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Abstract. Competition systems describing the competition between species
for resources have been widely studied in the literature and wealthy results

have been developed. Most of them (if not all) have essentially assumed that
the resources are spatially varying without temporal dynamics. This is an

idealized assumption since the most ecological environments and/or biospecies

are dynamically changing. Hence the effect of temporal dynamics of resource
ought to be taken into account to predict/interpret the competition outcomes

more precisely. This constitutes the main motivation of this work and we con-

sider a Lotka-Volterra reaction-diffusion-advection competition system with a
dynamical resource whose dynamics is determined by an evolution equation,

where the competing species have biased movement (advection) up the re-

source gradient. We first establish the global existence of classical solutions via
Moser iteration and global stability of spatially homogeneous steady states for

the constant resource growth rate by method of Lyapunov functionals. When

the resource growth rate is spatially varying, we use numerical simulations to
demonstrate the possible competition outcomes and find that the asymptotic

dynamics of the competition system with dynamical resources is quite differ-
ent from the case that resources have no dynamics. Moreover, we numerically

observe that the advective strategy and/or the relative strength of advection

sensory responses are key factors determining the competition outcomes and
the asymptotic profiles of the solution.

1. Introduction. The evolution of dispersal (either random or biased) is an impor-
tant topic in theoretical studies of population dynamics, for which numerous math-
ematical models have been proposed to understand the effect of dispersal strategies
on the population dynamics and their evolutions (e.g., see the survey papers [15, 32]
or book [9]). Among other things, the present work is motivated by the following
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two-species reaction-diffusion-advection competition model
ut = d1∆u−∇ · (λ1u∇χ1(m)) + u(m(x)− b1u− c1v), in Ω× R+,

vt = d2∆v −∇ · (λ2v∇χ2(m)) + v(m(x)− b2u− c2v), in Ω× R+,

d1∂νu− λ1u∂νχ1(m) = d2∂νv − λ2u∂νχ2(m) = 0, on ∂Ω× R+,

(u, v)(x, 0) = (u0, v0)(x), in Ω,

(1)

where u(x, t) and v(x, t) represent the population densities of two competing species
at location x ∈ Ω and time t > 0, and the habitat Ω is a bounded smooth domain
in RN (N ≥ 2); m(x) represents the environmental resource and χ1, χ2 ∈ C2(Ω̄)
are functions accounting for the sensory response mechanisms in response to the
resource gradient, λ1 and λ2 are positive constants measuring the strength of sensory
responses; d1, d2 > 0 are the dispersal rates of u and v, respectively; bi, ci(i = 1, 2)
are positive constants and ∂ν = ∂

∂ν , where ν denotes the outward unit normal
vector on ∂Ω. The zero-flux boundary conditions are prescribed to warrant that
no individual crosses the boundary of the habitat. The initial data u0 and v0 are
nonnegative and not identically zero.

When the resource is spatially homogeneous, namely m(x) = a > 0 is a constant,
the model (1) reduces to the classical Lotka-Volterra diffusion-competition model

ut = d1∆u+ u(a− b1u− c1v), in Ω× R+,

vt = d2∆v + v(a− b2u− c2v), in Ω× R+,

∂νu = ∂νv = 0, on ∂Ω× R+,

(u, v)(x, 0) = (u0, v0)(x), in Ω,

(2)

which has been extensively studied in the literature (cf. [34, 8, 26] and references
therein). The global dynamics of solutions to (2) crucially depends on the ecological
reaction coefficients. Set B = b1/b2, C = c1/c2. Then the (positive) co-existence
steady state is globally asymptotically stable if C < 1 < B (weak competition)
while competitive exclusion is globally asymptotically achieved if 1 < min{B,C}
or 1 > max{B,C}. If B < 1 < C (strong competition), the dynamics will be more
complicate and is yet to be completely understood, where the two exclusion steady
states are locally stable (cf. [25, 34]).

When the resource is spatially heterogeneous (i.e. m(x) is non-constant) and no
biased advection takes place (i.e. λ1 = λ2 = 0), (1) reduces to the following one

ut = d1∆u+ u(m(x)− b1u− c1v), in Ω× R+,

vt = d2∆v + v(m(x)− b2u− c2v), in Ω× R+,

∂νu = ∂νv = 0, on ∂Ω× R+,

(u, v)(x, 0) = (u0, v0)(x), in Ω.

(3)

The most prominent dynamics of (3), in contrast to (2), is perhaps the so-called
“slower diffuser prevails” phenomenon saying that the slower diffuser wipes out its
fast competitor regardless of the initial value. This was first found in [16] for the
case b1 = c1 = b2 = c2 = 1 and was further extended in [31] to the weak competition
case 0 < c1, b2 < 1 with b1 = c2 = 1. The global dynamics of (3) in more complete
parameter regimes have been carried out in a series of important works [21, 20, 22].

Compared to the above two reduced models (2) and (3), the global dynamics of
(1) with spatially heterogenous resources and advection (i.e. λ1 > 0 or λ2 > 0)
are more complicated. Indeed if dispersal strategies include the advection (biased
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movement), the prominent phenomenon “slower diffuser prevails” may not happen,
instead both co-existence and competitive exclusion are possible even if two species
have different diffusion rates, see [10, 11, 14, 3] for χ1 = χ2 = m and [4, 12, 17] for
χ1 = χ2 = lnm for b1 = b2 = c1 = c2 = 1. In particular, the advective strategy χ1 =
lnm is evolutionarily stable and ideal free distribution can be achieved if χ2 − lnm
is not constant (cf. [4, 12]). In advective environments like the river or stream, it
was proved in [33, 35, 18] that slower diffusion could be disadvantageous while the
fast diffuser can evolve. We refer to [43, 44] for the study of global dynamics of
more general diffusion-advection competition model than (1) with inhomogeneous
coefficients or different resources. Nevertheless the global dynamics of (1) with
non-constant χ1 and χ2 has not been completely understood and many interesting
questions still remain open (cf. [15, 32]). A competition model with nonlinear
repulsive advection between competitions was considered in [38, 39] and interesting
dynamics were found.

A manifest assumption made in the existing models is that the environmental
resource is held to be spatially varying but temporarily constant. However, ecologi-
cal systems consist of dynamically interacting organisms, where many resources are
consumable and hence may vary in time, such as the nutrients for plants and food
for animals. Therefore it would be biologically meaningful to consider competition
systems with resources having both temporal and spatial dynamics. It appears that
not many analytical studies are pursued in this direction. The earliest work was
perhaps [24] where the time-periodic resource m(x, t) was considered and quite dif-
ferent results on the stability of coexistence and exclusion steady states are found.
Later on, traveling wave solutions (see [42, 5]) and the free boundary problem (e.g.,
see [13, 37] and references therein) of (3) with time-periodic environmental resources
have been investigated. In these attempts, the resources are given functions of time
and/or space but lacks of temporal dynamics. To consider this realistic factor, a
consumer-resource model without competition was proposed in [41] and its global
dynamics of solutions was studied in [19].

The purpose of this paper is to explore the effect of temporal dynamics of re-
sources on the competition outcomes. To this end, we consider the following math-
ematical model of two competing species sharing a common prey resource

ut = d1∆u−∇ · (λ1u∇χ1(w)) + u(a1F1(w)− h1(u)− c1v), x ∈ Ω, t > 0,

vt = d2∆v −∇ · (λ2v∇χ2(w)) + v(a2F2(w)− b2u− h2(v)), x ∈ Ω, t > 0,

wt = ∆w − uF1(w)− vF2(w) + µw(r(x)− w), x ∈ Ω, t > 0,

∂νu = ∂νv = ∂νw = 0, x ∈ ∂Ω, t > 0,

(u, v, w)(x, 0) = (u0, v0, w0)(x), x ∈ Ω,

(4)
where u(x, t) and v(x, t) denote the densities of two competing species, respectively,
and w(x, t) represents the prey resource. The parameters di, λi, ai, b2, c1 (i = 1, 2)
and µ are all positive constants, and r(x) is the nutrient available to the prey re-
source w (i.e. the intrinsic growth rate of w). The advection in the system (4)
is modelled by the biased movement of species up the resource gradient with sen-
sory response functions χi(w) (i = 1, 2) which are assumed to satisfy the following
hypothesis:

(H1) χi(w) ∈ C2,α([0,∞)), α ∈ (0, 1) and d
dwχi(w) ≥ 0 for all w ≥ 0.
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The functional response functions Fi(w), intra-specific interaction functions hi and
the nutrient r(x) are assumed to satisfy

(H2) Fi(w) ∈ C0([0,∞)) and Fi(w) � 0 for w ≥ 0 (i = 1, 2), h1(u) = θ1 + b1u and
h2(v) = θ2 + c2v with θi ∈ R and b1, c2 > 0. Moreover, r(x) ∈ C(Ω̄).

