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Abstract
In this paper, we are concerned with two SIS epidemic reaction–diffusion models
with mass action infection mechanism of the form SI , and study the spatial profile of
population distribution as the movement rate of the infected individuals is restricted to
be small. For the model with a constant total population number, our results show that
the susceptible population always converges to a positive constant which is indeed the
minimum of the associated risk function, and the infected population either concen-
trates at the isolated highest-risk points or aggregates only on the highest-risk intervals
once the highest-risk locations contain at least one interval. In sharp contrast, for the
modelwith a varying total population numberwhich is caused by the recruitment of the
susceptible individuals and death of the infected individuals, our results reveal that the
susceptible population converges to a positive function which is non-constant unless
the associated risk function is constant, and the infected population may concentrate
only at some isolated highest-risk points, or aggregate at least in a neighborhood of the
highest-risk locations or occupy the whole habitat, depending on the behavior of the
associated risk function and even its smoothness at the highest-risk locations. Numer-
ical simulations are performed to support and complement our theoretical findings.
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1 Introduction and existing results

The outbreak of the novel coronavirus disease 2019 (COVID-19) has caused tremen-
dous impacts on public health and the global economy. As it is commonly recognized,
population movement is a significant factor in the spread of many reported infectious
diseases includingCOVID-19 (Balcan 2009; Brockmann andHelbing 2013; Jia 2020),
and the lockdown and quarantine has turned out to be one of the most effective mea-
sures to reduce or even eliminate the infection (Kraemer 2020; Tian 2020). On the
other hand, the importance of the population heterogeneity has also been observed in
the complicated dynamical behaviour of the transmission of COVID-19 (Britton et al.
2020a, b; Di Lauro et al. 2021).

To gain a deeper understanding of the impact of population movement and hetero-
geneity on the transmission of epidemic diseases from a mathematically theoretical
viewpoint, in the present work we are concerned with two SIS reaction–diffusion
systems with mass action infection mechanism in a heterogeneous environment. We
aim to study the spatial profile of population distribution as the movement rate of
the infected individuals is controlled to be sufficiently small. Such kind of informa-
tion may be useful for decision-makers to predict the pattern of disease occurrence
and henceforth to develop more effective strategies of disease eradication. The mass
action infection mechanism was first proposed in the seminal work of Kermack and
McKendrick (1927), in which the disease transmission was assumed to be governed
by a bilinear incidence function SI [one may also refer to Kermack and McKendrick
(1991a, b, c) or Peng and Wu (2021)]. The systems under consideration in this paper
are possibly the simplest yet basic SIS epidemic models.

The first model we will deal with in this work is the following coupled reaction–
diffusion equations in one-dimensional space:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

St − dSSxx = −β(x)SI + γ (x)I , 0 < x < L, t > 0,

It − dI Ixx = β(x)SI − γ (x)I , 0 < x < L, t > 0,

Sx = Ix = 0, x = 0, L, t > 0,

S(x, 0) = S0(x) ≥ 0, I (x, 0) = I0(x) ≥, �≡ 0, 0 < x < L.

(1.1)

Here, S(x, t) and I (x, t) are respectively the population density of the susceptible and
infected individuals at position x ∈ [0, L] and time t ; the homogeneous Neumann
boundary condition means that no population flux crosses the boundary x = 0, L;
dS and dI are positive constants measuring the motility of susceptible and infected
individuals, respectively; and the functions β and γ are Hölder continuous positive
functions in [0, L] representing the disease transmission rate and the disease recovery
rate, respectively.
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Integrating the sum of the equations of (1.1), combined with the homogeneous
Neumann boundary value conditions, we observe that

∫ L

0
(S(x, t) + I (x, t)) dx =

∫ L

0
(S0(x) + I0(x)) dx =: N , ∀t ≥ 0.

Thus, the total population number in (1.1) is conserved all the time.
The system (1.1) was investigated in the recent works (Deng andWu 2016; Wu and

Zou 2016;Wen et al. 2018); in particular, when the movement of either the susceptible
or infected population is restricted to be slow, the authors explored the profile of the
spatial distribution of the disease modelled by (1.1). The understanding of such a
profile amounts to determine the behavior of the so-called endemic equilibrium with
respect to the small diffusion rate dS or dI . The endemic equilibrium of (1.1) is a
positive steady state solution, which satisfies the following elliptic system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−dSSxx = −β(x)SI + γ (x)I , 0 < x < L,

−dI Ixx = β(x)SI − γ (x)I , 0 < x < L,

Sx = Ix = 0, x = 0, L,
∫ L

0
(S(x) + I (x)) dx = N .

(1.2)

According to Deng and Wu (2016); Wu and Zou (2016); Wen et al. (2018), if

minx∈[0,L] γ (x)
β(x) < N

L , for any small dI > 0, (1.2) admits at least one positive solution

(S, I ), which is called an endemic equilibrium (EE for abbreviation) in terms of
epidemiology; moreover, (S, I ) satisfies S, I ∈ C2([0, L]) and S, I > 0 on [0, L].

As remarked in Wu and Zou (2016), it is a challenging problem to study the spatial
profile of EE of (1.2) with respect to the small movement rate dI of the infected
population; in Wen et al. (2018), the authors provided a first result in this research
direction. Indeed, they proved the following conclusion.

Theorem 1.1 (Wen et al. 2018, Theorem B) Assume that minx∈[0,L] γ (x)
β(x) < N

L . Then

as dI → 0, the EE (S, I ) of (1.2) satisfies (up to a sequence of dI ) that S → Ŝ
uniformly on [0, L], where Ŝ ∈ C([0, L]) withmin[0,L] γ (x)

β(x) ≤ Ŝ(x) ≤ max[0,L] γ (x)
β(x) ,

and I → μ weakly for some Radon measure μ with nonempty support in the sense of

∫ L

0
I (x)ζ(x)dx −→

∫

[0,L]
ζ(x)μ(dx), ∀ζ ∈ C([0, L]). (1.3)

Obviously, Theorem 1.1 does not give a precise description for Ŝ and μ and hence
the spatial profile of the susceptible and infected populations remains obscure. From
the aspect of disease control, it becomes imperative to know an informative behavior
of μ. In this paper, we manage to give a satisfactory result on the profile of Ŝ and μ.

In (1.1), some important factors such as the death and recruitment rates of population
are ignored so that the total population number is a constant. In order to take into
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account the death and recruitment rates of population, the following reaction–diffusion
epidemic system was proposed in Li et al. (2018):

⎧
⎪⎪⎨

⎪⎪⎩

St − dSSxx = �(x) − S − β(x)SI + γ (x)I , 0 < x < L, t > 0,
It − dI Ixx = β(x)SI − [

γ (x) + η(x)
]
I , 0 < x < L, t > 0,

Sx = Ix = 0, x = 0, L, t > 0,
S(x, 0) = S0(x) ≥ 0, I (x, 0) = I0(x) ≥, �≡ 0, 0 < x < L.

(1.4)

The recruitment term of the susceptible population is represented by the function
�(x) − S so that the susceptible is subject to the linear growth/death (Anderson and
May 1979; Hethcote 2000); η(x) accounts for the death rate of the infected. Here,�, η

are assumed to be positive Hölder continuous functions on [0, L]. All other parameters
have the same interpretation as in (1.1).

It is easily seen that the following elliptic problem

− dSSxx = �(x) − S, 0 < x < L; Sx (0) = Sx (L) = 0 (1.5)

admits a unique positive solution S̃. Then (S̃, 0) is a unique disease-free equilibrium
of (1.4). An EE of (1.4) satisfies the following ODE system:

⎧
⎪⎨

⎪⎩

−dSSxx = �(x) − S − β(x)SI + γ (x)I , 0 < x < L,

−dI Ixx = β(x)SI − [
γ (x) + η(x)

]
I , 0 < x < L,

Sx = Ix = 0, x = 0, L.

(1.6)

As one of the main results of Li et al. (2018), the following conclusion on the profile
of EE of (1.6) with respect to small dI was established.

Theorem 1.2 (Li et al. 2018, Theorem 3.2) Assume that the set {x ∈ [0, L] :
β(x)S̃(x) > γ (x)+η(x)} is non-empty. As dI → 0, then any EE (S, I ) of (1.6) satis-
fies (up to a subsequence of dI ) that S → Ŝ uniformly on [0, L],where Ŝ ∈ C([0, L])
and Ŝ > 0 on [0, L], and ∫ L

0 Idx → Î for some positive constant Î .

We would like to emphasize that the techniques used in the analysis of systems
(1.2) and (1.6) are significantly different. In particular, for system (1.6), we encounter
a free boundary problem of elliptic type, which requires new ideas and techniques to
address. Additionally, it is not trivial to adapt the methods in this paper to a higher
dimensional domain, and the extension of our results to a higher dimensional domain
presents additional challenges due to the increased complexity of the problems.

The rest of paper is organized as follows. In Sect. 2, we state the main theoretical
results, and in Sect. 3, we carry out the numerical simulations and discuss the impli-
cations of our results in terms of disease control. Section 4 is devoted to the proofs of
the results presented in Sect. 2. In the appendix, we recall some known facts which
will be used in the paper.
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2 Statement of main results

In this section, we state the main findings of this paper on models (1.2) and (1.6).
To proceed, we underline some terminologies frequently used throughout the paper.
For model (1.2), we call γ (x)

β(x) the risk function, and call each element of the set
{
x ∈

[0, L] : γ (x)
β(x) = minx∈[0,L] γ (x)

β(x)

}
a highest-risk point (or location). Similarly, for

model (1.6), we call γ (x)+η(x)
β(x) the risk function, and call each element of the set

{
x ∈ [0, L] : γ (x)+η(x)

β(x) = minx∈[0,L] γ (x)+η(x)
β(x)

}
a highest-risk point (or location).

2.1 Results for model (1.2)

For the sake of convenience, we set

k(x) = γ (x)

β(x)
, kmin = min

x∈[0,L] k(x),

and

�k = {
x ∈ [0, L] : k(x) = kmin

}
.

