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Abstract
In this paper, we consider the population models with resource-dependent dispersal
for single-species and two-species with competition. For the single-species model,
it is well-known that the total population supported by the environment is always
greater than the environmental carrying capacity if the dispersal is simply random
diffusion. However, we find that the total population supported can be equal or smaller
than the environmental carrying capacity when the dispersal depends on the resource
distribution. This analytical finding not only well agrees with the yeast experiment
observation of Zhang et al. (Ecol Lett 20(9):1118–1128, 2017), but also indicates that
resource-dependent dispersalmayproducedifferent outcomes compared to the random
dispersal. For the two-species competition model, when two competing species use
the same dispersal strategy up to amultiplicative constant (i.e. their dispersal strategies
are proportional) or both diffusion coefficients are large, we give a classification of
global dynamics. We also show, along with numerical simulations, that if the dispersal
strategies are resource-dependent, even one species has slower diffusion, coexistence
is possible though competitive exclusion may occur under different conditions. This
is distinct from the prominent result that with random dispersal the slower diffuser
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always wipes out its fast competitor. Our analytical results, supported by the numerical
simulations, show that the resource-dependent dispersal strategy has profound impact
on the population dynamics and evolutionary processes.

Keywords Resource-dependent dispersal · Lotka–Volterra competition ·
Environmental heterogeneity · Coexistence steady state · Global stability

Mathematics Subject Classification 35K57 · 35K61 · 37C65 · 92D25

1 Introduction

Dispersal is a vital life-history strategy used for gene flow, resource competition,
population dynamics, and the distribution of species (Clobert et al. 2001). It is one of
the hardest parameters to estimate despite its importance and hence dispersal processes
are often poorly understood (Duarte and Mali 2019). There are many approaches that
have been adopted to model the dispersal process and its ecological effects. Among
them are reaction-diffusion models which are widely used to describe dispersal in
terms of diffusion. Let u(x, t) represent a population density at location x at time t ,
where (x, t) ∈ � × (0,∞) and � ⊂ R

N (N ≥ 2) is a bounded domain with smooth
boundary representing the species habitat. Then one of the prototypical models for a
single species dispersing through a closed environment takes the following form

{
ut = μ�u + u(r(x) − u), x ∈ �, t > 0,

∇u · n = 0, x ∈ ∂�, t > 0
(1.1)

where the non-negative function r(x) denotes the environmental resource available to
the species, μ is the diffusion coefficient (dispersal rate) and n is the unit outer normal
vector on the boundary ∂�. The homogeneous Neumann (or zero-flux) boundary
conditions means no individuals cross the habitat boundary. When r(x) is a constant,
the first equation of (1.1) iswell-knownas theFisher-KPPequation originally proposed
in Fisher (1917), Kolmogorov et al. (1937). It was shown inCantrell andCosner (2003)
that if r(x) ≥ 0 is a bounded measurable positive function, then for every μ > 0 the
problem (1.1) has a unique positive steady state, denoted by ur ,μ, which is globally
asymptotically stable, where ur ,μ = a if r(x) = a > 0 is a constant and ur ,μ is non-
constant if r(x) is so. It was further observed in Lou (2006) that if r(x) is non-constant,
then ur ,μ satisfies

∫
�

ur ,μ(x)dx = μ

∫
�

|∇ur ,μ|2
u2r ,μ

dx +
∫

�

r(x)dx >

∫
�

r(x)dx (1.2)

for allμ > 0. Usually
∫
�
r(x)dx is defined as the environmental (or resource) carrying

capacity. Then (1.2) says that with dispersal the total population is always greater
than the environmental carrying capacity in a spatially heterogeneous environment. If
there is no diffusion (μ = 0), the equilibrium is just r(x). Hence dispersal increases
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population abundance in a single-species community. In a multi-species community,
dispersal has even more profound ecological effects. Let us consider the following
two-species Lotka–Volterra competition–diffusion system in a closed habitat � ⊂
R

N (N ≥ 2)

⎧⎪⎨
⎪⎩
ut = μ1�u + u(r(x) − b1u − c1v), x ∈ �, t > 0,

vt = μ2�v + v(r(x) − b2u − c2v), x ∈ �, t > 0,

∇u · n = ∇v · n = 0, x ∈ ∂�, t > 0,

(1.3)

where u(x, t) and v(x, t) denote the densities of two competing species with dispersal
ratesμ1 > 0 andμ2 > 0, respectively. The parameters bi , ci (i = 1, 2) are all positive
constants, and r(x) is the environmental resource shared by two species.

When the resource is spatially homogeneous, namely r(x) is a constant say r(x) =
a > 0, (1.3) is called the classical Lotka–Volterra competition system, which has four
equilibria A = (uA, 0) , B = (0, vB) ,C = (u∗, v∗), and O = (0, 0), where

uA = a

b1
, vB = a

c2
, u∗ = a(c2 − c1)

b1c2 − b2c1
, v∗ = a(b1 − b2)

b1c2 − b2c1
.

The global stability of the above equilibria crucially depends on the ecological reaction
coefficients (e.g. see de Mottoni 1979). Set b = b1/b2, c = c1/c2. Then the positive
coexistence equilibrium (u∗, v∗) is globally asymptotically stable if c < 1 < b (weak
competition)while competitive exclusion equilibrium (uA, 0) (resp. (0, vB) is globally
asymptotically stable if 1 > max{b, c} (resp. 1 < min{b, c}). If b < 1 < c (strong
competition), the coexistence steady state is unstable and the two exclusion steady
states are locally stable where which species survives in competition depends on the
initial data.When the resource is spatially heterogeneous (i.e. r(x) is non-constant), the
global dynamics of (1.3)may be quite different from the case of spatially homogeneous
resource. The most prominent consequence resulting from (1.3) with non-constant
r(x) is the phenomenon “slower diffuser always prevails” (namely the slower diffuser
wipes out its fast competitor regardless of the initial value), whichwas first observed in
Dockery et al. (1998) for the case b1 = c1 = b2 = c2 = 1 (two species are ecologically
identical except their dispersal rates) and was further extended in Lou (2006) to the
case of weak competition. A complete classification of the global dynamics of (1.3)
in the parameter regime 0 < bc ≤ 1 has been given in a series of essential works (He
and Ni 2016a, b, 2017) and we omit the details here for brevity.

We underline that in the afore-mentioned typical one- and two-species population
models, the species dispersal was described by random diffusion. However, due to
biological complexity, dispersal of biological species may depend on many factors
such as local population size, resource competition, habitat quality/size, inbreeding
avoidance and so on (cf. Bowler and Benton 2005; Maag et al. 2018; Okubo and
Levin 2001; Skellam 1973). In this scenario, density-dependent dispersal will be more
appropriate. Amongmanywaysmodeling density-dependent dispersal (cf. Braverman
and Makrujjaman 2016; Cosner 2014 and references therein), in this paper, we will
explore the effects of resource-dependent dispersal on the population dynamics. In a
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single-species community, we shall consider a variant of (1.1) with Fokker–Planck
type diffusion as follows

⎧⎪⎨
⎪⎩

wt = μ�(d(r)w) + w(r(x) − w), x ∈ �, t > 0,

∇(d(r)w) · n = 0, x ∈ ∂�, t > 0,

w(x, 0) = w0(x) � 0, x ∈ �,

(1.4)

where the dispersal of the species depends on the resource distribution r(x) via a
dispersal rate function d(r). We assume the resource function r(x) satisfies

(H0) r(x) ∈ C2(�) and r(x) ≥ 0 is not constant in �

and d(r) satisfies

(H1) d(r) ∈ C2([0,∞)), d(r) > 0 and d ′(r) ≤ 0 on [0,∞).

The model (1.4) can be regarded as a special case of models considered in Korobenko
and Braverman (2009) and we refer to Potapov et al. (2014) for a mathematical deriva-
tion of such kind model with Fokker–Planck type diffusion (see also Cosner 2014).
The assumption d ′(r) ≤ 0 describes the fact that the dispersal rate of species will
be slower in the area with more abundant resources, which seems to be universal
and appears widely in other biological processes such as preytaxis (Kareiva and Odell
1987), bacterial movement (Liu et al. 2021; Jin et al. 2020), starvation-driven diffusion
(Cho and Kim 2013) and chemotaxis (Jin and Wang 2021; Keller and Segel 1971).
It was shown in Korobenko and Braverman (2009) that the problem (1.4) admits a
unique positive steady state wμ,d(x) which is globally asymptotically stable and in
particular, if d(r)r = constant, then wμ,d(x) = r(x) is the ideal free distribution (i.e.,
the species can perfectly match the environmental resource and hence optimize its
fitness). However, the effect of resource-dependent dispersal on the population size,
like whether the total population

∫
�

wμ,d(x)dx increases or decreases, was not exam-
ined in Korobenko and Braverman (2009). The answer is clear when d(r)r is constant
as mentioned above, but remains obscure when d(r)r is non-constant. This becomes
the first goal of this paper and the main result obtained on (1.4) can be described as
follows.

• If d(r) = e−kr or d(r) = (1 + r)−k with k > 0 , then the total population∫
�

wμ,d(x)dx may be greater than the environmental carrying capacity m0 :=∫
�
r(x)dx if k is small, while it may be smaller than m0 if both k and μ are large

(see Theorem 2.1).

When the resource-dependent dispersal rate d(r) is a constant, the well-known results
(cf. Lou 2006 or (1.2)) assert that the total population supported is always greater than
the environmental carrying capacity. On the contrary, when d(r) is non-constant, we
show that there is d(r) such that the total population supported can be equal or smaller
than the environmental carrying capacity (see Theorem 2.1 and numerical simulations
in Fig. 1). Our result adds a theoretical support to the yeast experiment observation
in Zhang et al. (2017) that a consumer diffusing in a region with a heterogeneously
distributed input of exploitable renewed limiting resources can have smaller total
population abundance at equilibrium than a population diffusing in a space with the
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same total amount of resources distributed homogeneously. This in turn implies that
the resource-dependent dispersal may play a role in regulating the population size.

Next we turn to consider the following two-species competition–diffusion model
with resource-dependent dispersal rates

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂t u1 = μ1�(d1(r)u1) + u1(r(x) − u1 − u2), x ∈ �, t > 0,

∂t u2 = μ2�(d2(r)u2) + u2(r(x) − u1 − u2), x ∈ �, t > 0,

∇(d1(r)u1) · n = ∇(d2(r)u2) · n = 0, x ∈ ∂�, t > 0,

u1(x, 0) = u1,0(x) � 0, u2(x, 0) = u2,0(x) � 0, x ∈ �,

(1.5)

where di (r)(i = 1, 2) satisfies

(H2) di (r) ∈ C2([0,∞)), di (r) > 0 and d ′
i (r) ≤ 0 on [0,∞).

The main purpose of this paper is to explore how the resource-dependent dis-
persal affects the global (or local) dynamics of populations compared to the
resource-independent dispersal (i.e. random diffusion) like the model (1.3). The
resource-dependent dispersal rate functions di (r)(i = 1, 2) will bring considerable
difficulties to analysis and analyzing the model (1.5) directly is very inconvenient. In
this paper, we shall develop an idea by changing the variables

u = d1(r)u1 and v = d2(r)u2 (1.6)

and transforming (1.5) to equations for (u, v) as follows

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ut = μ1d1(r)�u + u
(
r(x) − u

d1(r)
− v

d2(r)

)
, x ∈ �, t > 0,

vt = μ2d2(r)�v + v
(
r(x) − u

d1(r)
− v

d2(r)

)
, x ∈ �, t > 0,

∇u · n = ∇v · n = 0, x ∈ ∂�, t > 0,

u(x, 0) = u1,0(x)d1(r(x)) � 0, x ∈ �,

v(x, 0) = u2,0(x)d2(r(x)) � 0, x ∈ �.

(1.7)

The transformed system (1.7) generates a monotone dynamical system (cf. Zhou et
al. 2021, Theorem 7) and the local qualitative properties of its steady states may
determine the global dynamics by the well-known results for monotone dynamical
systems. Hence we turn to study the steady state problem of (1.7), where the steady
state solution, denoted by (U , V )(x), satisfies

⎧⎪⎨
⎪⎩

μ1d1(r)�U +U
(
r(x) − U

d1(r)
− V

d2(r)

) = 0, x ∈ �,

μ2d2(r)�V + V
(
r(x) − U

d1(r)
− V

d2(r)

) = 0, x ∈ �,

∇U · n = ∇V · n = 0, x ∈ ∂�.

(1.8)

Since di (r) > 0 on � for i = 1, 2, it follows from (1.6) that

(u1, u2) =
(

u

d1(r)
,

v

d2(r)

)
, (U1,U2) =

(
U

d1(r)
,

V

d2(r)

)
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where (U1,U2)(x) denotes the steady state solution of (1.5). Therefore all qualitative
behaviors of the solution to (1.5) can be recovered by the solution (u, v) of (1.7)
through (1.6). Hereafter, our analysis will be focused on the transformed system (1.7)
and (1.8) only. However, the numerical simulations will be directly performed to (1.5)
for illustration when doing so. The main results of this paper on (1.7) or (1.8) are
described as follows.