The main results of this paper are summarized below. First we establish the global
existence of classical solutions to (4) with (H1) and (H2) for any r ∈ C(Ω̄) in two
dimensions (see Theorem 2.1). Then we establish the global stability of solutions
to (4) for constant r(x) under certain conditions based on the method of Lyapunov
functionals (see Theorem 3.1). Finally, we numerically explore the global dynamics
of (4) with non-constant r(x) and discuss the underlying biological implications in
section 4.

2. Global boundedness of solutions. In this section, we are devoted to estab-
lishing the global existence of classical solutions to (4), as given in the following
theorem.

Theorem 2.1. Let Ω ⊂ R2 be a bounded domain with smooth boundary and the
hypotheses (H1) and (H2) hold. Assume (u0, v0, w0) ∈ [W 1,p(Ω)]3 with p > 2,
u0, v0, w0 ≥ 0( 6≡ 0). Then (4) admits a unique global classical solution (u, v, w) ∈
[C0([0,∞)× Ω̄) ∩ C2,1((0,∞)× Ω̄)]3 satisfying u, v, w > 0 for all t > 0 and

‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖L∞(Ω) + ‖w(·, t)‖W 1,∞(Ω) ≤ C,
where C > 0 is a constant independent of t. In particular, we have 0 < w ≤ K,
where

K := max{‖r‖L∞ , ‖w0‖L∞}. (5)

We remark that when F1(w) = w and r(x) = 1, the global existence of classi-
cal solutions in two dimensions and the existence of stationary and time-periodic
nontrivial solutions bifurcating from the positive constant equilibrium have been es-
tablished in [36]. The results in Theorem 2.1 extended the global existence results
of [36]. The proof of Theorem 2.1 consists of two steps: local existence and the a
priori estimates of solutions. We first introduce some frequently used notations.

Notation. For simplicity, we abbreviate
∫ t

0

∫
Ω
f(·, s)dxds and

∫
Ω
f(·, t)dx as

∫ t
0

∫
Ω
f

and
∫

Ω
f , respectively. In addition, we denote ‖ · ‖Lp(Ω) = ‖ · ‖Lp for short, and use

Ci (i = 1, 2, 3, · · · ) to denote generic constants which may vary in the context.

2.1. Local existence and some preliminary results. First, we establish the
local existence of solutions to system (4) by the abstract theory of quasilinear par-
abolic systems by Amann in [1, 2].

Lemma 2.2 (Local existence). Let Ω ⊂ R2 be a bounded domain with smooth
boundary. Assume that the parameters µ, di, λi, ai, bi, ci (i = 1, 2) are pos-
itive constants, θi ∈ R, and the hypotheses (H1) and (H2) hold. Suppose that
(u0, v0, w0) ∈ [W 1,p(Ω)]3 with u0, v0, w0 ≥ 0( 6≡ 0) and p > 2. Then there exists a
constant Tmax ∈ (0,∞] such that system (4) has a unique classical solution (u, v, w)
fulfilling u, v, w > 0 for all t > 0 and

(u, v, w) ∈ [C0(Ω̄× [0, Tmax)) ∩ C2,1(Ω̄× (0, Tmax))]3.

Moreover if Tmax =∞, then

‖u(·, t)‖L∞ + ‖v(·, t)‖L∞ + ‖w(·, t)‖W 1,∞ →∞ as t↗ Tmax.
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Proof. Denote z = (u, v, w). Then the system (4) can be written as
zt = ∇ · (P (z)∇z) +Q(z), x ∈ Ω, t > 0,
∂z
∂ν = 0, x ∈ ∂Ω, t > 0,

z(·, 0) = (u0, v0, w0), x ∈ Ω,

(6)

where

P (z) =

 d1 0 −λ1uχ
′
1(w)

0 d2 −λ2vχ
′
2(w)

0 0 1

 ,

and

Q(z) =

 u(a1F1(w)− h1(u)− c1v)
v(a2F2(w)− b2u− h2(v))

−uF1(w)− vF2(w) + µw(r(x)− w)

 .

Since di > 0 (i = 1, 2), the matrix P (z) is positive definite for the given initial
data, which means system (6) is normally parabolic. Then the application of [2,
Theorem 7.3] yields a Tmax > 0 such that system (6) possesses a unique solution
(u, v, w) ∈ [C0(Ω̄×[0, Tmax))∩C2,1(Ω̄×(0, Tmax))]3. Now we show the nonnegativity
of (u, v, w) by the maximum principle. To this end, we rewrite equations of system
(4) as

ut − d1∆u+ Ψ1(x, t)∇w · ∇u+ Ψ2(x, t)u = 0, x ∈ Ω, t ∈ (0, Tmax),
∂u
∂ν = 0, x ∈ ∂Ω, t ∈ (0, Tmax),

u(x, 0) = u0 ≥ 0, x ∈ Ω,

(7)

where Ψ1(x, t) = λ1χ
′
1(w) and Ψ2(x, t) = λ1χ

′′
1(w)|∇w|2+λ1χ

′
1(w)∆w−(a1F1(w)−

h1(u) − c1v). Then one applies the maximum principle to system (7) and gets
that u(x, t) ≥ 0 for all (x, t) ∈ Ω × (0, Tmax). Since u0 6≡ 0, then u > 0 holds
by the strong maximum principle. Similarly, we can derive that v, w > 0 for all
(x, t) ∈ Ω×(0, Tmax). Moreover, we see that the matrix P (z) is an upper triangular
matrix, which allows us to obtain the blowup criterion by [1, Theorem 5.2]. This
completes the proof.

By a comparison principle, we can prove the following result.

Lemma 2.3. Let the assumptions in Lemma 2.2 hold. Then the solution (u, v, w)
of system (4) satisfies that

‖w(·, t)‖L∞ ≤ K (8)

for all t > 0, where K is defined by (5). Moreover, we have

lim sup
t→∞

w(·, t) ≤ ‖r‖L∞ for all x ∈ Ω̄. (9)

Proof. Using the facts that u, v, w are non-negative and r(x) ∈ C1(Ω̄), we have
wt −∆w ≤ µw(‖r‖L∞ − w), x ∈ Ω, t > 0,
∂w
∂ν = 0, x ∈ ∂Ω, t > 0,

w(x, 0) = w0(x), x ∈ Ω.

(10)

Let w∗(t) be the solution of the following ODE problem{
dw∗(t)
dt = µw∗(‖r‖L∞ − w∗), t > 0,

w∗(0) = ‖w0‖L∞ .
(11)
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Then w∗(t) ≤ max{‖w0‖L∞ , ‖r‖L∞} = K. It is clear that w∗(t) is a super-solution
of the following PDE problem

Wt −∆W = µW (‖r‖L∞ −W ), x ∈ Ω, t > 0,
∂W
∂ν = 0, x ∈ ∂Ω, t > 0,

W (x, 0) = w0(x), x ∈ Ω,

(12)

and hence it holds that

0 < W (x, t) ≤ w∗(t) for all (x, t) ∈ Ω̄× (0,∞), (13)

where W > 0 results from the strong maximum principle. Combining (10), (12)
and (13), and using the comparison principle, one has

0 < w(x, t) ≤W (x, t) ≤ w∗(t) ≤ K for all (x, t) ∈ Ω̄× (0,∞), (14)

which gives (8). We further have from (11) that lim sup
t→∞

w∗(t) ≤ ‖r‖L∞ , which along

with (14) gives (9). Therefore, we complete the proof of Lemma 2.3.

Lemma 2.4. Let assumptions in Lemma 2.2 hold and (u, v, w) be the solution of
system (4). Then it holds that ∫

Ω

|∇w(·, t)|2 ≤ C (15)

and ∫ t+τ

t

∫
Ω

(u2 + v2) ≤ C and

∫ t+τ

t

∫
Ω

|∆w(·, t)|2 ≤ C, (16)

where τ = min{1, Tmax2 } and C > 0 is a constant independent of t.