We note that when the risk function k(x) = k is a positive constant, it follows from
Wen et al. (2018) that S(x) ≡ k is a constant, and in turn by the equation of I , we
immediately see that I = N

L −k is also a positive constant provided that k < N
L . Inwhat

follows, we do not consider such a trivial case and assume that k(x) is non-constant
on [0, L].

We now state our main result on the asymptotic behavior of any EE (S, I ) of (1.2)
as dI → 0 as follows.

Theorem 2.1 Assume that k(x) is non-constant and kmin < N
L . Then as dI → 0, the

EE (S, I ) of (1.2) satisfies

S(x) → kmin uniformly for x ∈ [0, L]. (2.1)

The following assertions hold for the asymptotic behavior of I .

(i) If �k = {x0}, then we have

I (x) → (N − Lkmin)δ(x0) weakly in the sense of (1.3),

where δ(x0) is the Dirac measure centered at x0. Moreover, I (x) → 0 locally
uniformly in [0, L] \ {x0}.

(ii) If �k = [	1, 	2] for some 0 < 	1 < 	2 < L, then we have

I (x) → 0 uniformly on [0, 	1] ∪ [	2, L],
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and

I (x) → Î (x) uniformly for x ∈ [	1, 	2],

where Î ∈ C2([	1, 	2]), Î > 0 in (	1, 	2), and Î is the unique positive solution
of

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− Îxx = β(x)
dS

(â − Î ) Î , 	1 < x < 	2,

Î = 0, x = 	1, 	2,∫ 	2

	1

Î dx = N − Lkmin,

(2.2)

where the positive constant â is uniquely determined by the integral constraint in
(2.2).

Regarding Theorem 2.1, wewould like tomake some comments in order as follows.

Remark 2.1 In addition to the two cases treated in Theorem 2.1, we can handle some
more general cases. In particular, we would like to make the following comments.

(i) If the set �k contains only finitely many isolated points, say {xi } ji=1 for some
j ≥ 2, then one can slightly modify the proof of Theorem 2.1(i) to show that
S → kmin uniformly on [0, L], and I → 0 locally uniformly in [0, L]\({xi } ji=1),
and

I (x) →
j∑

i=1

ciδ(xi ) weakly in the sense of (1.3),

where δ(xi ) is the Dirac measure centered at xi and the nonnegative constants
ci fulfill

∑ j
i=1 ci = N − Lkmin . Nevertheless, we can not determine the exact

values of ci ; in other words, as dI → 0, it is unclear to us whether I concentrates
at all xi (1 ≤ i ≤ j) or only some of them. The numerical results suggest that
the former alternative holds; see Fig. 1 in Sect. 3.

(ii) If the set �k contains at least one proper interval of [0, L], by adapting the
argument of Theorem 2.1(ii), we can show that S → kmin uniformly on [0, L],
and I → Î uniformly on [0, L] with

Î = 0 on [0, L] \ �k,

∫

�k

Î dx = N − Lkmin .

In particular, if �k =
( ⋃ j∗

i=1[	i
, 	i ]

) ⋃ (⋃{xi } j
∗

i=0

)
for some j∗ ≥ 1, j∗ ≥ 0

with [	
i
, 	i ] ∩ [	

j
, 	 j ] = ∅ for i �= j , then we can prove that

Î = 0 on [0, L] \
⎛

⎝
j∗⋃

i=1

(
	
i
, 	i

)
⎞

⎠ ,
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and in (	
i
, 	i ) (1 ≤ i ≤ j∗), either Î = 0 or Î > 0. Without loss of generality,

assuming that Î (x) > 0 for x ∈ ⋃ ĵ∗
i=1(	i

, 	i ) for some 1 ≤ ĵ∗ ≤ j∗, then in

each such (	
i
, 	i ), we can conclude that Î solves

{
− Îxx = β(x)

dS
(âi − Î ) Î , 	

i
< x < 	i ,

Î = 0, x = 	
i
, 	i ,

where the positive constants âi fulfill implicitly that

ĵ∗∑

i=1

∫ 	i

	
i

Î dx = N − Lkmin .

However, it seems rather challenging to provewhether Î is positive on all intervals
(	

i
, 	i ) (1 ≤ i ≤ j∗) or only on some of them. Our numerical results suggest

that the former alternative holds; see Fig. 2 in Sect. 3.
(iii) The assertion in (ii) above suggests that if the highest-risk locations contain at

least one interval, then the disease can not stay on any possible isolated highest-
risk points once the infected individuals move slowly.

Remark 2.2 In the case (ii) of Theorem 2.1, if 	1 = 0 (or 	2 = L), the results of
Theorem 2.1 still hold true if we replace the Dirichlet boundary condition of Î in (2.2)
at 	1 = 0 (or 	2 = L) by the Neumann boundary condition Îx (0) = 0 (or Îx (L) = 0).
A similar remark applies to the case discussed in Remark 2.1(ii) above.

Remark 2.3 After this paper was finished, we noticed the work (Castellano and Salako
2022) in which the authors derived (2.1) and the convergence of the I -component in
the case (i) of Theorem 2.1 in any spatial dimension in a more general setting; see
Theorem 2.5(i) there. However, their result does not establish the convergence of the
I -component within �k in the case (ii) of Theorem 2.1 nor in the more general case
mentioned by Remark 2.1; on the other hand, our proof of (2.1) and the convergence of
the I -component outside of �k is different from that of Castellano and Salako (2022).

2.2 Results for model (1.6)

We now turn to system (1.6). For the sake of simplicity, we assume that � in (1.6) is
a positive constant, and also denote

h(x) = γ (x) + η(x)

β(x)
, hmin = min

x∈[0,L] h(x),

and

�h = {
x ∈ [0, L] : h(x) = hmin

}
.
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Clearly, S̃(x) = �.We also enhance the existence condition of EE of (1.6) in Theorem
1.2 by imposing the following condition:

� > h(x) for all x ∈ [0, L]. (2.3)

We underline that the assumption that �is a positive constant and the condition (2.9)
are of importance for our analysis. However, we speculate that the limiting profiles of
the susceptible and infected populations may be similar in the more general scenario
where � is a positive function and the set {x ∈ [0, L] : β(x)S̃(x) > γ (x) + η(x)} is
non-empty (note that the latter condition is necessary to guarantee the existence of an
endemic equilibrium for all small dI > 0).

Now we can state our main findings on the asymptotic behavior of any EE (S, I )
of (1.6) as dI → 0. The first result reads as follows.

Theorem 2.2 Assume that (2.3) holds. As dI → 0, then any EE (S, I ) of (1.6) satisfies
(up to a subsequence of dI ) that S → Ŝ uniformly on [0, L], and I → μ weakly in
the sense of (1.3), whereμ is some Radon measure and Ŝ solves weakly in W 1,2(0, L)

the free boundary problem:

− dS Ŝxx = � − Ŝ − η(x)μ({x})∣∣{x∈[0, L]: Ŝ(x)=h(x)}, x ∈ (0, L). (2.4)

Here, μ({x})∣∣{x∈[0, L]: Ŝ(x)=h(x)} is the restriction of μ on the set {x ∈ [0, L] : Ŝ(x) =
h(x)}; otherwise, μ({x}) = 0. Moreover we have the following properties for μ and
Ŝ.

(i) The Radon measure μ satisfies

μ({x ∈ [0, L] : Ŝ(x) �= h(x)}) = 0, μ({x ∈ [0, L] : Ŝ(x) = h(x)}) > 0. (2.5)

(ii) The function Ŝ ∈ C([0, L]) satisfies

hmin ≤ Ŝ(x) ≤ h(x), ∀x ∈ [0, L], (2.6)

�h ⊂ {
x ∈ [0, L] : Ŝ(x) = h(x)

}; (2.7)

If x1, x2 ∈ �h with x1 < x2 and (x1, x2) ∩ �h = ∅, then

hmin < Ŝ(x), ∀x ∈ (x1, x2). (2.8)

Theorem 2.2 states that the distribution of the susceptible population is generally
non-uniform in space, despite its presence throughout the entire habitat, and that the
disease will not become extinct in the entire habitat. However, Theorem 2.2 does
not offer in-depth insights into the spatial distribution of the disease. As a result,
our subsequent analysis aims to explore the properties of Ŝ and μ using specific yet
representative risk functions h. The outcome will provide a more accurate depiction
of the disease’s profile. Indeed, we can obtain the following result for (1.6).
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Theorem 2.3 Let Ŝ and μ be given as in Theorem 2.2. Assume that h ∈ C2([0, L])
and (2.3) holds. The following assertions hold.

(i) If −dShxx ≤ � − h in (0, L), hx (0) ≥ 0 and hx (L) ≤ 0, then we have

Ŝ(x) = h(x), ∀x ∈ [0, L], (2.9)

μ({x}) = � − h(x) + dShxx (x)

η(x)
, a.e. for x ∈ (0, L). (2.10)

(ii) If hx is non-decreasing on [0, L] and �h = {τ0} for some 0 ≤ τ0 ≤ L, then
the following assertions hold.

(a) When 0 < τ0 < L, we have

Ŝ(x) = h(x), ∀x ∈ [τ1, τ2], (2.11)

and in [0, τ1) ∪ (τ2, L], Ŝ < h satisfies

⎧
⎪⎨

⎪⎩

−dS Ŝxx (x) = � − Ŝ, x ∈ (0, τ1) ∪ (τ2, L),

Ŝx (0) = 0, Ŝx (L) = 0,

Ŝ(τ1) = h(τ1), Ŝ(τ2) = h(τ2),

(2.12)

and μ satisfies

μ({x}) = � − h(x) + dShxx (x)

η(x)
, a.e. for x ∈ (τ1, τ2), (2.13)

μ({x}) = 0, ∀x ∈ [0, τ1) ∪ (τ2, L], (2.14)

where the numbers τ1, τ2 with 0 < τ1 < τ0 < τ2 < L are uniquely determined
by

e2d
−1/2
S τ1 − 1

e2d
−1/2
S τ1 + 1

= −d1/2S hx (τ1)

� − h(τ1)
,

e2d
−1/2
S (τ2−L) − 1

e2d
−1/2
S (τ2−L) + 1

= −d1/2S hx (τ2)

� − h(τ2)
.