• If d1(r) = ϑd2(r) for some constant ϑ > 0, namely two competing species have
the same resource-dependent dispersal strategies up to a positive multiplicative
constant, then the semi-trivial (exclusion) steady state (θμ1,d1 , 0) (resp. (0, θμ2,d2))
of system (1.7) is globally asymptotically stable for any ϑμ1 < μ2 (resp. ϑμ1 >

μ2) provided that d2(r)r is not constant (see Theorem 3.1), where θμi ,di is the
unique positive solution of

{
μi di (r)�θμi ,di + θμi ,di

(
r(x) − θμi ,di

di (r)

) = 0, x ∈ �,

∇θμi ,di · n = 0, x ∈ ∂�.

If d2(r)r is constant, then system (1.7) has a global attractor consisting of a
continuum of constant steady states, see Remark 3.1-(b).

• If d1(r) 
= Cd2(r) for any constant C > 0, when μ1 and μ2 are large, both
globally asymptotically stable semi-trivial and coexistence steady states are pos-
sible (see Theorem 3.2). In particular, we can construct some di (r) such that the
coexistence steady state exist if one species has slower diffusion than the other
(see Proposition 3.2 and Remark 3.3), which implies the prominent phenomenon
“slower diffuser prevails” may not occur for populations with resource-dependent
dispersal.

• Consider specific dispersal strategies di (r) = e−ki r or di (r) = (1 + r)−ki with
ki > 0 for i = 1, 2 and k1 
= k2 in � = [0, L]. If the resource r(x) is monotone in
[0, L], then we can find some parameter regimes in which semi-trivial or positive
steady states are globally asymptotically stable (see Theorem 3.3). We also use
numerical simulations to illustrate that the competitive outcomes could be generic
despite of the dispersal strength in certain parameter regimes (see Remark 3.5 and
Fig. 3).

Before concluding this section, we shall mention a few related works. In Braverman
andMakrujjaman (2016), the authors have considered a general competition–diffusion
model with resource-dependent dispersal and explore the effects of competition and
different dispersal strategies. But their study was mainly focused on the case of weak
competition or competitive exclusion. However, this paper primarily aims to study the
effect of resource-dependent dispersal by assuming that two competing species are
ecologically identical, namely b1 = b2 = c1 = c2 = 1 in (1.3). The result in Braver-
man and Makrujjaman (2016) regarding this case states that if d1(r)r is constant and
d2(r)r is not constant, then the steady state (r(x), 0) is globally asymptotically stable,
namely the species u1 attains the ideal free distribution. We remark it was previously
shown in Cantrell et al. (2010), Gejji et al. (2012), Averill et al. (2012) that the ideal
free distribution can be achieved in the competition–diffusion–advection model with
constant diffusion if one species employs the logarithmic advective strategy and the
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other does not. In the case d1(r) = ϑd2(r) for some constant ϑ > 0, the problem
(1.8) falls into the model class considered in Guo et al. (2020). Here we obtain the
same results as in Guo et al. (2020) with a different approach, see Theorem 3.1 and
Remark 3.1-(a). Recently the global existence and stability of solutions to a special
competition–diffusion model with dynamical resource and resource-dependent dis-
persal was studied in Wang and Xu (2021). The system (1.7) can be regarded as
a competition system with inhomogeneous competition coefficients and inhomoge-
neous dispersal rates. In this case, we refer to Ni et al. (2020) for the global stability
of inhomogeneous equilibrium solutions (if exist) under certain conditions.

The rest of this paper is arranged as follows. InSect. 2,we focus on the single-species
model (1.4) and study the effect of resource-dependent dispersal on the population size.
Then we study the effect of resource-dependent dispersals for the two-species model
(1.5) by studying the transformed system (1.7) in Sect. 3. In Sect. 4, we summarize
our results and discuss some open questions.

2 Single-species model

In this section, we study the global dynamics of the single species model (1.4) with
resource-dependent dispersal, where d(r) satisfies the assumption (H1) with r fulfill-
ing the assumption (H0). The steady state solution of (1.4), denoted byW (x), satisfies
the following equations

{
μ�(d(r)W ) + W (r(x) − W ) = 0, x ∈ �,

∇(d(r)W ) · n = 0, x ∈ ∂�.
(2.1)

Below we shall investigate the existence and properties of solutions to (2.1) for the
non-constant dispersal rate d(r) and compare the results with those for the constant
d(r). In the sequel, we write the positive solution of (2.1) as Wμ,d to indicate the
dependencies of solutions on μ and non-constant d(r). When d(r) is constant, we
shall assume that d(r) = 1 without loss of generality and denote the solution byWμ,1.
The following results on Wμ,1 are well-known (cf. Lou 2006).

Proposition 2.1 Let r satisfy the condition (H0). Then the problem (1.4)with d(r) = 1
admits a unique positive steady state Wμ,1 which is globally asymptotically stable and
satisfies the following properties:

(1) lim
μ→0

Wμ,1 = r and lim
μ→∞ Wμ,1 = 1

|�|
∫

�

rdx in L∞(�).

(2)
∫

�

Wμ,1dx >

∫
�

rdx for every μ > 0.

Next, we shall explore whether the problem (1.4) with non-constant dispersal rate d(r)
has similar/different results as/from those in Proposition 2.1 for the constant d(r). The
typical examples of decreasing function d(r) satisfying the hypothesis (H1) include
d(r) = e−kr or d(r) = (1+ r)−k with a constant k > 0. We shall prove the following
theorem.
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Theorem 2.1 Let d(r) satisfy condition (H1) with r fulfilling (H0). Then the problem
(1.4) admits a unique positive steady state Wμ,d which is globally asymptotically
stable and satisfies

(1) lim
μ→0

Wμ,d = r and lim
μ→∞ Wμ,d =

∫
�
rd(r)−1dx∫

�
d(r)−2dx

d(r)−1 in L∞(�).

(2) If d(r)r = c0 (c0 > 0 is a constant), then Wμ,d(x) = r and
∫

�

Wμ,ddx =
∫

�

rdx.

(3) Let d(r) = e−kr or d(r) = (1 + r)−k with k > 0. Then for small k > 0 and any
μ > 0, it holds that

∫
�

Wμ,ddx >

∫
�

rdx .

While if k > 0 is sufficiently large, there exist μ > 0 large enough such that

∫
�

Wμ,ddx <

∫
�

rdx .

Remark 2.1 We give two remarks to highlight some new findings in Theorem 2.1.

(a) Comparing the results between Proposition 2.1 and Theorem 2.1, we find that
although solutions Wμ,1 and Wμ,d share some similar properties, there exist sig-
nificant differences. When d(r) is constant, Proposition 2.1-(2) asserts that the
total population of unique positive solution is always greater than the total car-
rying capacity. However Theorem 2.1-(2) says that if d(r) is proportional to 1

r ,
the total population is equal to the environmental carrying capacity. Furthermore
Theorem 2.1-(3) asserts that there exist some decreasing dispersal rate function
d(r) such that the total population can even be smaller than the environmental
carrying capacity, which is confirmed by numerical simulations shown in Fig. 1.

(b) In the yeasts experiment of Zhang et al. (2017), it was found that a consumer dif-
fusing in a region with a heterogeneously distributed input of exploitable renewed
limiting resources can have smaller total population abundance at equilibrium than
a population diffusing in a spacewith the same total amount of resources distributed
homogeneously. This is exactly supported by our results of Theorem 2.1-(3) since
total population at equilibrium is the same as the total amount of resources in the
case of homogeneously distributed resources (r is constant). This observation has
been supported by the theoreticalmodels inDeAngelis et al. (2016),He et al. (2019)
where both intrinsic growth of the species and environmental carrying capacity
are spatially heterogenous. Our analytical results here add another support to this
important experimental finding using different mechanism (i.e. density-dependent
dispersal).

Next we proceed to prove Theorem 2.1. Studying (2.1) directly appears to be incon-
venient due to the resource-dependent dispersal rate. Hence we make a change of
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Fig. 1 Numerical simulations of spatial profile of solutions to (2.1) with d(r) = (1 + r)−k in [0, L],
showing that the supported total population is less than the total carrying capacity of the resource r , where
r(x) is indicated in the figure and L = 1, k = 10, μ = 105

variable: W (x) = θ(x)
d(r) and transform (2.1) to the Neumann problem for θ(x)

⎧⎨
⎩μd(r)�θ + θ

(
r(x) − θ

d(r)

)
= 0, x ∈ �,

∇θ · n = 0, x ∈ ∂�.

(2.2)

In the following, we shall denote the positive solution of (2.2) by θμ,d to indicate the
dependencies of solutions on μ and d. Note that if d(r) depends on k, then θμ,d also

depends on k. With Wμ,d = θμ,d
d(r) , it suffices to investigate (2.2) for the steady state

problem (2.1). To this end, we consider the following linear eigenvalue problem

{
D(x)�φ + m(x)φ = λφ, x ∈ �,

∇φ · n = 0, x ∈ ∂�,
(2.3)

where D(x) and m(x) satisfy

D(x) ∈ C(�̄; (0,∞)), m(x) ∈ C(�̄; R).

Based on the celebrated Krein–Rutman Theorem (Krein and Rutman 1948), prob-
lem (2.3) admits a principal eigenvalue, denoted by λ1(D(x),m), which has a strictly
positive eigenfunction φ1(D(x),m) in � with ‖φ1(D(x),m)‖L∞(�) = 1. Moreover,
by the variational approach, λ1(D(x),m) can be represented as

λ1(D(x),m) = sup
0 
=φ∈H1(�)

∫
�
(−|∇φ|2 + m

D(x)φ
2)dx∫

�
φ2

D(x)dx
. (2.4)
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If D(x) ∈ C1(�̄; (0,∞)), by the change of variable φ = ψ
√
D(x), one can

characterize the principal eigenvalue by the following expression

λ1(D(x),m) = sup
0 
=ψ∈H1(�)

∫
�

( − |∇(ψ
√
D(x))|2 + mψ2

)
dx∫

�
ψ2dx

. (2.5)

The existence and uniqueness of solutions of (2.2) is established in the following
Lemma.

Lemma 2.1 Let d(r) satisfy assumption (H1) with r fulfilling assumption (H0).
Then the problem (2.2) admits a unique positive solution θμ,d which is globally
asymptotically stable for the corresponding parabolic equations.

Proof Since the nonlinear reaction term of problem (2.2) is of logistic type, it is
well-known that the existence of a positive solution of (2.2) is determined by the
linear instability of the zero solution. As we know that the zero solution is linearly
stable (resp. linearly unstable) provided λ1(μd(r), r) < 0 (resp. λ1(μd(r), r) > 0).
Furthermore, if problem (2.2) admits a positive solution, it must be unique and globally
asymptotically stable (cf. Cantrell and Cosner 2003).

By the variational characterization (2.4), choosing 1 as a test function, one can
deduce that

λ1(μd(r), r) ≥
∫
�

r
d(r)dx∫

�
1

d(r)dx
> 0,

where we have used the hypotheses (H1) and (H0). This fact suggests that the zero
solution is linearly unstable, which completes the proof. ��

Next, we provide some prior estimates for the upper bound of the unique positive
solution θμ,d of problem (2.2).

Lemma 2.2 If d(r) satisfies (H1) with r fulfilling (H0), then the unique positive
solution θμ,d of problem (2.2) satisfies

θμ,d ≤ max
x∈�̄

(d(r)r), on �̄.

Proof Let x0 ∈ �̄ be such that θμ,d(x0) = max
x∈�̄

θμ,d . Then by the Hopf boundary

lemma, x0 ∈ � and hence �θμ,d(x0) ≤ 0, which combined with the first equation of
(2.2) suggests that

θμ,d(x0) = max
x∈�̄

(θμ,d) ≤ d(r)r |x=x0 ≤ max
x∈�̄

(d(r)r),

which completes the proof. ��
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Remark 2.2 If d(r)r ≡ C(C is a positive constant), then θμ,d ≡ C ; while if d(r)r 
≡ C
for any positive constant numberC , by the strong maximum principle, one can deduce
that

θμ,d < max
x∈�̄

(d(r)r), on �̄.

Then, we describe the limiting profile of the unique positive solution of problem
(2.2) as μ → 0 (or ∞).

Lemma 2.3 If d(r) satisfies (H1) with r fulfilling (H0), then the unique positive
solution θμ,d of problem (2.2) satisfies

‖θμ,d − rd(r)‖L∞(�) → 0 as μ → 0 and ‖θμ,d − cr‖C1(�) → 0 as μ → ∞,

where cr =
∫
� rd(r)−1dx∫
� d(r)−2dx

. Moreover, if ∇r · n = 0 on ∂�, min
x∈�̄

r > 0 and d(r) = e−kr

or d(r) = (1+ r)−k , then the unique positive solution θμ,d of problem (2.2) satisfies

‖θμ,d − rd(r)‖L∞(�) → 0 as k → ∞.

Proof By Lemma A.1 in Hutson et al. (2005), we have

‖θμ,d − rd(r)‖L∞(�) → 0 as μ → 0.

