.6),
there exists a constant ¢y > 0 such that min g u(x,to) =@ > 0. For convenience, we
denote K =1 —by]|v|| g — b3. Then we consider the following problem:

utfdlAu:u(l—ufblvf bgw)zu(leu), x €Ot >tg,

u+w

(4.37) u ), x €00, t > to,

v

u‘t:to :u((E,to), x €.

Let a(t) be the solution of the following ODE problem:

D — G(K —a), t>to,
ﬁ(to):ﬁ>o,

which has the explicit solution @(t) —xa—rgy Such that

_ K
1+(E-1)e

a(t) > min{a, K}, t > to.
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Recall that u(x,ty) > 4. Then @ is a lower solution of the following PDE problem:

UY — di AU =UY(K —U°), ze€Q,t>t,

(4.38) A (,1) =0, z €00t > 1,
UO(.’E,to):U(.’E,to), I'GQ,

and consequently,

(4.39) a(t) <Uwz,t)  for all (z,t) € Q x (tg,0).

Applying the comparison principle to (4.37) and (4.38), and using (4.39), one has
min{a, K} <a(t) <U(z,t) <u(w,t) for all (z,t) € Q x (tg,00),

which indicates (4.35) and (4.36). ad

Next, we shall show that the coexistence steady state (us,vs,wy) is globally
asymptotically stable under some conditions. Similarly, we introduce the following
energy functional:

(4.40) E(t) = Tu(t) + To(t) + Tu(t),

where

js(t)z/ (s—s*—s*ln8>, s € {u,v,w},
Q s

*

and (U, Vs, wy) = (uf,v],wy) is defined in (A.1). Then we have the following
results.

LEMMA 4.5. Let (u,v,w) be the solution of (1.6), and let (u.,vs, ws) = (uf, v}, w7)
be the coexistence steady state defined in (A.1). If (1.11) holds, then there exist &5 >
0,x2 > 0 such that the solution (u,v,w) will exponentially converge to (., vy, W) in
L®-norm as t — oo whenever 0 <& <& and 0 < x < xa2.

Proof. Using the first equation of (1.6) and the fact that 1—u.—byv.—bz 35~ =0
in (1.10), we derive

L0, (- %)

2
= —dyu, W+/(u—u*)(1—u—b1v— b3w>
Q

o u? u+w
2
(4.41) =y, [ B [y o[-
Q u Q Q
U

(u = w) (w — ws)

B 53/9 (ar + w2)(u+ w)

ts | e
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With 1 — v, 4+ us — bow, = 0 in (1.10), we can use the second equation of (1.6) to
derive that

(4.42)
d Vs
a0 [ (1-5)u

2 .
:—dg’l)*/ |VUZ| v*/ Vuvvv+/(v—v*)(1—v+u—b2w)
; |Vol? QVu~Vv ; )
:—dgv*/ 5 +§v*/ 7—/(0—0*) —i—/(u—u*)(v—v*)
o v Q v Q Q

- bz/ﬂ(v — ) (w — wy).

Similarly, using the third equation of (1.6) with ¢3 = 1 and the fact 1 — w, + vs +
Y= = in (1.10), we obtain

Uy F W
(4.43)
Wy
—jw():/(l——)wt
|Vw|2 vVu - Vw +uVo - Vw u
+ [ (w—w)(l-—w+v+
w Q U+ w

2 . .
|V’l[2)| +XU)*/ vVu szqu Vuw 7/(w7w*)2 +/ (va*)(wfw*)
Q Q

U

—|—/ ks (u—u)(w—w)—/
o (us +wy)(u+w) - . o (us +wy)(u+w)
Using the definition of £ (t) in (4.40) and the identities (4.41)-(4.43), we have

(w —w,)?.