(2.15)

(b) When τ0 = L, then we have the following assertions.
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(b-1) If e2Ld
−1/2
S −1

e2Ld
−1/2
S +1

> − d1/2S hx (L)

�−h(L)
, then (2.11) and (2.13) hold with [τ1, τ2]

replaced by [τ1, L], μ([0, τ1)) = 0, and on [0, τ1], Ŝ satisfies

{
−dS Ŝxx (x) = � − Ŝ, x ∈ (0, τ1),

Ŝx (0) = 0, Ŝ(τ1) = h(τ1),
(2.16)

where 0 < τ1 < L is uniquely determined by the first equation in (2.15).

(b-2) If e2Ld
−1/2
S −1

e2Ld
−1/2
S +1

≤ − d1/2S hx (L)

�−h(L)
, then Ŝ is the unique positive solution of

{
−dS Ŝxx (x) = � − Ŝ, x ∈ (0, L),

Ŝx (0) = 0, Ŝ(L) = h(L),
(2.17)

and μ satisfies

μ([0, L)) = 0, μ({L}) = �L − ∫ L
0 Ŝ(x)dx

η(L)
. (2.18)

(c) When τ0 = 0, then we have the following assertions.

(c-1) If e
2Ld

−1/2
S −1

e2Ld
−1/2
S +1

>
d1/2S hx (0)
�−h(0) , then (2.11) and (2.13) holdwith [τ1, τ2] replaced

by [0, τ2], μ((τ2, L]) = 0, and on [τ2, L], Ŝ satisfies

{
−dS Ŝxx (x) = � − Ŝ, x ∈ (τ2, L),

Ŝx (L) = 0, Ŝ(τ2) = h(τ2),
(2.19)

where 0 < τ2 < L is uniquely determined by the second equation in
(2.15).

(c-2) If e2Ld
−1/2
S −1

e2Ld
−1/2
S +1

≤ d1/2S hx (0)
�−h(0) , then Ŝ is the unique positive solution of

{
−dS Ŝxx (x) = � − Ŝ, x ∈ (0, L),

Ŝx (L) = 0, Ŝ(0) = h(0),
(2.20)

and μ satisfies

μ((0, L]) = 0, μ({0}) = �L − ∫ L
0 Ŝ(x)dx

η(0)
. (2.21)

(iii) If hx is non-decreasing on [0, 	1] ∪ [	2, L] and �h = [	1, 	2] for some 0 <

	1 < 	2 < L, then all the assertions in (ii)-(a) above hold, where the numbers
τ1, τ2 satisfying 0 < τ1 < 	1 < 	2 < τ2 < L are uniquely determined by
(2.15).
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Formodel (1.2), our result shows that the infected population concentrates or aggre-
gates only at the highest-risk locations. In sharp contrast, for model (1.6), our result
suggests that the disease will occupy a neighborhood of the interior highest-risk loca-
tions or even occupy the whole habitat [0, L], or concentrates only at the boundary
highest-risk location, depending on the risk function h. More detailed discussions on
the implications of our theoretical results, along with numerical simulations, will be
given in Sect. 3.

We would like to make some remarks on Theorem 2.3 as follows.

Remark 2.4 It is worth mentioning that all the statements in Theorem 2.3 except the
expression (2.13) for the Radon measure μ remain true provided that the risk function
h ∈ C1([0, L]). Such a comment also applies to Lemmas 4.1-4.4 in Sect. 4.

Remark 2.5 (i) It is clear that Theorem 2.3(i) holds if h < � is a constant or more
generally h is a unique solution to the following problem:

{
−dShxx = � − h, x ∈ (0, L),

h(0) = σ1, h(L) = σ2,

where 0 < σ1, σ2 < �. When hx (0) > 0, the change of the derivatives from
Sx (0) = 0 to Ŝx (0) = hx (0) > 0 would suggest that I should experience the
concentration phenomenon at x = 0 (that is, I (0) → ∞) as dI → 0. The same
remark applies to the case of hx (L) < 0.

(ii) In contrast to Theorem 2.3(i), it is easily seen that Ŝ �≡ h on [0, L] provided that
−dShxx (x∗) > � − h(x∗) for some x∗ ∈ (0, L).

(iii) Clearly, the assertions of Theorem 2.3(ii)-(b1) hold if hx (L) = 0 and the assertions
of Theorem 2.3(ii)-(c1) hold if hx (0) = 0.

(iv) In a general case that�h contains an interior isolated point andhx is non-decreasing
in a neighbourhood of such a point, we can conclude that (2.9) and (2.10) hold in
some neighbourhood of this point; if �h contains an interval, a similar conclusion
also holds. See Lemma 4.1 and Lemma 4.3 below.

3 Discussions and numerical simulations

In recent years, many reaction–diffusion models have been proposed to investigate
the transmission dynamics of infectious diseases in a heterogeneous environment. For
example, models associated with (1.1) have been studied in Allen et al. (2008); Du and
Peng (2016); Deng andWu (2016); Gao (2019); Li and Bie (2019); Li et al. (2017a, b,
2018); Magal et al. (2018, 2019); Peng (2009); Peng and Liu (2009); Peng and Yi
(2013); Peng and Zhao (2012); Suo and Li (2019); Tong and Lei (2018); Wu and Zou
(2016). When the random diffusion is not present, such kind of models have been
explored in Allen et al. (2007, 2009); Gao and Dong (2020); Gao and Ruan (2011);
Li and Shuai (2009); Li and Peng (2019); Vargas-De-Leon and Korobeinikov (2013);
Wodarz et al. (2002); Wodarz and Nowak (2000) and the references therein. One may
also refer to Cui and Lou (2016); Ge et al. (2015); Han and Lei (2019); Lei et al.
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(2018); Li et al. (2018); Lei et al. (2020); Li et al. (2020); Song et al. (2019); Wang
andWu (2023); Wang andWang (2021); Zhu andWang (2020a, b) for relevant studies
on the effect of random diffusion on the dynamics of infectious diseases.

In this paper, we have investigated the positive steady state solution (namely, EE)
of the SIS epidemic reaction–diffusion models (1.2) and (1.6), in which the disease
transmission is governed by the well-known mass action infection mechanism, due
to Kermack and McKendrick (1927). In model (1.2), the total population number of
the susceptible and infected populations is a constant, while in model (1.6), the total
population number is varying, which results from the inclusion of the recruitment for
the susceptible population and the death of the infected population. Our purpose is to
determine the spatial profile of EE as the movement rate dI of the infected individuals
tends to zero. Such kind of information may be useful for decision-makers to predict
the pattern of disease occurrence and henceforth to develop effective disease control
strategies.

The previous works (Li et al. 2017b; Wen et al. 2018) derived partial results regard-
ing the spatial profile of EE for (1.2) and (1.6) as dI → 0; however, a precise
characterization for the distribution of susceptible and infected populations is lacking.
In the present work, we have provided a comprehensive understanding on this issue.
Below we shall summarize the main theoretical findings of this paper, which will also
be supported or complemented by our numerical simulation results. We remark that
our numerical computations are directly performed to the parabolic systems (1.1) and
(1.4) by the MATLAB PDEPE solver. Then the time-independent profiles of (1.1)
and (1.4) are used to approximate the solution profiles of corresponding steady-state
systems (1.2) and (1.6), respectively. All solution profiles are plotted at time t = 400
without further mention below.

3.1 Profile of EE of model (1.2) as dI → 0

As pointed out before, when the risk function k(x) = γ (x)
β(x) is a constant on the entire

habitat [0, L], then (k, N
L − k) is the unique EE of (1.2) provided that k < N

L , while
( NL , 0) is the unique disease-free equilibrium of (1.2) provided that k ≥ N

L . Indeed,
in such a trivial case, one can follow the same analysis as in Deng and Wu (2016,
Theorem 4.1) to conclude that (k, N

L − k) is a global attractor of (1.1) if k < N
L and

( NL , 0) is a global attractor of (1.4) if k ≥ N
L . Thus, unless otherwise specified, we

always assume below that the risk function k(x) = γ (x)
β(x) is non-constant on [0, L].

According to Theorem2.1, formodel (1.2), one finds that the susceptible population
S converges to the positive constant kmin as dI → 0, which means that the susceptible
will always distribute homogeneously on the entire habitat once the movement of the
infected individuals is restricted to be sufficiently small. Nevertheless, the profile of
the infected population I as dI → 0 crucially depends on the distribution behavior
of the highest-risk set �k of the risk function k(x). More precisely, concerning the
profile of I for model (1.2), we have the following findings.

(i) If�k consists of a single point, then I must concentrate only at such a highest-risk
point.
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Fig. 1 Numerical simulations of the solution profile of model (1.2), where L = 1, N = 2, dS = 1, dI =
10−7, β(x) = 1 + 1

2 sin(2πx), γ (x) = k(x)β(x), kmin = 1
2 and k(x) is chosen as follows. In (a),

k(x) = 1 + 1
2 cos(2πx). In (b), k(x) = 1 − 4x, 0 ≤ x < 1

8 ; k(x) = 4x, 1
8 ≤ x < 1

4 ; k(x) =
3
2 − 2x, 1

4 ≤ x < 1
2 ; k(x) = x, 1

2 ≤ x ≤ 1. In (c), k(x) = 1 − 4x, 0 ≤ x < 1
8 ; k(x) = 4x, 1

8 ≤ x <
1
4 ; k(x) = 2 − 4x, 1

4 ≤ x < 3
8 ; k(x) = 4x − 1, 3

8 ≤ x < 1
2 ; k(x) = 3

2 − x, 1
2 ≤ x ≤ 1

(ii) If �k contains only multiple isolated points, it follows from Remark 2.1 that
I will also concentrate at least at one of those highest-risk points, and the disease
will vanish elsewhere. As shown in Fig. 1a–c for three typical cases, our simulation
results suggest that I should concentrate at all such highest-risk points, though the
population number of I at each such highest-risk point may vary, depending on the
functions β, γ .