Following the approach in Lemma 2.2 of Tang and Zhou (2020), one can deduce

‖θμ,d − cr‖C1(�) → 0 as μ → ∞,

where cr =
∫
� rd(r)−1dx∫
� d(r)−2dx

.

Furthermore, if ∇r · n = 0 on ∂�, we only consider the case d(r) = e−kr , and

the case d(r) = (1 + r)−k can be treated in the same manner. let Uk = θ
μ,e−kr

e−kr on �̄.
Then, Uk satisfies{

μ�(e−krUk) +Uk(r −Uk) = 0, x ∈ �,

∇Uk · n = 0, x ∈ ∂�

where we have used the fact ∇r · n = 0 on ∂�. The above equations can be rewritten
as {

μe−kr�Uk − 2μke−kr∇r · ∇Uk +Uk(rk −Uk) = 0, x ∈ �,

∇Uk · n = 0, x ∈ ∂�
(2.6)

where rk = r + μk2e−kr |∇r |2 − μke−kr�r . For any ε > 0, by assumption (H0),
min
x∈�̄

r > 0, and ∇r · n = 0 on ∂�, we can directly verify that Û = r + ε and
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Ǔ = r − min

{
ε,

min
x∈�̄

r

2

}
are the super-solution and sub-solution of problem (2.6)

for large k, respectively. Then by the method of super and sub solutions, one finds a
constant k∗(ε) > 0 such that

r − min

⎧⎨
⎩ε,

min
x∈�̄

r

2

⎫⎬
⎭ ≤ Uk ≤ r + ε, k ≥ k∗(ε).

Noting that ε > 0 is arbitrary, one obtains

r ≤ θμ,d

d(r)
≤ r , as k → ∞,

which completes the proof. ��
In the following we shall study whether the total population supported by the

environment can exceed the environmental carrying capacity. Below we shall prove
a general results that will be used later in several places. For the convenience of
presentation, we shall assume d(r) =: d(k; r) sometimes, where d(k; r) satisfies
(H3) d(k; r) depends smoothly on k ≥ 0 satisfying lim

k→0
d(k; r) = 1.

The typical examples are d(k; r) = e−kr or d(k; r) = (1 + r)−k with k > 0.
But note that the hypothesis (H3) covers more general form of d(k; r) where k is

not necessarily the exact decay rate of d(k; r), for instance d(k; r) = e− k
1+k r or

d(k; r) = 1 + k
1+r .

We first prove some useful results for the principal eigenvalue λ1(μd(k; r),m) of
problem (2.3), where m(x) ∈ C(�̄; R).

Lemma 2.4 Assume that m(x) ∈ C(�̄; R) is non-constant, d(r) = d(k; r) satisfies
(H1) with d(k; r) fulfilling (H3) and r satisfying (H0). Then the following results
for the principal eigenvalue λ1(μd(k; r),m) of problem (2.3) with corresponding
eigenfunction φ1(μd(k; r),m) hold.

(i) λ1(μd(k; r),m) and φ1(μd(k; r),m) depend smoothly on parameter k ∈ [0,∞)

and on parameter μ ∈ (0,∞), respectively.
(ii) The derivatives of λ1(μd(k; r),m) with respect to k and μ are, respectively, given

by

∂λ1(μd(k; r),m)

∂k
= μ

∫
�

φ1
d(k;r) · ∂d(k;r)

∂k �φ1dx∫
�

φ2
1

d(k;r)dx
, (2.7)

and

∂λ1(μd(k; r),m)

∂μ
=

∫
�

φ1�φ1dx∫
�

φ2
1

d(k;r)dx
= −

∫
�

|∇φ1|2dx∫
�

φ2
1

d(k;r)dx
, (2.8)
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where φ1 = φ1(μd(k; r),m). Moreover, λ1(μd(k; r),m) is strictly decreasing
with respect to parameter μ ∈ (0,∞) such that

lim
μ→0

λ1(μd(k; r),m) = max
x∈�̄

m(x), lim
μ→∞ λ1(μd(k; r),m) =

∫
�

m
d(k;r)dx∫

�
1

d(k;r)dx
,

and

lim
k→0

λ1(μd(k; r), r) = λ1(μ, r).

Furthermore, if d(k; r) = e−kr or d(k; r) = (1+ r)−k , and sup
x∈�m

r(x) > 0, then

lim
k→∞ λ1(μd(k; r),m) = max

x∈�̄
m(x),

where �m = {x ∈ �̄|m(x) = max
x∈�̄

m(x)}.

Proof The proof of assertion (i) is standard and we refer to [Cantrell and Cosner
(2003), p. 163] for details. For assertion (ii), we prove (2.7) only and (2.8) can be
shown similarly. For simplicity, we abbreviate (λ1(μd(k; r),m), φ1(μd(k; r),m)) as
(λ1, φ1). Recall that (λ1, φ1) satisfies{

μd(k; r)�φ1 + mφ1 = λ1φ1, x ∈ �,

∇φ1 · n = 0, x ∈ ∂�.
(2.9)

Differentiating (2.9) with respect to k, we get

{
μd(k; r)�φ′

1 + μ
∂d(k;r)

∂k �φ1 + mφ′
1 = λ1φ

′
1 + λ′

1φ1, x ∈ �,

∇φ′
1 · n = 0, x ∈ ∂�

(2.10)

where we use ′ to denote ∂
∂k . Multiplying the first equation of (2.9) by

φ′
1

d(k;r) , and then
integrating the resulting equation on �, one obtains

∫
�

(
μφ′

1�φ1 + mφ1φ
′
1

d(k; r)
)
dx = λ1

∫
�

φ1φ
′
1

d(k; r)dx .

Similarly,multiplying the first equation of (2.10) by φ1
d(k;r) , and integrating the resulting

equation on �, we get

∫
�

(
μφ1�φ′

1 + μ
φ1

d(k; r) · ∂d(k; r)
∂k

�φ1 + mφ1φ
′
1

d(k; r)
)
dx = λ1

∫
�

φ1φ
′
1

d(k; r)dx + λ′
1

∫
�

φ2
1

d(k; r)dx .

Subtracting the above two equations and applying the integration by parts immediately
give (2.7). Next, we will show that φ1 is not constant in �. Indeed, if φ1 is constant in
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�, then m = λ1 is constant in � by (2.9), which contradicts our assumption that m is
non-constant. Therefore, it follows that

∂λ1(μd(k; r),m)

∂μ
= −

∫
�

|∇φ1|2dx∫
�

φ2
1

d(k;r)dx
< 0,

which entails that the principal eigenvalue λ1 is strictly decreasing with respect to
parameter μ ∈ (0,∞). Multiplying the first equation of (2.9) with 1

d(k;r) , and then
integrating the resulting equation on �, one obtains

λ1

∫
�

φ1

d(k; r)dx =
∫

�

mφ1

d(k; r)dx . (2.11)

To proceed, we Claim that φ1 → 1 in C1(�̄) as μ → ∞. Indeed from the
variational characterization (2.4), it follows that

λ1(μd(k; r),m) = sup
0 
=φ∈H1(�)

∫
�
(−μ|∇φ|2 + mφ2

d(k;r) )dx∫
�

φ2

d(k;r)dx

≤ sup
0 
=φ∈H1(�)

∫
�

mφ2

d(k;r)dx∫
�

φ2

d(k;r)dx
≤ max

x∈�̄
m(x), (2.12)

and

λ1(μd(k; r),m) = sup
0 
=φ∈H1(�)

∫
�
(−μ|∇φ|2 + mφ2

d(k;r) )dx∫
�

φ2

d(k;r)dx
≥

∫
�

m
d(k;r)dx∫

�
1

d(k;r)dx
. (2.13)

Based on the facts that ‖φ1(μd(k; r),m)‖L∞(�)=1 for any μ>0, (2.12), (2.13),
m(x)∈C(�̄; R), (H1) and L p estimates, one can derive that ‖φ1(μd(k; r),m)‖W 2,p(�)

is bounded uniformly for any p ≥ 1 asμ → ∞ (cf.Gilbarg andTrudinger 2001). From
the Sobolev imbedding theorem, one can deduce from (2.3) along with D(x) = μd(r)
that φ1(μd(k; r),m) converges to some function φ∗ in C1(�̄) as μ → ∞, where
φ∗ ≥ 0 in � satisfies (in the weak sense)

{
�φ∗ = 0, x ∈ �,

∇φ∗ · n = 0, x ∈ ∂�,

and ‖φ∗‖L∞(�) = 1. Hence the claim holds, which combined with (2.11) implies

lim
μ→∞ λ1(μd(k; r),m) =

∫
�

m
d(k;r)dx∫

�
1

d(k;r)dx
.
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Next, we estimate the principal eigenvalue λ1(μd(k; r),m) as μ → 0. Since m(x) ∈
C(�̄; R), for any ε > 0, there exists some φε ∈ H1(�) such that

supp(φε) ⊆ {x ∈ �|m(x) ≥ max
x∈�̄

m(x) − ε} and
∫

�

φ2
ε

d(k; r)dx = 1,

where supp(φε) = {x ∈ �|φε(x) > 0}. Taking φε as a test function, by the variational
characterization (2.4), we have

λ1(μd(k; r),m) = sup
0 
=φ∈H1(�)

∫
�
(−μ|∇φ|2 + mφ2

d(k;r) )dx∫
�

φ2

d(k;r)dx

≥
∫
�
(−μ|∇φε |2 + mφ2

ε

d(k;r) )dx∫
�

φ2
ε

d(k;r)dx

≥ max
x∈�̄

m(x) − ε − μ

∫
�

|∇φε |2dx . (2.14)

Combining (2.12), (2.14) and noticing that ε is arbitrarily small, one finds

lim
μ→0

λ1(μd(k; r),m) = max
x∈�̄

m(x).

From assertion (i) and (H3), one arrives at

lim
k→0

λ1(μd(k; r), r) = λ1(μ, r).

Finally, we calculate lim
k→∞ λ1(μe−kr ,m) and lim

k→∞ λ1(μ(1+r)−k,m) can be obtained

similarly. We note that (2.12) always holds. Since sup
x∈�m

r(x) > 0, for any ε1 > 0, we

can choose φε1 ∈ H1(�) such that

m(x) ≥ max
x∈�̄

m(x) − ε1 and r(x) > 0, for x ∈ supp(φε1).

By the variational characterization (2.4), taking φε1 as a test function, we find that

lim
k→∞ λ1(μe

−kr ,m) = lim
k→∞ sup

0 
=φ∈H1(�)

∫
�
(−μ|∇φ|2 + mφ2ekr )dx∫

�
φ2ekrdx

≥ lim
k→∞

∫
supp(φε1 )

(−μ|∇φε1 |2 + mφ2
ε1
ekr )dx∫

supp(φε1 )
φ2

ε1
ekrdx

≥ max
x∈�̄

m(x) − ε1, (2.15)
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which, with the help of (2.12) and the arbitrariness of ε1, implies that

lim
k→∞ λ1(μe

−kr ,m) = max
x∈�̄

m(x).

��
Applying the implicit function theorem, one can obtain the following result [for

example, see Theorem 3.5 and Proposition 3.6 in Cantrell and Cosner (2003)].

Proposition 2.2 If d(r) = d(k; r) satisfies (H1) with d(k; r) fulfilling (H3) and r sat-
isfying (H0), then the unique positive solution θμ,d of problem (2.2) depends smoothly
on μ in (0,∞) and smoothly on k in [0,∞), respectively. Moreover, θμ,d depends
continuously on r.

Lemma 2.5 If d(r) = d(k; r) satisfies (H1) with d(k; r) fulfilling (H3) and r fulfilling
(H0), then the followings results hold.

(i) If d(r)r ≡ c0(where c0 is a positive constant), then θμ,d = c0.

(ii) If d(r)r is not constant in �, then
∫
�

θμ,d
d(r)dx >

∫
�
rdx as k is small enough. If

d(k; r) = e−kr or d(k; r) = (1 + r)−k , then for any ε > 0, there exists kε > 0
such that for any k ≥ kε , we have∣∣∣∣

∫
�

θμ,d

d(r)
dx − rmax|�r |

∣∣∣∣ < ε

as μ → ∞, where rmax = max
x∈�̄

r(x) and �r = {x ∈ �|r(x) = rmax}.

Proof If d(r)r ≡ c0, one can verify that θμ,d = c0 by the uniqueness of solutions,
yielding the assertion (i) holds. Next we prove the assertion (ii). If d(r)r is not constant
in �, then it is direct to show that

∫
�

θμ,1dx =
∫

�

rdx + μ

∫
�

|∇θμ,1|2
θ2μ,1

dx >

∫
�

rdx, (2.16)

due to the fact that θμ,1 is not constant in � by the assumption that r is not constant
in �. From the Proposition 2.2, and (H3), it follows that

lim
k→0

θμ,d

d(r)
= θμ,1,

which along with (2.16) yields the first part of assertion (ii).
For the second part of assertion (ii), we only consider the case d(k; r) = e−kr while

d(k; r) = (1 + r)−k can be treated similarly. By Lemma 2.3, if d(r) = e−kr , one
obtains

lim
μ→∞ θμ,d =

∫
�
rekrdx∫

�
e2krdx

,
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which suggests that

lim
μ→∞

∫
�

θμ,d

d(r)
dx =

∫
�
ekrdx · ∫

�
rekrdx∫

�
e2krdx

.