(4.44) —52 / X A, XT — / Y1BoY T,
where X7 = (4 — Uy, — Vs, w — wy), Y1 = (vu“7 Vﬂ”, Vuj”), and As, By are symmetric

matrices denoted by

1— baw, b1—1 b3U, — Wy
(us+wy ) (utw) 2 2(ux+wy ) (utw)
Ay = b1 1 ba—1
2 - 2 2 )
b3u*—w* b2—1 1+ U 5
2(ux+wy ) (utw) 2 (uxtws) (utw)
VLU Wy UV
diu, _fuu — Xwauv
Byi= | —fmr gy, _xww
W s UV W 5 UV
_XT _XT Wi

Recalling that ||u|| L and ||v||L are independent of parameters £ and x (see Theorem
1.1), one can find appropriate numbers & > 0 and x2 > 0 such that if £ € (0,&) and
X € (07X2)7 then

ddydyu, v, > ECvw [l Lo [0]|7 00 + X ws (v + dyws) [ullFoe [[0]] Loe + 7 (02)2 || Zoe

which gives rises to

dlU* _fvgu _ U*(4d1d2u* - £2U*U2) > U*(4d1d2u* B gzv*HUHQL‘X’) >0
e I i
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and

|Bs| = —% [{XQU*w*u3v2 + XQw*(dlu* + dgv*)u2v2 + §2vfu2 — 4d1d2u*v*}

w
>~ ovwulli[ollZe +x*w.(dru + dov) [ullZ= o] 7

+ ) ull} o — Adidyu.v,]
> 0.

These imply that the matrix By is positive definite and hence
(4.45) Y1 BoY{ > 0.

Next, we claim the following:
o If % < by < /2 and by = b3 =0, then the matrix A, is positive definite.
In fact, if by = b3 =0 and 0 < by < v/2, one can check that the system (1.6) with
c3 = 1 has a unique positive coexistence steady state (., 7., W) satisfying (see also
(A.3) in appendix)

Uy =1,
_ b2 +42by+4—bo/ (b2 +2)(b2+10)
(4.46) (75—
o 2—bo++/(b2+2)(b2+10)
Wy = 2(b2+ 1) :
Moreover, when b; = b3 =0, the corresponding matrix A, becomes
N 2 2(Ux+wy) (utw)
A2 = —% 1 7b22_1 s
2(Us+04 ) (utw) 2 (Ts+wy ) (utw)

which is positive definite if [Ay| > 0. After some calculations, one can check that
(w,)? 3ty + (b — 1),

(@ + 02t wP | (i + o) (utw)

From Lemma 4.4, we know that if by = b3 =0, it holds that

(4.47) 4) Ayl =3 — (by—1)% —

liminfu(z,t) > 1,

t—o0

which implies there exists T7 > 0 such that w(z,t) > g for all t > T and hence

2
(4.48) u(z,t) +w(z,t) > % for all z € and ¢t >T7.

With (4.48) in hand and using the facts @, = 1 and 0 < by < V2, we can directly

calculate that
(4.49)

—\2
3 (bg _ 1)2 _ (’LU*)

(T + W04 )2 (u+w)?

(@)
(1+ w,)?

>3 —(by—1)% =2 >1—(by—1)?>0.

On the other hand, if by > 1—10, one can derive that

9bg +4 — b3 + (ba — 1)/ (b2 + 2) (b2 + 10)
2(b2 +1)

3Us + (b — D)W =34 (b — 1w, = >0,
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and hence

3ty + (b2 — 1)w,
(U + @) (u +w)

(4.50) > 0.

Combining (4.47), (4.49), and (4.50), one finds that the matrix A, is positive definite
if % < by < V2. By the continuity of (u,,v.,w,) with respect to b; and b (see
Remark A.1), if by and b3 are small enough and % < by < V2, Ay is positive definite
for all ¢ > T7. Then there exists a constant 8 > 0 such that
(4.51) X A, XT > X2 forall t>T.

