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Abstract

This paper is concerned with existence, non-existence and uniqueness of positive (coexistence) steady 
states to a predator-prey system with prey-dependent dispersal. To overcome the analytical obstacle caused 
by the cross-diffusion structure embedded in the prey-dependent dispersal, we use a variable transformation 
to convert the problem into an elliptic system without cross-diffusion structure. The transformed system and 
pre-transformed system are equivalent in terms of the existence or non-existence of positive solutions. Then 
we employ the index theory alongside the method of the principle eigenvalue to give a nearly complete 
classification for the existence and non-existence of positive solutions. Furthermore we show the uniqueness 
of positive solutions and characterize the asymptotic profile of solutions for small or large diffusion rates 
of species. Our results pinpoint the positive role of prey-dependent dispersal on the population dynamics 
for the first time by showing that the prey-dependent dispersal in the predator-prey system is a beneficial 
strategy increasing the chance of predator’s survival and hence promoting the coexistence of species.
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similar technologies.
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1. Introduction

Dispersal, an ecological process involving the movement of individual/multiple species, is 
one of the main determinants shaping the structure of ecological communities and maintaining 
the biodiversity [13,22,23]. The causes and consequences as well as the selection and evolution 
of dispersal strategies have been central questions in ecology extensively investigated in the lit-
erature (cf. [44,47,53]). A variety of mathematical models have been constructed to explore the 
effects of dispersal strategies on the population dynamics and to predict their biological con-
sequences (cf. [3–5,9,26,36,43]) where most of existing theoretical studies are focused on the 
random dispersal. However, biological species will more likely employ the non-random disper-
sal strategy to optimize their ecological fitness in changing environments such as local population 
size, resource competition, habitat quality/size, inbreeding avoidance, crowding effect and so on. 
Among various possible non-random dispersal strategies, the prey-dependent dispersal (meaning 
that the dispersal rate of one species depends on the densities of others) has been a major topic for 
discussion in the biological literature (cf. [38,39,48,50]). A prototype of two interacting species 
models with prey-dependent dispersal generally reads as

{
ut = μ1�u + f (x,u, v), in � × (0,∞),

vt = μ2�(d(u)v) + g(x,u, v), in � × (0,∞),
(1.1)

where u(x, t) and v(x, t) denote the population densities of two interacting species at location 
x ∈ � and at time t > 0 in a bounded habitat � ⊂ RN(N ≥ 2). � =∑N

i=1
∂2

∂x2
i

is the usual 

Laplace operator. μ1 and μ2 are positive constants accounting for the diffusion rates of the two 
interacting species. The functions f and g describe the intra-specific and inter-specific inter-
actions between species in a possibly heterogeneous environment. The term �(d(u)v) entails 
that the dispersal of species v depends on the density of species u via the dispersal rate func-
tion d(u). The dispersal strategy of species v is said to be random if d(u) is constant, while to be 
prey-dependent if d(u) is non-constant. Endowing f (x, u, v) and g(x, u, v) with different forms, 
model (1.1) may include many well-known mathematical biology models with prey-dependent 
dispersal, such as the Keller-Segel model [28,29] describing chemotaxis, density-suppressed 
motility model [19] describing the bacterial strip pattern formation driven by self-trapping mech-
anism, and prey-taxis system [27,51], starvation-driven diffusion [6,8]. Moreover model (1.1)
with competitive dynamics can be regarded as a special case of Shigesada-Kawasaki-Teramoto 
(SKT) competition model originally proposed in [46] (see also [37]). Most of existing theoreti-
cal studies of (1.1) have been focused on the random dispersal and a large number of results are 
available on the steady state problem, for example see [10,11,17,18,33,34,41,52]) for predator-
prey systems and [2,15,21,31,35]) for competition systems; see also [3,9] and references therein. 
In recent years mathematical models with prey-dependent dispersal have increasingly received 
attentions. Among other things, this paper is concerned with a class of predator-prey systems 
with prey-dependent dispersal proposed in [27]

⎧⎪⎨
⎪⎩

ut = ε�u + u(m(x) − u) − vF(u), in � ×R+,

vt = μ�(d(u)v) + αvF(u) − θv, in � ×R+,

∇u · n = ∇v · n = 0, on ∂� ×R+,

(1.2)
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where u denotes the prey density and v the predator density; ε > 0 and μ > 0 account for the dif-
fusion rates of the prey and predator, respectively; F(u) denotes the functional response function 
and α > 0 is the conversion rate, θ > 0 is the predator’s mortality rate. n denotes the outward 
unit normal vector of ∂� and Neumann boundary conditions are prescribed to warrant that no 
individual crosses the habitat boundary. The system (1.2) is a special form of prey-taxis models 
proposed in [27] to describe the non-random foraging behavior of predators, where the dispersal 
rate function d(u) satisfies the property d ′(u) < 0 complying with the field observation that the 
predator will reduce its random motility in the area of higher density of prey.

When d(u) is constant, model (1.2) becomes the classical diffusive predator-prey systems 
extensively studied in the literature, such as the steady-state problem (cf. [10,11,17,18,33,34,41,
52]) and traveling wave problem (cf. [14,24]), just to mention some. In contrast the available 
results for non-constant d(u) are much less. The global boundedness of classical solutions and 
stability of constant steady states of (1.2) with constant m(x) was first established in [25]. When 
d(u) is a special form of piecewise decreasing function, the existence of non-constant steady 
state solutions of (1.2) with non-constant m(x) for large ε > 0 was obtained in [7] under certain 
conditions and the effect of predator satisfaction on predator’s survival was examined. When 
F(u) is replaced by a Leslie-Gower type functional response function, the global boundedness 
of solutions and global stability of constant positive solutions were recently obtained in [40] for 
constant m(x). From application point of view, an important question is how the prey-dependent 
dispersal rate function d(u) plays a role in the population dynamics, which, however, has not 
been explored in the above mentioned works.

The goal of this paper is to explore the steady state problem of (1.2) with non-constant d(u)

and m(x) to find conditions under which positive solutions exist, by which we pinpoint the role 
of prey-dependent dispersal on the species coexistence. This is not only a biologically relevant 
question (since coexistence of species is a major question concerned in ecology), but also an in-
teresting mathematical question due to the inherent cross-diffusion structure in the model which 
makes many conventional methods fail to use. The steady state problem of (1.2) reads as

⎧⎪⎨
⎪⎩

ε�u + u(m(x) − u) − vF(u) = 0, in �,

μ�(d(u)v) + αvF(u) − θv = 0, in �,

∇u · n = ∇v · n = 0, on ∂�.

(1.3)

Throughout the paper, we make the following basic assumptions on m(x), F(u) and d(u):

(H1) m ∈ C(�̄), 
∫
�

m(x)dx > 0 and m is not constant;
(H2) F(0) = 0 and F ′(u) > 0 for all u ∈ [0, ∞);
(H3) d(u) ∈ C2([0, ∞)), d(u) > 0 and d ′(u) ≤, 
≡ 0 on [0, ∞).

The assumption (H1) indicates that the resource m(x) could be beneficial or harmful but its total 
mass is advantageous. The assumption (H2) gives some basic property of the functional response 
function which can be fulfilled by a large class of function like Holling type I, II and III. The 
assumption (H3) indicates that the random diffusion of the predator decreases with respect to 
the prey density, which is a biological postulation as in [27]. Though system (1.3) has a cross-
diffusion structure, we can circumvent this obstacle by invoking a change of variable

w := d(u)v (1.4)
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which reformulates (1.3) to the following elliptic problem without cross-diffusion

⎧⎪⎨
⎪⎩

ε�u + u(m(x) − u) − F(u)
d(u)

w = 0, in �,

μ�w + αF(u)−θ
d(u)

w = 0, in �,

∇u · n = ∇w · n = 0, on ∂�.

(1.5)

The reformulated problem (1.5) has conventional random diffusions only and many well-
developed methods are potentially applicable. However the reaction terms in (1.5) become more 
complicated under the transformation (1.4) and existing methods and results for the predator-prey 
systems can not be applied directly. For example, the function F(u) in (1.3) is monotonic but the 
function F(u)

d(u)
in the transformed system (1.5) is no longer monotonic, which makes the analysis 

more difficult. The main goal of this paper is to find the existence conditions for the positive 
solutions of (1.3) and hence pinpoint the effects of prey-dependent dispersal on the coexistence 
of species. Noting that the existence/non-existence of positive solutions of (1.3) is equivalent 
to that of (1.5) via the transformation (1.4), in what follows we shall focus on the transformed 
system (1.5) and fully exploit its structure alongside the delicate analysis to show that the prey-
dependent dispersal is an advantageous strategy of increasing the biodiversity in a heterogeneous 
landscape by broadening the parameter regimes of species coexistence.

The main results of this paper consist of two parts. The first part is to find conditions for 
the existence and non-existence of positive (coexistence) solutions of (1.5) (see Theorem 3.1), 
by which we are able to pinpoint the positive role of prey-dependent dispersal in promoting 
the species coexistence. The second part is to further explore the uniqueness and asymptotic 
profiles of positive solutions in some limiting cases of large/small diffusion rates ε and μ, see 
Theorem 4.1 (large ε), Theorem 4.2 (large μ) and Theorem 4.3 (small μ). These results can be 
carried over to the original problem (1.3) directly via the transform (1.4).

The rest of this paper is organized as follows. In section 2, we shall study the eigenvalue 
problem of (1.5) and find the conditions for the stability/instability of the unique semi-trivial 
solution. Furthermore we establish some preliminary results for later use. In section 3, we em-
ploy the topological degree method (index theory) to show that the instability of the semi-trivial 
solutions ensures the existence of positive solutions and hence to establish our main result on the 
existence/non-existence of positive solutions of (1.5). In section 4, we prove the uniqueness and 
characterize the asymptotical profile of positive solutions of (1.5) for large/small diffusion rates 
ε and μ.

2. Stability of semi-trivial solutions

In this section, we study the eigenvalue problem associated with the problem (1.5) and give 
some conditions for the stability/instability of the semi-trivial solution of (1.5). We begin with 
the following linear eigenvalue problem

{
��φ + r(x)φ = λφ, in �,

∇φ · n = 0, on ∂�,
(2.1)

where r ∈ C(�). We denote the principal eigenvalue and eigenfunction by λ1(�, r) and φ1(�, r), 
respectively, where one can choose φ1(�, r) > 0 and ‖φ1(�, r)‖L∞ = 1 and there is no other 
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eigenvalue with a positive eigenfunction [30]. Moreover, by the variational approach, λ1(�, r)
can be characterized as

λ1(�, r) = sup
0
=φ∈H 1(�)

∫
�
(−�|∇φ|2 + rφ2)dx∫

�
φ2dx

. (2.2)

Under the assumption (H1), it is straightforward to see (cf. [3]) that system (1.5) admits a 
unique semi-trivial solution (ũ, 0) for any ε > 0, where ũ > 0 satisfies

{
ε�ũ + ũ(m(x) − ũ) = 0, in �,

∇ũ · n = 0, on ∂�.
(2.3)

The problem (2.3) has been well studied in the literature and there are wealthy results available 
(cf. [3,42]). Below we cite a result that shall be used later.

Proposition 2.1. ([31, Proposition 2.5]) The problem (2.3) has a unique positive solution ũ sat-
isfying

(i) ũ → m+ = max{m, 0} in L∞(�) as ε → 0;
(ii) ũ → 1

|�|
∫
�

mdx in L∞(�) as ε → +∞.

We also collect some results on the principal eigenvalue and eigenfunction of (2.1).

Lemma 2.1. If r ∈ C(�), then the following statements on the principal eigenvalue λ1(�, r) and 
eigenfunction φ1(�, r) of problem (2.1) are true.

(i) λ1(�, r) and φ1(�, r) depend smoothly on parameters � ∈ (0, +∞) and continuously on r ∈
C(�).