Proof. Integrating the first equation of system (4) over Ω and using Young’s in-
equality, thanks to (8) as well as the positivity of u and v, we have

d

dt

∫
Ω

u+

∫
Ω

u = a1

∫
Ω

uF1(w)−
∫

Ω

u(θ1 + b1u)− c1
∫

Ω

uv +

∫
Ω

u

≤ −b1
2

∫
Ω

u2 +

(
a1 max

w∈[0,K]
F1(w) + |θ1|+ 1

)2

|Ω|

2b1
,

which gives

d

dt

∫
Ω

u+

∫
Ω

u+
b1
2

∫
Ω

u2 ≤ C1, (17)

where C1 =

(
a1 max

w∈[0,K]
F1(w)+|θ1|+1

)2

|Ω|

2b1
. To proceed, we use the same way to the

second equation of system (4) and derive that

d

dt

∫
Ω

v +

∫
Ω

v +
c2
2

∫
Ω

v2 ≤ C2 (18)

with C2 =

(
a2 max

w∈[0,K]
F2(w)+|θ2|+1

)2

|Ω|

2c2
.
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In the sequel, we let M =

(
max

w∈[0,K]
{F1(w), F2(w)}

)2

. Multiplying the equation

of w in system (4) by −∆w and using the fact ‖w‖L∞ ≤ K, one derives that

1

2

d

dt

∫
Ω

|∇w|2 +
1

2

∫
Ω

|∇w|2 +

∫
Ω

|∆w|2

≤M
∫

Ω

(u+ v)|∆w|+ µK(K + ‖r‖L∞)

∫
Ω

|∆w| − 1

2

∫
Ω

w∆w

≤ 3

4

∫
Ω

|∆w|2 +M2

∫
Ω

(u2 + v2) + C3

with C3 = K2
(
µ(‖r‖L∞ +K) + 1

2

)2 |Ω|, that is,

d

dt

∫
Ω

|∇w|2 +

∫
Ω

|∇w|2 +
1

2

∫
Ω

|∆w|2 ≤ 2M2

∫
Ω

(u2 + v2) + 2C3. (19)

Multiplying (17) and (18) by 6M2

b1
and 6M2

c2
, respectively, and combining them with

(19), we end up with

φ′ + φ+M2

∫
Ω

(u2 + v2) +
1

2

∫
Ω

|∆w|2 ≤ C4, (20)

where

φ(t) = M2

(
6

b1

∫
Ω

u+
6

c2

∫
Ω

v

)
+

∫
Ω

|∇w|2

and C4 =
(

6C1

b1
+ 6C2

c2

)
M2 + 2C3. Then the application of Grönwall’s inequality

on (20) gives
φ(t) ≤ φ(0) + C4, (21)

which yields (15). Furthermore, letting τ = min{1, Tmax2 }, integrating (20) over
(t, t+ τ) and using (21), one derives that

M2

∫ t+τ

t

∫
Ω

(u2 + v2) +
1

2

∫ t+τ

t

∫
Ω

|∆w|2

≤ φ(t) + C4τ ≤ φ(0) + C4(1 + τ),

which gives (16). Hence the proof of Lemma 2.4 is completed.

2.2. The priori estimates of solutions. Next we will derive the boundedness of
‖u(·, t)‖L2 and ‖v(·, t)‖L2 with the help of (16). Furthermore, we derive the uniform
boundedness of the solution.

Lemma 2.5. Assume that the hypotheses of Lemma 2.2 hold. Then there exists a
constant C > 0 independent of t such that for all t > 0,

‖u(·, t)‖L2 + ‖v(·, t)‖L2 + ‖w(·, t)‖W 1,4 ≤ C. (22)

Proof. Multiplying the first equation of system (4) by u and applying Young’s in-
equality, we have

1

2

d

dt

∫
Ω

u2 +
d1

2

∫
Ω

|∇u|2

≤ λ2
1

∫
Ω

|χ′1(w)|2

2d1
u2|∇w|2 +

(
a1 max

w∈[0,K]
F1(w) + |θ1|

)∫
Ω

u2 − b1
∫

Ω

u3

≤ λ2
1K1

2d1

(∫
Ω

u4

) 1
2
(∫

Ω

|∇w|4
) 1

2

− b1
2

∫
Ω

u3 + C1,

(23)
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where C1 =
16

(
a1 max

w∈[0,K]
F1(w)+|θ1|

)3

|Ω|

27b21
. On one hand, one can use the Gagliardo-

Nirenberg inequality to derive that

‖u‖2L4 ≤ C2(‖∇u‖L2‖u‖L2 + ‖u‖2L2). (24)

On the other hand, due to (15), we apply the Gagliardo-Nirenberg inequality in two
dimensions along with the Neumann boundary conditions (cf. [7]) to get

‖∇w‖2L4 ≤ C3(‖∆w‖L2‖∇w‖L2 + ‖∇w‖2L2) ≤ C4(‖∆w‖L2 + 1), (25)

which holds only true in two dimensions. The combination of (24) and (25) gives
that

λ2
1K1

2d1

(∫
Ω

u4

) 1
2
(∫

Ω

|∇w|4
) 1

2

≤ λ2
1K1C2C4

2d1
(‖∇u‖L2‖u‖L2‖∆w‖L2 + ‖u‖2L2‖∆w‖L2 + ‖∇u‖L2‖u‖L2 + ‖u‖2L2)

≤ d1

2
‖∇u‖2L2 + C5‖u‖2L2‖∆w‖2L2 + C5‖u‖2L2

(26)

with C5 = 1
d1

(
λ2
1K1C2C4

d1
+ d1

)2

. Substituting (26) into (23) and using Young’s

inequality give that

d

dt
‖u‖2L2 − 2C5‖u‖2L2‖∆w‖2L2 ≤ C6 (27)

for all t ∈ (0, Tmax), where C6 = 2(C1 +
64C3

5

27b21
|Ω|).

Continuously, in order to deal with the differential inequality (27) and derive the

estimate for ‖u‖L2 , we need some information on ‖u‖L2 and
∫ t+τ
t

∫
Ω
|∆(·, t)|2 at

some time t = t0. To this end, we recall the result (16), then for any t ∈ (0, Tmax),
one can find a t0 = t0(t) ∈ ((t− τ)+, t) such that

‖u(·, t0)‖2L2 ≤ C7 (28)

in both cases t ∈ (0, τ) and t ≥ τ , where τ is defined in Lemma 2.4. Moreover, by
(16), there exists a constant C8 > 0 such that∫ t0+τ

t0

∫
Ω

|∆w(·, t)|2 ≤ C8. (29)

Noting that we can derive from (27) that

d

dt

(
‖u(·, t)‖2L2e−2C5

∫ t
0
‖∆w(·,s)‖2

L2ds
)
≤ C6e

−2C5

∫ t
0
‖∆w(·,s)‖2

L2ds.

Integrating the above inequality over (t0, t) and using the fact t0 < t ≤ t0+τ ≤ t0+1,
we derive

‖u(·, t)‖2L2 ≤‖u(·, t0)‖2L2e
2C5

∫ t
t0
‖∆w(·,s)‖2

L2ds + C6

∫ t

t0

e2C5

∫ t
s
‖∆w(·,ξ)‖2

L2dξds

≤‖u(·, t0)‖2L2e
2C5

∫ t0+τ
t0

‖∆w(·,s)‖2
L2ds + C6

∫ t0+τ

t0

e2C5

∫ t0+τ
t0

‖∆w(·,ξ)‖2
L2dξds

≤(C7 + C6τ)e2C5C8 ,

(30)
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for all t ∈ (0, Tmax), where the last inequality holds due to (28) and (29).
We treat v in the same way to derive that

‖v(·, t)‖2L2 ≤ C9 (31)

for all t ∈ (0, Tmax). Furthermore, we apply the classical parabolic regularity to the
third equation of system (4) and obtain that ‖w(·, t)‖W 1,4 ≤ C9 in two dimensions,
which, together with (30)–(31), yields (22). Consequently, the proof is finished.

With the boundedness of ‖u(·, t)‖L2 and ‖v(·, t)‖L2 in hands, we are ready to
derive the uniform boundedness of the solution (u, v, w).

Lemma 2.6. Let Ω ⊂ R2 be a bounded domain with smooth boundary and the
assumptions in Lemma 2.2 hold. Then we have

‖w(·, t)‖W 1,∞ ≤ C, (32)

where C > 0 is a constant independent of t.

Proof. Noting 0 < w ≤ K in (8) and |χ′1(w)|2 ≤ K1. Then one multiplies the first
equation of system (4) by u2 and integrates the result over Ω to derive that

1

3

d

dt

∫
Ω

u3 + 2

∫
Ω

d1u|∇u|2 + b1

∫
Ω

u4

≤ 2λ1

∫
Ω

χ′1(w)u2∇u · ∇w + a1

∫
Ω

u3F1(w)− θ1

∫
Ω

u3 − c1
∫

Ω

u3v

≤
∫

Ω

d1u|∇u|2 +
4λ2

1K1

d1

(∫
Ω

u6

) 1
2
(∫

Ω

|∇w|4
) 1

2

+

(
a1 max

w∈[0,K]
F1(w) + |θ1|

)∫
Ω

u3.