Combining (4.44), (4.45), and (4.51), one has
d
%Sg(t) + pF(t) <0 forall t>T1,
where
Fo(t) := /Q(u — )’ 4 (v —v.)2 + (W —w,)?.
Using the similar argument as in the proof of Lemma 4.4, we can show that
lu(-,t) — us| Lo + |v(, 1) — vl oo + Ju(- 1) — us|pe < Ce " for all t > T

hold for some positive constants C, o, and T5. 0

Proof of Theorems 1.2 and 1.4. Theorem 1.2 is a consequence of Lemma 4.3 and
Theorem 1.4 results from Lemma 4.5. ]

Appendix. The homogeneous coexistence steady state (., v, wy) in (1.6) sat-
isfies the following equations:

1-— Uyx — bl’l)* - bg uﬁ;-*'w* = O,

1 — vy + uy —bow, =0,
1 —wy +v. + —2— =0,

UsF W

which has two explicit solutions (uf,v],w7) and (ul,v3,w3) as follows:
262 (b2 —1)+b1 (b2 +2) (ba —3b3+2b2b3 ) +(1+b2) (24 (b2 —2)bs —b32)
2(14b1+b2) (1+b1 (1+b2)+(2+b2)b3)

+ (bl ba+bobs +b3)\/20+12b2 +b§ +4b% (bg 71)+4b1 (3+b2 ) (bz 71)3)7201)3 — 14b263+b§
2(14+b1+b2) (1+b1 (1+b2)+(2+b2)bs3) ’

*
uy =

442bo+b3+2b3 —4babz —4b2bs —ba —2by (1+b2) (ba+b3—2)
2(14b1+b2) (1+b1 (1+b2)+(2+b2)b3)

+ (bg*bg)\/20+12b2+b§+4b§(bgfl)+4b1 (3+b2)(b27b3)720b3714b2b3+b§
2(1+4b1+b2)(1+b1 (1+b2)+(2+b2)b3) ’

*
V] =

(A1)

W — 24-4b1 +2b% —bo+5b1 bo+2b2by+9b3+5b1 by +Tbobs +2b1 babs —b2
1= 2(14b1+b2)(1+b1 (14b2)+(2+b2)b3)

2(14b1+b2) (1+b1 (1+b2)+(2+b2)bs3)
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and

202 (b3 —1)+b1 (b2+2) (ba —3b3+2b2b3 )+ (1+b2) (24 (b2 —2) b3 —b32)
2(1+4b1+b2) (1+b1 (1+b2)+(2+b2)b3)

 (bibatbabstbs)y/201 1265 b3+ 453 (b3 1)+ b1 (3+ba) (b2 —bs) —20b5—14babs b3
2(1+b1+b2)(1+b1 (1+b2)+(2+b2)bs3) ’

uy =

4+42bo+b3+2b3—4bobs —4b3bs —ba —2b1 (1+b2) (ba+bs —2)
2(14b1+b2) (1+b1 (1+b2)+(2+b2)bs3)

 (ba—ba)/209 12b5+ 63+ 463 (b3 — 1)+ 4b1 (3+ba) (ba—bs) —20b3 — 14bzbs b3
2(14b14+b2) (14+b1 (1+b2)+(2+b2)b3) ’

vy =

(A.2)

24+4by +2b% —bo+5b1 bo+2b2by+9bs+5b1 by +Tbobs +2b1 babs —b2
2(1+4b1+b2) (1+b1 (1+b2)+(2+b2)b3)

_ (th +b3)\/20+b§+4b§ (b2—1)+4b1 (b2+3) (b2 —bs) —20bs+b3 —2b (Tbs—6)
2(14b14b2) (14b1 (1+b2)+(2+b2)b3) '

*
Wy =

Remark A.1. Tt can be seen from (A.1) and (A.2) that (uf, v}, w]) and (u},v3,w3)
are continuous with respect to b1,bo, and b3 for any by,b2,b3 > 0. If by = b3 =0, we
have

ui=1,
x  bE42ba+4—bay/(b2+2)(b2+10)
(A.3) vf == 2(2b2+12) —
* 2—ba++/ (b2+2)(b2+10)
Wy = 2(by+1)
and
w=1,
w _ b3+2b2+4+bay/(b2+2)(b2+10)
U2 = 2(b2+1) )
. 2—bo— (b2+2)(b2+10)
Wa = 302+ 1)
Clearly, if 0 < by < v/2, one has
(A.4) ul, v, wy >0 and wuj>0,v5>0,w; <O0.

Therefore, by the continuity, we still have (A.4) if b; and b3 are small enough and 0 <
by < /2. In this case, we only have one positive coexistence steady state (u},v},w?).
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