(ii) If r is constant on (0, L), then λ1(�, r) = r; otherwise, the principal eigenvalue λ1(�, r) is 
strictly decreasing with respect to � ∈ (0, +∞) and

lim
�→0

λ1(�, r) = max
x∈�̄

r(x) and lim
�→+∞λ1(�, r) = 1

|�|
∫
�

r(x)dx. (2.4)

(iii) If ri ∈ C(�) (i = 1, 2) and r1 ≥, 
≡ r2 in �, then λ1(�, r1) > λ1(�, r2).

Proof. The proofs of statements (i)-(iii) are quite standard. See, for example, [3, Page 95 and 
Page 162] and [31]. �

Then, we define the notion of linear stability of a given steady state (u, w). The eigenvalue 
problem of the linearized system (1.5) at (u, w), reads

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε�φ + (m − 2u)φ −
(

F(u)
d(u)

)′
wφ − F(u)

d(u)
ψ = τφ, in �,

μ�ψ + α
(

F(u)
d(u)

)′
wφ + θd ′(u)

d2(u)
wφ + αF(u)−θ

d(u)
ψ = τψ, in �,

∇φ · n = ∇ψ · n = 0, on ∂�,

(2.5)
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where ′ denotes the differentiation with respect to u, and (φ, ψ) is the eigenfunction associated 
with the eigenvalue τ .

Throughout the paper, the following convention will be adopted.

Definition 2.1. An eigenvalue τ1 of problem (2.5) is called a principal eigenvalue if τ1 ∈ C and 
for any eigenvalue τ with τ 
= τ1, we have Re τ ≤ Re τ1. If Re τ1 < 0, then (u, w) is linearly 
stable; while if Re τ1 > 0, then (u, w) is linearly unstable; we call (u, w) is neutrally stable if Re 
τ1 = 0.

We remark here that the principal eigenvalue of problem (2.5) may not be unique but the real 
part of τ1 are equal. Following the approach as that in [31, Lemma 2.9 and Corollary 2.10], we 
can readily derive the following result and omit the details for brevity.

Lemma 2.2. For system (1.5), the following results hold.

(1) (0, 0) is linearly stable if and only if max
{
λ1(ε, m), λ1

(
μ, − θ

d(0)

)}
< 0.

(2) (ũ, 0) is linearly stable if and only if max
{
λ1
(
μ, αF(ũ)−θ

d(ũ)

)
, λ1(ε, m − 2ũ)

}
< 0.

Based on Lemma 2.1 and Lemma 2.2, we have the following result.

Lemma 2.3. The trivial solution (0, 0) of (1.5) is linearly unstable.

Proof. From Lemma 2.1 and assumption (H1), it follows that

λ1(ε,m) > lim
μ→+∞λ1(μ,m) =

∫
�

mdx

|�| > 0,

which alongside Lemma 2.2 and the fact λ1
(
μ, − θ

d(0)

)= − θ
d(0)

< 0 shows that (0, 0) is linearly 
unstable. �

Next, we study the stability of semi-trivial solution (ũ, 0) to system (1.5).

Lemma 2.4. (ũ, 0) is linearly stable if and only if λ1

(
μ,

αF(ũ)−θ
d(ũ)

)
< 0.

Proof. From λ1(ε, m − ũ) = 0 and Lemma 2.1 (iii), it follows that λ1(ε, m − 2ũ) < 0. This 
alongside Lemma 2.2 implies that (ũ, 0) is linearly stable if and only if λ1

(
μ,

αF(ũ)−θ
d(ũ)

)
< 0. �

In the sequel, in some cases, instead of general prey-dependent dispersal rate function d(u), 
we shall consider the following specialized forms for the definiteness

d(u) := d(u; k) = e−ku or (1 + u)−k, k ≥ 0. (2.6)

Subsequent to this, we shall denote
466
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θ0 = α

|�|
∫
�

F(ũ)dx, θk = α
∫
�

F(ũ)
d(ũ;k)

dx∫
�

1
d(ũ;k)

dx
for k > 0. (2.7)

We also denote

ũmin = min
x∈�̄

ũ and ũmax = max
x∈�̄

ũ.

Then it follows from Lemma 2.1 and assumption (H2) that αF(ũmin) < λ1(μ, αF(ũ)) <
αF(ũmax).

Then we have the following key results.

Lemma 2.5. There exists some θ̃ ∈ (αF (ũmin), αF(ũmax)) satisfying λ1

(
μ,

αF(ũ)−θ̃
d(ũ)

)
= 0 such 

that

(ũ,0) is

{
linearly stable if θ > θ̃,

linearly unstable if 0 ≤ θ < θ̃,
(2.8)

and hence

(ũ,0) is

{
linearly stable if θ ≥ αF(ũmax),

linearly unstable if 0 ≤ θ ≤ αF(ũmin).
(2.9)

Moreover, for any θ ∈ (αF (ũmin), αF(ũmax)), if d(u) = d(u; k), where d(u; k) = e−ku or (1 +
u)−k with k ≥ 0, the following results on the linear stability/instability of (ũ, 0) hold true.

(i) Fixing all the parameters except μ, if θ ∈ (αF (ũmin), θk

]
, then (ũ, 0) is linearly unstable for 

any μ > 0; while if θ ∈ (θk, αF (ũmax)), then there exists some μ∗ > 0 (depending on k and 

θ ) satisfying λ1

(
μ∗, αF(ũ)−θ

d(ũ;k)

)
= 0 such that

(ũ,0) is

{
linearly stable if μ > μ∗,
linearly unstable if 0 < μ < μ∗.

(ii) Fix all the parameters except μ and k. We have the following statements.
(ii.1) If θ ∈ (αF (ũmin), θ0

]
, then (ũ, 0) is linearly unstable for any μ > 0 and k ≥ 0.

(ii.2) If θ ∈ [θ0, αF (ũmax)), there exists k∗(θ) > 0 satisfying

sgn

(∫
�

αF(ũ) − θ

d(ũ; k)
dx

)
= sgn(k − k∗) (2.10)

such that (ũ, 0) is linearly unstable for any μ > 0 provided that k ≥ k∗. Moreover, there 
exists some μ̃ such that (ũ, 0) is linearly unstable for any k ∈ [0, k∗) and μ ∈ (0, μ̃).
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Proof. From Lemma 2.1 (iii) and d(ũ) > 0 in �, it follows that λ1

(
μ,

αF(ũ)−θ
d(ũ)

)
is strictly 

decreasing with respect to θ . Therefore, it suffices to consider the values of λ1

(
μ, αF(ũ)

d(ũ)

)
and 

lim
θ→+∞λ1

(
μ,

αF(ũ)−θ
d(ũ)

)
. Based on the variational formula (2.2), one has

lim
θ→+∞λ1

(
μ,

αF(ũ) − θ

d(ũ)

)
= −∞,

and

λ1

(
μ,

αF(ũ)

d(ũ)

)
= sup

0
=φ∈H 1(�)

∫
�

(
−μ|∇φ|2 + αF(ũ)

d(ũ)
φ2
)

dx∫
�

φ2dx
≥
∫
�

αF(ũ)
d(ũ)

dx

|�| > 0,

which suggests that there exists some θ̃ ∈ (0, +∞) such that λ1

(
μ,

αF(ũ)−θ̃
d(ũ)

)
= 0. To prove that 

θ̃ ∈ (αF (ũmin), αF(ũmax)), it suffices to show that

λ1

(
μ,

αF(ũ) − αF(ũmin)

d(ũ)

)
> 0 and λ1

(
μ,

αF(ũ) − αF(ũmax)

d(ũ)

)
< 0. (2.11)

Recalling the assumption (H2) and the fact ũ is not a constant function in �, one obtains

αF(ũ) − αF(ũmin) ≥, 
≡ 0 and αF(ũ) − αF(ũmax) ≤, 
≡ 0,

which combined with Lemma 2.1 (iii) implies that (2.11) holds. Therefore, (2.8) and (2.9) hold.
Next, we consider the case θ ∈ (αF (ũmin), αF(ũmax)). Since the proofs are similar, we only 

consider the case d(u) = e−ku. By Lemma 2.1 (ii), one obtains

lim
μ→0

λ1(μ, (αF(ũ) − θ)ekũ) = max
x∈�̄

(αF (ũ) − θ)ekũ) > 0. (2.12)

To proceed, we recall the notation θk =
∫
� αF(ũ)ekũdx∫

� ekũdx
. Then clearly αF(ũmin) < θk < αF(ũmax)

for any k ≥ 0. Using (2.4), one has

lim
μ→+∞λ1(μ, (αF(ũ) − θ)ekũ) =

∫
�
(αF(ũ) − θ)ekũdx

|�|

{
≥ 0, if θ ≤ θk,

< 0, if θ > θk.
(2.13)

From Lemma 2.1 (i)-(ii), it follows that the principal eigenvalue λ1
(
μ, (αF(ũ) − θ)ekũ

)
smoothly depends on μ and is strictly decreasing with respect to μ ∈ (0, +∞). Therefore from 
(2.12)-(2.13), when θ ≤ θk , we have λ1

(
μ, (αF(ũ) − θ)ekũ

)
> 0 for any μ > 0, which indicates 

that (ũ, 0) is linearly unstable from Lemma 2.4. As θ > θk , from (2.12)-(2.13), we find a con-

stant μ∗ > 0 such that λ1

(
μ∗, αF(ũ)−θ

d(ũ;k)

)
= 0 and λ1

(
μ, (αF(ũ) − θ)ekũ

)
> 0 if 0 < μ < μ∗

while λ1
(
μ, (αF(ũ) − θ)ekũ

)
< 0 if μ > μ∗. This completes the proof of statement (i) by using 

Lemma 2.4.
Next we prove the results in statement (ii). To this end, we first prove a claim as below.
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Claim 1: 
∫
�
(αF(ũ) − ρ)ekũdx is strictly increasing with respect to k ∈ [0, +∞) provided 

ρ ≤ θ0 =:
∫
� αF(ũ)dx

|�| . To prove this, for any ρ ≤ θ0, we define f(k) = ∫
�
(αF(ũ) − ρ)ekũdx. 

Direct computations show that

f′(k) =
∫
�

ũ(αF(ũ) − ρ)ekũdx

=
∫

{x∈�|ũ(x)≥F−1
( ρ

α

)}
ũ(αF (ũ) − ρ)ekũdx +

∫
{x∈�|ũ(x)<F−1

( ρ
α

)}
ũ(αF (ũ) − ρ)ekũdx

>

∫
{x∈�|ũ(x)≥F−1

( ρ
α

)}
F−1
(ρ

α

)
(αF (ũ) − ρ)ekF−1

( ρ
α

)
dx

+
∫

{x∈�|ũ(x)<F−1
( ρ

α

)}
F−1
(ρ

α

)
(αF (ũ) − ρ)ekF−1

( ρ
α

)
dx

=
∫
�

F−1
(ρ

α

)
(αF (ũ) − ρ)ekF−1

( ρ
α

)
dx ≥ 0,

(2.14)

where we have used the assumption (H2). Therefore, Claim 1 holds.
If θ ∈ (αF (ũmin), θ0

]
, using claim 1, then we have

∫
�

(αF(ũ) − θ)ekũdx ≥
∫
�

(αF(ũ) − θ0) ekũdx ≥
∫
�

(αF(ũ) − θ0)dx = 0,

which together with Lemma 2.1 (ii) and Lemma 2.4 implies that (ũ, 0) is linearly unstable for 
any μ > 0 and k ≥ 0. This proves the results in (ii.1).

If θ ∈ (θ0, αF (ũmax)), we define F(k) := ∫
�
(αF(ũ) − θ)ekũdx as a function of the parameter 

k. Similar to the arguments as those in [49, Lemma 2.5], ∀δ > 0 define �δ = {x ∈ �|ũmax −
ũ(x) < δ} and �c

δ = {x ∈ �|ũmax − ũ(x) ≥ δ}. One can derive that

lim
k→+∞

∫
�

ekũF (ũ)dx∫
�

ekũdx
= lim

k→+∞

∫
�δ

ek(ũ−ũmax)F (ũ)dx + ∫
�c

δ
ek(ũ−ũmax)F (ũ)dx∫

�δ
ek(ũ−ũmax)dx + ∫

�c
δ
ek(ũ−ũmax)dx

= lim
k→+∞

∫
�δ

ek(ũ−ũmax)F (ũ)dx∫
�δ

ek(ũ−ũmax)dx

≥ F(ũmax − δ),

which gives that lim
k→+∞

∫
� ekũF (ũ)dx∫

� ekũdx
≥ F(ũmax) due to the arbitrariness of δ. On the other hand, 

by (H2), one observes that lim
∫
� ekũF (ũ)dx∫

ekũdx
≤ F(ũmax). Hence, we have
k→+∞ �
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lim
k→+∞

∫
�

ekũF (ũ)dx∫
�

ekũdx
= F(ũmax), (2.15)

which along with the assumption θ ∈ (θ0, αF (ũmax)) gives that

F(0) < 0 and F(∞) > 0.