(33)

From Lemma 2.5, we have ‖∇w‖L4 ≤ C1 and ‖u 3
2 ‖2
L

4
3

= ‖u‖3L2 ≤ C2. Then

one applies the Gagliardo-Nirenberg inequality (in two dimensions) and Young’s
inequality to obtain that

4λ2
1K1

d1

(∫
Ω

u6

) 1
2
(∫

Ω

|∇w|4
) 1

2

≤ 4λ2
1K1C

2
1

d1
‖u 3

2 ‖2L4

≤ C3(‖∇u 3
2 ‖

4
3

L2‖u
3
2 ‖

2
3

L
4
3

+ ‖u 3
2 ‖2
L

4
3

)

≤ 2d1

9
‖∇u 3

2 ‖2L2 + C4,

(34)

where C4 = C2C3(1 +
3C2

3

d21
). Since 2d1

9 ‖∇u
3
2 ‖2L2 = d1

2 ‖u
1
2∇u‖2L2 , we substitute (34)

into (33) and employ Young’s inequality again to show that

1

3

d

dt

∫
Ω

u3 +
1

3

∫
Ω

u3 +
d1

2

∫
Ω

u|∇u|2 +
b1
2

∫
Ω

u4 ≤ C5

with C5 = 27|Ω|
32b31

(
a1 max

w∈[0,K]
F1(w) + |θ1|+ 1

3

)4

+ C4, that is

d

dt

∫
Ω

u3 +

∫
Ω

u3 ≤ 3C5.
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Therefore, the application of Grönwall’s inequality to the above inequality gives
that ∫

Ω

u3 ≤
∫

Ω

u3
0 + 3C5. (35)

We conclude similarly that ‖v‖L3 ≤ C6, which together with (35) and (8) gives (32)
directly by the parabolic regularity.

Lemma 2.7. Let Ω ⊂ R2 be a bounded domain with smooth boundary and the
assumptions in Lemma 2.2 hold. Assume that (u, v, w) is the unique solution of
system (4). Then there exists a positive constant C independent of t such that

‖u(·, t)‖L∞ + ‖v(·, t)‖L∞ ≤ C for all t ∈ (0, Tmax).

Proof. Since 0 < w ≤ K and F1(w) ∈ C0([0,∞)), multiplying the first equation of
(4) by up−1 with p ≥ 2 and integrating the result by parts, we derive

1

p

d

dt

∫
Ω

up + (p− 1)

∫
Ω

d1u
p−2|∇u|2

≤ (p− 1)λ1

∫
Ω

χ′1(w)up−1|∇u||∇w|+ a1

∫
Ω

F1(w)up − θ1

∫
Ω

up

≤ (p− 1)

2

∫
Ω

d1u
p−2|∇u|2 +

(p− 1)λ2
1

2

∫
Ω

|χ′1(w)|2

d1
up|∇w|2

+

(
a1 max

w∈[0,K]
F1(w) + |θ1|

)∫
Ω

up,

which combining with the fact |χ′1(w)|2 ≤ K1 and w ∈W 1,∞(Ω× [0, Tmax]), implies
that

d

dt

∫
Ω

up + p(p− 1)

∫
Ω

up +
d1p(p− 1)

2

∫
Ω

up−2|∇u|2 ≤ C1p(p− 1)

∫
Ω

up (36)

with C1 =
λ2
1K1

2d1
‖∇w‖2L∞ +

(
a1 max

w∈[0,K]
F1(w) + |θ1|

)
+ 1. Then we apply the

Gagliardo-Nirenberg inequality to
∫

Ω
up and get that

C1p(p− 1)

∫
Ω

up = C1p(p− 1)‖u
p
2 ‖2L2

≤ C2p(p− 1)(‖∇u
p
2 ‖

2n
n+2

L2 ‖u
p
2 ‖

4
n+2

L1 + ‖u
p
2 ‖2L1)

≤ 2d1(p− 1)

p
‖∇u

p
2 ‖2L2 + C3p(p− 1)(pn + 1)‖u

p
2 ‖2L1 ,

(37)

where C3 = C2[( C2

2d1
)
n
2 + 1]. Noting that

∫
Ω
up−2|∇u|2 = 4

p2

∫
Ω
|∇u

p
2 |2 and that

pn + 1 ≤ (p+ 1)n, one derives that

d

dt

∫
Ω

up + p(p− 1)

∫
Ω

up ≤ C3p(p− 1)(p+ 1)n
(∫

Ω

u
p
2

)2

(38)

from (36) and (37). Furthermore, it follows from (38) that∫
Ω

up ≤
∫

Ω

up0 + C3(p+ 1)n sup
0≤t≤Tmax

(∫
Ω

u
p
2

)2

. (39)

Denote

N(p) = max
{
‖u0‖L∞ , sup

0≤t≤Tmax

(∫
Ω

up
) 1
p }
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and let C4 = C3 + |Ω|. Then it follows from (39) that

N(p) ≤ C
1
p

4 (p+ 1)
n
pN

(p
2

)
.

Taking p = 2j , j = 1, 2, ..., one has that

N(2j) ≤ C2−j

4 (1 + 2j)n2−jN(2j−1)

≤
j∏

k=1

C2−k

4 (1 + 2k)n2−kN(1)

≤
j∏

k=1

(1 + 2−k)n2−k
(
C
∑j
k=1 2−k

4

)(
2
∑j
k=1 kn2−k

)
N(1)

≤ 23nC4N(1).

(40)

Since u ∈ L1(Ω× [0, T ]), we get N(1) ≤ C5. Letting j →∞ in (40), one has

‖u‖L∞ ≤ 23nC5N(1) ≤ C6

for all t ∈ (0, Tmax). Performing the same procedure to v, we can get a constant
C7 > 0 such that ‖v‖L∞ ≤ C7 for all t ∈ (0, Tmax). This completes the proof.

Now we are in a position to prove Theorem 2.1.

Proof of Theorem 2.1. The extension criterion in Lemma 2.2 with Lemma 2.6
and Lemma 2.7 gives Theorem 2.1 immediately.

3. Global stability of the solution. In this section, we will investigate the
asymptotical behavior of the solution to the system (4) with constant r(x) and
establish the global stability of spatially homogeneous steady states. Since the spa-
tially homogeneous steady states can not be explicitly found without specifying the
general function Fi and hi, it is very hard to derive a general stability result. In
what follows, we shall focus on the following typical situation where

Fi(w) = w, h1(u) = b1u and h2(v) = c2v.

That is we study the global stability of solution for the following diffusion-advection
competition model

ut = d1∆u−∇ · (λ1u∇χ1(w)) + u(a1w − b1u− c1v), x ∈ Ω, t > 0,

vt = d2∆v −∇ · (λ2v∇χ2(w)) + v(a2w − b2u− c2v), x ∈ Ω, t > 0,

wt = ∆w − w(u+ v) + µw(1− w), x ∈ Ω, t > 0,

∂νu = ∂νv = ∂νw = 0, x ∈ ∂Ω, t > 0,

(u, v, w)(x, 0) = (u0, v0, w0)(x), x ∈ Ω,

(41)

where we have assumed r(x) = 1. One of the benefits of considering (41) is we can
compare the global stability results of (41) with the classical diffusion-competition
model (2) or (3) to find the role of resource dynamics and/or the advection (see
Remark 3.2). We remark that the model (41) is comparable with a model with
dynamical resource considered in [40] where the density-dependent diffusion was
discussed. In (41), we focus on the density-dependent advection and will examine
the effect of advection on the global dynamics.
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The spatially homogeneous steady states of (41) are determined by the following
equations 

u(a1w − b1u− c1v) = 0,

v(a2w − b2u− c2v) = 0,

w(µw − µ+ u+ v) = 0.

(42)

Except two trivial solutions: extinction state (0, 0, 0) and resource-only state (0, 0, 1),
(42) has some other non-trivial solutions depending on the value of parameters
ai, bi, ci which can be divided into the following three categories similar to the
Lotka-Volterra competition system (2):

Case 1: c1
c2
< a1

a2
< b1

b2
(weak competition);

Case 2: a1
a2
< min{ b1b2 ,

c1
c2
} (v is superior to u in the competition);

Case 3: a1
a2
> max{ b1b2 ,

c1
c2
} (u is superior to v in the competition).

For convenience, we denote

L := µ(b2c1 − b1c2) + a1(b2 − c2) + a2(c1 − b1).

One can check that L < 0 in Case 1 ( c1c2 < a1
a2

< b1
b2

). Then the corresponding

homogeneous steady state (us, vs, ws) can be explicitly solved as

(us, vs, ws) =

{
(u∗1, v

∗
1 , w

∗
1) or (0, v∗2 , w

∗
2) or (u∗3, 0, w

∗
3), in Case 1,

(0, v∗2 , w
∗
2) or (u∗3, 0, w

∗
3), in Case 2 and Case 3,

where

(u∗1, v
∗
1 , w

∗
1) :=

µ

L
(a2c1 − a1c2, a1b2 − a2b1, b2c1 − b1c2) (43)

and

(v∗2 , w
∗
2) :=

(
µa2

a2 + µc2
,

µc2
a2 + µc2

)
, (u∗3, w

∗
3) :=

(
µa1

a1 + µb1
,

µb1
a1 + µb1

)
. (44)

To state our results on the large time behavior of the solution, we further introduce
some notations. Denote

Ki := max
0≤w≤K

|χ′i(w)|2, i = 1, 2, (45)

where K is defined in (5). Let
δ1 = (a1b2 + a2c1)2 − 4a1a2b1c2, in Case 1,

δ2 = a1(b2 + c2)2 − 4a2b1c2, in Case 2,

δ3 = a2(b1 + c1)2 − 4a1b1c2, in Case 3,

(46)

and 
µ∗1 = c1c2(a1c2+a2b1−a1b2)2+b1b2(a1c2−a2c1+a2b1)2

4b2c1(a1c2+a2b1)(b1c2−b2c1) , in Case 1,

µ∗2 = (a1(b2+c2)−2a2b1)2

4b1c2(a2b1−a1b2) , in Case 2,

µ∗3 = (a2(b1+c1)−2a1c2)2

4b1c2(a1c2−a2c1) , in Case 3.