(iii) If �k contains at least one proper interval, then no concentration phenomenon
occurs for the disease distribution, and the infected population will aggregate only on
such intervals consisting of highest-risk points, regardless of whether there are isolated
highest-risk points or not (see Fig. 2a, b). Indeed, our numerical results indicate that
the infected population will aggregate on all such intervals consisting of highest-risk
points (see Fig. 2c); however the population number of I at each such interval may be
different, depending on the functions β, γ .

3.2 Profile of EE of model (1.6) as dI → 0

For model (1.6), for the general Hölder continuous risk function h, under the condition
(2.3), as dI → 0, we know from Theorem 2.2 that the susceptible population S
converges to a positive function Ŝ, which is non-constant unless h is constant.

The infected population I converges to a positive Radon measureμ, whose support
is contained in the region where Ŝ touches h, and if additionally the risk function h is
of C2, we see from Lemma 4.1 and Lemma 4.3 in Sect. 4 that the infected population
aggregates at least in a neighborhood of the highest-risk locations.

Furthermore, when h ∈ C2([0, L]), in light of Theorem 2.3, one can draw the
following conclusions concerning the asymptotic profile of I .

(i) For any risk function h satisfying

−dShxx ≤ � − h in (0, L), hx (0) ≥ 0, hx (L) ≤ 0,
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Fig. 2 Numerical simulations of the solution profile of model (1.2), where L = 1, N = 2, dS = 1, dI =
10−5, β(x) = 1, γ (x) = k(x)β(x), kmin = 1

2 and k(x) is chosen as follows. In (a), �k = [ 14 , 3
4 ],

k(x) = 1
2 + 5(x − 1

4 )2, 0 ≤ x < 1
4 ; k(x) = 1

2 , 1
4 ≤ x < 3

4 ; k(x) = 1
2 + 5(x − 3

4 )2, 3
4 ≤ x ≤ 1.

In (b), �k = [ 14 , 1
2 ] ∪ { 78 }, k(x) = 1

2 + 4(x − 1
4 )2, 0 ≤ x < 1

4 ; k(x) = 1
2 , 1

4 ≤ x < 1
2 ; k(x) =

1
2 + 4(x − 1

2 )2, 1
2 ≤ x < 3

4 ; k(x) = 1
2 + 16(x − 7

8 )2, 3
4 ≤ x ≤ 1. In (c), �k = [0, 1

16 ] ∪ { 38 } ∪ [ 58 , 3
4 ],

k(x) = 1
2 , 0 ≤ x < 1

16 ; k(x) = 8x, 1
16 ≤ x < 1

8 ; k(x) = 1, 1
8 ≤ x < 1

4 ; k(x) = 2 − 4x, 1
4 ≤ x <

3
8 ; k(x) = 8x − 5

2 , 3
8 ≤ x < 1

2 ; k(x) = 11
2 − 8x, 1

2 ≤ x < 5
8 ; k(x) = 1

2 , 5
8 ≤ x < 3

4 ; k(x) =
2
3 x,

3
4 ≤ x ≤ 1

Fig. 3 Numerical simulations of the solution profile of model (1.6), where β(x) = 1+ 1
2 sin(2πx), η(x) =

1, γ (x) = h(x)β(x) − η(x), dS = 1, dI = 10−8,� = 10. In (a), h(x) = 1 + 5x2(1 − x)2, in (b),
h(x) = 1 + x2(1 − x), and in (c), h(x) = 1 + x(1 − x)

and condition (2.3) (for instance, h < � is a positive constant), the infected population
must occupy the entire habitat, and it also forms the concentration phenomenon at the
boundary point x = 0 (or x = 1) if hx (0) > 0 (or hx (1) < 0), which is also the
highest-risk location; see Theorem 2.3(i) and the numerical illustrations in Fig. 3a–c.

(ii) For any convex risk function h (i.e., hxx ≥, �≡ 0 on [0, L]) fulfilling (2.3), the
infected population usually stays only in part of the habitat. In particular, by Theorem
2.3(ii)(iii), we can observe the following behaviors.

(ii-a) If the highest-risk set �h contains only one point, denoted by τ0, then the
distribution behavior of the infected population is affected by whether τ0 is a boundary
point or an interior point. More precisely, when τ0 is an interior point, then the infected
population resides in a certain left neighborhood of τ0, staying away from the boundary
points x = 0 and x = 1. In fact, such a neighborhood can be calculated through the
formula (2.15). One may further refer to Fig. 4a.
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However, if τ0 is a boundary point, say τ0 = L , then the infected population stays
in a certain neighborhood of L provided

e2Ld
−1/2
S − 1

e2Ld
−1/2
S + 1

> −d1/2S hx (L)

� − h(L)
,

while the infected population concentrates only at L provided

e2Ld
−1/2
S − 1

e2Ld
−1/2
S + 1

≤ −d1/2S hx (L)

� − h(L)
.

Since hx (L) ≤ 0 in this situation, the infected population stays in a certain neighbor-
hood of L provided for all dS > 0 if hx (L) = 0. If hx (L) < 0, it should be noted that
the function

q(dS) = d−1/2
S

e2Ld
−1/2
S − 1

e2Ld
−1/2
S + 1

+ hx (L)

� − h(L)

deceases in dS ∈ (0,∞), limdS→0 q(dS) = ∞ and limdS→∞ q(dS) = hx (L)
�−h(L)

< 0.
As a result, there is a unique d∗

S > 0 such that q(d∗
S) = 0, and in turn the infected

population stays in a left neighborhood of L for 0 < dS < d∗
S , and the infected

population concentrates only at L for all dS ≥ d∗
S .

(ii-b) If the highest-risk set�h contains only an interval, then the infected population
resides in a certain neighborhood of such an interval. Again, such a neighborhood can
be calculated through the formula (2.15). See the numerical simulation in Fig. 4b.

(ii-c) For a general Hölder continuous risk function h, we can conclude that the
disease must exist in all isolated highest-risk point(s) and a neighborhood of each
highest-risk interval if exists; nevertheless, it is challenging to give a precise charac-
terization for the distribution behavior of the susceptible and infected populations, due
to the mathematical difficulties on the analysis of the free boundary problem (2.4).
We have performed the numerical simulations in Fig. 5a, b as an illustration.

In what follows, we would like to make some more discussions on (ii-a) above in
the case that τ0 is a boundary point. For example, we take τ0 = L , and also assume
that hx (L) < 0. On the one hand, by fixing hx (L), we have known from (ii-b) that
large diffusion rate dS can result in the disease concentration only at the location L
and small diffusion rate dS will cause the disease to distribute in a left neighborhood
of L . On the other hand, once dS is fixed, the concentration phenomenon happens only
if −hx (L) is properly large. This motivates us to see whether a similar concentration
phenomenon could occur at an interior isolated highest-risk point if the risk function
h is merely Hölder continuous. To illustrate this phenomenon, let us consider the
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Fig. 4 Numerical simulations of the solution profile of model (1.6), where β(x) = 1+ 1
2 sin(2πx), η(x) =

1, γ (x) = h(x)β(x) − η(x), dS = 1, dI = 10−10,� = 10, and h(x) = 1+ (x − 1
2 )2 in (a), while in (b),

h(x) = 1
2 + 5(x − 1

4 )2, 0 ≤ x < 1
4 ; h(x) = 1

2 , 1
4 ≤ x < 3

4 ; h(x) = 1
2 + 5(x − 3

4 )2, 3
4 ≤ x < 1

Fig. 5 Numerical simulations of the solution profile of model (1.6), where dS = 1, dI = 10−5, β(x) =
1+ 1

2 sin(2πx), η(x) = 1, γ (x) = h(x)β(x)−η(x), � = 10. In (a) and (b), h(x) is chosen to be the same
as k(x) in Fig. 2b, c, respectively

following risk function whose curve is the connection of two segments:

h(x) =
{
a1

(
x − L

2

) + �
4 , x ∈ [

0, L
2

]
,

a2
(
x − L

2

) + �
4 , x ∈ ( L

2 , L
]
,

(3.1)

with a1 < 0, a2 > 0. Obviously, h is merely Lipschitz continuous at x = L
2 . Our

numerical simulation results demonstrate that if the slopes |a1|, a2 are properly large,
then the infected population will concentrate at x = L

2 (Fig. 6a); if |a1|, a2 are small,
then the infected population will aggregate in a neighborhood of x = L

2 (Fig. 6b); and
if |a1| is small while a2 is large, then the infected population will aggregate in a left-
neighborhood of x = L

2 (Fig. 6b). These profiles behave rather differently from that
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Fig. 6 Numerical simulations of the solution profile of model (1.6), where β(x) = 1+ 1
2 sin(2πx), η(x) =

1, γ (x) = h(x)β(x) − η(x), L = 1, dS = 1, dI = 10−5, � = 10 and h(x) is given by (3.1)

in Theorem 2.3(ii) for h ∈ C2([0, L]), as shown by Fig. 4a. Therefore, the numerical
results reveal that the smoothness of h may have a substantial affect on the spatial
distribution of the disease. This observation implies that drastic changes in the spatial
environment, such as the transmission, recovery or death rates, may have substantial
effects on the distribution profiles of the disease in space.

3.3 Conclusion

The discussions in the above two subsections, together with the numerical simula-
tions, show that the spatial profile of the susceptible and infected populations of (1.2)
and (1.6) with respect to small movement rate of the infected individuals are rather
different. This is caused by the presence of the recruitment term for the susceptible
population and the death rate for the infected population. On the other hand, we would
like to mention that the recent works (Cui 2021; Cui et al. 2017, 2021; Cui and Lou
2016; Kuto et al. 2017; Lei and Zhou 2022; Zhang and Cui 2020) studied various
kinds of reaction–diffusion–advection SIS epidemic models, in which the advection
term represents some passive movement in a certain direction, e.g., due to external
environmental forces such as water flow and so on. In particular, if an advection is
present in (1.2) and stands for, for instance, the water flow, it was proved in Cui et al.
(2021, Theorem 1.4) that, as dI → 0, the susceptible population converges to a posi-
tive function while the infected population concentrates only at the downstream of the
water flow; a similar result can be shown to hold for the corresponding system (1.6).
Such a distribution behavior is essentially different from that of (1.2) and (1.6) with
small dI .