This together with the continuity of F(·) yields a constant k∗ > 0 such that F(k∗) = ∫
�
(αF(ũ) −

θ)ek∗ũdx = 0. Next we prove that the positive root of F(k) = 0 is unique, for which it suffices to 
show the following claim.

Claim 2: For any k0 > 0 satisfying F(k0) = 0, then F ′(k0) > 0. Indeed similar to (2.14), one 
can deduce that

F ′(k0) =
∫
�

ũ(αF(ũ) − θ)ek0ũdx

=
∫

{x∈�|ũ(x)≥F−1(θ/α)}
ũ(αF (ũ) − θ)ek0ũdx +

∫
{x∈�|ũ(x)<F−1(θ/α)}

ũ(αF (ũ) − θ)ek0ũdx

>

∫
{x∈�|ũ(x)≥F−1(θ/α)}

F−1(θ/α)(αF(ũ) − θ)ek0ũdx

+
∫

{x∈�|ũ(x)<F−1(θ/α)}
F−1(θ/α)(αF(ũ) − θ)ek0ũdx

=
∫
�

F−1(θ/α)(αF(ũ) − θ)ek0ũdx

= F−1(θ/α)F(k0) = 0.

Therefore, k∗ is the unique positive root of F(k) = 0 and hence (2.10) holds. Combining the 
facts in (2.10), Lemma 2.1 and Lemma 2.4, one concludes that (ũ, 0) is linearly unstable for any 
μ > 0 and k ≥ k∗. This shows the first part (ii.1) of assertion(ii). From the results in statement 
(i), one has that

μ̃ = inf
k∈[0,k∗)

μ∗(k) > 0,

which directly implies the second part (ii.2) of statement (ii) by the same argument as in the 
proof of statement (i). This completes the proof. �
Remark 2.1. Fixing all the parameters except μ and θ , for any θ ∈ (θk, αF (ũmax)), Lemma 2.5

(i) ensures a number μ∗(θ) > 0 such that λ1

(
μ∗(θ),

αF(ũ)−θ
d(ũ;k)

)
= 0. We will show that μ∗(θ) is 

a convex function with respect to θ ∈ (θk, αF (ũmax)) by proving that

ρμ∗(θ1) + (1 − ρ)μ∗(θ2) > μ∗(ρθ1 + (1 − ρ)θ2), (2.16)
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for any ρ ∈ (0, 1) and θi ∈ (θk, αF (ũmax)) (i = 1, 2). From (2.2), λ1

(
μ∗(θ1),

αF(ũ)−θ1
d(ũ;k)

)
=

λ1

(
μ∗(θ2),

αF(ũ)−θ2
d(ũ;k)

)
= 0, and φ1

(
μ∗(θ1),

αF(ũ)−θ1
d(ũ;k)

)

= φ1

(
μ∗(θ2),

αF(ũ)−θ2
d(ũ;k)

)
, it follows that

0 = λ1

(
μ∗(ρθ1 + (1 − ρ)θ2),

αF (ũ) − (ρθ1 + (1 − ρ)θ2)

d(ũ; k)

)

= sup
0
=φ∈H 1(�)

∫
�

(
−μ∗(ρθ1 + (1 − ρ)θ2)|∇φ|2 + αF(ũ)−(ρθ1+(1−ρ)θ2)

d(ũ;k)
φ2
)

dx∫
�

φ2dx

< sup
0
=φ∈H 1(�)

∫
�

ρ
(
−μ∗(θ1)|∇φ|2 + αF(ũ)−θ1

d(ũ;k)

)
dx∫

�
φ2dx

+ sup
0
=φ∈H 1(�)

∫
�
(1 − ρ)

(
−μ∗(θ2)|∇φ|2 + αF(ũ)−θ2

d(ũ;k)

)
dx∫

�
φ2dx

+ sup
0
=φ∈H 1(�)

∫
�
(ρμ∗(θ1) + (1 − ρ)μ∗(θ2) − μ∗(ρθ1 + (1 − ρ)θ2))|∇φ|2dx∫

�
φ2dx

= (ρμ∗(θ1) + (1 − ρ)μ∗(θ2) − μ∗(ρθ1 + (1 − ρ)θ2)) sup
0
=φ∈H 1(�)

∫
�

|∇φ|2dx∫
�

φ2dx
,

which implies that (2.16) holds.

To proceed, we present a generalized result of [12, Lemma 26] below, which can be proved 
directly by the mathematical induction.

Proposition 2.2. Suppose there are three sequences of nonnegative real numbers such that 0 ≤
a1 ≤ a2 ≤ · · · ≤ an, 0 ≤ b1 ≤ b2 ≤ · · · ≤ bn and 0 ≤ c1 ≤ c2 ≤ · · · ≤ cn. Then⎛

⎝ n∑
j=1

ajbj cj

⎞
⎠
⎛
⎝ n∑

j=1

cj

⎞
⎠≥
⎛
⎝ n∑

j=1

aj cj

⎞
⎠
⎛
⎝ n∑

j=1

bj cj

⎞
⎠ (2.17)

where “=” holds if and only if a1 = an or b1 = bn or c1 = cn−1 = 0.

Proof. We use induction. If n = 1, then (2.17) holds. Now we assume that (2.17) holds when 
n = i, we need to show that it holds for n = i + 1. Direct computations give

(a1b1c1 + a2b2c2 + · · · + aibici + ai+1bi+1ci+1)(c1 + c2 + · · · + ci + ci+1)

=
⎛
⎝ i∑

j=1

ajbj cj

⎞
⎠
⎛
⎝ i∑

j=1

cj

⎞
⎠+ ai+1bi+1c

2
i+1 + ci+1

⎛
⎝ i∑

j=1

ajbj cj

⎞
⎠+ ai+1bi+1ci+1

⎛
⎝ i∑

j=1

cj

⎞
⎠

≥
⎛
⎝ i∑

aj cj

⎞
⎠
⎛
⎝ i∑

bj cj

⎞
⎠+ ai+1bi+1c

2
i+1 +

⎛
⎝ i∑

cj ci+1(aj bj + ai+1bi+1)

⎞
⎠

j=1 j=1 j=1
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=
⎛
⎝ i∑

j=1

aj cj

⎞
⎠
⎛
⎝ i∑

j=1

bj cj

⎞
⎠+ ai+1bi+1c

2
i+1 +

⎛
⎝ i∑

j=1

cj ci+1(aj bi+1 + bjai+1)

⎞
⎠

+
⎛
⎝ i∑

j=1

cj ci+1(aj bj + ai+1bi+1 − ajbi+1 − bjai+1)

⎞
⎠

=
⎛
⎝ i∑

j=1

aj cj

⎞
⎠
⎛
⎝ i∑

j=1

bj cj

⎞
⎠+ ai+1bi+1c

2
i+1 + bi+1ci+1

⎛
⎝ i∑

j=1

aj cj

⎞
⎠+ ai+1ci+1

⎛
⎝ i∑

j=1

bj cj

⎞
⎠

+
⎛
⎝ i∑

j=1

cj ci+1(bj − bi+1)(aj − ai+1)

⎞
⎠

≥
⎛
⎝ i+1∑

j=1

aj cj

⎞
⎠
⎛
⎝ i+1∑

j=1

bj cj

⎞
⎠ ,

where the “=” in the last inequality holds if and only if aj = ai+1 or bj = bi+1 or cj = 0 for 
all j = 1, 2, · · · , i. This along with the fact that aj , bi, cj are non-decreasing with respect to j
completes the proof. �

We remark that the results in Proposition 2.2 can be considered as a generalization of [12, 
Lemma 26] where ci = 1 (i = 1, 2, · · · , n).

Lemma 2.6. Let d(u) =: d(u; k) be given in (2.6). Fix all the parameters except k and define 

F̃ (k) :=
∫
�

F(ũ)
d(ũ;k)

dx∫
�

1
d(ũ;k)

dx
. Then F̃ (k) is strictly increasing with respect to k ∈ [0, +∞).

Proof. We first consider the case d(u; k) = e−ku for which one has

F̃ ′(k) =
∫
�

ekũdx
∫
�

F(ũ)ũekũdx − ∫
�

ũekũdx
∫
�

F(ũ)ekũdx

(
∫
�

ekũdx)2
.

Next we shall approximate the integrals by their Riemann sums with

ai = F(ũ(xi)), bi = ũ(xi), and ci = ekũ(xi ), i = 1,2, · · · , n.

Since we can rearrange the terms in the Riemann sums in the order that bi is ascending (then ai

and ci are automatically ascending by the assumption (H2)), by (2.17), one obtains

(
1

n

n∑
i=1

F(ũ(xi))ũ(xi)e
kũ(xi )

)(
1

n

n∑
i=1

ekũ(xi )

)
>

(
1

n

n∑
i=1

F(ũ(xi))e
kũ(xi )

)(
1

n

n∑
i=1

ũ(xi)e
kũ(xi )

)

where the strict inequality results from the fact that ũ is not a constant function in � (cf. Propo-
sition 2.1). Thus, one has
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F̃ ′(k) > 0, for any k ≥ 0.

On the other hand, if d(u; k) = (1 + u)−k , then we have

F̃ ′(k)

=
∫
�
(1 + ũ)kdx

∫
�

F(ũ)(1 + ũ)k ln(1 + ũ)dx − ∫
�
(1 + ũ)k ln(1 + ũ)dx

∫
�

F(ũ)(1 + ũ)kdx

(
∫
�
(1 + ũ)kdx)2

.

Let

ai = F(ũ(xi)), bi = ln(1 + ũ(xi)), and ci = (1 + ũ(xi))
k, i = 1,2, · · · , n.

Similarly, one can show that F̃ ′(k) > 0 for any k ≥ 0, which completes the proof. �
By Lemma 2.4, the linear stability of the semi-trivial steady state (ũ, 0) is determined by the 

sign of λ1

(
μ,

αF(ũ)−θ
d(ũ;k)

)
. Then, it is natural to study the level set

S0 :=
{
(μ, k)|λ1

(
μ,

αF(ũ) − θ

d(ũ; k)

)
= 0

}
.

Fixing all the parameters except μ and k, if θ ∈ [θ0, αF (ũmax)), for any k ∈ [0, k∗), from 

Lemma 2.5 (ii), it follows that there exists a unique μ∗(k) > 0 such that λ1

(
μ∗(k),

αF(ũ)−θ
d(ũ;k)

)
=

0. Next, we investigate the property of μ∗(k) by varying k from 0 to k∗, that is, to characterize 
the level set S0.

Lemma 2.7. Let d(u) = d(u; k) be given by (2.6) and all the parameters except for μ and k fixed. 
Let k∗ and μ̃ be as defined in Lemma 2.5-(ii.2). Assume θ ∈ (θ0, αF (ũmax)). For any k0 ∈ [0, k∗), 
we have

∂λ1

(
μ,

αF(ũ)−θ
d(ũ;k)

)
∂k

=
− ∫

�
αF(ũ)−θ

d2(ũ;k)
· ∂d(ũ;k)

∂k
φ2

1dx∫
�

φ2
1dx

, (2.18)

where φ1 = φ1

(
μ,

αF(ũ)−θ
d(ũ;k)

)
. In particular,

∂λ1
(
μ, (αF(ũ) − θ)ekũ

)
∂k

∣∣∣
(μ,k)=(μ∗(k0),k0)

= μ∗(k0)

∫
�

[
ũ|∇φ|2 + φ∇φ · ∇ũ

]
dx∫

�
φ2dx

, (2.19)

where φ = φ1(μ
∗(k0), (αF (ũ) − θ)ek0ũ), and

∂λ1
(
μ, (αF(ũ) − θ)(1 + ũ)k

)
∂k

∣∣∣
(μ,k)=(μ∗(k0),k0)

= μ∗(k0)

∫
�

[
ln(1 + ũ)|∇φ|2 + φ∇φ·∇ũ

1+ũ

]
dx∫

�
φ2dx

,

(2.20)
where φ = φ1(μ

∗(k0), (αF (ũ) − θ)(1 + ũ)k0). If
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∂λ1

(
μ,

αF(ũ)−θ
d(ũ;k)

)
∂k

∣∣∣
(μ,k)=(μ∗(k0),k0)

> 0 (resp. < 0), (2.21)

then dμ∗(k)
dk

|k=k0 > 0 (resp. < 0). Moreover, lim
k→0

μ∗(k) = μ∗(0), lim
k↗k∗ μ∗(k) = +∞ and μ∗(k) ∈

(μ̃, +∞) for any k ∈ [0, k∗).