(47)

Then the global stability results are stated in the following theorem.

Theorem 3.1. Let the conditions in Theorem 2.1 hold and suppose (u, v, w) is the
solution obtained in Theorem 2.1 with r(x) = 1. Then the following convergence
results hold.
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1. Assume the parameters satisfy c1
c2
< a1

a2
< b1

b2
(weak competition) and suppose

λ2
1K1

4b1d1
+

λ2
2K2

4c2d2
≤ 1 (“=” holds if ‖w0‖L∞ ≤ 1). Then

‖(u, v, w)− (u∗1, v
∗
1 , w

∗
1)‖L∞(Ω) → 0 as t→∞

if δ1 < 0 or δ1 ≥ 0 and µ > µ∗1.
2. Assume the parameters satisfy a1

a2
< min{ b1b2 ,

c1
c2
} (predation capability of v is

stronger) and
λ2
2K2

4c2d2
≤ 1 (“=” holds if ‖w0‖L∞ ≤ 1 ). If δ2 < 0 or δ2 ≥ 0 and

µ > µ∗2, then

‖(u, v, w)− (0, v∗2 , w
∗
2)‖L∞(Ω) → 0 as t→∞.

3. Assume the parameters satisfy a1
a2
> max{ b1b2 ,

c1
c2
} (predation capability of u is

stronger) and
λ2
1K1

4b1d1
≤ 1 (“=” holds if ‖w0‖L∞ ≤ 1 ). If δ3 < 0 or δ3 ≥ 0 and

µ > µ∗3, then

‖(u, v, w)− (u∗3, 0, w
∗
3)‖L∞(Ω) → 0 as t→∞.

Remark 3.2. The Lyapunov method used in the paper to prove Theorem 3.1 es-
sentially relies on that r(x) is constant. When r(x) is not constant, the asymptotic
behavior of the solution to (41) remains open and we shall use numerical simulations
to demonstrate that advective sensory response functions χi(w) are indeed impor-
tant in determining the competition outcomes. We also mention that Ki defined in
(45) is a quantity accounting for the intensity of biased movement (or advection)

towards the resource. Hence the condition
λ2
1K1

4b1d1
+

λ2
2K2

4c2d2
≤ 1 can be understood that

the advection of both species is weak. Similar interpretation can be applied to the

condition
λ2
1K1

4b1d1
≤ 1 or

λ2
2K2

4c2d2
≤ 1. Although we obtain the global stability of the co-

existence and exclusion steady states similar to the classical diffusion-competition
model (2) without resource dynamics and advection, the conditions are much more
complicated due to the complexity caused by the resource dynamics and advection.
A further understanding of global dynamics is still very much demanded.

We shall prove Theorem 3.1 by constructing the Lyapunov functionals alongside
the following well-known result.

Lemma 3.3. (Barălat’s Lemma [6]) Suppose that h : [1,∞) → R is a uniformly

continuous function such that limt→∞
∫ t

1
h(s)ds exists, then limt→∞ h(t) = 0.

We also need higher regularity of the solution given in the following.

Lemma 3.4. Let (u, v, w) be the unique global bounded classical solution of (41)
given by Theorem 2.1 with r(x) = 1. Then for any given 0 < α < 1, there exists a
constant C(α) > 0 such that

‖u‖
C2+α,1+α

2 (Ω̄×[1,∞))
+ ‖v‖

C2+α,1+α
2 (Ω̄×[1,∞))

+ ‖w‖
C2+α,1+α

2 (Ω̄×[1,∞))
≤ C(α). (48)

Proof. This proof is based on the standard regularity for parabolic equations. For
readers’ convenience, we sketch the proof here. Due to the boundedness of (u, v, w),
applying the interior Lp estimate([30]) to (41), we derive that

‖u‖W 2,1
p (Ω×[i+ 1

4 ,i+3]) + ‖v‖W 2,1
p (Ω×[i+ 1

4 ,i+3]) + ‖w‖W 2,1
p (Ω×[i+ 1

4 ,i+3]) ≤ C1, ∀i ≥ 0. (49)

Using the Sobolev embedding theorem, we derive

‖u‖
C1+α, 1+α

2 (Ω̄×[ 14 ,∞))
+ ‖v‖

C1+α, 1+α
2 (Ω̄×[ 14 ,∞))

+ ‖w‖
C1+α, 1+α

2 (Ω̄×[ 14 ,∞))
≤ C2. (50)
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Applying (50) and the Schauder estimate [28] to the third equation of (41), we
obtain

‖w‖
C2+α,1+α

2 (Ω̄×[i+ 1
3 ,i+3])

≤ C3, ∀i ≥ 0, (51)

which implies

‖w‖
C2+α,1+α

2 (Ω̄×[ 13 ,+∞))
≤ C4. (52)

Rewrite the first equation in (41) as

ut − d1∆u+ λ1χ
′
1(w)∇w · ∇u = G(x, t), x ∈ Ω, t > 0, (53)

where

G(x, t) = −λ1uχ
′′
1(w)|∇w|2 − λ1uχ

′
1(w)∆w + u(a1w − b1u− c1v).

Due to (50) and (51), we see that

‖G‖
Cα,

α
2 (Ω̄×[i+ 1

3 ,i+3])
+ ‖λ1χ

′
1(w)∇w‖

Cα,
α
2 (Ω̄×[i+ 1

3 ,i+3])
≤ C5, ∀i ≥ 0.

Applying the Schauder estimate to (53) we have ‖u‖
C2+α,1+α

2 (Ω̄×[i+1,i+3])
≤ C6 for

all i ≥ 0. Thus

‖u‖
C2+α,1+α

2 (Ω̄×[1,+∞))
≤ C7. (54)

Similarly, we can apply the Schauder estimate to the second equation in (41) and
obtain

‖v‖
C2+α,1+α

2 (Ω̄×[1,+∞))
≤ C8. (55)

Then (48) follows from (52), (54) and (55). This completes the proof of Lemma
3.4.

Next we shall prove Theorem 3.1 and split out analysis into two different cases.

Case 1: c1
c2
< a1

a2
< b1

b2
. In this case, we can easily check that u∗1, v

∗
1 and w∗1 defined

by (43) are all positive. Then we consider the following energy functional

E1(t) = ξ1I1(t) + η1I2(t) + I3(t), (56)

where

I1(t) =

∫
Ω

(
u− u∗1 − u∗1 ln

u

u∗1

)
, I2(t) =

∫
Ω

(
v − v∗1 − v∗1 ln

v

v∗1

)
,

I3(t) =

∫
Ω

(
w − w∗1 − w∗1 ln

w

w∗1

)
and ξ1, η1 > 0 are constants defined by

ξ1 =

{
1
a1
, δ1 < 0,
b2

a1c2+a2b1
, δ1 ≥ 0,

and η1 =

{
1
a2
, δ1 < 0,
c1

a1c2+a2b1
, δ1 ≥ 0

(57)

with δ1 is defined in (46).

Lemma 3.5. Suppose that c1
c2
< a1

a2
< b1

b2
, r(x) = 1 and δ1, µ

∗
1 are defined by (46)

and (47), respectively. Let E1(t) be the energy functional defined by (56). Then the
following results hold.