To complete the proof of assertion (ii), we are left to show lim
k→∞

∫
� ekrdx ·∫� rekrdx∫

� e2krdx

= rmax|�r |. For any ε > 0, define

�ε = {x ∈ �|r(x) ≥ rmax − ε}.

Since r ∈ C(�̄), one has |�ε | > 0. Obviously,

∫
�

ekr ·
∫

�

rekr =
∫

�ε

ekr ·
∫

�ε

rekr +
∫

�c
ε

ekr ·
∫

�c
ε

rekr +
∫

�ε

ekr ·
∫

�c
ε

rekr

+
∫

�c
ε

ekr ·
∫

�ε

rekr

=: A1 + A2 + A3 + A4.

We only show that lim
k→∞

A3∫
� e2kr

= 0 and lim
k→∞

Ai∫
� e2kr

= 0(i = 2, 4) can be proved

similarly. Indeed,

0 ≤ lim
k→∞

A3∫
�
e2kr

≤ lim
k→∞

A3∫
� ε

3

e2kr
≤ lim

k→∞
rmax|�|2e2krmax−kε

|�ε
3
|e2krmax− 2kε

3

= 0.

It is straightforward to check that

0 ≤ lim
k→∞

∫
�c

ε
e2krdx∫

�ε
ekrdx · ∫

�ε
rekrdx

≤ lim
k→∞

|�|e2k(rmax−ε)

|�ε
2
|2(rmax − ε

2 )e
2k(rmax− ε

2 )
= 0.

Since ε > 0 is arbitrary and noting that �0 = �r , from the above results, we have

lim
k→∞

∫
�
ekrdx · ∫

�
rekrdx∫

�
e2krdx

= lim
k→∞

∫
�ε

ekrdx · ∫
�ε

rekrdx∫
�
e2krdx

= lim
k→∞

∫
�ε

ekrdx · ∫
�ε

rekrdx∫
�ε

e2krdx + ∫
�c

ε
e2krdx

= lim
k→∞

∫
�ε

ekrdx · ∫
�ε

rekrdx∫
�ε

e2krdx

= rmax|�r |.
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We proceed to prove the last equality above. If |�r | = 0, for any δ > 0, then

0 ≤ lim
k→∞

∫
�ε

ekrdx · ∫
�ε

rekrdx∫
�ε

e2krdx
≤ lim

k→∞
|�ε | 12 ‖r‖L2(�ε)

∫
�ε

e2krdx∫
�ε

e2krdx

≤ |�ε | 12 ‖r‖L2(�) ≤ δ,

due to the fact that ε > 0 is arbitrary, |�ε | → |�r | as ε → 0, and |�r | = 0. Therefore,

lim
k→∞

∫
�
ekrdx · ∫

�
rekrdx∫

�
e2krdx

= 0 = rmax|�r |.

If |�r | > 0, similarly, for ε > 0 arbitrarily small, one can conclude that

lim
k→∞

∫
�
ekrdx · ∫

�
rekrdx∫

�
e2krdx

= lim
k→∞

∫
�ε

ekrdx · ∫
�ε

rekrdx∫
�ε

e2krdx

= lim
k→∞

( ∫
�ε\�r ekrdx + ∫

�r ekrdx
) · ( ∫

�ε\�r rekrdx + ∫
�r rekrdx

)
∫
�ε\�r e2krdx + ∫

�r e2krdx

= lim
k→∞

( ∫
�ε\�r ek(r−rmax)dx + |�r |) · ( ∫

�ε\�r rek(r−rmax)dx + rmax|�r |)∫
�ε\�r e2k(r−rmax)dx + |�r |

= rmax|�r |.

Therefore, the proof is completed. ��
Now we are in a position to prove Theorem 2.1.

Proof of Theorem 2.1. With the transformation W (x) = θμ,d
d(r) , the existence of unique

positive steady state Wμ,d of (1.4) and its global stability follows from Lemma 2.1
directly. The assertions of Theorem 2.1-(1) are given by Lemma 2.3, while the results
of Theorem 2.1-(2) are consequences of Lemma 2.5-(i). The first part of Theorem 2.1-
(3) results from the first part of Lemma 2.5-(ii) directly. We shall use the second
of Lemma 2.5-(ii) to prove the second part of Theorem 2.1-(3). Indeed since r is
non-constant, it can be easily shown that∫

�

r(x)dx > rmax|�r |.

Define a constant ω = ∫
�
r(x)dx − rmax|�r | > 0 and take ε = ω. Then it follows

from the results of Lemma 2.5-(ii) that∫
�

Wμ,d dx =
∫

�

θμ,d

d(r)
dx < rmax|�r | + ε =

∫
�

r(x)dx
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which completes the proof.

3 Two species competitive model

In this section, we investigate the global dynamics of two species Lotka–Volterra
competition model (1.7) with resource-dependent dispersals. It is known that the sys-
tem (1.7) generates a monotone dynamical system and the local qualitative properties
of its steady states may determine the global dynamics (cf. Hess 1991; Smith 1995).
In particular, we have the following results (cf. Zhou et al. 2021, Theorem 7).

Proposition 3.1 With the hypotheses (H2) and (H0), the following results hold.

(i) If a steady state of system (1.7) is linearly stable (resp. linearly unstable), then
it is locally asymptotically stable (resp. unstable);

(ii) If system (1.7) admits two semi-trivial steady states (U , 0) and (0, V ), and does
not admit any coexistence steady state, then one of the semi-trivial steady states
is globally asymptotically stable and the other one is unstable;

(iii) If system (1.7) admits two linearly unstable(resp. stable) semi-trivial steady
states, then it admits at least one locally asymptotically stable(resp. unstable)
coexistence steady state;

(iv) If every coexistence steady state of system (1.7) is linearly stable, then either
there are no coexistence steady states and one of the two semi-trivial steady
state is globally asymptotically stable while the other one is unstable, or there
is a unique coexistence steady state which is globally asymptotically stable.

We recall that Wμi ,di = θμi ,di
di (r)

and θμi ,di (i = 1, 2) satisfies (see (2.2))

{
μi di (r)�θμi ,di + θμi ,di

(
r(x) − θμi ,di

di (r)

) = 0, x ∈ �,

∇θμi ,di · n = 0, x ∈ ∂�.
(3.1)

Note that the existence of unique positive solution of (3.1) has been established in
Lemma 2.1. By similar argument as in Lam and Ni (2012, Lemma 2.9), one can
show that the sign of λ1(μ2d2(r), r − Wμ1,d1) and λ1(μ1d1(r), r − Wμ2,d2) deter-
mine the linear stability of (θμ1,d1 , 0) and (0, θμ2,d2), respectively. More precisely, if
λ1(μ2d2(r), r −Wμ1,d1) > 0 (resp. λ1(μ2d2(r), r −Wμ1,d1) < 0), then (θμ1,d1 , 0) is
linearly unstable (resp. linearly stable). In particular if λ1(μ2d2(r), r − Wμ1,d1) = 0,
(θμ1,d1 , 0) is said to be neutrally stable. The linear stability of (0, θμ2,d2) can be
characterized in a similar way. We proceed with several different cases.

3.1 Same dispersal strategies

In this subsection, we shall show that if two competing species have the same dispersal
strategies up to a multiplicative constant, then phenomenon “slower diffuser prevails”
will occur, as described in the following Theorem.
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Theorem 3.1 If d1(r) and d2(r) satisfy (H2) with r fulfilling (H0). If d1(r) = ϑd2(r)
for some constant ϑ > 0 and d2(r)r is not constant in �, then the semi-trivial steady
state (θμ1,d1 , 0) (resp. (0, θμ2,d2) of system (1.7) is globally asymptotically stable for
any ϑμ1 < μ2 (resp. ϑμ1 > μ2).

Proof First notice that if d1(r) = ϑd2(r) := ϑd(r) for some constant ϑ > 0, then it
follows from (1.8) that

⎧⎪⎨
⎪⎩

μ1ϑd(r)�U +U
(
r(x) − U

ϑd(r) − V
d(r)

) = 0, x ∈ �,

μ2d(r)�V + V
(
r(x) − U

ϑd(r) − V
d(r)

) = 0, x ∈ �,

∇U · n = ∇V · n = 0, x ∈ ∂�.

(3.2)

Let Ũ = U
ϑ
. Then Ũ and V satisfy

⎧⎪⎨
⎪⎩

μ̃1d(r)�Ũ + Ũ
(
r(x) − Ũ

d(r) − V
d(r)

) = 0, x ∈ �,

μ2d(r)�V + V
(
r(x) − Ũ

d(r) − V
d(r)

) = 0, x ∈ �,

∇U · n = ∇V · n = 0, x ∈ ∂�,

(3.3)

with μ̃1 = ϑμ1.
If d(r) is constant, it is well-known that “slower diffuser prevails”, see Hastings

(1983). If d(r) is not constant in �, we first establish two claims.
Claim 1: system (1.7) doesn’t admit any positive steady state. If not, we assume that

system (1.7) admits a positive steady state (U , V ) which satisfies (3.2). Therefore,
(Ũ , V ) satisfies (3.3). Consider an auxiliary linear eigenvalue problem

{
μd(r)�φ + mφ = τφ, x ∈ �,

∇φ · n = 0, x ∈ ∂�,
(3.4)

where m = r(x) − Ũ
d(r) − V

d(r) in �. Denote the principal eigen-pair of problem (3.4)

by (τμ, φμ) where φμ satisfies that φμ > 0 on � and ‖φμ‖L∞(�) = 1. Recalling
assertion (ii) of Lemma 2.4, one finds that

∂τμ

∂μ
= −

∫
�

|∇φμ|2dx∫
�

φ2
μ

d(r)dx
≤ 0.

Next, we will show that ∂τμ

∂μ
< 0. If ∂τμ

∂μ
= 0, then φμ ≡ 1 due to φμ > 0 and

‖φμ‖L∞(�) = 1. Substituting φμ ≡ 1 into problem (3.4), one obtains

m ≡ τμ. (3.5)

Multiplying the first equation of system (3.3) by 1
d(r) and integrating the resulting

equation on�, one can deduce that
∫
�

Ũm
d(r)dx = 0,which along with (3.5) and Ũ > 0
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in � implies that m ≡ 0. This together with equations in (3.3) yields some positive
constants C1 > 0 and C2 > 0 such that Ũ ≡ C1 and V ≡ C2, which suggests that
d(r)r ≡ C1 + C2 due to m ≡ 0. This contradicts the assumption that rd(r) is not
constant in �. Therefore, we have

∂τμ

∂μ
< 0. (3.6)

However, by (3.3), one finds τμ̃1 = τμ2 = 0,which contradicts (3.6) due to μ̃1 < μ2.
So, Claim 1 is proved.

Claim 2: (θμ1,d1 , 0) is linearly stable and (0, θμ2,d2) is linearly unstable. It suffices
to show that

λ1(μ2d(r), r − Wμ̃1,d) < 0 and λ1(μ̃1d(r), r − Wμ2,d) > 0. (3.7)

Employing the above arguments as in Claim 1, one can deduce that

∂λ1(μd(r), r − Wμ̃1,d)

∂μ
< 0 and

∂λ1(μd(r), r − Wμ2,d)

∂μ
< 0. (3.8)

Recall that (3.1), which combinedwith theKrein–RutmanTheoremKrein andRutman
(1948), implies

λ1(μ̃1d(r), r − Wμ̃1,d) = λ1(μ2d(r), r − Wμ2,d) = 0,

which along with (3.8) and μ̃1 < μ2 yields (3.7). Thus, Claim 2 is proved.
Finally, combining Claim 1, Claim 2 and Proposition 3.1 (ii), one obtains that

(θμ1,d1 , 0) is globally asymptotically stable, which completes the proof. ��
Remark 3.1 We give several remarks on the result.

(a) Theorem 3.1 indicates that “slower diffuser prevails”, which is consistent with
the well-known result in Hastings (1983). Therefore, our results generalize the
results of Hastings (1983) to the competition system with resource-dependent
dispersal. We also remark the results of Theorem 3.1 are also consequences of
general results in Guoet al. (2020, Theorem 1.2 (i)–(ii)). Here we use a different
approach (mainly in Claim 1) to obtain the same results.

(b) If di (r)r ≡ ci for i = 1, 2, where c1 and c2 are positive constants, then it is
straightforward to show that system (1.7) admits a continuum of steady states
given by

S =
{
(U , V ) = (η1, η2) | η1, η2 ≥ 0 and

η1

c1
+ η2

c2
= 1

}
.

Then by the result of Guoet al. (2020, Theorem 1.2 (iv)), this continuum of
steady states indeed comprises a global attractor.
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3.2 Different dispersal strategies with large diffusion coefficients

In this subsection, we shall investigate possible (global) dynamics of system (1.7)
as μ1 → 0,∞ and/or μ2 → 0,∞. We first characterize the limiting profile of the
coexistence steady state (if it exists) of system (1.7).

Lemma 3.1 Let di (r) satisfy (H2) (i = 1, 2) for i = 1, 2 with r fulfilling (H0). Then
we have the following results.