Proof. For simplicity, we denote λ1

(
μ,

αF(ũ)−θ
d(ũ;k)

)
and φ1

(
μ,

αF(ũ)−θ
d(ũ;k)

)
by λ1 and φ1, respec-

tively. Recall that λ1 and φ1 satisfy

{
μ�φ1 + αF(ũ)−θ

d(ũ;k)
φ1 = λ1φ1, in �,

∇φ1 · n = 0, on ∂�.
(2.22)

Differentiating (2.24) with respect to k, we get

{
μ�φ′

1 + αF(ũ)−θ
d(ũ;k)

φ′
1 − d ′(ũ; k)

αF(ũ)−θ

d2(ũ;k)
φ1 = λ1φ

′
1 + λ′

1φ1, x ∈ �,

∇φ′
1 · n = 0, x ∈ ∂�

(2.23)

where we have used ′ to denote ∂
∂k

. Multiplying the first equation of (2.22) by φ′
1, and then 

integrating the resulting equation on �, one obtains

∫
�

(
μφ′

1�φ1 + αF(ũ) − θ

d(ũ; k)
φ1φ

′
1

)
dx = λ1

∫
�

φ1φ
′
1dx.

Similarly, multiplying the first equation of (2.23) by φ1, and integrating the resulting equation on 
�, we obtain

∫
�

(
μφ1�φ′

1 + (αF (ũ) − θ)φ1φ
′
1

d(ũ; k)
− (αF (ũ) − θ)φ2

1d ′(ũ; k)

d2(ũ; k)

)
dx = λ1

∫
�

φ1φ
′
1dx+λ′

1

∫
�

φ2
1dx.

Subtracting the above two equations and applying the integration by parts immediately give 
(2.18). Since the proofs of (2.19) and (2.20) are similar, we only prove (2.19). Recall from 
Lemma 2.5 that (λ1(μ

∗(k0), (αF (ũ) − θ)ek0ũ), φ1(μ
∗(k0), (αF (ũ) − θ)ek0ũ)) =: (λ1, φ1) =

(0, φ1) satisfies

{
μ∗(k0)�φ1 + (αF (ũ) − θ)ek0ũφ1 = 0, in �,

∇φ1 · n = 0, on ∂�.
(2.24)

Then it follows from (2.18) that
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∂λ1
(
μ, (αF(ũ) − θ)ekũ

)
∂k

∣∣∣
(μ,k)=(μ∗(k0),k0)

=
∫
�
(αF(ũ) − θ)ũek0ũφ2

1dx∫
�

φ2
1dx

= − ∫
�

μ∗(k0)φ1ũ�φ1dx∫
�

φ2
1dx

= μ∗(k0)

∫
�

[
ũ|∇φ1|2 + φ1∇φ1 · ∇ũ

]
dx∫

�
φ2

1dx
.

This proves (2.19).

As to (2.21), we only consider the case 
∂λ1

(
μ,

αF(ũ)−θ
d(ũ;k)

)
∂k

∣∣∣
(μ,k)=(μ∗(k0),k0)

> 0 and the other case 

can be treated similarly. For this case, we recall that λ1(μ
∗(k0), 

αF(ũ)−θ
d(k0;ũ)

) = 0, which yields that 
(differentiate it with respect to k)

∂λ1

(
μ,

αF(ũ)−θ
d(ũ;k)

)
∂μ

∣∣∣∣
(μ,k)=(μ∗(k0),k0)

· dμ∗(k)

dk

∣∣∣∣
k=k0

+
∂λ1

(
μ,

αF(ũ)−θ
d(ũ;k)

)
∂k

∣∣∣∣
(μ,k)=(μ∗(k0),k0)

= 0.

This combined with Lemma 2.1 (ii) gives dμ∗(k)
dk

|k=k0 > 0. Finally, the last part of this lemma is 
derived directly from Lemma 2.5. �

Lemma 2.7 tells us that the sign of quantities defined in (2.19) or (2.20) determines the mono-
tonicity of μ∗(k) with respect to k. In general these quantities may change signs as k varies from 
0 to k∗. In the following Lemma, we shall show that the sign of quantities defined in (2.19) or 
(2.20) can be determined if m(x) is monotonic.

Lemma 2.8. Assume � = [0, L], m′(x) ≥ 0 in (0, L) or m′(x) ≤ 0 in (0, L) and d(u) = d(u; k), 
where d(u; k) = e−ku or (1 + u)−k . If θ ∈ [θ0, αF(ũmax)), then dμ∗(k)

dk
> 0 for k ∈ [0, k∗).

Proof. We only consider the case m′(x) ≥ 0 in (0, L) and d(u; k) = e−ku while other cases can 
be proven similarly. Recall that ũ satisfies

{
εũxx + ũ(m(x) − ũ) = 0, in (0,L),

ũx(0) = ũx(L) = 0.

Define η := ũx

ũ
on [0, L]. Then η satisfies

{
−εηxx + (ũ − 2εηx)η = m′(x) ≥ 0, in (0,L),

η(0) = η(L) = 0.

By the strong maximum principle, one finds that

η > 0 in (0,L),

which yields that ũx > 0 in (0, L). Recall that φ1(μ
∗(k), (αF (ũ) − θ)ekũ) satisfies
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{
μ∗(k)φxx + φ(αF(ũ) − θ)ekũ = 0, in (0,L),

φx(0) = φx(L) = 0.
(2.25)

Integrating the first equation of (2.25) over (0, L), one obtains

L∫
0

φ1(αF (ũ) − θ)ekũdx = 0,

where φ1 denotes φ1(μ
∗(k), (αF (ũ) − θ)ekũ) for simplicity. This fact combined with ũx > 0 in 

(0, L), implies that there exist some x∗ ∈ (0, L) such that

sgn(αF (ũ(x)) − θ) = sgn(x − x∗).

This fact together with φ1 > 0 on [0, L] and the first equation of (2.25) yields that

sgn((φ1)xx) = −sgn(x − x∗).

which alongside the boundary conditions (φ1)x(0) = (φ1)x(L) = 0 indicates that

(φ1)x > 0 in (0,L). (2.26)

Combining (2.26), ũx > 0 in (0, L), (2.19) and Lemma 2.7, one concludes that dμ∗(k)
dk

> 0 for 
any k ∈ [0, k∗). �
3. Existence and non-existence of positive solutions to system (1.5)

In this section, we shall prove the existence and non-existence of positive solutions to sys-
tem (1.5) with help of index theory based on the results established in section 2. We start by 
reviewing some well-known results of the index theory.

3.1. Index theory

Let E be a real Banach space and W be a wedge in E such that W −W is dense in E. Recalled 
that a wedge W is a closed convex subset of E such that eW ⊂ W for all e ≥ 0. A wedge is said 
to be a cone if W ∩ {−W } = 0. For any y ∈ W , we define

Wy � {x ∈ E|y + ex ∈ W for some e > 0}

which is a wedge containing W , y and −y (cf. [10]). Denote the maximal linear subspace of E
contained in Wy by Sy . Assume that T : E → E is a compact linear and Fréchet differentiable 
operator on E such that y ∈ W is a fixed point of T and T (W) ⊆ W . Then the following result 
holds.
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Lemma 3.1 ([10,45]). Let P : E → Ey be the projection operator. If there exists a closed linear 
subspace Ey of E such that E = Sy

⊕
Ey and Wy is a generating cone (i.e. E = cl{Wy − Wy}), 

then indexW(T , y) exists if the Fréchet derivative T ′(y) of T at y has no non-zero fixed point in 
Wy . Moreover,

(i) indexW(T , y) = 0 if the composed operator P ◦ T ′(y) has an eigenvalue bigger than 1; 
Otherwise,

(ii) indexW(T , y) = indexSy (T
′(y), 0) = (−1)ı , where indexSy (T

′(y), 0) is the index of the lin-
ear operator T ′(y) at 0 in the space Sy and ı is the sum of algebraic multiplicities of the 
eigenvalues of T ′(y) restricted in Sy which are greater than 1.

3.2. Preliminary results

We first quote an important result on the eigenvalue problem [11,32].

Lemma 3.2. Assume r(x) ∈ C([0, L]), μ > 0, and M > 0 such that M + r > 0 on �. If 
λ1(μ, r) > 0, then the weighted eigenvalue problem,

{
−μ�φ + Mφ = κ(M + r)φ, x ∈ �,

∇φ · n = 0, x ∈ ∂�,
(3.1)

has an eigenvalue κ smaller than 1. If λ1(μ, r) < 0, then it has no eigenvalue smaller than or 
equal to 1.

Next we give an upper bound on possible positive solutions of system (1.5).

Lemma 3.3. Let (u, w) be a positive solution of system (1.5). Then

u < ũ ≤ mmax and w ≤ c0 on �, (3.2)

where mmax = max
x∈�̄

m and c0 > 0 is a constant depending on m, α, θ , F(·) and d(·).

Proof. Combining the standard method of upper-lower solutions and the maximum principle, 
one can deduce that

u < ũ ≤ mmax on �.

Multiplying the first equation of system (1.5) by α, adding the resulting equation to the second 
equation of system (1.5) and integrating it on �, one obtains

∫
�

θ

d(u)
wdx = α

∫
�

u(m − u)dx.

This combined with u < mmax on � and (H3) yields that
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∫
�

wdx <
αd(0)

θ

∫
�

u(m − u)dx <
αd(0)m2

max

4θ
,

which together with [1, Theorem 3.1] implies that there exists c0 depending on m, α, θ , F(·) and 
d(·) (independents on μ and ε) such that w ≤ c0 on �. �

Before moving forward, we introduce some notations.

X = {u ∈ C1(�̄) ∩ C2(�) | ∇u · n = 0 on ∂�},
E = C(�̄) × C(�̄),

W = C+(�̄) × C+(�̄), where C+(�̄) = {u ∈ C(�̄) | u ≥ 0},
D = {(u,w) ∈ W | u < 1 + mmax,w < 1 + c0} .

Let T −1
1 be the inverse operator of T1 with T1(u) = −ε�u + M̃u for u ∈ X and T −1

2 be the 
inverse operator of T2 with T2(w) = −μ�w + M̃w for u ∈ X. For any δ ∈ [0, 1], we define 
Tδ : D → W by

Tδ(u,w) =
⎛
⎝T −1

1

[
u
(
M̃ + δm(x) − u − F(u)w

d(u)u

)]
T −1

2

[
w
(
M̃ + αF(u)−θ

d(u)

)]
⎞
⎠ , (u,w) ∈D,

where M̃ is large such that

M̃ − |m(x)| − u − F(u)w

d(u)u
> 0 and M̃ + αF(u) − θ

d(u)
> 0, for (u,w) ∈ D.

For example, one can choose M̃ = θ
d(mmax)

+ 2‖m‖L∞ + c0
d(mmax)

max
u∈[0,mmax]

F(u)
u

, where

max
u∈[0,mmax]

F(u)
u

is bounded due to the assumption (H2). It is well-known that T1 is a compact 

operator and T1(D) ⊆ W . Clearly system (1.5) has a positive solution if and only if T1 admits a 
positive fixed point on D by Lemma 3.3.