(1) E1(t) ≥ 0 for all t > 0.
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(2) Assume that

λ2
1K1

4b1d1
+
λ2

2K2

4c2d2
≤ 1 (“ = ” holds if ‖w0‖L∞ ≤ 1), (58)

where K1, K2 are defined by (45). There exists two constants α1 > 0 and
T1 > 0 such that

d

dt
E1(t) ≤ −α1F1(t) (59)

holds for all t > T1 either δ1 < 0 or δ1 ≥ 0 and µ > µ∗1, where

F1(t) =

∫
Ω

(u− u∗1)2 +

∫
Ω

(v − v∗1)2 +

∫
Ω

(w − w∗1)2. (60)

Proof. First, we show that E1(t) ≥ 0 for all t > 0. To this end, we define ϕ(z) :=

z − u∗1 ln z for z > 0, which yields ϕ′(z) = 1 − u∗1
z and ϕ′′(z) =

u∗1
z2 . By Taylor’s

expansion, we can find a constant ξ > 0 between u and u∗1 such that

u− u∗1 − u∗1 ln
u

u∗1
= ϕ(u)− ϕ(u∗1) =

ϕ′′(ξ)

2
(u− u∗1)2 =

u∗1
2ξ2

(u− u∗1)2 ≥ 0,

which implies I1(t) ≥ 0. Similarly, we have that I2(t) ≥ 0 and I3(t) ≥ 0. Therefore,
by (56), E1(t) ≥ 0 for all t > 0 since ξ1, η1 > 0.

Next we show E1(t) satisfies (59) under certain conditions. Indeed with the fact
that a1w

∗
1 − b1u∗1 − c1v∗1 = 0, we have

d

dt
I1(t) =

∫
Ω

(
1− u∗1

u

)
ut

= −u∗1
∫

Ω

d1|∇u|2

u2
+ λ1u

∗
1

∫
Ω

χ′1(w)∇u · ∇w
u

+

∫
Ω

(u− u∗1)(a1w − b1u− c1v)

= −u∗1
∫

Ω

d1|∇u|2

u2
+ λ1u

∗
1

∫
Ω

χ′1(w)∇u · ∇w
u

− c1
∫

Ω

(u− u∗1)(v − v∗1)

− b1
∫

Ω

(u− u∗1)2 + a1

∫
Ω

(u− u∗1)(w − w∗1).

(61)
Similarly, from the second and third equations of system (41), we get

d

dt
I2(t) = −v∗1

∫
Ω

d2|∇v|2

v2
+ λ2v

∗
1

∫
Ω

χ′2(w)∇v · ∇w
v

− b2
∫

Ω

(u− u∗1)(v − v∗1)

− c2
∫

Ω

(v − v∗1)2 + a2

∫
Ω

(v − v∗1)(w − w∗1)

(62)

and

d

dt
I3(t) = −w∗1

∫
Ω

|∇w|2

w2
−
∫

Ω

(u− u∗1)(w − w∗1)−
∫

Ω

(v − v∗1)(w − w∗1)

− µ
∫

Ω

(w − w∗1)2,

(63)

where we have used identities a2w
∗
1 = b2u

∗
1 + c2v

∗
1 and u∗1 + v∗1 = µ(1 − w∗1).

Combining (61)–(63) with (56) gives that

d

dt
E1(t) = −

∫
Ω

X1A1X
T
1 −

∫
Ω

Y1B1Y
T
1 , (64)
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where X1 = (u−u∗1, v−v∗1 , w−w∗1) and Y1 =
(∇u
u ,
∇v
v ,∇w

)
and A1, B1 are matrices

denoted by

A1 :=

 b1ξ1
c1ξ1+b2η1

2
1−a1ξ1

2
c1ξ1+b2η1

2 c2η1
1−a2η1

2
1−a1ξ1

2
1−a2η1

2 µ

 ,

and

B1 :=

 ξ1u
∗
1d1 0 −λ1ξ1u

∗
1χ
′
1(w)

2

0 η1v
∗
1d2 −λ2η1v

∗
1χ
′
2(w)

2

−λ1ξ1u
∗
1χ
′
1(w)

2 −λ2η1v
∗
1χ
′
2(w)

2
w∗1
w2

 .

Next, we shall show the nonnegativity of the matrices A1 and B1. When δ1 < 0,
we let ξ1 = 1

a1
and η1 = 1

a2
. Then

|A11| :=
∣∣∣∣ b1ξ1

c1ξ1+b2η1
2

c1ξ1+b2η1
2 c2η1

∣∣∣∣ =
−δ1

4a2
1a

2
2

> 0 and |A1| = µ|A11| > 0.

When δ1 ≥ 0, we choose ξ1 = b2
a1c2+a2b1

and η1 = c1
a1c2+a2b1

. Then one can derive
that

|A11| =
b2c1(b1c2 − b2c1)

(a1c2 + a2b1)2

and

|A1| = µ|A11|+
1

4(a1c2 + a2b1)3

(
2b2c1(a1c2 + a2b1 − a1b2)(a1c2 − a2c1 + a2b1)

− c1c2(a1c2 + a2b1 − a1b2)2 − b1b2(a1c2 − a2c1 + a2b1)2
)

> |A11|
(
µ− c1c2(a1c2 + a2b1 − a1b2)2 + b1b2(a1c2 − a2c1 + a2b1)2

4b2c1(a1c2 + a2b1)(b1c2 − b2c1)

)
.

Therefore under the conditions c1
c2

< a1
a2

< b1
b2

and µ > µ∗1 defined in (46), one

has that |A11| > 0 and |A1| > 0. Based on Sylvester’s criterion, the matrix A1 is
positive defined and we can find a constant α1 > 0 such that

X1A1X
T
1 ≥ α1|X1|2, if δ1 < 0 or δ1 ≥ 0 and µ > µ∗1. (65)

For B1, first we see ξ1u
∗
1d1 > 0 and hence∣∣∣∣ξ1u∗1d1 0

0 η1v
∗
1d2

∣∣∣∣ = ξ1η1u
∗
1v
∗
1d1d2 > 0.

To proceed, we claim that

ξ1u
∗
1

w∗1
<

1

b1
and

η1v
∗
1

w∗1
<

1

c2
(66)

if c1
c2
< a1

a2
< b1

b2
. In fact, since b1

b2
> a1

a2
, we have a2b1 > a1b2, which implies that

a1c2 − a2c1
a1(b1c2 − b2c1)

<
1

b1
⇔ u∗1

a1w∗1
<

1

b1
(67)

by recalling the definition of u∗1 and w∗1 . On the other hand, one has

b2u
∗
1

(a1c2 + a2b1)w∗1
<

b2u
∗
1

a2b1w∗1
<

u∗1
a1w∗1

<
1

b1
(68)

thanks to a2b1 > a1b2 and (67). The combination of (67) and (68) gives that
ξ1u
∗
1

w∗1
< 1

b1
. Similarly, we can derive that

η1v
∗
1

w∗1
< 1

c2
. Hence, (66) holds in Case 1.
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Furthermore, we can find T1 > 0 such that for all t > T1

λ2
1ξ1u

∗
1w

2|χ′1(w)|2

4w∗1d1
+
λ2

2η1v
∗
1w

2|χ′2(w)|2

4w∗1d2
< 1 (69)

due to (58) and (66). In fact first we see ‖w(·, t)‖L∞ ≤ 1 if ‖w0‖L∞ ≤ 1 by (8).
Then it follows from (58) and (66) that

λ2
1ξ1u

∗
1w

2|χ′1(w)|2

4w∗1d1
+
λ2

2η1v
∗
1w

2|χ′2(w)|2

4w∗1d2
<
λ2

1w
2K1

4b1d1
+
λ2

2w
2K2

4c2d2
≤ λ2

1K1

4b1d1
+
λ2

2K2

4c2d2
≤ 1.

If ‖w0‖L∞ > 1, we suppose that
λ2
1K1

4b1d1
+
λ2
2K2

4c2d2
< 1 holds, then there exists a constant

ε0 > 0 such that
λ2

1K1

4b1d1
+
λ2

2K2

4c2d2
+ ε0 ≤ 1. (70)

Since w ∈ C2,1(Ω̄× (0,∞)), it follows from (9) that

lim sup
t→∞

(
λ2

1w
2K1

4b1d1
+
λ2

2w
2K2

4c2d2

)
≤ λ2

1K1

4b1d1
+
λ2

2K2

4c2d2
,

which allows us to find a constant T1 > 0 such that

λ2
1w

2K1

4b1d1
+
λ2

2w
2K2

4c2d2
≤ λ2

1K1

4b1d1
+
K2λ

2
2

4c2d2
+ ε0 (71)

for all t > T1. The combination of (66) and (70)–(71) guarantees (69) in the case
‖w0‖L∞ > 1. From (69), we obtain directly that

|B1| =
ξ1η1u

∗
1v
∗
1w
∗
1d1d2

w2

(
1− λ2

1ξ1u
∗
1w

2|χ′1(w)|2

4w∗1d1
− λ2

2η1v
∗
1w

2|χ′2(w)|2

4w∗1d2

)
> 0

for all t > T1. The application of Sylvester’s criterion enables us to get

Y1B1Y
T
1 ≥ 0

under the condition (58). Hence, the combination of (60), (64) and (65) yields that
for all t > T1,

d

dt
E1(t) ≤ −α1F1(t) either δ1 < 0 or δ1 ≥ 0 and µ > µ∗1,

which yields (59).