(i) If system (1.7) admits a coexistence steady state denoted by (Uμi , Vμi ) asμi → 0,
then there exists some constant C ≥ 0 where “=” holds ifmin

x∈�̄
r(x) = 0 such that

(Uμi , Vμi ) →
{(

(r − C
d2(r)

)d1(r),C
)
, if i = 1,(

C, (r − C
d1(r)

)d2(r)
)
, if i = 2,

as μi → 0,

where C ≤ min
x∈�

(rd2(r)) if i = 1 and C ≤ min
x∈�

(rd1(r)) if i = 2.

(ii) If system (1.7)admits a coexistence steady state denoted by (Uμi , Vμi )asμi → ∞,
then

(Uμ1 , Vμ1) → (0, θμ2,d2) or (U⊥, V∞) in C1(�) as μ1 → ∞,

and

(Uμ2 , Vμ2) → (θμ1,d1 , 0) or (U∞, V⊥) in C1(�) as μ2 → ∞,

where U⊥ =
∫
�(r−V∞d−1

2 (r))d−1
1 (r)dx∫

� d−2
1 (r)dx

, V⊥ =
∫
�(r−U∞d−1

1 (r))d−1
2 (r)dx∫

� d−2
2 (r)dx

and (U∞, V∞)

satisfies

⎧⎪⎨
⎪⎩

μ1d1(r)�U∞ +U∞
(
r − U∞

d1(r)
− V⊥

d2(r)

) = 0, x ∈ �,

μ2d2(r)�V∞ + V∞(r − U⊥
d1(r)

− V∞
d2(r)

) = 0, x ∈ �,

∇U∞ · n = ∇V∞ · n = 0, x ∈ ∂�.

Proof We only prove the case μ2 → 0 in (i) and μ2 → ∞ in (ii), while the proofs for
cases μ1 → 0 and μ1 → ∞ are the same. We first prove (i) for μ2 → 0. Recall that
(Uμ2 , Vμ2) satisfies

⎧⎪⎨
⎪⎩

μ1d1(r)�Uμ2 +Uμ2

(
r(x) − Uμ2

d1(r)
− Vμ2

d2(r)

) = 0, x ∈ �,

μ2d2(r)�Vμ2 + Vμ2

(
r(x) − Uμ2

d1(r)
− Vμ2

d2(r)

) = 0, x ∈ �,

∇Uμ2 · n = ∇Vμ2 · n = 0, x ∈ ∂�.

(3.9)

The maximum and comparison principles directly yield that

‖Uμ2‖L∞(�) ≤ ‖rd1(r)‖L∞(�) and ‖Vμ2‖L∞(�) ≤ ‖rd2(r)‖L∞(�).
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From the elliptic regularity Agmon et al. (1959, 1964), it follows that ‖Uμ2‖W 2,p(�)

and ‖Vμ2‖L p(�) are uniformly bounded as μ2 → 0 for any 1 ≤ p < ∞. By
the Sobolev imbedding theorem, one can deduce that Uμ2 (resp. Vμ2 ), passing to a
subsequence if necessary, converges to some nonnegative function U0(resp. V0) in
C1(�)(resp. weakly in L p(�)) asμ2 → 0. Following the approach as that in the proof
of Lam and Ni (2012, Proposition 2.5), one can derive that Vμ2 → (r − U0

d1(r)
)+d2(r)

in L∞(�) as μ2 → 0, where

(
r − U0

d1(r)

)+
= max

{
0, r − U0

d1(r)

}
.

Then, U0 satisfies (in the weak sense){
μ1d1(r)�U0 +U0

(
r(x) − U0

d1(r)
− (r − U0

d1(r)
)+

) = 0, x ∈ �,

∇U0 · n = 0, x ∈ ∂�.
(3.10)

We proceed to show that

r(x) − U0

d1(r)
≥ 0 in �. (3.11)

By the argument of contradiction, we assume that r(x) − U0
d1(r)

< 0 in some open

subset �∗ of �. Multiplying the first equation of (3.10) by 1
d1(r)

and integrating the
resulting equation on �, one obtains

∫
�

U0

d1(r)

[
r(x) − U0

d1(r)
−

(
r − U0

d1(r)

)+]
dx = 0,

which combined with the fact U0 ≥ 0 yields that U0(x) = 0 in �∗. This together
with the maximum principle implies that U0 ≡ 0 in �, which further indicates that
r(x) − U0

d1(r)
≥ 0 in �, due to r ≥ 0 in �. This contradict our assumption and hence

we have (3.11). Therefore

r(x) − U0

d1(r)
−

(
r − U0

d1(r)

)+ ≡ 0 in �.

So, U0 satisfies

�U0 = 0 in � and ∇U0 · n = 0 on ∂�,

which along with U0 ≥ 0 in � and (3.11) suggests that U0 ≡ C for some C ∈
[0,min

x∈�̄
(rd1(r))] and hence Vμ2 → (r − C

d1(r)
)d2(r) in L∞(�) as μ2 → 0. These

facts together with the definitions of (Uμ2 , Vμ2) give that

(Uμ2 , Vμ2) →
(
C, (r − C

d1(r)
)d2(r)

)
in L∞(�) as μ2 → 0.
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Next, we prove (ii) with μ2 → ∞. Similar to the above analysis, without loss of
generality, one can deduce from (3.9) that (Uμ2 , Vμ2) converges to some nonnegative
function (U∞, V∞) in C1(�) as μ2 → ∞, which satisfies

Vμ2 → C0 ≥ 0 in C1(�) as μ2 → ∞

and

{
μ1d1(r)�U∞ +U∞

(
r − U∞

d1(r)
− C

d2(r)

) = 0, x ∈ �,

∇U∞ · n = 0, x ∈ ∂�.
(3.12)

We proceed to consider two separate cases: C0 = 0 and C0 > 0.
For the case C0 = 0, one directly obtains from (3.12) and Lemma 2.1 that

(Uμ2 , Vμ2) → (θμ1,d1 , 0) in C
1(�) as μ2 → ∞.

For the case C0 > 0, multiplying the second equation of (3.9) by 1
d2(r)

and inte-

grating the resulting equation on �, one finds
∫
�

Vμ2
d2(r)

(r(x) − Uμ2
d1(r)

− Vμ2
d2(r)

)dx = 0,

which along with the fact (Uμ2 , Vμ2) → (U∞,C0) in C1(�) as μ2 → ∞ suggests
that

C0 =
∫
�
(r −U∞d−1

1 (r))d−1
2 (r)dx∫

�
d−2
2 (r)dx

.

This completes the proof. ��
Next, we investigate the global dynamics of system (1.7) as μ1, μ2 → ∞. To this

end, we define several quantities as follows

δ1 :=
∫

�

rd2(r)
−1dx

∫
�

d1(r)
−2dx −

∫
�

rd1(r)
−1dx

∫
�

[d1(r)d2(r)]−1dx,

δ2 :=
∫

�

rd1(r)
−1dx

∫
�

d2(r)
−2dx −

∫
�

rd2(r)
−1dx

∫
�

[d1(r)d2(r)]−1dx,

c0 =
∫

�

d1(r)
−2dx

∫
�

d2(r)
−2dx −

( ∫
�

[d1(r)d2(r)]−1dx

)2

.

(3.13)

We note that c0 ≥ 0 by Hölder’s inequality and in particular c0 > 0 if d1(r) and d2(r)
are not proportional. Then we can show the following results.

Theorem 3.2 Let δ1, δ2 and c0 be defined in (3.13). If di (r)(i = 1, 2) satisfies (H2)

with r fulfilling (H0), and d1(r) 
≡ Cd2(r) for any constant C > 0, then the following
results hold.

(i) (Competitive exclusion) If δ1 < 0 < δ2 (resp. δ2 < 0 < δ1), then the system (1.7)
has a globally asymptotically stable steady state (θμ1,d1 , 0) (resp. (0, θμ2,d2)) for
large μ1, μ2.
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(ii) (Coexistence) If δ1, δ2 > 0, then the system (1.7) admits a globally asymptoti-
cally stable coexistence steady state (U∗, V∗) for large μ1, μ2. Furthermore, the
coexistence steady state (U∗, V∗) converges to ( δ1

c0
, δ2
c0

) in C1(�) asμ1, μ2 → ∞.

Proof We only prove the case δ1 < 0 < δ2 in (i) and the proof for the case δ2 < 0 < δ1
is similar. We first show two claims.

Claim A: system (1.7) doesn’t admit any positive steady state for large μ1 and μ2.
Arguing by contradiction,we assume that there exist sequences {μi,1}i≥1 and {μi,2}i≥1
satisfying μi,1, μi,2 → ∞ as i → ∞ such that system (1.7) admits a positive steady
state denoted by (Ui , Vi ). Then, (Ui , Vi ) satisfies

⎧⎪⎨
⎪⎩

μi,1d1(r)�Ui +Ui
(
r(x) − Ui

d1(r)
− Vi

d2(r)

) = 0, x ∈ �,

μi,2d2(r)�Vi + Vi
(
r(x) − Ui

d1(r)
− Vi

d2(r)

) = 0, x ∈ �,

∇Ui · n = ∇Vi · n = 0, x ∈ ∂�.

(3.14)

Applying the comparison principle, for any i ≥ 1, one can show that

‖Ui‖L∞(�) ≤ ‖rd1(r)‖L∞(�) and ‖Vi‖L∞(�) ≤ ‖rd2(r)‖L∞(�). (3.15)

From the elliptic regularity (cf. Gilbarg and Trudinger 2001), it follows that
‖Ui‖W 2,p(�) and ‖Vi‖W 2,p(�) are uniformly bounded in i for any 1 ≤ p < ∞. By
the Sobolev imbedding theorem, one can deduce from (3.14) that (Ui , Vi ), passing
to a subsequence if necessary, converges to some nonnegative function (U∞, V∞) in
C1(�) as i → ∞, where (U∞, V∞) satisfies (in the weak sense)

{
�U∞ = �V∞ = 0, x ∈ �,

∇U∞ · n = ∇V∞ · n = 0, x ∈ ∂�.

Therefore, there exist some constants C1,C2 ≥ 0 such that (U∞, V∞) = (C1,C2).
Then, there are four possible cases to consider:

(1) C1 = C2 = 0; (2) C1 > C2 = 0; (3) C2 > C1 = 0; (4) C1,C2 > 0.

For case (1): C1 = C2 = 0. Multiplying the first equation of (3.14) by 1
d1(r)

and
integrating the resulting equation on �, one has

∫
�

Ui

d1(r)

(
r − Ui

d1(r)
− Vi

d2(r)

)
dx = 0,

which contradicts the facts that Ui > 0, r � 0, di (r) > 0(i = 1, 2), and (Ui , Vi ) →
(0, 0) in C1(�) as i → ∞.

For case (2): C1 > C2 = 0. By Lemma 2.3, one further obtains C1 =
∫
� rd−1

1 (r)dx∫
� d−2

1 (r)dx
.

Setting V̂i = Vi‖Vi‖L∞(�)
, similar to the above analysis in the proof of Lemma 3.1, one
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can conclude that

(Ui , V̂i ) →
(∫

�
rd−1

1 (r)dx∫
�
d−2
1 (r)dx

, 1

)
in C1(�) as i → ∞. (3.16)

Multiplying the second equation of (3.14) by d2(r) and integrating the resulting
equation on � yield that

∫
�

V̂i
d2(r)

(
r − Ui

d1(r)
− V̂i‖Vi‖L∞(�)

d2(r)

)
dx = 0,

which together with (3.16) implies that δ1 = 0, contradicting the fact δ1 < 0.
Case (3) can be treated similarly. We omits the details.
For case (4): C1,C2 > 0, similar to the arguments as in the proof of Lemma 3.1,

one can deduce that

C1 = δ2

c0
, C2 = δ1

c0
with c0 =

∫
�

1

d21 (r)
dx

∫
�

1

d22 (r)
dx −

( ∫
�

1

d1(r)d2(r)
dx

)2

(3.17)

which contradicts δ1 < 0 and
∫
�

1
d21 (r)

dx
∫
�

1
d22 (r)

dx > (
∫
�

1
d1(r)d2(r)

dx)2 due to the

assumption that d1(r) 
≡ Cd2(r) for any C > 0. Thus Claim A is proved.
Claim B: the semi-trivial steady state (θμ1,d1, 0) is linearly stable and (0, θμ2,d2)

is linearly unstable for large μ1, μ2. By Lemmas 2.3 and 2.4 (ii), one can derive that

lim
μ1,μ2→∞ λ1(μ2d2(r), r − Wμ1,d1 ) =

∫
�

(
r − cr1

d1(r)

)
d−1
2 (r)dx∫

�
d−1
2 (r)dx

= δ1∫
�
d−2
1 (r)dx

∫
�
d−1
2 (r)dx

and

lim
μ1,μ2→∞ λ1(μ1d1(r), r − Wμ2,d2 ) =

∫
�

(
r − cr2

d2(r)

)
d−1
1 (r)dx∫

�
d−1
1 (r)dx

= δ2∫
�
d−2
2 (r)dx

∫
�
d−1
1 (r)dx

where cri =
∫
� rd−1

i (r)dx∫
� d−2

i (r)dx
(i = 1, 2). These facts together with δ1 < 0 < δ2 imply that

Claim B holds. Then, combining Claim A, Claim B, and Proposition 3.1 (ii), we prove
assertion (i).