Direct computations yield

W(0,0) = C+(�̄) × C+(�̄), S(0,0) = {(0,0)}, E(0,0) = E,

W(ũ,0) = C(�̄) × C+(�̄), S(ũ,0) = C(�̄) × {0}, E(ũ,0) = {0} × C(�̄).

With the above preparations, we start to calculate the index of (0, 0) and (ũ, 0).

Lemma 3.4. The following results on the index hold.

(i) indexW(T1, (0, 0)) = 0.

(ii) indexW(T1, (ũ, 0)) =
{

1, if (ũ,0) is linearly stable,

0, if (ũ,0) is linearly unstable.
(iii) degW(I − T1, D) = 1.
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Proof. For statement (i), we linearize T1 at (0, 0) to obtain

DT1(0,0)(φ,ψ) =
(

T −1
1 [(M̃ + m)φ]

T −1
2

[(
M̃ − θ

d(0)

)
ψ
])

.

It is straightforward to see that the operator DT1(0, 0) has no non-zero fixed point in W(0,0) due 

to the fact that λ1(ε, m) > 0 and λ1

(
μ,− θ

d(0)

)
= − θ

d(0)
< 0. From Lemma 2.3 and Lemma 3.2, 

it follows that DT1(0, 0) admits an eigenvalue bigger than 1 with corresponding eigenfunction 
(φ1(ε, m), 0). Therefore, by Lemma 3.1, we get indexW(T1, (0, 0)) = 0.

As to assertion (ii), linearizing T1 at (ũ, 0), one has

DT1(ũ,0)(φ,ψ) =
⎛
⎝T −1

1

[
φ
(
M̃ + m(x) − 2ũ

)
− F(ũ)

d(ũ)
ψ
]

T −1
2

[
ψ
(
M̃ + αF(ũ)−θ

d(ũ)

)]
⎞
⎠ .

We will show that the operator DT1(ũ, 0) has no non-zero fixed point in W(ũ,0). Otherwise, 
assume that DT1(ũ, 0) has a non-zero fixed point (φ, ψ) in W(ũ,0). Then (φ, ψ) satisfies

⎧⎪⎨
⎪⎩

ε�φ + (m − 2ũ)φ − F(ũ)
d(ũ)

ψ = 0, in �,

μ�ψ + αF(ũ)−θ
d(ũ)

ψ = 0, in �,

∇φ · n = ∇ψ · n = 0, on ∂�.

If ψ = 0, then φ = 0 due to λ1(ε, m − 2ũ) < λ1(ε, m − ũ) = 0 by Lemma 2.1(iii). Thus, one 
obtains ψ ∈ C+(�̄) \ {0}, which further implies that λ1

(
μ, αF(ũ)−θ

d(ũ)

) = 0. This contradicts our 

assumption that (ũ, 0) is linearly stable (λ1
(
μ, αF(ũ)−θ

d(ũ)

)
< 0) or unstable (λ1

(
μ, αF(ũ)−θ

d(ũ)

)
> 0). 

Hence, the operator DT (ũ, 0) does not have non-zero fixed points in W(ũ,0). If (ũ, 0) is linearly 
unstable, that is, λ1

(
μ, αF(ũ)−θ

d(ũ)

)
> 0, one attains that T −1

2

[ · (M̃ + αF(ũ)−θ
d(ũ)

)]
has an eigenvalue 

bigger than 1 by Lemma 3.2. This combined with Lemma 3.1 gives that indexW(T1, (ũ, 0)) = 0. 
On the other hand, if (ũ, 0) is linearly stable, by Lemma 3.2, one knows that all the eigenvalues 
of the operator T −1

2

[ · (M̃ + αF(ũ)−θ
d(ũ)

)]
are smaller than 1. This together with Lemma 3.1 yields 

that

indexW(T1, (ũ,0)) = (−1)ı ,

where ı is the sum of algebraic multiplicities of the eigenvalues of the operator DT1(ũ, 0) re-
stricted in Sy which are greater than 1.

Next we show that all the eigenvalues of the operator DT1(ũ, 0) restricted in Sy are smaller 
than 1. If not, we assume the operator DT1(ũ, 0) admits an eigenvalue κ0 ≥ 1 with eigenfunction 
(φ, 0) ∈ Sy satisfying ‖φ‖L2 = 1. Then κ0 and (φ, 0) satisfy

{
−ε�φ + M̃φ = φ

κ0
(M̃ + m − 2ũ), in �,

∇φ · n = 0, on ∂�.

This contradicts the fact that λ1(ε, m − 2ũ) < 0 and Lemma 3.2. Therefore, one concludes
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indexW(T1, (ũ,0) = (−1)0 = 1, when (ũ,0) is linearly stable.

Finally, we prove that degW(I − T1, D) = 1. If Tδ has a fixed point (u, w), then it satisfies

⎧⎪⎨
⎪⎩

ε�u + u(δm(x) − u) − F(u)w
d(u)

= 0, in �,

μ�w + α
F(u)w
d(u)

− θ w
d(u)

= 0, in �,

∇u · n = ∇w · n = 0, on ∂�.

(3.3)

Similar to Lemma 3.3, for all δ ∈ [0, 1], one can show that if system (3.3) has a positive solution 
(u, w) then it satisfies (3.2) (if necessary, one can choose large c0). Then, Tδ doesn’t have any 
fixed point on ∂D. Thus, by the homotopy invariance, one obtains

degW(I − T1,D) = degW(I − Tδ,D). (3.4)

Obviously, system (3.3) only admits non-negative solution (0, 0) and (ũδm, 0) (ũδm denotes the 
unique positive solution of (2.3) by replacing m with δm) when δ is small enough. Therefore, 
one has

degW(I − Tδ,D) = indexW(Tδ, (0,0)) + indexW(Tδ, (ũδm,0)), (3.5)

where δ is small enough. Linearizing Tδ at (0, 0), one gets

DTδ(0,0)(φ,ψ) =
(

T −1
1 [(M̃ + δm)φ]

T −1
2

[(
M̃ − θ

d(0)

)
ψ
])

.

Since λ1(ε, δm) > 0 and λ1

(
μ,− θ

d(0)

)
= − θ

d(0)
< 0, similar to the results in (i), by Lemma 3.2

and Lemma 3.1, we have

indexW(Tδ, (0,0)) = 0, (3.6)

where δ is small enough. It is easy to derive that (ũδm, 0) is linearly stable when δ is small 
enough. Therefore, from statement (ii), it follows that

indexW(Tδ, (ũδm,0)) = 1, when δ is small enough,

which along with (3.4), (3.5) and (3.6) completes the proof. �
With the help of Lemma 3.4, we give a sufficient condition for the existence of positive solu-

tion to system (1.5).

Lemma 3.5. If (ũ, 0) is linearly unstable, then system (1.5) admits at least one positive solution.

Proof. If system (1.5) doesn’t have any positive solution, by the additivity of indices and 
Lemma 3.4, we have
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1 = degW(I − T1,D) = indexW(T1, (0,0)) + indexW(T1, (ũ,0)) = 0 + 0 = 0,

which is impossible. Hence, system (1.5) admits at least one positive solution when (ũ, 0) is 
linearly unstable. �
3.3. Main results

Now it is in a position to state our main results on the existence and non-existence of positive 
solutions to (1.5).

Theorem 3.1. Given ε, α > 0, assume (H1), (H2) and (H3) hold. Let ũ be the unique solution of 
(2.3) and θ0 = α

|�|
∫
�

F(ũ)dx. Then the following results hold.

(i) If θ ∈ [0, αF(ũmin)], then system (1.5) admits at least a positive solution.
(ii) If θ ∈ [αF(ũmax), ∞), then system (1.5) doesn’t admit any positive solution.

(iii) If θ ∈ (αF (ũmin), αF(ũmax)) and d(u) = d(u; k) where d(u; k) is given in (2.6), then the 
following results follow.
(a) Fixing all the parameters except μ, if θ ∈ (αF (ũmin), θk

]
with θk defined in (2.7), then 

system (1.5) admits a positive solution for any μ > 0; while if θ ∈ (θk, αF (ũmax)), 
then there exists some μ∗(θ) > 0 satisfying λ1

(
μ∗, αF(ũ)−θ

d(ũ;k)

)= 0 such that system (1.5)
admits a positive solution for all μ ∈ (0, μ∗(θ)) and the semi-trivial solution (ũ, 0) is 
linearly stable for all μ > μ∗(θ).

(b) Fixing all the parameters except μ and k, we have
(b.1) If θ ∈ (αF (ũmin), θ0

]
, then system (1.5) admits at least a positive solution for any 

μ > 0 and k ≥ 0.
(b.2) If θ ∈ (θ0, αF (ũmax)), then there exist k∗(θ) > 0 satisfying (2.10) such that:

(b.2A) If k ≥ k∗(θ), then system (1.5) admits a positive solution for any μ > 0;
(b.2B) If k ∈ [0, k∗(θ)), then there exists μ∗(k) satisfying λ1

(
μ∗(k), αF(ũ)−θ

d(ũ)

)=
0 such that system (1.5) admits a positive solution for all μ ∈ (0, μ∗(k))

and (ũ, 0) is linearly stable for all μ > μ∗(k). Furthermore there exist 
a constant k̃(θ) > 0 so that system (1.5) has no positive solutions for all 
k ∈ [0, k̃(θ)] and μ > μ∗(k).

Proof. The results stated in assertions (i), (iii)-(a), and (iii)-(b.1) follow directly from Lemma 2.5
and Lemma 3.5. For the assertion (ii), we use a contradictive argument by assuming that system 
(1.5) admits a positive solution (u, w). From the second equation of system (1.5) and the Krein-
Rutman Theorem [30], it follows that

λ1

(
μ,

αF(u) − θ

d(u)

)
= 0. (3.7)

On the other hand, due to assumptions θ ≥ αF(ũmax), (H1) and (H2), one concludes that

αF(u) − θ ≤, 
≡ 0 in �,

which together with λ1(μ, 0) = 0 and Lemma 2.1-(iii) implies that λ1
(
μ, αF(u)−θ

d(u)

)
< 0. This 

contradicts (3.7). Therefore, the results in statement (ii) hold.
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Finally we prove the results in the assertion (iii)-(b.2). First the result (b.2A) in the statement 
(b.2) comes from Lemma 2.5 and Lemma 3.5 directly. It remains only to show result (B) in the 
statement (b.2). Given k ∈ [0, k∗(θ)), using Lemma 2.1 and θ ∈ (αF (ũmin), αF(ũmax)), we have

lim
μ→0

λ1

(
μ,

αF(ũ) − θ

d(ũ; k)

)
= max

x∈�̄

αF (ũ) − θ

d(ũ; k)
> 0

and

lim
μ→∞λ1

(
μ,

αF(ũ) − θ

d(ũ; k)

)
=
∫
�

αF(ũ)−θ
d(ũ;k)

dx

|�| < 0, due to k < k∗(θ) and (2.10).

These facts combined with Lemma 2.1 (ii) and Lemma 3.5 imply the first part of (B) in (b.2). 
Next we proceed to prove the existence of k̃(θ). To this end, we consider the case d(u; k) = e−ku

only and the other case d(u; k) = (1 +u)−k can be treated similarly. We define h(x) := (αF (x) −
θ)ekx , x ∈ [0, ũmax]. Then, one has

hx(x) = [αFx(x) + k(αF(x) − θ)]ekx,

which combined with assumption (H2) implies that there exists k̃ > 0 such that

hx(x) > 0, x ∈ [0, ũmax], for k < k̃. (3.8)

Assuming k ≤ k̃ and μ > μ∗(k), we will show that system (1.5) doesn’t admit any positive 
solution. By contradiction, assume that system (1.5) admits a positive solution (u, w). From the 
second equation of (1.5), it follows that

λ1(μ, (αF(u) − θ)eku) = 0.