In summary, our results here, combined with those of Cui et al. (2021); Kuto
et al. (2017); Li et al. (2018), suggest that the recruitment term for the susceptible
population, the death rate for the infected population (even the smoothness of the
associated risk function) as well as the advection can lead to significant impacts on
the disease transmission and thus decision-makers should attach great importance to
these factors when taking measures such as the lockdown and quarantine to control
the movement or immigration of the infected individuals so as to eliminate the disease
infection.
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4 Proof of main results: Theorems 2.1, 2.2 and 2.3

This section is devoted to the proof of Theorems 2.1, 2.2 and 2.3.

4.1 Proof of Theorem 2.1

In this subsection, we present the proof of Theorem 2.1.

Proof of Theorem 2.1 First of all, we recall that for any EE (S, I ) of (1.2), from Wen
et al. (2018) (see (3.3) there), the following holds:

kmin ≤ S(x) ≤ max[0,L] k(x), ∀x ∈ [0, L]. (4.1)

By the positivity of I and the uniqueness of the principal eigenvalue, it is clear from
the equation of I that

λ1(dI , γ − βS) = 0, ∀dI > 0,

where λ1(dI , γ − βS) is defined as in the appendix. Using Theorem 1.1, as dI → 0
(up to a subsequence), we see that S → Ŝ uniformly on [0, L] for some positive
function Ŝ. Hence, by Lemma 5.1 in the appendix and the continuous dependence of
the principal eigenvalue on the weight function γ − βS, we have

0 = lim
dI→0

λ1(dI , γ − βS) = min
x∈[0,L][γ (x) − β(x)Ŝ(x)].

This obviously implies that

Ŝ(x) ≤ k(x), ∀x ∈ [0, L] and Ŝ(y0) = k(y0) (4.2)

for some y0 ∈ [0, L].
From Theorem 1.1, we recall that I → μ weakly for some Radon measure μ with

μ([0, L]) > 0 in the following sense

∫ L

0
I (x)ζ(x)dx →

∫ L

0
ζ(x)μ(dx), ∀ζ ∈ C([0, L]), as dI → 0. (4.3)

We now integrate the first equation in (1.2) by parts over [0, L] and use the boundary
conditions to deduce that

∫ L

0
[β(x)S(x) − γ (x)]I (x)dx = 0, ∀dI > 0. (4.4)
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Letting dI → 0 in (4.4), combined with (4.3) and the fact that S → Ŝ uniformly on
[0, L] as dI → 0, we infer that

∫

[0,L]
[β(x)Ŝ(x) − γ (x)]μ(dx) = 0, (4.5)

which, together with (4.2), gives

∫

{x∈[0,L]: Ŝ(x)<k(x)}
β(x)[Ŝ(x) − k(x)]μ(dx) =

∫

[0,L]
β(x)[Ŝ(x) − k(x)]μ(dx) = 0.

As a result, we find that

μ({x ∈ [0, L] : Ŝ(x) < k(x)}) = 0 (4.6)

and

μ({x ∈ [0, L] : Ŝ(x) = k(x)}) = μ([0, L]) > 0. (4.7)

In view of (4.4) and
∫ L
0 (S(x) + I (x)) dx = N , for any dI > 0 we have

∫ L

0
S(x)I (x)dx ≤ 1

min[0,L] β(x)

∫ L

0
γ (x)I (x)dx ≤ max[0,L] γ (x)

min[0,L] β(x)
N , ∀dI > 0.

(4.8)

Then, applying the L1-theory for elliptic equation (see Lemma 5.2 in the appendix)
to the S-equation, one sees that for any 1 ≤ r < ∞,

‖S‖W 1,r (0,L) ≤ C, ∀dI > 0. (4.9)

Hereafter, C or C(ε) is a positive constant independent of dI > 0 but may be different
from place to place. Taking r = 2 in (4.9), we note that W 1,2(0, L) is a Hilbert
space and W 1,2(0, L) is compactly embedded to C([0, L]). Thus, we may assume
that S → Ŝ weakly in W 1,2(0, L) and S → Ŝ uniformly on [0, L] as dI → 0. Now,
for any ζ ∈ W 1,2(0, L) (and so ζ ∈ C([0, L])), we get from the S-equation that

dS

∫ L

0
Sx (x)ζx (x)dx =

∫ L

0
[−β(x)S(x) + γ (x)]I (x)ζ(x)dx, ∀dI > 0.

(4.10)

By virtue of (4.3), (4.6) and (4.7), we can send dI → 0 in (4.10) to obtain

dS

∫ L

0
Ŝx (x)ζx (x)dx = 0, ∀ζ ∈ W 1,2(0, L).
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This means that Ŝ is a weak (and then a classical) solution of

−uxx (x) = 0, x ∈ (0, L); ux (0) = ux (L).

Consequently, Ŝ must be a positive constant. It then follows from (4.2) that Ŝ = kmin ,
and so S(x) → kmin uniformly on [0, L].

In the sequel, we are going to determine the limit of I . We first consider case (i):
�k = {x0} is a singleton. By what was proved above, it is easily seen that

I (x) → (N − Lkmin)δ(x0) weakly in the sense of (1.3),

where δ(x0) is the Dirac measure centered at x0.
It remains to show I (x) → 0 locally uniformly in [0, L] \ {x0}. We only consider

the case of x0 ∈ (0, L), and the case x0 = 0 or L can be handled similarly. Since
S(x) → kmin uniformly on [0, L], by the definition of kmin , we know from the I -
equation that, given small ε > 0, Ixx > 0 on [0, x0 − ε] ∪ [x0 + ε, L] as long as dI is
small enough. As Ix (0) = Ix (L) = 0, I is increasing in [0, x0−ε]while is decreasing
in [x0 + ε, L]. Thus, due to the arbitrariness of ε, it readily follows from (4.6) that
I (x) → 0 locally uniformly in [0, x0) ∪ (x0, L], as claimed.

We next consider case (ii): �k = [	1, 	2] ⊂ (0, L). First of all, we can assert that
I (x) → 0 locally uniformly in [0, L] \ [	1, 	2] by a similar argument as in case (i).
In what follows, we will analyze the limiting behavior of I in the interval [	1, 	2]. To
this end, let us introduce the following function

w(x) = S(x) − kmin

dI
, x ∈ [0, L].

Due to (4.1), w ≥ 0 on [0, L]. In addition, by our assumption, one notices that w

solves

− dSwxx (x) = −β(x)Iw, x ∈ [	1, 	2], (4.11)

and I satisfies

− Ixx (x) = β(x)w I , x ∈ [	1, 	2]. (4.12)

Since
∫ L
0 I (x)dx ≤ N , for any small ε > 0, Lemma 5.3(b) in the appendix can be

applied to (4.11) to assert that

max
x∈[	1+ε,	2−ε] w(x) ≤ C(ε) min

x∈[	1+ε,	2−ε] w(x). (4.13)

We now claim thatw is uniformly bounded on [	1+ε, 	2−ε] for all small dI > 0.
Otherwise, there is a sequence of dI , labelled by itself for simplicity, such that the
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corresponding solution sequence {(w, I )} satisfies

max
x∈[	1+ε,	2−ε] w(x) → ∞, as dI → 0. (4.14)

By (4.13), w → ∞ uniformly on [	1 + ε, 	2 − ε] as dI → 0. To produce a contra-
diction, let us denote λD1 to be the principal eigenvalue of the following eigenvalue
problem with Dirichlet boundary conditions:

{
−ϕxx = λϕ, x ∈ (	1 + ε, 	2 − ε)

ϕ(	1 + ε) = ϕ(	2 − ε) = 0.
(4.15)

Apparently, λD1 > 0. For all small dI > 0, by (4.14) we may assume that

β(x)w(x) > 2λD1 on [	1 + ε, 	2 − ε].

Thus, it follows from (4.12) that I ∈ C2([0, L]) is a positive and strict supersolution
of the following operator in the sense of Peng and Zhao (2015, Definition 2.1):

{
Lu := −uxx − 2λD1 u, x ∈ (	1 + ε, 	2 − ε), ∀u ∈ C2([0, L]),
u(	1 + ε) = u(	2 − ε) = 0.

By means of Peng and Zhao (2015, Proposition 2.1) the principal eigenvalue, denoted
by λ̃D1 , of the eigenvalue problem

{
Lϕxx = λϕ, x ∈ (	1 + ε, 	2 − ε),

ϕ(	1 + ε) = ϕ(	2 − ε) = 0

satisfies λ̃D1 > 0.
On the other hand, the uniqueness of the principal eigenvalue of problem (4.15)

implies λ̃D1 + 2λD1 = λD1 , and so λ̃D1 = −λD1 < 0, leading to a contradiction. The
previous claim is thus verified. Due to the arbitrariness of ε, we have shown that w is
locally uniformly bounded in (	1, 	2) with respect to all small dI > 0.

Furthermore, by Lemma 5.2 in the appendix, it is easy to see from (4.12) that I is
locally uniformly bounded in (	1, 	2) independent of all small dI > 0. The standard
regularity theory for elliptic equations can be applied to (4.11) and (4.12), respectively
to deduce that w and I are locally bounded (independent of small dI ) in (	1, 	2) in
the usual C2+α-norm for some α ∈ (0, 1). Then, by a diagonal argument, we may
assume that

(w, I ) → (ŵ, Î ) in C2
loc(	1, 	2), as dI → 0.

Clearly, by (4.12), (ŵ, Î ) satisfies

− Îxx (x) = β(x)ŵ Î , x ∈ (	1, 	2). (4.16)
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Furthermore, by adding (4.11) and (4.12), one easily sees that (ŵ, Î ) solves

−(dSŵ + Î )xx = 0 in (	1, 	2).

This indicates that

dSŵ(x) + Î (x) = â + b̂x, x ∈ (	1, 	2) (4.17)

for some constants â, b̂.
In what follows, we aim to determine â and b̂. By a simple observation, (w, I )

satisfies

{
−(dSw + I )xx = 0, x ∈ (0, L),

(dSw + I )x = 0, x = 0, L.

Thus, dSw + I = cdI is a positive constant on [0, L] for any dI > 0. Recall that w, I
are locally uniformly bounded in (	1, 	2). Hence, as dI → 0, we may assume that

dSw + I = cdI → ĉ ∈ [0,∞) uniformly on [0, L].