For assertion (ii): δ1, δ2 > 0, similar to the analysis in the proof of Claim B above,
one can deduce that (θμ1,d1 , 0) and (0, θμ2,d2) are linearly unstable for large μ1, μ2,
which upon the application of Proposition 3.1-(iii) entails that system (1.7) admits
a locally asymptotically stable coexistence steady state (U∗, V∗) for large μ1, μ2.
Furthermore, by the arguments in the proof of Lemma 3.1, one can derive that, as
μ1, μ2 → ∞,

The coexistence steady state of system (1.7)(if it exits) converges to (C1,C2) in C1(�), (3.18)

where C1 and C2 are given in (3.17). Finally, we show that the coexistence steady
state (U∗, V∗) is globally asymptotically stable for large μ1, μ2.
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Claim C: every coexistence steady state of system (1.7) is not neutrally stable for
largeμ1, μ2. Suppose the claim is false, and we assume that, asμ1, μ2 → ∞, system
(1.7) admits a coexistence steady state (Uμ1,μ2 , Vμ1,μ2), which is neutrally stable.
Linearizing system (1.8) at (U , V ) = (Uμ1,μ2 , Vμ1,μ2), one has

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ1d1(r)�φ1+φ1
(
r(x)−Uμ1,μ2

d1(r)
− Vμ1,μ2

d2(r)

) − Uμ1,μ2φ1
d1(r)

− Uμ1,μ2ψ1

d2(r)
= 0, x ∈ �,

μ2d2(r)�ψ1+ψ1
(
r(x)−Uμ1,μ2

d1(r)
− Vμ1,μ2

d2(r)

) − Vμ1,μ2ψ1

d2(r)
− Vμ1,μ2φ1

d1(r)
= 0, x ∈ �,

∇φ1 · n = ∇ψ1 · n = 0, x ∈ ∂�,

(3.19)

where (φ1, ψ1) is the corresponding principal eigenfunction satisfying ‖φ1‖2L2(�)
+

‖ψ1‖2L2(�)
= 1 and φ1 > 0 > ψ1 on �̄. Similar to (3.15), for any μ1, μ2 > 0, one

obtains

‖Uμ1,μ2‖L∞(�) ≤ ‖rd1(r)‖L∞(�) and ‖Vμ1,μ2‖L∞(�) ≤ ‖rd2(r)‖L∞(�).

Employing similar arguments as those in Claim A, one can deduce that

(φ1, ψ1) → (ĉ1, ĉ2) in H1(�) as μ1, μ2 → ∞ and hence (ĉ21 + ĉ22)|�| = 1.

(3.20)

It is clear that ĉ1 ≥ 0 ≥ ĉ2 since φ1 > 0 > ψ1 on �̄. Next we will show that

ĉ1 > 0 > ĉ2. (3.21)

Then it suffices to show that ĉ1 
= 0 and ĉ2 
= 0. Since the proof is similar, we
only prove ĉ1 
= 0. Using the argument of contradiction, we assume ĉ1 = 0, which

combined with (3.20) gives that ĉ2 = |�|− 1
2 > 0.Multiplying the second equations of

system (3.19) by 1
d2(r)

, integrating the resulting equation in �, and sending μ1, μ2 →
∞, one concludes that

∫
�

C2

d22 (r)
dx = 0,

where we have used (3.18), (3.20) and ĉ2 > ĉ1 = 0. This is impossible due to the fact
that C2 > 0. Therefore, (3.21) holds. We next multiply the first and second equations
of system (3.19) by 1

d1(r)
and 1

d2(r)
, respectively, integrate the resulting equations in �

with a substraction. Then sending μ1, μ2 → ∞, one obtains from (3.18) and (3.20)

∫
�

( ĉ1
d21 (r)

+ ĉ2
d1(r)d2(r)

)
dx =

∫
�

( ĉ1
d1(r)d2(r)

+ ĉ2
d22 (r)

)
dx = 0,
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which along with (3.21) gives that

∫
�

1

d21 (r)
dx

∫
�

1

d22 (r)
dx −

( ∫
�

1

d1(r)d2(r)
dx

)2

= 0.

This is impossible due to the assumption that d1(r) 
≡ Cd2(r) for any C > 0. Thus,
Claim C holds. From (3.18), Claim C and the fact that system (1.7) admits a locally
asymptotically stable coexistence steady state for large μ1, μ2, it follows that every
coexistence steady state of system (1.7) is linearly stable for large μ1, μ2. Then,
Proposition 3.1 (iv) proves that assertion (ii) holds, which completes the proof. ��
Remark 3.2 We add several remarks for the results in Theorem 3.2.

(a) Under the conditions of Theorem 3.2, one can deduce that δ1, δ2 < 0 can not occur
by the argument of contradiction. For readers’ convenience, we sketch the proof in
the following two steps. Step 1, following the approaches as in the proof of Claim
A for Theorem 3.2, one can deduce that system (1.7) doesn’t admit any positive
steady state as μ1, μ2 → ∞; Step 2, with similar arguments as in the proof
of Claim B for Theorem 3.2, one can derive that (θμ1,d1 , 0) and (0, θμ2,d2) are
linearly stable as μ1, μ2 → ∞, which together with Proposition 3.1-(iii) implies
that system (1.7) admits an unstable coexistence steady state as μ1, μ2 → ∞.
Then, the results in step 1 and step 2 yield a contradiction, which confirms our
claimed result.

(b) The following examples show that all situations (i) and (ii) of Theorem 3.2 may
occur.

(i) If d1(r) = e−kr and d2(r) = 1, then δ1 < 0 < δ2 provided k is small enough.
Conversely if d1(r) = 1 and d2(r) = e−kr , then δ2 < 0 < δ1 provided k is
small enough;

(ii) If d1(r) = e−kr and d2(r) = 1
2rmax, then δ1, δ2 > 0 provided k is large

enough.

(c) If d1(r)r is constant and d2(r)r is not constant, it was shown in [Braverman and
Makrujjaman (2016), Theorem 1] that (r , 0) is globally asymptotically stable for
system (1.5), namely the species u1 wipes out the species u2 and achieves the ideal
free distribution. In this case δ1 = 0 and δ2 > 0. But for general di (r)with δi = 0,
i ∈ {1, 2}, we are unable to determine the global dynamics.

(d) The numerical simulations of steady state profile (U1,U2) of (1.5) with d1(r) =
e−kr and d2(r) = 1 are plotted in Fig. 2 with large μi > 0(i = 1, 2) and small
k in (a) and large k in (b), where we see the results of Theorem 3.2 are perfectly
verified by our numerical results. One open question left in Theorem 3.2 is the
global dynamics when μ1 and/or μ2 are not large. For this scenario, we also
perform numerical simulations for moderate values ofμi (i = 1, 2):μ1 = μ2 = 1
and small values μi (i = 1, 2): μ1 = μ2 = 0.1, we surprisingly find the steady
profile (U1,U2) of (1.5) will remain the same as those for large μi (i = 1, 2) and
fixed value of k. Hence we do not show the numerical simulations here for small or
moderate values ofμi (i = 1, 2). This indicates that the criteria used inTheorem3.2
determining the global stability of competitive exclusion and coexistence steady
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Fig. 2 Numerical simulations of stead state profile of the competition system (1.5) with d1(r) = e−k1r and
d2(r) = 1 in [0, 1] with resource r(x) = 1 + cos(4πx), where k1 = 0.1 in (a) and k1 = 20 in (b), where
μ1 = μ2 = 10

states through the sign of δi (i = 1, 2) possibly hold for any μi > 0(i = 1, 2).
However we are unable to prove this and have to leave it out for the future.

The results of Theorem 3.2-(ii) provide a strategy to reach a coexistence steady
state for competing species, which requires both μ1 and μ2 are large. We refer to a
result in Cantrell et al. (2019) where the coexistence steady state in a competition–
diffusion–advection model with inhomogeneous diffusion rates can also be achieved
when the advection along the resource gradient is large. The following proposition
will offer another possible mechanism for coexistence by requiring μ2 be large only
but d2(r) is close to a constant.

Proposition 3.2 (Coexistence) If d2(r) ≡ 1, d1(r) satisfies (H2) with r fulfilling (H0)

such that
∫
�
Wμ1,d1dx <

∫
�
rdx where Wμ1,d1 = θμ1,d1(r)

d1(r)
, then system (1.7) admits

a locally asymptotically stable coexistence steady state (Uμ2 , Vμ2) for large μ2. Fur-
thermore, the coexistence steady state (Uμ2 , Vμ2) converges to (U∗, V∗) in C1(�) as
μ2 → ∞, where (U∗, V∗) satisfies{

μ1d1(r)�U∗ +U∗
(
r − U∗

d1(r)
− V∗

)
= 0, x ∈ �,

∇U∗ · n = 0, x ∈ ∂�,
(3.22)

and

V∗ =
∫
�

(
r − U∗

d1(r)

)
dx

|�| > 0. (3.23)

Proof By the assumption
∫
�
Wμ1,d1dx <

∫
�
rdx and Lemma 2.4 (ii), one can deduce

that

lim
μ2→∞ λ1(μ2, r − Wμ1,d1) = 1

|�|
∫

�

(r − Wμ1,d1)dx > 0, (3.24)
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which suggests that (θμ1,d1(r), 0) is linearly unstable. Since λ1(D(x),m) continuously
depends on m and θμ2,1 → r̄ with r̄ = 1

|�|
∫
�
r(x)dx as μ2 → ∞ (see Lemma 2.3),

then it follows that

lim
μ2→∞ λ1(d1(r), r − θμ2,1) = λ1(d1(r), r − r̄).

By the variational characterization (2.4), choosing 1 as a test function, one obtains

λ1(d1(r), r − r̄) = sup
0 
=φ∈H1(�)

∫
�
(−|∇φ|2 + (r−r̄)φ2

d1(r)
)dx∫

�
φ2

d1(r)
dx

≥
∫
�

r−r̄
d1(r)

dx∫
�

1
d1(r)

dx
.

We proceed to show that

∫
�

r − r̄

d1(r)
dx > 0. (3.25)

Since
∫
�
Wμ1,d1dx <

∫
�
rdx , it is easy to show that d1(r) is not constant in �, which

together with (H2) and the assumption that r is not constant in � implies

∫
�

r − r̄

d1(r)
dx =

∫
r≥r̄

r − r̄

d1(r)
dx +

∫
r<r̄

r − r̄

d1(r)
dx

>

∫
r≥r̄

r − r̄

d1(r̄)
dx +

∫
r<r̄

r − r̄

d1(r̄)
dx

= 0.

So, (3.25) holds and consequently we have

lim
μ2→∞ λ1(d1(r), r − θμ2,1) = λ1(d1(r), r − r̄) > 0, (3.26)

which indicates that (0, θμ2,1) is linearly unstable.
From (3.24), (3.26) and Proposition 3.1 (iii), it follows that the system (1.7) admits

a locally asymptotically stable coexistence steady state for large μ2. Finally, since
(θμ1,d1(r), 0) and (0, θμ2,1) are linearly unstable, by the arguments in the proof of
Lemma 3.1, one can derive that the coexistence steady state (Uμ2 , Vμ2) converges to
(U∗, V∗) in C1(�) as μ2 → ∞, where (U∗, V∗) satisfies (3.22) and (3.23). ��
Remark 3.3 By Lemma 2.5, one can find some d1(r) such that

∫
�
Wμ1,d1dx <

∫
�
rdx .

Moreover, if d1(r) satisfies the condition in Proposition 3.2 and d2(r) is constant, then
system (1.7) admits a locally asymptotically stable coexistence steady state for largeμ2
evenμ1d1(r) < μ2d2(r). This implies that the “slower diffuser prevails” phenomenon
may not happen if the resource-dependent dispersal strategy is employed. Instead
the competing species with resource-dependent dispersal rates may coexist even if
they have different diffusion strength (i.e. μ1d1(r) 
= μ2d2(r) in �). Therefore the
resource-dependent dispersal does provide a strategy for competing species to coexist.
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Remark 3.4 Proposition 3.2 raises an interesting question:whether the problem (3.22)–
(3.23) admit a unique positive solution? If so, then one can further derive that, under
the conditions of Proposition 3.2, system (1.7) admits a globally asymptotically stable
coexistence steady state for large μ2.

3.3 Case studies for any�i > 0

Theorem 3.2 gives conditions for the global stability of competitive exclusion steady
states and the existence of coexistence steady states for large diffusion rates μi (i =
1, 2) when d1(r) and d2(r) are not proportional. Whether similar results hold true for
diffusion rates that are not large remain unknown. In this section, we shall attempt this
question by considering two types of specialized resource-dependent diffusion rate
function di (r) = e−ki r and di (r) = (1 + r)−ki for i = 1, 2 and monotone resource
r(x) in an interval � = (0, L).

The main results for di (r) = e−ki r (i = 1, 2) are the following.