This together with (3.8), Lemma 2.1, and Lemma 3.3 yields that λ1(μ, (αF (ũ) − θ)ekũ) > 0, 
which alongside Lemma 2.1 indicates that

λ1(μ
∗(k), (αF (ũ) − θ)ekũ) > 0.

This contradicts the definition of μ∗(k), that is, λ1(μ
∗(k), (αF (ũ) − θ)ekũ) = 0. So, system (1.5)

doesn’t admit any positive solution. �
As a direct consequence of Theorem 3.1, we have the following results for the predator-prey 

system with random dispersal.

Corollary 3.1. Given ε, α > 0, assume d(u) = 1, (H1) and (H2) hold. Then the following results 
hold.

(i) If θ ∈ [0, αF(ũmin)], then system (1.5) admits at least a positive solution.
(ii) If θ ∈ [αF(ũmax), ∞), then system (1.5) doesn’t admit any positive solution.

(iii) If θ ∈ (αF (ũmin), αF(ũmax)), the following results hold true.
(a) If θ ∈ (αF (ũmin), θ0

]
, then system (1.5) admits at least a positive solution for any μ > 0.
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Fig. 1. Illustration of parameter regimes (shaded regions) for the existence of positive solutions to (1.5) (i.e. λ1 > 0), 

where θ∗ = αF(ũmax) and θk = α
∫
�

F(ũ)
d(ũ;k)

dx∫
�

1
d(ũ;k)

dx
with d(u; k) = e−ku or d(u; k) = (1 + u)−k, k ≥ 0.

(b) If θ ∈ (θ0, αF (ũmax)), then there exists a constant μ∗ satisfying λ1(μ
∗, αF(ũ) −θ)) = 0

such that system (1.5) doesn’t admit any positive solution for μ > μ∗ while admits a 
positive solution for all μ ∈ (0, μ∗).

Remark 3.1. We have several remarks in connection with the results of Theorem 3.1.

• Comparing the results of Theorem 3.1 with those of Corollary 3.1, we see that the prey-
dependent dispersal will have no impact on the species coexistence when the predator’s death 
rate θ > 0 is small (i.e. θ ≤ αF(ũmin)) or large (i.e. θ ≥ αF(ũmax)). However if the value of θ
is moderate (i.e. θ ∈ (αF (ũmin), αF(ũmax))), the prey-dependent dispersal will have evident 
impact on the species coexistence. Considering the case d(u) = e−ku or (1 + u)−k with 
k ≥ 0, the results stated in (iii)-(a) of Theorem 3.1 can be illustrated in Fig. 1(a) and Fig. 1(b) 
where we see that the parameter regions of (θ, μ) for the existence of positive solutions (i.e. 
λ1 > 0) increases as k increases. This implies that the prey-dependent dispersal will increase 
the chance of species coexistence. The result in (iii)-(b) of Theorem 3.1 gives another way of 
understanding the impact of prey-dependent dispersal, where for given θ ∈ (θ0, αF(ũmax))

coexistence (positive) solutions exist only if 0 < μ < μ∗(0) when k = 0 (see (iii)-(b) of 
Corollary 3.1) while exist for any μ > 0 when k > k∗(θ) (see (iii)-(b.2) in Theorem 3.1), as 
illustrated in Fig. 1(c). For k ∈ [0, k∗(θ)) and in dimension one, we have shown that μ∗(k)

increases with respect to k (see Lemma 2.8) and hence the range of μ for the coexistence (i.e. 
λ1 > 0) increases as k increases (see Fig. 1(c)). This again endorses that the prey-dependent 
dispersal facilitates the coexistence and the chance of coexistence increases with respect to 
k. The numerical simulations shown in Fig. 2 further support our findings.

• The constant k̃ in (b.2B) of Theorem 3.1 can be explicitly determined for the explicit func-
tional response function F(u). For instance,

k̃ =
{

α
θ
, if F(u) = u,

α
θ(1+ũmax)2 , if F(u) = u

1+u
.
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Fig. 2. Numerical simulations of steady state profiles of system (1.2) with random dispersal shown in (a) and prey-
dependent dispersal shown in (b), where ε = 0.1, μ = 10, α = 1, θ = 0.8, F(u) = u, m(x) = 0.5 + 0.5 sin(x). The 
dispersal rate function d(u) is chosen as indicated in the Figure.

4. Uniqueness and asymptotic profiles

In this section, we are devoted to investigating the uniqueness and asymptotic profiles of so-
lutions of (1.5) as ε → ∞ (fast prey diffuse) as well as μ → ∞/0 (fast/slow predator diffusion).

4.1. Fast prey diffusion

Theorem 4.1. Suppose that (H1), (H2) and (H3) hold. Let m̄ = 1
|�|
∫
�

m(x)dx. If ε > 0 is suffi-
ciently large, then the following results hold.

(i) If θ > αF(m̄), then system (1.5) doesn’t have any positive solution;
(ii) If 0 < θ < αF(m̄), then system (1.5) admits a unique positive solution.

Proof. For the assertion (i), arguing by contradiction, we suppose that system (1.5) admits a 
positive solution (ui, wi) with ε = εi , where εi → +∞ as i → ∞. Then εi and (ui, wi) satisfy

⎧⎪⎪⎨
⎪⎪⎩

εi�ui + ui(m(x) − ui) − F(ui)

d(ui )
wi = 0, in �,

μ�wi + αF(ui)−θ

d(ui )
wi = 0, in �,

∇ui · n = ∇wi · n = 0, on ∂�.

(4.1)

Using Lemma 3.3, for any i ≥ 1, one has

‖ui‖L∞(�) ≤ mmax and ‖wi‖L∞(�) ≤ c0.

Applying the elliptic regularity (cf. [20]), we have ‖ui‖W 2,p(�) and ‖wi‖W 2,p(�) are uniformly 
bounded for any 1 < p < ∞ and i ≥ 1. By the Sobolev imbedding theorem, one can deduce 
from (4.1) that (ui, wi), passing to a subsequence if necessary, converges to some nonnegative 
function (u∞, w∞) in C1(�) as i → ∞, where (u∞, w∞) satisfies (in the weak sense)
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⎧⎪⎨
⎪⎩

�u∞ = 0, in �,

μ�w∞ + w∞ αF(u∞)−θ
d(u∞)

= 0, in �,

∇u∞ · n = ∇w∞ · n = 0, on ∂�.

(4.2)

From Proposition 2.1 (ii), Lemma 3.3, (H2), and the assumption θ > αF(m̄), it follows that

αF(u∞) − θ ≤ αF(m̄) − θ < 0,

which indicates that

αF(ui) − θ < 0, when i is large. (4.3)

Integrating the second equation of (4.1) on �, one obtains

∫
�

αF(ui) − θ

d(ui)
widx = 0,

which contradicts (4.3) when i is large. Hence the results in assertion (i) are obtained.
For assertion (ii), by Proposition 2.1 (ii) and Lemma 2.1 (i), one has

lim
ε→∞λ1

(
μ,

αF(ũε) − θ

d(ũε)

)
= λ1

(
μ,

αF(m̄) − θ

d(m̄)

)
= αF(m̄) − θ

d(m̄)
> 0,

where ũε denotes the unique positive solution of (2.3). This combined with Lemma 3.5 implies 
that, there exists some large ε∗ such that system (1.5) admits at least one positive solution for 
ε ≥ ε∗. For εi ≥ ε∗ satisfying εi → +∞ as i → ∞, we will prove that any positive solution 
(ui, wi) of system (1.5) with ε = εi satisfies that

(ui,wi) converge to (c,wc) in C1(�) as i → ∞, (4.4)

where c = F−1(θ/α) and wc = cαd(c)
θ |�|
∫
�
(m − c)dx. Here F−1(·) denotes the inverse of F(·). 

Following the approach as that in the proof of assertion (i), it suffices to show that (u∞, w∞) =
(c, wc). From the first equation of (4.2), it follows that u∞ = c1 for some constant c1 > 0. Let 
ŵi := wi

‖wi‖L∞ . Then, ŵi satisfies

{
μ�ŵi + αF(ui)−θ

d(ui )
ŵi = 0, in �,

∇ŵi · n = 0, on ∂�.
(4.5)

We may assume that ŵi → ŵ∞ in C1(�) as i → ∞ (passing to a subsequence if necessary). 
Integrating the second equation of (4.1) on � and letting i → ∞, we have

∫
αF(c1) − θ

d(c1)
ŵ∞dx = 0,
�
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which along with the facts ŵ∞ ≥ 0 and ‖ŵ∞‖L∞ = 1 implies that c1 = F−1(θ/α). This together 
with (4.2) yields that

w∞ = c2 ≥ 0. (4.6)

Integrating the first equation of (4.5) on � and letting i → ∞, one has

∫
�

(
c(m − c) − F(c)

d(c)
w∞
)

dx = 0,

which combined with (4.6) indicates that w∞ = cαd(c)
θ |�|
∫
�
(m − c)dx. Hence, (4.4) holds.

Define L1 : R × H̄ 2
0 (�) × H 2

n (�) × [0, +∞) → R × L̄2(�) × L2(�) by

L1(ξ, ζ,w,γ ) =⎛
⎜⎜⎜⎝

1
|�|
∫
�

(
(ξ + ζ )(m(x) − ξ − ζ ) − F(ξ+ζ )

d(ξ+ζ )
w
)

dx

�ζ+γ
[
(ξ+ζ )(m(x) − ξ − ζ )−F(ξ+ζ )

d(ξ+ζ )
w − 1

|�|
∫
�

(
(ξ + ζ )(m(x) − ξ − ζ ) − F(ξ+ζ )

d(ξ+ζ )
w
)

dx
]

μ�w + αF(ξ+ζ )−θ
d(ξ+ζ )

w

⎞
⎟⎟⎟⎠ ,

where H 2
n (�) = {u ∈ H 2(�)|∇u · n = 0 on ∂�}, H̄ 2

0 (�) = {u ∈ H 2
n (�)| ∫

�
udx = 0}, and 

L̄2(�) = {u ∈ L2(�)| ∫
�

udx = 0}. Then, one has

D(ξ,ζ,w)L1|(ξ,ζ,w,γ )=(c,0,wc,0)(φ,ψ,η)

=

⎛
⎜⎜⎝

1
|�|
∫
�

(
(m − 2c)(φ + ψ) − F(c)

d(c)
η − F ′(c)d(c)−d ′(c)F (c)

d2(c)
wc(φ + ψ)

)
dx

�ψ

μ�η + αF ′(c)
d(c)

wc(φ + ψ)

⎞
⎟⎟⎠ ,

where c = F−1(θ/α) and wc = cαd(c)
θ |�|
∫
�
(m − c)dx.

Claim: D(ξ,ζ,w)L1|(ξ,ζ,w,γ )=(c,0,wc,0) is non-degenerate. To show this, it amounts to show that 
problem

⎧⎪⎪⎨
⎪⎪⎩

1
|�|
∫
�

(
(m − 2c)(φ + ψ) − F(c)

d(c)
η − F ′(c)d(c)−d ′(c)F ′(c)

d2(c)
wc(φ + ψ)

)
dx = 0,

�ψ = 0, in �,

μ�η + αF ′(c)
d(c)

wc(φ + ψ) = 0, in �,

(4.7)

only has the trivial solution (0, 0) in R × H̄ 2
0 (�) × H 2

n (�). From the second equation of (4.7)
and the definition of H 2

0 (�), it follows that ψ ≡ 0. Integrating the third equation of (4.7), one 
obtains

∫
αF ′(c)
d(c)

wcφdx = 0,
�
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which together with (H2), (H3), φ ∈ R and wc = cαd(c)
θ |�|
∫
�
(m − c)dx > 0, implies φ = 0. This 

combined with the first and third equations of (4.7) gives that η ≡ 0. So, the claim holds.
From the above claim and the implicit function theorem, it follows that there exists a neigh-

borhood U1 ∈ R × H̄ 2
0 (�) × H 2

n (�) containing (c, 0, wc) and a function (ξγ , ζγ , wγ ) defined 
for all γ close to zero such that if (ξ, ζ, w) ∈ U1 is a solution of L1(ξ, ζ, w, γ ) = 0 for some γ
close to zero, then we must have that (u, w) = (ξγ + ζγ , wγ ) is a positive solution of (1.5). This 
along with (4.4) shows that (1.5) admits a unique positive solution when ε is large, and hence 
completes the proof. �
4.2. Large/small predator diffusion

In this section, we shall investigate the uniqueness and asymptotic profile of solutions to (1.5)
as μ → ∞ and μ → 0. First we define

g(u) =
∫
�

F(u)d−1(u)dx∫
�

d−1(u)dx
,

where u ∈ C(�; [0, +∞)). On top of assumptions (H2) and (H3), we impose two additional 
assumptions:

(H4) g′(u) > 0 for any u ∈ C(�; [0, +∞)), where g′ denotes the Frechet derivative.