From (4.17) it follows that ĉ = â and b̂ = 0. In addition, our analysis indicates that
w and I are uniformly bounded on [0, L]. Precisely, it holds that

w(x), I (x) ≤ C, ∀x ∈ [0, L]. (4.18)

We now use the equation of I , together with the fact of w, I ≥ 0 and the definition
of k, to find that

−Ixx = β(x) [S − k(x)] I

dI

= β(x)

[
S − kmin

dI
+ kmin − k(x)

dI

]

I

≤ β(x)w I , x ∈ (0, L). (4.19)

Multiplying both sides in (4.19) by I and integrating over (0, L), we obtain

∫ L

0
(Ix )

2dx ≤
∫ L

0
βw I 2dx ≤ C

due to (4.18). This and (4.18) imply that ‖I‖W 1,2(0,L) ≤ C . Since W 1,2(0, L) is

compactly embedded to C([0, L]), we can assume that I → Î uniformly on [0, L].
By what was proved before, Î = 0 on [0, 	1] ∪ [	2, L], and by (4.16) and (4.17), on
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[	1, 	2], Î solves
{

− Îxx = β(x)
dS

(â − Î ) Î , 	1 < x < 	2,

Î = 0, x = 	1, 	2.
(4.20)

Because of
∫ L
0 (S(x) + I (x)) dx = N and S → kmin uniformly on [0, L] as dI → 0,

it is easily seen that

∫ 	2

	1

Î dx = N − Lkmin > 0. (4.21)

Thanks to the Harnack inequality (see Lemma 5.3(b)) and (4.21), we have from (4.20)
that Î > 0 in (	1, 	2). By (4.17) and the fact of b̂ = 0, clearly â > 0.

It is well known that given â > 0, the positive solution of problem (4.20), if it
exists, must be unique, denoted by Îâ ; moreover, if 0 < â1 < â2, then Îâ1(x) < Îâ2(x)
for all x ∈ (	1, 	2). With these facts, one can check that the positive constant â is
uniquely determined by (4.21) in an implicit manner. Therefore, all the assertions in
case (ii) have been verified. The proof is thus complete. ��

4.2 Proof of Theorem 2.2

We are now in a position to give the proof of Theorem 2.2.

Proof of Theorem 2.2 First of all, one can follow the analysis of Theorem2.1, combined
with the result of Theorem 1.2 and its proof (see Li et al. 2018, Theorem 3.2), to show
that as dI → 0, any EE (S, I ) of (1.6) satisfies (up to a subsequence of dI ) that S → Ŝ
weakly in W 1,2(0, L) and uniformly on [0, L], and I → μ weakly in the sense of
(1.3) for some Radon measure μ and positive function Ŝ ∈ W 1,2(0, L), and

0 < Ŝ(x) ≤ h(x), ∀x ∈ [0, L], (4.22)

and (2.5) hold.
For any ζ ∈ W 1,2(0, L) (and so ζ ∈ C([0, L])), we use the S-equation to obtain

dS

∫ L

0
Sxζxdx =

∫ L

0
[� − S − β(x)SI + γ (x)I ]ζdx

=
∫ L

0
[� − S − η(x)I ]ζdx −

∫ L

0
[β(x)S − (γ (x) + η(x))]I ζdx

(4.23)

for all dI > 0. In view of (4.22) and (2.5), we send dI → 0 to infer that

∫ L

0
[β(x)S − (γ (x) + η(x)]I ζdx →

∫

[0,L]
β(x)[Ŝ − h(x)]ζμ(dx) = 0.
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Thus, by letting dI → 0, it follows from (4.23) that

dS

∫ L

0
Ŝxζxdx =

∫ L

0
(� − Ŝ)ζdx −

∫ L

0
η(x)ζμ(dx), ∀ζ ∈ W 1,2(0, L).

(4.24)

Together with (2.5), this means that Ŝ ∈ W 1,2(0, L) is a weak solution of (2.4).
In what follows, for a general positive Hölder continuous function h, we will prove

three claims:

Claim 1. If the minimum of h is attained at x = 0 (resp. at x = L), then Ŝ must
touch h at this point; that is, Ŝ(0) = h(0) = hmin (resp. Ŝ(L) = h(L) = hmin).

We only handle the case that hmin is attained at x = 0, and the other case can
be treated similarly. Since Ŝ ≤ h on [0, L], we suppose that Ŝ(0) < h(0) and so
Ŝ(x) < h(x) on [0, ε0] for some small ε0 > 0. Thus, from (2.4), we have −dS Ŝxx =
� − Ŝ, ∀x ∈ (0, ε0]. A simple analysis shows that

Ŝ(x) = c1e
d−1/2
S x + c2e

−d−1/2
S x + �, x ∈ (0, ε0] (4.25)

for some constants c1, c2. On the other hand, using the S-equation, we integrate on
[0, x] to deduce

− Sx (x) = 1

dS

∫ x

0
[� − S(y) − β(y)S(y)I (y) + γ (y)I (y)]dy, x ∈ [0, ε0].

(4.26)

From the proof of Li et al. (2018, Theorem 3.2) we know that

∫ L

0
S(x)I (x)dx ≤ C,

∫ L

0
I (x)dx ≤ C, and S(x) ≤ C, ∀x ∈ [0, L],

(4.27)

for some positive constant C , independent of dI > 0.
In the sequel, the constant C allows to vary from line to line but does not depend on

dI > 0. It immediately follows from (4.26) that Sx is uniformly bounded on [0, ε0],
independent of dI > 0. Note that μ([0, ε0]) = 0 due to (2.5), and I → μ weakly in
the sense of (1.3). Given any small ε > 0, we can find a small ρ > 0 so that for all
0 < dI ≤ ρ,

∫ ε0

0
I (x)dx ≤ ε +

∫

[0,ε0]
μ(dx) = ε.
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Now, for any x1, x2 ∈ [0, ε0] satisfying |x1 − x2| < ε, we have

∣
∣Sx (x1) − Sx (x2)

∣
∣ = 1

dS

∣
∣
∣

∫ x2

x1
[� − S(y) − β(y)S(y)I (y) + γ (y)I (y)]dy

∣
∣
∣

≤ C |x1 − x2| + C
∫ x2

x1
I (y)dy

≤ C |x1 − x2| + C
∫ ε0

0
I (y)dy ≤ Cε

provided that 0 < dI ≤ ρ. This shows that Sx is equi-continuous on [0, ε0] once
0 < dI ≤ ρ.

Hence, we can apply the well-known Ascoli-Arzelà theorem, up to a further sub-
sequence of dI , to conclude that Sx is uniformly convergent on [0, ε0] as dI → 0.
As

S(x) − S(0) =
∫ x

0
Sx (y)dy, S → Ŝ uniformly on [0, ε0],

it is easily seen that S → Ŝ in C1([0, ε0]). Thus, Ŝx (0) = 0, and in turn we get from
(4.25) that c1 = c2. Because of Ŝ ≤ h on [0, L] and the condition (2.3), we have
c1 = c2 < 0, and so

Ŝx (x) = c1[ed
−1/2
S x − e−d−1/2

S x ] < 0, ∀x ∈ (0, ε0].

This means that Ŝ is decreasing on [0, ε0].
By virtue of h(0) ≤ h(x) for all x ∈ [0, L] and (2.5), one can extend the above

analysis to assert that Ŝ is decreasing on [0, L] and so Ŝ < h on [0, L]. This clearly
gives μ([0, L]) = 0, a contradiction with μ([0, L]) > 0 due to (2.5) again. Hence,
we must have Ŝ(0) = h(0) = hmin .

Claim 2. If Ŝ attains its local minimum at some x0 ∈ (0, L), then Ŝ must touch h
at this point; that is, Ŝ(x0) = h(x0).

Suppose that Ŝ(x0) < h(x0) due to Ŝ ≤ h. Thus, there is a small ε0 > 0 such that
Ŝ(x) < h(x) for all x ∈ [x0−ε0, x0+ε0] ⊂ (0, L). By (2.5),μ([x0−ε0, x0+ε0]) = 0
and so

−dS Ŝxx = � − Ŝ on [x0 − ε0, x0 + ε0].

As before, Ŝ takes the form of (4.25) on [x0 − ε0, x0 + ε0] for some constants c1, c2.

Obviously, Ŝx (x0) = 0, which leads to c2 = c1e2d
−1/2
S x0 , and so c1 < 0. Thus, it holds

that

Ŝ(x) = c1[ed
−1/2
S x + ed

−1/2
S (2x0−x)] + �, x ∈ [x0 − ε0, x0 + ε0] (4.28)

for some constant c1 < 0. In view of (4.28), basic computation gives that Ŝ is increas-
ing on [x0 − ε0, x0] while is decreasing on [x0, x0 + ε0]. This implies that x0 is a local
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maximum of Ŝ, a contradiction with our assumption. As a result, Ŝ must touch h at
x = x0.

Claim 3. If the minimum of h is attained at some point y0 ∈ (0, L), then Ŝ must
touch h at this point; that is, Ŝ(y0) = h(y0) = hmin .

Suppose that Ŝ(y0) < h(y0) = hmin . There are two possible cases to happen in the
interval [0, y0): Case 1. Ŝ never touches h in [0, y0), that is, Ŝ < h in [0, y0); Case 2.
Ŝ touches h somewhere in [0, y0).

When Case 1 occurs, by (2.5), we know that Ŝ must touch h in (y0, L]. Let y1 be
the first point (from the left side) at which Ŝ touches h. That is, y1 ∈ (y0, L], and

Ŝ(x) < h(x), ∀x ∈ (y0, y1), Ŝ(y1) = h(y1) ≥ hmin .

On the other hand, since Ŝ < h in [0, y0), we can follow the analysis used in Claim 1
to show that Ŝ is decreasing on [0, y1]. This is an obvious contradiction with Ŝ(y0) <

hmin ≤ Ŝ(y1).
When Case 2 occurs, we denote by y2 ∈ [0, y0) the first point from the right side

such that Ŝ touches h in [0, y0). That is,

Ŝ(x) < h(x), ∀x ∈ (y2, y0), Ŝ(y2) = h(y2) ≥ hmin .