Lemma 3.6. Suppose that the conditions of Lemma 3.5 hold. Then we have

‖u(·, t)−u∗1‖L∞(Ω) +‖v(·, t)−v∗1‖L∞(Ω) +‖w(·, t)−w∗1‖L∞(Ω) → 0 as t→∞. (72)

Proof. By Lemma 3.5, we have d
dtE1(t) ≤ −α1F1(t), where

E1(t) = ξ1

∫
Ω

(
u−u∗1−u∗1 ln

u

u∗1

)
+η1

∫
Ω

(
v−v∗1−v∗1 ln

v

v∗1

)
+

∫
Ω

(
w−w∗1−w∗1 ln

w

w∗1

)
,

and

F1(t) =

∫
Ω

(u− u∗1)2 +

∫
Ω

(v − v∗1)2 +

∫
Ω

(w − w∗1)2.

Since E1(t) ≥ 0, we have ∫ ∞
1

F1(t) ≤ 1

α1
E1(1) <∞.
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It follows from the regularity of u, v, w that F1(t) is uniformly continuous in [1,∞).
An application of Lemma 3.3 yields

F1(t) =

∫
Ω

(u− u∗1)2 +

∫
Ω

(v − v∗1)2 +

∫
Ω

(w − w∗1)2 → 0 as t→∞. (73)

By Lemma 3.4, we derive that u(·, t), v(·, t) and w(·, t) are bounded for t > 1 in the
space W 1,∞(Ω). Applying the Gagliardo-Nirenberg inequality

‖φ‖∞ ≤ c‖φ‖
n
n+2

W 1,∞(Ω)‖φ‖
2

n+2

2 , ∀φ ∈W 1,∞(Ω)

to u− u∗1, v − v∗1 and w − w∗1 , respectively. Thus we get (72) from (73).

Case 2: a1
a2
< min{ b1b2 ,

c1
c2
}. In this case, we employ the following energy functional

E2(t) := ξ2J1(t) +
1

a2
J2(t) + J3(t) (74)

to study the asymptotic behavior of the solution (u, v, w) solving system (41), where

J1(t) =

∫
Ω

u, J2(t) =

∫
Ω

(
v − v∗2 − v∗2 ln

v

v∗2

)
, J3(t) =

∫
Ω

(
w − w∗2 − w∗2 ln

w

w∗2

)
.

(v∗2 , w
∗
2) is given in (44) and

ξ2 =

{
1
a1
, δ2 < 0,

2a2b1−a1b2
a21c2

, δ2 ≥ 0.

More precisely, we have the following results.

Lemma 3.7. Let E2(t) be the functional defined by (74) and r(x) = 1. Then for
all t > 0, we have E2(t) ≥ 0. Moreover, under the condition a1

a2
< min{ b1b2 ,

c1
c2
} and

λ2
2K2

4c2d2
≤ 1 (“ = ” holds if ‖w0‖L∞ ≤ 1), (75)

there exist two constants α2 > 0 and T2 > 0 such that if δ2 < 0 or δ2 ≥ 0 and
µ > µ∗2,

d

dt
E2(t) ≤ −α2F2(t), (76)

where

F2(t) =

∫
Ω

u2 +

∫
Ω

(v − v∗2)2 +

∫
Ω

(w − w∗2)2

and µ∗2 is denoted by (47).

Proof. By the similar arguments as in Lemma 3.5, we apply the Taylor formula to
obtain that J2 ≥ 0 and J3 ≥ 0. Hence, one derives directly that E2(t) ≥ 0 thanks
to the positiveness of u.

To proceed, we show that (76) is true. Noting that the homogeneous steady
state v∗2 and w∗2 satisfies c2v

∗
2 = a2w

∗
2 and v∗2 = µ(1−w∗2), which together with the

equations of system (41) gives

d

dt
J1(t) = a1

∫
Ω

uw − b1
∫

Ω

u2 − c1
∫

Ω

uv

≤ a1

∫
Ω

u(w − w∗2)− b1
∫

Ω

u2 − a1c2
a2

∫
Ω

u(v − v∗2)

(77)
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due to a1
a2
< c1

c2
and

d

dt
J2(t) = a2

∫
Ω

(v − v∗2)(w − w∗2)− b2
∫

Ω

u(v − v∗2)− c2
∫

Ω

(v − v∗2)2

− v∗2
∫

Ω

d2|∇v|2

v2
+ v∗2

∫
Ω

λ2χ
′
2(w)∇v · ∇w

v

(78)

as well as

d

dt
J3(t) = −

∫
Ω

u(w−w∗2)−
∫

Ω

(v−v∗2)(w−w∗2)−µ
∫

Ω

(w−w∗2)2−w∗2
∫

Ω

|∇w|2

w2
. (79)

Then the combination of (77)–(79) and (74) leads to

d

dt
E2(t) ≤ −

∫
Ω

X2A2X
T
2 −

∫
Ω

Y2B2Y
T
2 , (80)

where X2 = (u, v − v∗2 , w − w∗2), Y2 =
(∇v
v ,∇w

)
, and two matrixes A2, B2 are

defined as follows

A2 :=

 b1ξ2
b2+ξ2a1c2

2a2

1−ξ2a1
2

b2+ξ2a1c2
2a2

c2
a2

0
1−ξ2a1

2 0 µ

 , B2 :=

(
v∗2d2
a2

−λ2v
∗
2χ
′
2(w)

2a2

−λ2v
∗
2χ
′
2(w)

2a2

w∗2
w2

)
.

If δ2 < 0, we have ξ2 = 1
a1

from the definition of ξ2, and hence

|A21| :=

(
b1ξ2

b2+ξ2a1c2
2a2

b2+ξ2a1c2
2a2

c2
a2

)
=
−δ2

4a1a2
2

> 0, |A2| = −
µδ2

4a1a2
2

> 0.

On the other hand, if δ2 ≥ 0 we select ξ2 = 2a2b1−a1b2
a21c2

and derive that

|A21| =
b1(a2b1 − a1b2)

a2
1a2

> 0

and

|A2| = µ|A21| −
(a1(b2 + c2)− 2a2b1)2

4a2
1a2c2

= |A21|
(
µ− (a1(b2 + c2)− 2a2b1)2

4b1c2(a2b1 − a1b2)

)
> 0

when µ > µ∗2. Hence, there exists a constant α2 > 0 such that

X2A2X
T
2 ≥ α2|X2|2, if δ2 < 0 or δ2 ≥ 0 and µ > µ∗2 (81)

based on Sylvester’s criterion. Under the condition (75), we can use the similar
arguments as in Lemma 3.5 to find T2 > 0 such that

λ2
2w

2|χ′2(w)|2

4c2d2
<
λ2

2K2

4c2d2
≤ 1 for all t > T2

(“ = ” holds if ‖w0‖L∞ ≤ 1), which implies that c2d2
w2 >

λ2
2|χ
′
2(w)|2
4 . Recalling the

definition of v∗2 and w∗2 , one has
v∗2d2
a2

> 0 and

|B2| =
v∗2
a2

2

(
a2w

∗
2d2

w2
− λ2

2v
∗
2 |χ′2(w)|2

4

)
=

µ2

(a2 + µc2)2

(
c2d2

w2
− λ2

2|χ′2(w)|2

4

)
> 0

for all t > T2. Therefore, the matrix B2 is positive definite and then Y2B2Y
T
2 ≥ 0,

which together with (80) and (81), gives that

d

dt
E2(t) ≤ −α2F2(t), if δ2 < 0 or δ2 ≥ 0 and µ > µ∗2

for all t > T2. Consequently, we finish the proof.
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Lemma 3.8. Let (u, v, w) be the solution of system (41) and (v∗2 , w
∗
2) be defined by

(44). Assume that the conditions in Lemma 3.7 hold. Then it follows that

‖u(·, t)‖L∞(Ω) + ‖v(·, t)− v∗2‖L∞(Ω) + ‖w(·, t)− w∗2‖L∞(Ω) → 0 as t→∞. (82)

Proof. In Lemma 3.7, we have shown that the non-negative functional E2(t) satisfies
d
dtE2(t) ≤ −α2F2(t). It follows that∫ ∞

1

F2(t) ≤ 1

α2
E2(1) <∞.

The regularity of the solution (u, v, w) entails that F2(t) is uniformly continuous in
[1,∞). Then the application of Lemma 3.3 yields

F2(t) =

∫
Ω

u2 +

∫
Ω

(v − v∗2)2 +

∫
Ω

(w − w∗2)2 → 0 as t→∞. (83)

By Lemma 3.4, we derive that u(·, t), v(·, t) and w(·, t) are bounded for t > 1 in the
space W 1,∞(Ω). By the Gagliardo-Nirenberg inequality

‖φ‖∞ ≤ c‖φ‖
n
n+2

W 1,∞(Ω)‖φ‖
2

n+2

2 , ∀φ ∈W 1,∞(Ω),

we get the limit (82) from (83).