(H5)
(

F(u)
ud(u)

)′ ≥ 0 for any u ≥ 0, where ′ denotes the differentiation with respect to u.

We give some examples where (H4) or (H5) holds. If F(u) satisfies (H2) and d(u) = e−ku (or 
(1 + u)−k) for any k ≥ 0, then (H4) holds, see Lemma 2.6 and Proposition 2.2 for the proof. If 
F(u) = u and d(u) satisfies (H3), or F(u) = u

1+u
(Holling-II) and d(u) = (1 + u)−k (or e−ku) 

with k ≥ 1, then (H5) holds.

Theorem 4.2. Assume (H1), (H2), (H3) and (H4) hold. Then the following results hold true.

(i) If θ > αg(ũ), then system (1.5) doesn’t have any positive solution when μ is large;
(ii) If 0 < θ < αg(ũ) and (H5) holds, then any positive solution of system (1.5) will converge 

to (u∗, c∗) in C1(�) as μ → ∞, where c∗ is a positive constant and (u∗, c∗) is the unique 
positive solution of

⎧⎪⎨
⎪⎩

ε�u∗ + u∗(m(x) − u∗) − F(u∗)
d(u∗) c

∗ = 0, in �,

∇u∗ · n = 0, on ∂�,∫
�

αF(u∗)−θ
d(u∗) dx = 0.

(4.8)

Moreover, if F(u) = u, d(u) = e−ku (or (1 + u)−k) with k ∈ [0, α
θ
], then system (1.5) admits 

a unique positive solution when μ is large.

Proof. For assertion (i), suppose by contradiction that system (1.5) admits a positive solution 
(ui, wi) with μ = μi , where μi → +∞ as i → ∞. Then μi and (ui, wi) satisfy
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⎧⎪⎨
⎪⎩

ε�ui + ui(m(x) − ui) − F(ui)
d(ui )

wi = 0, in �,

μi�wi + αF(ui)−θ
d(ui )

wi = 0, in �,

∇ui · n = ∇wi · n = 0, on ∂�.

(4.9)

Using Lemma 3.3, for any i ≥ 1, one has

‖ui‖L∞(�) ≤ mmax and ‖wi‖L∞(�) ≤ c0.

Similar to the analysis as that in the proof of Theorem 4.1, one can deduce from (4.9)
that (ui, wi), passing to a subsequence if necessary, converges to some nonnegative function 
(u∞, w∞) in C1(�) as i → ∞, where (u∞, w∞) satisfies (in the weak sense)

⎧⎪⎨
⎪⎩

ε�u∞ + u∞(m(x) − u∞) − F(u∞)
d(u∞)

w∞ = 0, in �,

�w∞ = 0, in �,

∇u∞ · n = ∇w∞ · n = 0, on ∂�.

(4.10)

Therefore, there exists some constant c0 ≥ 0 such that w∞ = c0. We will show that w∞ = c0 ≥ 0
can’t occur.

If w∞ = 0, from the first equation of system (4.10), it follows that u∞ = 0 or u∞ = ũ. We 
first show that u∞ = 0 can’t occur. If not, assume u∞ = 0. Let ûi = ui‖ui‖L∞ . Then ûi satisfies

{
ε�ũi + ũi

(
m(x) − ui − F(ui)wi

uid(ui )

)
= 0, in �,

∇ũi · n = 0, on ∂�.
(4.11)

By assumption (H2), one has lim
u→0

F(u)
u

= F ′(0). Similar to the above analysis, one can deduce 

that ûi → û∞ ≥ 0 in C1(�) as i → ∞ (passing to a subsequence if necessary) and û∞ satisfies 
‖û∞‖L∞ = 1. Multiplying the first equation of (4.11) by 1

ûi
, integrating the resulting equation on 

� and letting i → ∞, one gets

∫
�

m(x)dx = −ε

∫
�

|∇û∞|2
û2∞

dx ≤ 0,

which contradicts the assumption (H1). On the other hand, if u∞ = ũ, let w̃i = wi‖wi‖L∞ . Then w̃i

satisfies {
μi�w̃i + αF(ui)−θ

d(ui )
w̃i = 0, in �,

∇w̃i · n = 0, on ∂�.
(4.12)

Similarly, one can derive that w̃i → 1 in C1(�) as i → ∞ which is equivalent to θ > αg(ũ). 
Integrating the first equation of (4.12) on � and letting i → ∞, one obtains

∫
αF(ũ) − θ

d(ũ)
dx = 0,
�
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which contradicts 
∫
�

αF(ũ)−θ
d(ũ)

dx < 0. Therefore, w∞ = 0 can’t occur.
If w∞ = C > 0, integrating the second equation of system (4.9) on � and letting i → ∞, one 

has 
∫
�

αF(u∞)−θ
d(u∞)

dx = 0. This indicates that

θ = αg(u∞). (4.13)

Combining systems (2.3) and (4.9) alongside the method of upper-lower solutions, we have

u∞ < ũ on �,

which combined with (H4) gives that g(u∞) < g(ũ). This together with (4.13) implies that

θ < αg(ũ),

which contradicts our assumption θ > αg(ũ) and the assertion in statement (i) is proved.
Next we show the results stated in statement (ii). From Lemma 2.1 (ii) and Lemma 2.2 (ii), 

it follows that (ũ, 0) is linearly unstable for any μ > 0, which combined with Lemma 3.5 sug-
gests that system (1.5) admits at least one positive solution for any μ > 0. We next establish the 
following claim.

Claim 1: any positive solution of system (1.5), denoted by (uμ, wμ), converges to (u∗, c∗) in 
C1(�) as μ → ∞, where c∗ is a positive constant and (u∗, c∗) is the unique positive solution 
of (4.8). Similar to the argument as that in proving statement (i), it suffices to show that system 
(4.8) admits a unique positive solution (u∗, c∗) with c∗ being a positive constant. To this end, we 
introduce an auxiliary question

{
ε�z + z

(
m(x) − z − F(z)

zd(z)
c
)

= 0, in �,

∇z · n = 0, on ∂�.
(4.14)

Since lim
z→0

F(z)
z

= F ′(0), using the assumption (H5), it is standard to show (cf. [3]) that (4.14)

admits a unique positive solution denoted by zc for any c ∈ [0, c̃), where c̃ satisfies

λ1

(
ε,m(x) − F ′(0)c̃

d(0)

)
= 0.

By the method of upper-lower solutions, one has that

if c̃ > c1 > c2 ≥ 0, then zc1 < zc2 on �̄. (4.15)

Clearly, we have

zc = ũ when c = 0. (4.16)

Integrating the first equation of (4.14) on � for any c ∈ [0, c̃), one obtains

∫
zc

(
m(x) − zc − F(zc)

zcd(zc)
c

)
dx = 0,
�
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which together with (4.15) yields that

zc → 0 in C(�̄) as c → c̃. (4.17)

By the assumption θ < αg(ũ), we have from (4.16) and (4.17) that

lim
c→c̃

αg(zc) < θ < αg(ũ). (4.18)

This combined with the fact that g(zc) depends continuously and monotonically on c shows that 
system (4.14) admits a unique positive solution u∗ with c = c∗ such that θ = αg(u∗). Hence, 
Claim 1 holds.

Finally, we prove the second part of statement (ii). From now on, we assume F(u) = u, and 
d(u) = e−ku with k ∈ [0, α

θ
]. The other case d(u) = (1 + u)−k can be treated similarly. Define 

L : H 2
n (�) ×R × H̄ 2

0 (�) × [0, +∞) → L2(�) ×R × L̄2(�) by

L(u, ξ, ζ,β) =
⎛
⎜⎝

ε�u + u(m(x) − u) − (ξ + ζ )ueku

1
|�|
∫
�

[
(αu − θ)(ξ + ζ )eku

]
dx

�ζ + β[(αu − θ)(ξ + ζ )eku − 1
|�|
∫
�
(αu − θ)(ξ + ζ )ekudx]

⎞
⎟⎠ .

Then, we have

D(u,ξ,ζ )L|(u,ξ,ζ,β)=(u∗,c∗,0,0)(φ,ψ,η)

=
⎛
⎜⎝

ε�φ + φ(m(x) − 2u∗) − c∗(1 + ku∗)φeku∗ − u∗ψeku∗ − u∗eku∗
η

1
|�|
∫
�

[
(α + kαu∗ − kθ)c∗φ + (αu∗ − θ)ψ + (αu∗ − θ)η

]
eku∗

dx

�η

⎞
⎟⎠ ,

where (u∗, c∗) is the unique positive solution of (4.8).
Claim 2: D(u,ξ,ζ )L|(u,ξ,ζ,β)=(u∗,c∗,0,0) is non-degenerate. It suffices to show that problem

⎧⎪⎨
⎪⎩

ε�φ + φ(m(x) − 2u∗) − c∗(1 + ku∗)φeku∗ − u∗ψeku∗ − u∗eku∗
η = 0, in �,

1
|�|
∫
�

[
(α + kαu∗ − kθ)c∗φ + (αu∗ − θ)ψ + (αu∗ − θ)η

]
eku∗

dx = 0

�η = 0, in �,

(4.19)

only admits trivial solution in H 2
n (�) × R × H̄ 2

0 (�). The third equation of (4.19) and the def-
inition of H 2

0 (�) suggest that η ≡ 0. This along with the fact 
∫
�
(αu∗ − θ)eku∗

dx= 0, and the 
second equation of (4.19) gives that

∫
�

(α + kαu∗ − kθ)φeku∗
dx = 0. (4.20)

From the first equation of (4.8) and the Krein-Rutman Theorem (cf. [16,30]), one finds that

λ1(ε,m − u∗ − c∗eku∗
) = 0
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which together with Lemma 2.1 yields that

λ1(ε,m − 2u∗ − c∗(1 + ku∗)eku∗
) < 0.

This combined with the first equation of (4.19) further implies that φ < 0 (resp. > 0) on �
if ψ > 0 (resp. < 0) on � with φ ≡ 0 if ψ ≡ 0 on �. This together with (4.20) shows that 
φ ≡ ψ ≡ 0. So, Claim 2 holds.

Based on the Claim 2, L(u∗, c∗, 0, 0) = 0, and the implicit function theorem implies that 
there exists a neighborhood U ∈ H 2

n (�) × R × H̄ 2
0 (�) containing (u∗, c∗, 0) and a function 

(uβ, ξβ, ζβ) defined for all β close to zero such that if (u, ξ, ζ ) ∈ U is a solution of L(u, ξ, ζ, β) =
0 for some β close to zero, then we must have that (u, w) = (uβ, ξβ + ζβ) is a positive solution 
of (1.5). This together with Claim 1 shows that (1.5) admits a unique positive solution when μ is 
large, which completes the proof. �
Theorem 4.3. Suppose that (H1), (H2) and (H3) hold. Fixing all the parameters except μ, as-
sume that 0 < θ < αF(ũmax). Then every positive solution (uμ, wμ) of system (1.5) satisfies that 
uμ → u0 > 0 uniformly on �̄ and wμ → w0 ≥ 0 weakly in Lp(�) for some p > 1 as μ → 0, 
where u0 ≤ F−1(θ/α) on �̄ and satisfies (in the weak sense)

{
ε�u0 + u0(m(x) − u0) − F(u0)

d(u0)
w0 = 0, in �,

∇u0 · n = 0, on ∂�,
(4.21)

and

w0(x) = 0 a.e. in {x ∈ �|u0(x) < F−1(θ/α)} and |{x ∈ �|w0 > 0}| > 0. (4.22)

Moreover, the following uniqueness results hold.