If Ŝ does not touch h in (y0, L]. By a similar argument to the proof of Claim 1 and
appealing to the fact of Sx (L) = 0, one sees that Ŝ is increasing in (y2, L], leading to
Ŝ(y2) < Ŝ(y0), which contradicts with Ŝ(y2) ≥ hmin > Ŝ(y0). Hence, it is necessary
that Ŝ touches h in (y0, L]. Let y3 be the first point where Ŝ touches h in (y0, L]. Thus,
Ŝ(x) < h(x) for all x ∈ (y0, y3) and Ŝ(y3) = h(y3) ≥ hmin . Therefore, Ŝ(x) < h(x)
in the interval (y2, y3), Ŝ(y0) < h(y0) = hmin and Ŝ(y2), Ŝ(y3) ≥ hmin . This implies
that on [y2, y3], Ŝ must attain its minimum at some y4 ∈ (y2, y3). ByClaim 2, we can
conclude that Ŝ(y4) = h(y4), a contradiction again. So far, we have verified Claim 3.

A similar reasoning as that of proving Claim 3 yields Ŝ ≥ hmin on [0, L]. Thus
(2.6) holds. Thanks toClaim 1 andClaim 3, (2.7) is true. It is also apparent thatClaim
2 implies (2.8). The proof is now complete. ��

4.3 Proof of Theorem 2.3

This subsection is devoted to the proof of Theorem 2.3. We begin with some lemmas
as follows.

Lemma 4.1 Assume that h ∈ C2([0, L]) and hx is non-decreasing in some neighbor-
hood of 	0 ∈ �h. Let Ŝ and μ be given as in Theorem 2.2. Then there exists a small
ε0 > 0 such that

Ŝ(x) = h(x), ∀x ∈ (	0 − ε0, 	0 + ε0) ∩ (0, L)
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and

μ({x}) = � − h + dShxx
η(x)

, a.e. for x ∈ (	0 − ε0, 	0 + ε0) ∩ (0, L).

Proof By Theorem 2.2, we know that 	0 ∈ {x ∈ [0, L] : Ŝ(x) = h(x)}. In the sequel,
we only consider the case of 	0 ∈ (0, L), and the case of 	0 = 0 or L can be treated
similarly. There are three possibilities we have to distinguish:

(1) 	0 is an isolated point in the set {x ∈ [0, L] : Ŝ(x) = h(x)};
(2) 	0 is an accumulation point in {x ∈ [0, L] : Ŝ(x) = h(x)};
(3) there is a small ε0 > 0 such that (	0−ε0, 	0+ε0) ⊂ {x ∈ [0, L] : Ŝ(x) = h(x)}.
In what follows, we will exclude (1) and (2). If (1) happens, then

Ŝ(	0) = h(	0) = hmin and Ŝ < h in (	0 − ε1, 	0 + ε1) \ {	0}

for some small ε1 > 0.
Note that μ([0, L]) < ∞. In view of this fact, one can apply the interior regularity

theory for elliptic equations to (2.4) and assert that Ŝ ∈ C1(0, L). Clearly, hx (	0) = 0.
Since Ŝ(	0) = h(	0) = hmin and Ŝ ≥ hmin due to (2.6), we infer that Ŝx (	0) = 0.

On the other hand, by (2.4), Ŝ satisfies

− dS Ŝxx = � − Ŝ in (	0 − ε1, 	0 + ε1) \ {	0}. (4.29)

By using Ŝx (	0) = 0 and (4.29), one can easily see that Ŝ is increasing in (	0−ε1, 	0)

while Ŝ is decreasing in (	0, 	0 + ε1). This implies that Ŝ < hmin in (	0 − ε1, 	0 +
ε1) \ {	0}, contradicting against (2.6). Thus, (1) is impossible.

If (2) happens, without loss of generality, we can find two points, say z1, z2 with
	0 < z1 < z2 < 	0 + ε2 for some small ε2 > 0 such that

Ŝ(z1) = h(z1), Ŝ(z2) = h(z2) and Ŝ < h in (z1, z2). (4.30)

By taking ε2 to be smaller if necessary, we may assume that hx (z1) ≤ hx (z2) due
to the monotonicity of hx . Then, Ŝ solves (4.29) in (z1, z2). By means of (4.30), we
have

Ŝx (z1) ≤ hx (z1), Ŝx (z2) ≥ hx (z2),

leading to Ŝx (z1) ≤ Ŝx (z2). However, it follows from (4.29) that Ŝxx < 0 in (z1, z2),
which gives Ŝx (z1) > Ŝx (z2), a contradiction. Hence, the possibility (2) has been
ruled out.

The above argument shows that (3) must hold. Now, since Ŝ = h on [	0 − ε0, 	0 +
ε0], we can multiply both sides of (2.5) by any function ζ ∈ C2([0, L]) with compact
support on [	0 − ε0, 	0 + ε0] and integrate to conclude that

dShxx + � − h − η(x)μ({x}) = 0, a.e. for x ∈ (	0 − ε0, 	0 + ε0),
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which yields the expression of μ({x}). ��

Lemma 4.2 Assume that h ∈ C2([0, L]), hx is non-decreasing on [0, L], and �h =
{τ0} for some τ0 ∈ (0, L). Then there exist two numbers τ1, τ2 with 0 < τ1 < τ0 <

τ2 < L such that

Ŝ(x) = h(x), ∀x ∈ [τ1, τ2], (4.31)

and on [0, τ1) ∪ (τ2, L], Ŝ satisfies

⎧
⎪⎨

⎪⎩

−dS Ŝxx (x) = � − Ŝ, x ∈ (0, τ1) ∪ (τ2, L),

Ŝx (0) = Ŝx (L) = 0,

Ŝ(τ1) = h(τ1), Ŝ(τ2) = h(τ2),

(4.32)

and μ satisfies

μ({x}) = � − h + dShxx
η(x)

, a.e. for x ∈ (τ1, τ2), (4.33)

μ({x}) = 0, ∀x ∈ [0, τ1) ∪ (τ2, L]. (4.34)

Proof Let us denote

τ1 = inf{τ ∈ [0, τ0) : Ŝ(x) = h(x), ∀x ∈ [τ, τ0]},
τ2 = sup{τ ∈ (τ0, L] : Ŝ(x) = h(x), ∀x ∈ [τ0, τ ]}.

Lemma 4.1 implies that τ1 and τ2 are well defined, and 0 ≤ τ1 < τ0 and τ0 < τ2 ≤ L .
In addition, (4.31) and (4.33) hold.

In light of the monotonicity of hx on [0, L], it is easily seen from the proof of
Lemma 4.1 that if τ1 > 0, then Ŝ can not touch h in (0, τ1) and in turn μ([0, τ1)) = 0;
similarly, if τ2 < L , Ŝ can not touch h in (τ2, L) and so μ((τ2, L]) = 0.

If τ1 > 0 and τ2 < L , we can use the analysis as in the proof of Claim 1 of Theorem
2.2 to conclude that Ŝx (0) = Ŝx (L) = 0. As μ([0, τ1) ∪ (τ2, L]) = 0, by (2.4) and
the continuity of Ŝ, a standard compactness argument of elliptic equations yields that
Ŝ solves (4.32) in the classical sense. Clearly, the solution of (4.32) is unique.

It remains to prove τ1 > 0 and τ2 < L . Note that themonotonicity of hx ,�h = {τ0}
and hx (τ0) = 0 ensure hx (0) < 0 and hx (L) > 0. Suppose that τ1 = 0, and so (4.31)
holds on [0, τ2]. Now, given τ ∈ (0, τ0], integrating the S-equation over [0, τ ] and
using (4.31), we infer that
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−dSSx (τ
−) =

∫ τ

0
[� − S(y) − β(y)S(y)I (y) + γ (y)I (y)]dy

=
∫ τ

0
[� − S(y) − η(y)I (y)]dy

+
∫ τ

0
[γ (y) + η(y) − β(y)S(y)]I (y)dy

→
∫

[0,τ ]
[� − h(y) − η(y)μ](dy) =

∫ τ

0
[−dShxx (y)]dy

= −dShx (τ ) + dShx (0), as dI → 0.

That is, for any τ ∈ (0, τ0], it holds that

Sx (τ
−) → hx (τ ) − hx (0), as dI → 0.

Since hx is non-decreasing on [0, τ0] and hx (0) < 0, there exists a small ε0 > 0 such
that for all x ∈ [τ0 − ε0, τ0],

Sx (x
−) ≥ 1

2
[hx (τ0) − hx (0)] = −1

2
hx (0) > 0

for all small dI > 0. This implies that S is increasing on [τ0 − ε0, τ0] for all such
small dI > 0. In view of S → h uniformly on [τ0 − ε0, τ0] as dI → 0, h must
be non-decreasing on [τ0 − ε0, τ0], which is a contradiction against our assumption.
Hence, τ1 > 0. Similarly, we have τ2 < L by using hx (L) > 0. As a consequence,
we deduce (4.34). The proof is complete. ��

Similar to the argument of Lemma 4.1, we can conclude the following result.

Lemma 4.3 Assume that h ∈ C2([0, L]), [	1, 	2] ⊂ �h and hx is non-decreasing in
some neighborhood of 	1, 	2. Let Ŝ and μ be given as in Theorem 2.2. Then there
exists a small ε0 > 0 such that

Ŝ(x) = h(x), ∀x ∈ (	1 − ε0, 	2 + ε0) ∩ (0, L)

and

μ({x}) = � − h + dShxx
η(x)

, a.e. for x ∈ (	1 − ε0, 	2 + ε0) ∩ (0, L).

Based upon Lemma 4.3, we can deduce the following result.

Lemma 4.4 Assume that h ∈ C2([0, L]), �h = [	1, 	2] and hx is non-decreasing on
[0, 	1]∪[	2, L]. Let Ŝ andμ be given as in Theorem 2.2. Then there exist two numbers
τ1, τ2 with 0 < τ1 < 	1 < 	2 < τ2 < L such that all the assertions in Lemma 4.2
hold.