Theorem 3.3 Let di (r) = e−ki r (i = 1, 2) and kr be such that 4krrmaxekr rmax = 1. If
rx > 0 or rx < 0 on [0, L], 0 ≤ k2 < k1 ≤ kr andμ1 > 0, then we have the following
results.

(i) (Competitive exclusion) If μ2 ∈ [μ1e(k2−k1)rmin ,∞), then (θμ1,d1 , 0) is globally
asymptotically stable ;

(ii) (Coexistence) There exists some μ2 ∈ (
0, μ1e(k2−k1)rmin

)
such that system (1.7)

admits a positive steady state.

Remark 3.5 Noticing that μ2 ∈ [μ1e(k2−k1)rmin ,∞) means that μ1e−k1r < μ2e−k2r

for all x ∈ (0, L), Theorem 3.3-(i) basically asserts that the slower diffuser prevails in
the competition, same as the classical competition model with resource-independent
dispersals. This is verified by the numerical simulation shown in Fig. 3a. The result
of Theorem 3.3-(ii) seems not as decisive as that of Theorem 3.3-(i). It turns out from
numerical simulations that the dynamics of (1.7) are much more complex when μ2 ∈(
0, μ1e(k2−k1)rmin

)
as shown in Fig. 3b–d where we see that when μ2 increases from 0

to μ1e(k2−k1)rmin , the winner of the competition changes from U1 to U2. In particular
coexistence appears in the period of transition even for μ1e−k1r > μ2e−k2r as shown
in Fig. 3c, which not only verifies the result of Theorem 3.3-(ii) but also implies
that slower diffuser does not necessarily wipe out its faster competitor. Therefore
the dynamics for μ2 ∈ (

0, μ1e(k2−k1)rmin
)
is expected to be complicated and how

to sharpen this interval so that more decisive conclusions can be drawn becomes an
interesting open question.

We remark that the upper bound kr defined in Theorem 3.3 is not optimal, which is a
technical assumption. To proveTheorem3.3,we first establish some technical lemmas.
For any coexistence steady state (U , V ) (if it exists) of system (1.7), it satisfies

⎧⎪⎨
⎪⎩

μ1e−k1rUxx +U (r(x) −Uek1r − Vek2r ) = 0, x ∈ (0, L),

μ2e−k2r Vxx + V (r(x) −Uek1r − Vek2r ) = 0, x ∈ (0, L),

Ux = Vx = 0, x = 0, L.

(3.27)
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Fig. 3 Numerical simulations of steady state profile of the competition system (1.5) with di (r) = e−ki r in
[0, 1] with monotone decreasing resource r(x) = 1+ 0.5 cos(πx), where k1 = 0.15, k2 = 0.1. The profile
of steady state solution (U1, V1) are plotted in a for μ2 = 1.2, b for μ2 = 0.2, c for μ2 = 0.6 and d for
μ2 = 0.95, where μ1 = 1, kr = 0.2039 and e(k2−k1)rmin = 0.9753

Let

T = Ux

U
and S = Vx

V
for x ∈ [0, L]. (3.28)

A direct computation produces

⎧⎨
⎩

μ1Txx + 2μ1T Tx + Arxek1r − TUe2k1r − SV e(k1+k2)r = 0, x ∈ (0, L),

μ2Sxx + 2μ2SSx + Brxek2r − SV e2k2r − TUe(k1+k2)r = 0, x ∈ (0, L),

T (0) = T (L) = S(0) = S(L) = 0,

(3.29)

where

A = 1 + k1r − 2k1Uek1r − (k1 + k2)Vek2r and B = 1 + k2r − 2k2Vek2r − (k1 + k2)Uek1r .
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The following results can be proved in a similar way as in Lou and Zhou (2015, Lemma
3.5).

Lemma 3.2 Let T and S be defined in (3.28). For any interval (x1, x2) on [0, L], if
0 ≤ k1, k2 ≤ kr , then the following results hold.

(i) If rx < 0 on [0, L], then T (resp. S) can not achieve a positive local maximum in
(x1, x2) with S ≥ 0(resp. T ≥ 0) in (x1, x2)

(ii) If rx > 0 on [0, L], then T (resp. S) can not achieve a negative local minimum in
(x1, x2) with S ≤ 0(resp. T ≤ 0) in (x1, x2).

Proof Inspired by Lou and Zhou (2015, Lemma 3.5), it suffices to show that A, B > 0
on [0, L]. For any coexistence steady state (U , V ) of system (1.7), by Corollary 9 of
Zhou et al. (2021), one obtains that

U ≤ θμ1,d1 and V ≤ θμ2,d2 on [0, L]. (3.30)

By Lemma 2.2, one has

U ≤ max
x∈�̄

(re−k1r ) < rmax and V ≤ max
x∈�̄

(re−k2r ) < rmax on [0, L]. (3.31)

From (3.30), (3.31), and r ≥ 0 on [0, L], it follows that

A, B > 0 on [0, L], for k1, k2 ≤ kr , (3.32)

where kr satisfies 4krrmaxekr rmax = 1. This completes the proof. ��
Similar to Zhou (2016, Lemma 3.29), one can derive the following result.

Lemma 3.3 If (U , V ) is a coexistence steady state of system (3.27), then for any
0 ≤ y1 ≤ y2 ≤ L, we have

∫ y2

y1
UV S

{
T

(
1 − μ2

μ1
e(k1−k2)r

)
− μ2

μ1
(k1 − k2)rxe

(k1−k2)r
}
dx

= TUV |y2y1 − μ2

μ1
SUVe(k1−k2)r

∣∣∣y2
y1

,

(3.33)

and ∫ y2

y1
UVT

{
S
(
1 − μ1

μ2
e(k2−k1)r

)
− μ1

μ2
(k2 − k1)rxe

(k2−k1)r
}
dx

= SUV |y2y1 − μ1

μ2
TUVe(k2−k1)r

∣∣∣y2
y1

.

(3.34)

Moreover, if k1 > k2 and μ1 ≤ μ2e(k1−k2)rmin , the following results hold.
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(i) If rx > 0 on [0, L], then there do not exist T and S satisfying T (y), S(y) ≥ 0
on [y1, y2], S(y1) ≥ S(y2) = 0, and T (y2) ≥ T (y1) = 0 such that any of the
following conditions hold:

(1) T 
≡ 0 on [y1, y2]; (2) S 
≡ 0 on [y1, y2]; (3) T (y2) > 0; (4) S(y1) > 0.

(ii) If rx < 0 on [0, L], then there do not exist T and S satisfying T (y), S(y) ≤ 0
on [y1, y2], S(y2) ≤ S(y1) = 0, and T (y1) ≤ T (y2) = 0 such that any of the
following conditions hold:

(1) T 
≡ 0 on [y1, y2]; (2) S 
≡ 0 on [y1, y2]; (3) T (y1) < 0; (4) S(y2) < 0.

Proof Multiplying the first equation and the second equation of system (3.27) by ek1r V
and ek1rU , respectively, integrating the resulting equations in (y1, y2) and making a
substraction, one obtains

μ1

∫ y2

y1
VUxxdx = μ2

∫ y2

y1
Ue(k1−k2)r Vxxdx .

Then the integration by part yields

μ1VUx |y2y1 − μ2Ue(k1−k2)r Vx |y2y1 =
∫ y2

y1
{μ1UxVx − μ2[Ue(k1−k2)r ]x Vx }dx,

which combined with (3.28) gives (3.33). The same argument will yield (3.34). Asser-
tions (i) and (ii) follow directly from (3.33) and (3.34), which completes the proof.

��
Now, we are ready to establish the non-existence of coexistence steady state for the

system (3.27).

Lemma 3.4 Assume 0 ≤ k2 < k1 ≤ kr and μ2 ≥ μ1e(k2−k1)rmin . If rx > 0 or rx < 0
on [0, L], then system (3.27) does not admit any coexistence steady state.

Proof We first consider the case rx > 0 on [0, L]. By contradiction, we suppose that
the system (3.27) has a coexistence steady state (U , V ). To get a contradiction, we
prove four claims first.

Claim 1: Uxx and Vxx have the same sign on [0, L]. This result follows directly
from (3.27) and U , V > 0 on [0, L].

Claim 2: there exists � > 0 such that T (x) > 0 and S(x) > 0 in (0, �). It suffices
to show that Tx (0) > 0 and Sx (0) > 0 as T (0) = S(0) = 0. We shall show Tx (0) > 0
only since the proof of Sx (0) > 0 is the same.

Suppose that Tx (0) > 0 is false. Then either Tx (0) < 0 or Tx (0) = 0.
If Tx (0) < 0, then there exists �1 > 0 such that T (x) < 0 in (0, �1) as T (0) = 0.

Moreover, by the definition of T and Ux (0) = 0, one finds that

Tx (0) = Uxx (0)U (0) −U 2
x (0)

U 2(0)
= Uxx (0)

U (0)
< 0, (3.35)
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which implies Uxx (0) < 0 and hence Vxx (0) < 0 by Claim 1. From Vxx (0) < 0,
Vx (0) = 0 and the definition of S, it follows that Sx (0) < 0. This along with S(0) = 0
implies that there exists �2 > 0 such that S(x) < 0 in (0, �2). These facts combined
with T (L) = S(L) = 0 yields that there exist x1 ∈ [�1, L] and x2 ∈ [�2, L] such that

T (x) < 0 in (0, x1) and T (x1) = T (0) = 0 (3.36)

and

S(x) < 0 in (0, x2) and S(x2) = S(0) = 0. (3.37)

Without loss of generality,we assume that x1 ≤ x2. Then (3.36) implies that T achieves
a negative local minimum at x3 ∈ (0, x1). Moreover, S(x3) < 0 due to x3 < x1 ≤ x2
and (3.37). This is impossible by Lemma 3.2 (ii).

If Tx (0) = 0, then Uxx (0) = 0 by (3.35). Therefore, Vxx (0) = 0 by Claim 1,
which suggests that Sx (0) = 0. Then, estimating the first and second equation of
system (3.29) at x = 0, by T (0) = S(0) = Tx (0) = Sx (0) = 0, rx (0) > 0 and
A, B > 0 due to (3.32), one obtains Txx (0) < 0 and Sxx (0) < 0. Combining the
facts that S(0) = T (0) = Tx (0) = Sx (0) = 0, Txx (0) < 0, Sxx (0) < 0, and
T (L) = S(L) = 0, one can easily see that there exist x1, x2 ∈ (0, L] such that (3.36)
and (3.37) are satisfied.Hence a contradiction arises. ThusClaim2 is proved. Similarly,
one can derive the following result in Claim 3 below.

Claim 3: there exists �∗ ∈ (0, L) such that T (x) > 0 and S(x) > 0 in (L −�∗, L).
We proceed to prove the following result.
Claim 4: S must change sign in (0, L). Suppose that the claim is not true. Then it

follows from Claim 2 or Claim 3 that

S � 0, in (0, L). (3.38)

Letting (y1, y2) = (0, L) in (3.33), we have

∫ L

0
UV S

{
T

(
1 − μ2

μ1
e(k1−k2)r

)
− μ2

μ1
(k1 − k2)rxe

(k1−k2)r
}
dx = 0.

With the assistance of this, k1 > k2, μ2 ≥ μ1e(k2−k1)rmin , U , V > 0 on [0, L], rx > 0
on [0, L], r � 0 in (0, L), (3.38), and Claim 2, we can deduce that

T must change sign in (0, L). (3.39)

By Claim 2, Claim 3, and (3.39), there exists x4 ∈ (0, L) such that

T (x) > 0 in (x4, L) and T (x4) = 0. (3.40)

Then, (3.38), (3.40), T (L) = S(L) = 0, Claim 3 and Lemma 3.3 (i) yield a
contradiction with choosing (y1, y2) = (x4, L). Therefore, Claim 4 is proved.
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According to Claim 2, Claim 3, and Claim 4, we see that S must have a negative
local minimum in (0, L). Define

x∗ = inf{x ∈ [0, L] : S(x) < 0, Sx (x) = 0 and Sxx (x) ≥ 0}.

Obviously, x∗ ∈ (0, L) and S(x∗) ≤ 0. We will get a contradiction for each of the two
cases, S(x∗) < 0 and S(x∗) = 0.

Case a: S(x∗) < 0.
Claim a.1: There exists x5 ∈ (0, x∗) such that S(x5) = 0, Sx (x) ≤ 0 on [x5, x∗],

and S(x) ≥ 0 on [0, x5].
By Claim 2, and S(x∗) < 0, we know that S has a zero in (0, x∗). Denote

x5 = sup{x ∈ (0, x∗) : S(x) = 0}.

Clearly, S(x5) = 0 and S(x) < 0 for x ∈ (x5, x∗]. By the definition of x∗, we
see that S(x) ≥ 0 on [0, x5] otherwise there is a negative local minimum in (0, x5)
(contradicting the definition of x∗). Moreover, Sx (x) ≤ 0 on [x5, x∗]. If this is not true,
then there exists x̂ ∈ (x5, x∗) such that Sx (x̂) > 0. As S(x) < 0 for x ∈ (x5, x̂), there
exists x̃ ∈ [x5, x̂) such that Sx (x̃) < 0. Then there exists a negative local minimum of
S in (x̃, x̂), a contradiction to the definition of x∗. This proves Claim a.1.