(a) If mmin ≥ F−1(θ/α), then the solution of (4.21) is unique and given by

u0 ≡ F−1(θ/α) and w0(x) = α

θ
· d
(
F−1(θ/α)

)
F−1(θ/α)

[
m(x) − F−1(θ/α)

]
a.e. in �.

(4.23)
(b) If mmin < F−1(θ/α) and � = (0, L), we have the following result: if mx ≥ 0 (resp. mx ≤ 0) 

in (0, L), then there exists unique y∗ ∈ (0, L), where y∗ may be different for the cases mx ≥ 0
and mx ≤ 0, such that

u0(x) =
{

F−1(θ/α), if x ∈ [y∗,L] (resp. x ∈ [0, y∗]),
ũy∗ , if x ∈ [0, y∗) (resp. x ∈ [y∗,L]), (4.24)

and

w0(x) =

⎧⎪⎨
⎪⎩

α
θ

· d (F−1(θ/α)
)
F−1(θ/α)

[
m(x) − F−1(θ/α)

]
,

a.e. in (y∗,L) (resp. in [0, y∗]),
0, a.e. in (0, y∗) (resp. in [y∗,L]),

(4.25)

where ũy∗ is the unique positive solution of
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{
εuxx + u(m(x) − u) = 0, in (0, y∗),
ux(0) = ux(y

∗) = 0 (resp. ux(y
∗) = ux(L) = 0), u(y∗) = F−1(θ/α).

(4.26)

Proof. From Lemma 2.5 and Lemma 3.5, it follows that system (1.5) admits at least one positive 
solution denoted by (uμ, wμ) when μ is small. By Lemma 3.3, one obtains that

(uμ,wμ) → (u0,w0) (up to a subsequence of μ) weakly in Lp(�) for some p > 1, as μ → 0.

(4.27)
Clearly, u0 ≥ 0 and w0 ≥ 0 on �̄. Moreover, applying the elliptic regularity (cf. [20]) and the 
Sobolev imbedding theorem, we may assume that uμ → u0 (up to a subsequence of μ) in C1(�̄)

as μ → 0 and (u0, w0) satisfies (4.21). Using the strong maximum principle to (4.21), we obtain 
that u0 > 0 on �̄ or u0 ≡ 0. If u0 ≡ 0, similar to the proofs as those for Theorem 4.2, one can 
deduce that λ1(ε, m) = 0, which is impossible due to assumption (H1). So, u0 > 0 on �̄. The 
equation for wμ suggests that

λ1

(
μ,

αF(uμ) − θ

d(uμ)

)
= 0, for any small μ > 0,

which combined with Lemma 2.1 (ii) implies that

0 = lim
μ→0

λ1

(
μ,

αF(uμ) − θ

d(uμ)

)
= max

x∈�̄

αF (u0) − θ

d(u0)
.

This together with assumptions (H2) and (H3) yields that

u0 ≤ F−1(θ/α) on �̄ and u0(x) = F−1(θ/α) for some x ∈ �̄. (4.28)

Integrating the equation that wμ satisfies on �, one has

∫
�

αF(uμ) − θ

d(uμ)
wμdx = 0, for any small μ > 0.

Sending μ → 0, we have 
∫
�

αF(u0)−θ
d(u0)

w0dx = 0, which shows that

w0 = 0 a.e. in {x ∈ �|u0(x) < F−1(θ/α)}. (4.29)

We proceed to prove that |{x ∈ �|w0 > 0}| > 0. If not, assume w0 = 0 a.e. in �. Combining 
(4.21) and u0 > 0, one has u0 = ũ on �̄. Then, by the assumption 0 < θ < αF(ũmax) and (H2), 
we have

max
x∈�̄

u0 = ũmax > F−1(θ/α),

which contradicts (4.28). Therefore, |{x ∈ �|w0 > 0}| > 0.
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Next we consider the case mmin ≥ F−1(θ/α). It is easy to verify that (u0, w0) given in (4.23)
is well-defined and it satisfies (4.21), (4.22) and 0 < u0 ≤ F−1(θ/α) on �̄. So, it suffices to show 
that (4.21) admits a unique non-negative solution (u0, w0) which satisfies (4.22) and 0 < u0 ≤
F−1(θ/α) on �̄. If not, assume that (4.21) admits a non-negative solution (u1, w1) 
= (u0, w0)

(see (4.23)) satisfying (4.22) and 0 < u1 ≤ F−1(θ/α) on �̄. Then, u1 ≤, 
≡ F−1(θ/α) in �
and there exists some x0 ∈ � such that u1(x0) < F−1(θ/α). By continuity, one can find some 
neighborhood x0 ∈ �1 ⊂ � such that

u1 < F−1(θ/α) in �1 and u1(x) = F−1(θ/α), for x ∈ ∂�1 ∩ �,

which together with u1 ≤, 
≡ F−1(θ/α) in � further implies that ∇u1(x) = 0, for x ∈ ∂�1 ∩ �. 
By (4.22), one has w1 = 0 a.e. in �1. Therefore, u1 satisfies

{
ε�u + u(m(x) − u) = 0, in �1,

∇u · n = 0, on ∂�1.

However the maximum principle applied to the above equations yields that

mmin ≤ min
x∈�1

m(x) ≤ min
x∈�1

u1(x) < F−1(θ/α),

which contradicts our assumption mmin ≥ F−1(θ/α). These facts complete the proof of the first 
part.

Finally, we consider the scenario mmin < F−1(θ/α) and � = (0, L). We shall only prove the 
case mx ≥ 0 and the case mx ≤ 0 can be shown similarly. For any y ∈ (0, L], we consider an 
auxiliary problem

{
εuxx + u(m(x) − u) = 0, in (0, y),

ux(0) = ux(y) = 0.
(4.30)

Without loss of generality, we assume m(0) > 0 (if m(0) < 0, the method is still valid). It is 
well-known that (4.30) admits a unique positive solution denoted by ũy (see Proposition 2.1). 

Moreover, if mx ≥, 
≡ 0 in (0, y), then dũy

dx
> 0 in (0, y) (see the proof of Lemma 2.8); while if 

mx ≡ 0 in (0, y), then u ≡ m(0) in (0, y).
Claim A: if 0 < y1 < y2 ≤ L, then ũy2(y2) ≥ ũy1(y1), where “=” holds if and only if mx ≡ 0

in (0, y2). If mx ≡ 0 in (0, y2), then ũy2(y2) = ũy1(y1) = m(0). If mx ≥, 
≡ 0 in (0, y2), then 
dũy2
dx

> 0 in (0, y2) by Lemma 2.8. Thus, ũy2 restricted in (0, y1) is a strictly upper-solution of 

(4.30) with y = y1 due to 
dũy2 (y1)

dx
> 0 = dũy1 (y1)

dx
. Moreover let φ∗

1 (ε, m) > 0 be the principal 
eigenfunction of the following eigenvalue problem

{
εφxx + mφ = λφ, in (0, y1),

φx(0) = φx(y1) = 0.

Then one can choose sufficiently small enough σ > 0 such that σφ∗
1 (ε, m) < ũy2 in (0, y1) and 

σφ∗
1 (ε, m) is a strictly lower-solution of (4.30) with y = y1. Therefore, from the methods of 

upper-lower solution, it follows that
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ũy2(y1) > ũy1(y1)

which together with 
dũy2
dx

> 0 in (0, y2) implies that

ũy2(y2) > ũy1(y1).

Hence Claim A is proved. On the other hand, one observes that

lim
y→0

ũy(y) = m(0) = mmin < F−1
(

θ

α

)
and lim

y→L
ũy(y) = ũ(L) = ũmax > F−1

(
θ

α

)
,

which together with Claim A implies that there exists unique y∗ such that ũy∗ satisfies (4.26). 

By 
dũy∗
dx

(y∗) = 0 and 
dũy∗
dx

(x) > 0 in (0, y∗), one has 
d2ũy∗
dx2 (y∗) ≤ 0, which substituted into the 

first equation of (4.26) further gives that

m(y∗) ≥ ũy∗(y∗) = F−1
(

θ

α

)
.

Therefore, (u0, w0) defined in (4.24) and (4.25) satisfies (4.21), (4.22), and 0 < u0 ≤ F−1
(

θ
α

)
. To 

complete the proof, it suffices to show that (4.21) admits a unique non-negative solution (u0, w0)

which satisfies (4.22) and 0 < u0 ≤ F−1
(

θ
α

)
on [0, L]. Assume that (4.21) admits another non-

negative solution (u2, w2) which satisfies (4.22) and 0 < u2 ≤ F−1
(

θ
α

)
on [0, L].

Claim B: u2 = u0 on [0, L], where u0 is given in (4.24). We first prove that u2 = u0 on [0, y∗]. 
We note here that u0 = ũy∗ on [0, y∗]. It suffices to consider two cases

(1) u2(0) < F−1
(

θ

α

)
and (2) u2(0) = F−1

(
θ

α

)
.

For case (1), it suffices to consider two cases

(1a) ∃ x1 ∈ (0,L) such that u2(x1) = F−1
(

θ

α

)
, and (1b) u2 < F−1

(
θ

α

)
in (0,L).

For case (1a), we define x2 = inf
x∈[0,L]{u2(x) = F−1

(
θ
α

)}. Then, we have

u2 < F−1
(

θ

α

)
on [0, x2) and u2(x2) = F−1

(
θ

α

)
.

By (4.22), we have w2 = 0 a.e. in (0, x2) and u2 satisfies

{
εuxx + u(m(x) − u) = 0, in (0, x2),

ux(0) = ux(x2) = 0, u(x2) = F−1
(

θ
α

)
.

Claim A shows that x2 = y∗ and u2 = ũy∗ on [0, y∗]. For case (1b), by (4.21) and (4.22), one has 
that w2 = 0 a.e. in (0, L) and u2 = ũ, which is impossible due to the fact that ũ(L) > F−1

(
θ
)
.

α
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For case (2), it suffices to consider two cases

(2a) u2 ≡ F−1
(

θ

α

)
on [0,L] , and (2b) ∃ x3 ∈ (0,L) such that u2(x3) < F−1

(
θ

α

)
.

For case (2a), (4.21) tells us that w0(0) < 0 due to the assumption m(0) = mmin < F−1
(

θ
α

)
. This 

is impossible. For case (2b), we define

x4 = sup
x∈[0,x3]

{
u2(x) = F−1

(
θ

α

)}

and

x5 = inf
x∈[x3,L]

{
u2(x) = F−1

(
θ

α

)}
.

We note here that x4 ∈ (0, x3) and x5 ∈ (x3, L]. Similarly, one obtains that w2 = 0 a.e. in (x4, x5)

and u2 satisfies

{
εuxx + u(m(x) − u) = 0, in (x4, x5),

ux(x4) = ux(x5) = 0, u(x4) = F−1
(

θ
α

) (4.31)

which admits a unique solution which is non-decreasing with respect to x. This contradicts the 
fact u2 < F−1

(
θ
α

)
in (x4, x5) by the definition of x4 and x5. Hence, u2 = ũy∗ = u0 on [0, y∗].

Finally, it remains to show that u2 ≡ F−1
(

θ
α

)
on [y∗, L]. Recall that u2(y

∗) = F−1
(

θ
α

)
. 

Arguing by contradiction, we assume that ∃ x6 ∈ (0, L) such that u2(x6) < F−1
(

θ
α

)
. Define

x7 = sup
x∈[y∗,x6]

{
u2(x) = F−1

(
θ

α

)}

and

x8 = inf
x∈[x6,L]

{
u2(x) = F−1

(
θ

α

)}
.

Then, similar to the analysis in case (2b), one can deduce a contradiction. Therefore, u2 ≡
F−1
(

θ
α

)
on [y∗, L]. This completes the proof of Claim B and hence the proof of Theo-

rem 4.3. �
Data availability

No new data were created or analysed during this study. Data sharing is not applicable to this 
article.
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