With the aid of Lemmas 4.1–4.4, we are now in a position to prove Theorem 2.3.
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Proof of Theorem 2.3 We first prove (i). We proceed indirectly and suppose that Ŝ �≡ h
on [0, L]. Since Ŝ touches h at least at the highest-risk point due to Theorem 2.2, we
can find an interval, denoted by [�1, �2] ⊂ [0, L], such that Ŝ < h in (�1, �2) and at
the boundary point x = �i for i = 1, 2, either Ŝ touches h (and so Ŝ(�i ) = h(�i ))
or Ŝ(�i ) < h(�i ). In the latter case, it is necessary that �i = 0 or L , and the analysis
to deduce Claim 1 in the proof of Theorem 2.2 shows that Ŝx (�i ) = 0. In any case,
clearly Ŝ satisfies

{
−dS Ŝxx = � − Ŝ, x ∈ (�1, �2),

Ŝ(�i ) = h(�i ) or Ŝx (�i ) = 0, i = 1, 2.
(4.35)

Thus, by our assumption, h is a sub-solution to problem (4.35), and
max{�, maxx∈[0,L] h(x)} is a super-solution to (4.35). The well-known technique
of sub-supersolution iteration, combined with the uniqueness of solutions to problem
(4.35), allows us to conclude that Ŝ ≥ h on [�1, �2], which leads to a contradiction.
Hence, (2.9) holds, and (2.10) follows from (2.4) by using a test-function argument
similarly as before. Therefore, (i) is proved.

We next prove (ii). First of all, let us consider the case of τ0 ∈ (0, L). In this case,
the assertions (2.11)-(2.14) follow from Lemma 4.2, and it remains to show that τ1, τ2
are uniquely determined by (2.15). As Ŝ < h in [0, τ1), we have

Ŝ(x) = c1[ed
−1/2
S x + e−d−1/2

S x ] + �, ∀x ∈ [0, τ1]

for some c1 < 0. It then follows from Ŝ(τ1) = h(τ1) that

Ŝ(x) = − � − h(τ1)

ed
−1/2
S τ1 + e−d−1/2

S τ1
(ed

−1/2
S x + e−d−1/2

S x ) + �, ∀x ∈ [0, τ1].

Note that Ŝ is convex while h is concave in the interval [0, τ1), and moreover, Ŝ ∈
C1([0, L]) as shown before. Hence, Ŝ must be tangent to h at x = τ1, which in
turn implies that τ1 is the unique solution to Ŝx (τ1) = hx (τ1). Thus, τ1 is uniquely
determined by the following equation:

ed
−1/2
S τ1 − e−d−1/2

S τ1

ed
−1/2
S τ1 + e−d−1/2

S τ1
= −d1/2S hx (τ1)

� − h(τ1)
.

Similarly, τ2 is uniquely determined by the second equation of (2.15). The assertions
in (ii)-(a) have been verified.

We now consider the case of τ0 = L . In view of our assumption, clearly hx (0) < 0,
hx (L) ≤ 0, and Ŝ(L) = h(L).

Assume that

e2Ld
−1/2
S − 1

e2Ld
−1/2
S + 1

> −d1/2S hx (L)

� − h(L)
.
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In order to deduce the desired conclusion in (ii)-(b1), one can follow the analysis of
Lemmas 4.1 and 4.2. By checking the analysis there, one just needs to show that τ1
defined in the assertion (ii)-(a) satisfies τ1 > 0. It turns out that this amounts to rule
out the situation that Ŝ < h in [0, L). Suppose that Ŝ < h in [0, L). Then, arguing as
before, we see that Ŝ satisfies −dS Ŝxx = � − Ŝ in (0, L) and Ŝx (0) = 0. Solving this
problem, we get

Ŝ(x) = c1[ed
−1/2
S x + e−d−1/2

S x ] + �

for some c1 < 0. It then follows from Ŝ(L) = h(L) that

c1 = − � − h(L)

ed
−1/2
S L + e−d−1/2

S L
.

Thus, we get

Ŝx (L) = −d−1/2
S (� − h(L))

e2Ld
−1/2
S − 1

e2Ld
−1/2
S + 1

.

By means of Ŝ < h in [0, L) and Ŝ(L) = h(L), it is necessary that Ŝx (L) ≥ hx (L),
which leads to

e2Ld
−1/2
S − 1

e2Ld
−1/2
S + 1

≤ −d1/2S hx (L)

� − h(L)
,

contradicting with our assumption. Therefore, τ1 > 0 must hold, and (ii)-(b1) is
proved.

Assume from now on that

e2Ld
−1/2
S − 1

e2Ld
−1/2
S + 1

≤ −d1/2S hx (L)

� − h(L)
.

We first show that τ1 > 0 is impossible. On the contrary, we suppose that τ1 > 0, and
by the above analysis, τ1 must solve the first equation of (2.15). Let us consider the
following auxiliary problem:

f (τ ) = e2τd
−1/2
S − 1

e2τd
−1/2
S + 1

+ d1/2S hx (τ )

� − h(τ )
, τ ∈ [0, L].

Since hx (τ ) is non-decreasing, hx (τ ) ≤ 0 on [0, L], h(τ ) is non-increasing and

h(τ ) > � on [0, L], it is easy to check that
d1/2S hx (τ )

�−h(τ )
is non-decreasing on [0, L].

Clearly, e2τd
−1/2
S −1

e2τd
−1/2
S +1

is increasing on [0, L]. Therefore, f (τ ) is increasing on [0, L].
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Observe that

f (L) = e2Ld
−1/2
S − 1

e2Ld
−1/2
S + 1

+ d1/2S hx (L)

� − h(L)
≤ 0

due to our assumption. This implies that the first equation of (2.15) has no solution
with respect to τ1 in [0, L), arriving at a contradiction. Hence, Ŝ < h in [0, L) and
μ([0, L)) = 0, and so Ŝ solves (2.17). It remains to prove (2.18). Indeed, by integrating
the sum of (1.6), we obtain

�L −
∫ L

0
S(x)dx =

∫ L

0
η(x)I (x)dx, ∀dI > 0.

Letting dI → 0 yields

�L −
∫ L

0
Ŝ(x)dx =

∫

[0,L]
η(x)μ(dx) = η(L)μ({L}).

Here we used the fact of μ([0, L)) = 0. This gives (2.18), and thus the assertions in
(ii)-(b2) hold true.

The case of τ0 = 0 can be treated similarly as above. In view of Lemma 4.4 and
the analysis above, the assertions in (iii) follow immediately. The proof is completed.

��
Acknowledgements The authors would like to thank the two referees and the editors for their valuable
suggestions, which help to improve the presentation of the paper. R. Peng was partially supported by NSF
of China (Nos. 12271486, 12171176), Z.-A. Wang was partially supported by the Hong Kong RGC GRF
Grant No. PolyU15307222 and an internal grant from the Hong Kong Polytechnic University (ZZRC), G.
Zhangwas partially supported by NSF of China (Nos. 12171176, 11971187) and the Fundamental Research
Funds for the Central Universities (No. 5003011008), and M. Zhou was partially supported by the Nankai
Zhide Foundation and NSF of China (No. 11971498).

Declarations

Conflict of interest The authors have no conflicts of interest to declare that are relevant to the content of
this article.

Appendix

In this appendix, we always let � be a smooth and bounded domain in R
n (n ≥ 1).

Given f ∈ C(�), consider the following eigenvalue problemwithNeumann boundary
condition:

{
−D�φ + f (x)φ = λφ in �,
∂φ
∂ν

= 0 on ∂�,
(A.1)
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where ν(x) is the unit exterior normal vector of ∂� at x , and the coefficient D is a
positive constant.

We start with a well-known fact concerning the asymptotic behavior of the principal
eigenvalue of (A.1) with respect to small diffusion; one may refer to, for example,
Lou and Nagylaki (2006, Lemma 3.1).

Lemma 5.1 Let λ1(D, f ) be the principal eigenvalue of (A.1). Then it holds that

lim
D→0

λ1(D, f ) = min
x∈�

f (x).

We next recall the L1-estimate for the weak solution [due to Brezis and Strauss
(1973)] of the following linear elliptic problem:

− �w + c(x)w = g in �,
∂w

∂ν
= 0 on ∂�. (A.2)

Lemma 5.2 (a) (Global estimates) Assume that c ∈ L∞(�) and g ∈ L1(�), and let
w ∈ W 1,1(�) be a weak solution of (A.2). Then, for any r ∈ [1, n/(n − 1)), we have
w ∈ W 1,r (�) and the following estimate

‖w‖W 1,r (�) ≤ C(‖g‖L1(�) + ‖w‖L1(�)),

where the positive constant C is independent of w.
(b) (Interior estimates)Assume that�′ ⊂⊂ � is a smooth domain, c ∈ L∞(�), g ∈

L1(�), and let w ∈ W 1,1(�) be a weak solution to the equation −�w + c(x)w = g.
Then, for any r ∈ [1, n/(n − 1)), we have w ∈ W 1,r (�′) and the following estimate

‖w‖W 1,r (�′) ≤ C(‖g‖L1(�) + ‖w‖L1(�)),

where the positive constant C is independent of w.

At last, we state a Harnack-type inequality for weak solutions [see, e.g., Lieberman
(2005) or Peng et al. (2008)], whose strong form was obtained in Lin et al. (1988).

Lemma 5.3 (a) (Global Harnack inequality) Let c ∈ Lr (�) for some r > n/2. If
w ∈ W 1,2(�) is a non-negative weak solution of the boundary value problem

−�w + c(x)w = 0 in �,
∂w

∂ν
= 0 on ∂�,

then there is a constant C, determined only by ‖c‖r , r and � such that

sup
�

w ≤ C inf
�

w.

(b) (Local Harnack inequality) Let �′ ⊂⊂ � be a smooth domain and c ∈ Lr (�)

for some r > n/2. If w ∈ W 1,2(�) is a non-negative weak solution of the equation
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−�w + c(x)w = 0, then there is a constant C, determined only by ‖c‖r , r , � and
�′, such that

sup
�′

w ≤ C inf
�′ w.
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