Claim a.2: T (x5) < 0.
Suppose by contradiction that T (x5) ≥ 0. If T ≥ 0 in (0, x5), then by Claim a.1,

Claim 2, and Lemma 3.3 (i) with (y1, y2) = (0, x5), one can derive a contradiction.
So, there exists some point x∗

5 in (0, x5) such that T (x∗
5 ) < 0. Then, we shall consider

two cases:

(1) T (x5) > 0, (2) T (x5) = 0.

If T (x5) > 0, then there exits some x∗∗
5 ∈ (x∗

5 , x5) such that

T (x∗∗
5 ) = 0, and T (x) > 0 in (x∗∗

5 , x5). (3.41)

Combining Claim a.1, (3.41) and Lemma 3.3 (i) with (y1, y2) = (x∗∗
5 , x5), one can

derive a contradiction.
Next, we consider case 2: T (x5) = 0. By Claim a.1, one obtains Vxx (x5) ≤ 0. If

Vxx (x5) = 0, then Sx (x5) = 0, which together with the facts that T (x5) = S(x5) = 0,
rx > 0 on [0, L], B > 0 on [0, L] due to k1, k2 < kr , and the second equation of
system (3.29), implies Sxx (x5) < 0. Then, by S(x5) = Sx (x5) = 0 and Sxx (x5) < 0,
one obtains that there exists some δ > 0 such that

S(x) < 0 in (x5 − δ, x5 + δ)\{x5},

which contradicts Claim a.1. Therefore, Vxx (x5) < 0, which indicates thatUxx (x5) <

0 due to Claim 1. This further yields that

Tx (x5) < 0,

123



Population dynamics with resource-dependent... Page 37 of 42 23

which suggests that there exits some x∗∗
5 ∈ (x∗

5 , x5) such that (3.41) holds. Then, one
can also obtain a contradiction by Lemma 3.3 (i) with (y1, y2) = (x∗∗

5 , x5). Therefore,
Claim a.2 holds.

Claim a.3: There exists x6 ∈ (x5, x∗) such that T (x6) = 0 and T (x) <

0 in (x5, x6). It follows from the definition of x∗ and the second equation in (3.29)
that T (x∗) > 0. This along with Claim a.2 immediately confirms Claim a.3.

Recall from Claim a.1 that S(x5) = 0 and Sx (x5) ≤ 0. So, one gets Vx (x5) = 0
and Vxx (x5) ≤ 0. As V satisfies (3.27), evaluating it at x = x5 produces

r(x5) −U (x5)e
k1r(x5) − V (x5)e

k2r(x5) ≥ 0. (3.42)

Let g(x) = r(x) −U (x)ek1r(x) − V (x)ek2r(x) on [0, L]. Then

gx (x) = rx (1 − k1Uek1r − k2Vek2r ) − TUek1r − SV ek2r .

With the facts that rx (x) > 0 on [0, L], T (x) < 0 and S(x) < 0 in (x5, x6), 0 <

U , V < rmax on [0, L] by (3.31), and k1, k2 < kr , one obtains that gx (x) > 0 in
(x5, x6), which along with (3.42) implies that g(x6) > 0. Then, estimating the first
equation of system (3.27), one finds Uxx (x6) < 0, which further yields that

Tx (x6) < 0. (3.43)

However, by Claim a.3, we have

Tx (x6) ≥ 0,

which contradicts (3.43). This proves that S(x∗) < 0 can not occur.
Case b: S(x∗) = 0.
First, with similar arguments as those in the proof of Claim a.1, one can obtain

S(x) ≥ 0 for x ∈ (0, x∗). (3.44)

Next, it follows from the definition of x∗ that Sx (x∗) = 0 and Sxx (x∗) ≥ 0. We claim
that Sxx (x∗) > 0 cannot occur. Otherwise, if Sxx (x∗) > 0, then there exists �4 > 0
small enough such that

S(x) > 0 for x ∈ (x∗ − �4, x
∗ + �4)\{x∗}.

This contradicts the definition of x∗. Thus Sx (x∗) = Sxx (x∗) = 0. Finally, evaluating
the second equation of (3.29) at x = x∗, one easily sees

T (x∗) = rx (x∗)B(x∗)
U (x∗)ek1r(x∗) > 0,
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where B(x∗) > 0 due to k1, k2 < kr . This along with T (0) = 0 implies that there
exists some x7 ∈ [0, x∗) such that

T (x7) = 0, and T (x) > 0 in (x7, x
∗). (3.45)

Then the combination of S(x∗) = 0, (3.44) and (3.45) yields the results contradicting
Lemma 3.3 (i) with (y1, y2) = (x∗

7 , x
∗). So, S(x∗) = 0 can not happen, which shows

that system (3.27) does not admit any coexistence steady state when rx > 0 on [0, L].
On the other hand, if rx < 0 on [0, L], by the argument of contradiction, we

assume system (3.27) admits a coexistence steady state (U , V ). Let Ũ (x) = U (L−x),
Ṽ (x) = V (L − x), and r̃(x) = r(L − x). Then, (Ũ , Ṽ ) and r̃ satisfy

⎧⎪⎨
⎪⎩

μ1e−k1r̃ Ũxx + Ũ (r̃(x) − Ũek1r̃ − Ṽ ek2r̃ ) = 0, x ∈ (0, L),

μ2e−k2r̃ Ṽxx + Ṽ (r̃(x) − Ũek1r̃ − Ṽ ek2r̃ ) = 0, x ∈ (0, L),

Ũx = Ṽx = 0, x = 0, L,

where r̃x = −rx > 0 on [0, L]. This contradicts the first part of the Theorem, and
hence completes the proof. ��

Now we are ready to prove Theorem 3.3.

Proof of Theorem 3.3 We first prove assertion (i). Given all the parameters except
μ1, it suffices to show that (θμ1,d1 , 0) is globally asymptotically stable for μ1 ∈(
0, μ2e(k1−k2)rmin

]
. From Lemma 2.4 (ii), it follows that

lim
μ1→0

λ1(μ1d1(r), r − Wμ2,d2) = max
x∈�

(r − Wμ2,d2).

Multiplying the equation (3.1)with i = 2by 1
d2(r)

and integrating the resulting equation
on �, one obtains ∫

�

Wμ2,d2(r − Wμ2,d2)dx = 0. (3.46)

Since re−k2r is not constant in �, similar to the analysis in the Claim 1 in the proof
of Theorem 3.1, one can derive that

r − Wμ2,d2 
≡ 0,

which along with (3.46) implies

max
x∈�

(r − Wμ2,d2) > 0.

This further yields that

lim
μ1→0

λ1(μ1d1(r), r − Wμ2,d2) = max
x∈�

(r − Wμ2,d2) > 0,
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which means that (0, θμ2,d2) is linearly unstable whenμ1 is small enough. This thanks
toLemma3.4, andProposition 3.1 (ii), shows that (θμ1,d1, 0) is globally asymptotically
stable when μ1 is small enough. Following the approaches as those in the proof of
Lou et al. (2019, Theorem 1.3) or Tang and Chen (2021, Theorem 1.3), one can prove
that (θμ1,d1 , 0) is globally asymptotically stable for μ1 ∈ (

0, μ2e(k1−k2)rmin
]
.

Next, we prove the assertion (ii) by the argument of contradiction. Given all the
parameters except μ2, we assume that system (1.7) doesn’t admit any positive steady
state for any μ2 ∈ (

0, μ1e(k2−k1)rmin
)
. Similarly, one can prove that (0, θμ2,d2) is

globally asymptotically stable when μ2 is small enough. On the other hand, from
assertion (i), it follows that (θμ1,d1 , 0) is globally asymptotically stable when μ2 =
μ1e(k2−k1)rmin . Following the approaches as those in the proof of Zhou (2016, Theorem
1.1), one can derive a contradiction. This completes the proof. ��

By the same arguments as for the case di (r) = e−ki r (i = 1, 2), we can show the
following results for di (r) = (1 + r)−ki (i = 1, 2).

Theorem 3.4 Assume di (r) = (1 + r)−ki (i = 1, 2). Let k̃r be such that 4k̃r rmax (1 +
rmax )

k̃r = 1. If rx > 0 or rx < 0 on [0, L], 0 ≤ k2 < k1 ≤ k̃r and μ1 > 0, then we
have the following results.

(i) (Competitive exclusion) If μ2 ∈ [μ1e(k2−k1)rmin ,∞), then (θμ1,d1 , 0) is globally
asymptotically stable;

(ii) (Coexistence) There exists some μ2 ∈ (
0, μ1e(k2−k1)rmin

)
such that system (1.7)

admits a positive steady state.

4 Summary and discussion

This paper investigates the effects of resource-dependent dispersal on the evolutionary
dynamics by studying the single and two-species population models. In a single-
species community, we can construct some resource-dependent dispersal strategies
such that the total population supported may be smaller than the environmental car-
rying capacity (see the second part of Theorem 2.1-(3)), which is in contrast to the
case of random dispersal with which the total population supported is always larger
than its carrying capacity (Lou 2006), despite that some resource-dependent dispersal
strategies may still enjoy the same properties as the random dispersal (see the first
part of Theorem 2.1-(3)). In particular, if the dispersal strategy function d(r) is 1

r
up to a multiplicative constant, the idea free distribution will be achieved (see The-
orem 2.1-(2) or Korobenko and Braverman 2009). However for resource-dependent
dispersal strategies other than those constructed in Theorem 2.1-(3), how to deter-
mine the total population size supported remains unknown. This amounts to ask the
following question:

(1) How does the total population
∫
�
Wμ,d(x)dx change with respect to the diffusion

coefficient μ for a given dispersal strategy d(r) ?

Though the assertions in Theorem 2.1-(3) have partially addressed the above question,
a full picture is still missing in this paper and deserves further studies in the future.
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For the two-species competition model (1.5) where two competing species are
ecologically identical, the resource-dependent dispersal strategies have more compli-
cated and profound effects on the population dynamics. First if two competing species
employ the same dispersal strategies in the sense that d1(r) = ϑd2(r) for some con-
stant ϑ > 0, then the species with slower diffusion will win the competition if d2(r)r
is not constant (see Theorem 3.1). While if d2(r)r is constant, there is a global attrac-
tor consisting of a continuum of steady states (see Remark 3.1-(b)). If two competing
species employ different dispersal strategies (i.e. d1(r) 
= Cd2(r) for any C > 0),
the global dynamics is much harder to quantify. In this case, we resort to two quan-
tities δ1 and δ2 associated with r , d1(r), d2(r) as defined in (3.13). Noticing that the
case δ1 < 0, δ2 < 0 is impossible (see Remark 3.2-(a)), we can classify the global
dynamics for large diffusion coefficientsμ1, μ2 (see Theorem 3.2) as follows: the two
competing species are mutually excluded if δ1δ2 < 0 and coexist if δ1 > 0, δ2 > 0.
This classification seems to hold when μi (i = 1, 2) is not large (see Remark 3.2-(d)),
but it is not justified in this paper. Hence the second interesting open question would
be

(2) What is the global dynamics of (1.5) ifμ1 orμ2 is not large when d1(r) 
= Cd2(r)
for any C > 0 ? Does the criterion in Theorem 3.2 still hold ?

When δ1 = 0 or δ2 = 0, the neutral stability will arise and further analysis/effrots
are needed to draw a more decisive conclusion (see Remark 3.2-(c)), but we do not
pursue this direction in the paper and leave it for future. The classical two-species
competition–diffusion system (1.3) with random dispersal leads to a celebrated result:
slower diffuser always prevails. Our third result is to investigate whether the two-
species competition model (1.5) with resource-dependent dispersal will yield similar
behaviors. It turns out there is not an affirmative answer to this question. Whenμ1 and
μ2 are large, we construct a dispersal strategy in Proposition 3.2 to show that the coex-
istence exists if one species has slower diffusion than the other (see Remark 3.3).When
μ1 and μ2 are not large, our results shown in Theorem 3.3 alongside Remark 3.5 and
numerical simulations indicate the phenomenon “slower diffuser prevails” may occur
(see Theorem 3.3-(i) and Fig. 3a or b) but may not occur either (see Theorem 3.3-
(ii) and Fig. 3c) depending on the specific dispersal strategies. On the other hand,
competitive exclusion may also happen without requiring slower diffusion as numer-
ical shown in Fig. 3d. Our results imply the prominent phenomenon “slower diffuser
always prevails” may occur under some simple biological circumstances, and does not
necessarily happen in more complicated situations where the population dynamics are
much harder to classify. For the competitionmodel with resource-dependent dispersal,
it seems hopeful to classify the dynamics to some extend for given dispersal strategies.
Among other things, the following question is worthwhile to explore

(3) In the case stated in Theorem 3.3-(ii), are there some threshold values in
(0, μ1e(k2−k1)rmin) for μ2 which can classify the coexistence and exclusion steady
states ?

Interesting open questions arising from the current work are not limited to those
mentioned above. Nevertheless, we hope these questions can stimulate further works
to gain a more complete picture for the effects of resource-dependent dispersal on
population dynamics.
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