Now we are in a position of prove Theorem 3.1.

Proof of Theorem 3.1. The assertions (1) and (2) of Theorem 3.1 are the results of
Lemma 3.6 and Lemma 3.8. The proof of assertion (3) of Theorem 3.1 is completely
parallel to that of assertion (2).

4. Effects of resource dynamics and advective strategies: simulations and
discussions. In this paper, we consider a three-species Lotka-Volterra diffusion-
advection competition system (41) with a dynamical resource determined by an
evolution equation where the advection is biased up the resource gradient. This
model is an extension of existing Lotka-Volterra competition systems where the
resource is a given spatially varying function. We first establish the global existence
of classical solutions of (41) in two dimensions (see Theorem 2.1) using the maximum
principle and Moser iteration. Then we investigate the global stability of constant
equilibria (see Theorem 3.1) for the constant intrinsic growth rate of the resource
(i.e. r(x) = 1) by the method of Lyapunov functional. While if the intrinsic
growth rate of the resource r(x) is non-constant, the global dynamics of (41) remains
unknown, which is a very challenging question due to quite a number of equations
and cross-diffusion structures. Before any analytical results can be proved, it would
be instructive to numerically investigate the time-asymptotic dynamics to foresee
the possible results.

Note that (41) is a complex system with many parameters and various mathemat-
ical questions can be numerically explored. Below we shall focus on two questions:
(i) how does the resource dynamics affect the competition outcomes? (ii) how does
the advective strategy affect the global dynamics of competing species? To this
end, we shall always assume that two competing species u and v have the same
ecological situations, namely

a1 = b1 = c1 = a2 = b2 = c2 = 1. (84)

Then for the above question (i), we shall compare the competition outcomes of
system (41) with (1), where (41) has dynamical resource w while the resource m(x)
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in (1) has no dynamics but is a given spatially varying function. For question (ii),
we shall mainly vary the forms of χ1(w) and χ2(w) that represent the advective
strategies employed by the competing species, along with the variations of di(i =
1, 2), λ1 and λ2, to see how the competition outcomes are changed. We perform
the numerical simulations in an interval Ω = [0, 10] by implementing the Matlab
PDEPE solver based on the finite difference scheme. In the simulations, we fix the
initial value as

u0(x) = 1 + cos(πx), v0(x) = 1 + cos(πx), w0(x) = 1 + 0.5 cos(πx). (85)

The intrinsic growth rate function r(x) for the dynamical resource w in (41) and
the environmental resource m(x) in (1) are set to be same as

r(x) = m(x) = 1 + 0.5 cos(πx/2). (86)

When simulating systems (1) and (41) with advection (i.e. λ1, λ2 > 0), we need
to specify the forms of sensory response functions χi(i = 1, 2). In the literature
(cf. [15]), there are two major forms: χi(s) = s (linear response) and χi(s) = ln s
(logarithmic response). These two types of sensory responses have been widely
used in chemotaxis system (cf. [27, 23, 29]). Therefore in our simulations, we shall
employ the above two forms of sensory responses.

4.1. Effects of resource dynamics. The main effect of resource dynamics we will
explore is whether the so-called “slower diffuser prevails” phenomenon occurred in
the competition system (3) without advection (i.e. (1) with λ1 = λ2 = 0) still holds
true for the dynamical resource. Therefore we set d1 = 1, d2 = 10 and numerically
solve (41) with λ1 = λ2 = 0 for m(x) and r(x) given in (86). The numerical
simulations for the large-time profile of the solution (i.e. steady spatial profile of
the solution) are plotted in Fig. 1, from which we see that the slower species u
wipes out its fast competitor v for both models (41) and (3). This implies the
resource dynamics has no impact on the “slower diffuser prevails” phenomenon in
the absence of advection.
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Figure 1. Numerical simulations of large-time profile of the so-
lution to (41) shown in (a) and to (1) shown in (b), where
d1 = 1, d2 = 10, λ1 = λ2 = 0, initial values are given in (85)
and other parameter values are given in (84).

Next we proceed to explore the effect of resource dynamics on the competition
outcomes in the presence of advection (biased movement) as a dispersal strategy
aside from diffusion. In this case, we assume that two competing species have the
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same sensory responses (i.e. χ1(w) = χ2(w) and λ1 = λ2), and the corresponding
numerical results are plotted in Fig.2 for the logarithmic response and Fig.3 for the
linear response, respectively. Remarkably we find that for both types of sensory
responses, the slower diffuser u may wipe out its fast competitor (see Fig.2-(a) and
Fig.3-(a)) if the advective responses are weak (i.e. λ1 = λ2 are small) or vice versa
(see Fig.2-(c) and Fig.3-(c)) if the advective responses are strong (i.e. λ1 = λ2 are
large). Moreover the two competing species may coexist if the advective responses
are moderate (see Fig.2-(b) and Fig.3-(b)). However, for the competition system (1)
without resource dynamics, our numerical simulations show that the slower diffuser
always prevails as depicted in Fig.1-(b) for both linear and logarithmic sensory
responses with the same parameter values given in Fig.2 and Fig.3. Hence we do not
plot them here for brevity. These numerical simulations essentially indicate that as
long as the advection (biased movement) towards the resource gradients) takes place,
the global dynamics will be quite different between fixed and dynamical resources.
In particular, if the resource has temporal dynamics, the slower diffuser may lose
the competition and coexistence may also be achieved depending on the strength
of advection, which is in sharp contrast to the case of fixed resource for which
only the phenomenon “slower diffuser wins” happens. In addition to this, we find
that when competitive exclusion occurs, the “ideal free distribution” (meaning the
spatial distribution of winning species perfectly matches the resource distribution)
may be achieved (see Fig.2-(a) or (c) and Fig.3-(c)).
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Figure 2. Numerical simulations of large-time solution profiles of
(41), where d1 = 1, d2 = 10, χ1(w) = χ2(w) = lnw and λ1, λ2

values are: (a) λ1 = λ2 = 1; (b) λ1 = λ2 = 5; (c) λ1 = 10, λ2 = 10.
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Figure 3. Numerical simulations of large-time solution profiles of
(41), where d1 = 1, d2 = 10, χ1(w) = χ2(w) = w and λ1, λ2 values
are: (a) λ1 = λ2 = 1; (b) λ1 = λ2 = 10; (c) λ1 = 20, λ2 = 20.
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4.2. Effects of advective strategies. In the preceding subsection, we numerically
demonstrate the effects of resource dynamics on the competition outcomes and we
find the resource dynamics may lead to more diverse competition outcomes if the
advection, as a strategy of movement in contrast to diffusion, is employed. Below,
we shall proceed to explore the effect of advective strategies on the competition
outcomes. To this end, we let d1 = d2 and λ1 = λ2 and consider two cases:

(a) χ1(w) = lnw and χ2(w) = w, that is the species u uses logarithmic law and
v uses linear law for the advection.

(b) χ1(w) = lnw (or χ1(w) = w) and χ2(w) = 0, that is the species u uses the
advection while v does not.

In case (a), we can tell how the advective strategies impact the competition out-
comes. In case (b), we can examine whether the advection is advantageous or not
for the competition.

The numerical results for case (a) are shown in Fig.4, where we see that mutual
exclusion between two competing species may occur (see Fig.4-(a) and Fig.4-(c))
if the advection strength is weak or strong, while the coexistence will be achieved
if the advection strength is moderate (see Fig.4-(b)). Precisely, the species with
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Figure 4. Numerical simulations of large-time solution profiles of
(41) with χ1(w) = lnw,χ2(w) = w, where d1 = d2 = 1 and λ1, λ2

values are: (a) λ1 = λ2 = 0.1; (b) λ1 = λ2 = 1.5; (c) λ1 = λ2 = 5.

logarithmic advection will win (resp. lose to) its competitor with linear advection
if the advection is weak (resp. strong), while the two species will coexist regardless
of advective strategies employed if the advection is moderate.

The numerical results for case (b) are plotted in Fig.5 for χ1(w) = lnw,χ2(w) =
0. From the simulations, we find that the species with weak advection can wipe
out the species without advection (see Fig.5-(a)) and achieve the ideal free distribu-
tion, while the species with strong advection can coexist with the species without
advection although the supported population mass is much less than the weak ad-
vection (see Fig.5-(b)). The similar numerical results can be observed for the case
χ1(w) = w and χ2(w) = 0, where the only difference is that the species u can not
achieve the ideal free distribution when the advection is weak. For brevity we do
not plot the numerical results for this case here.

4.3. Effect of advection strength. From the previous subsection, we have ob-
served that given the same advection strength (i.e. λ1 = λ2), the magnitude of ad-
vection strength plays an important role in determining the global dynamics of the
solution (see Fig.2-Fig.4). Now we further explore the effect of advection strength
when two competing species have unequal advection strength (i.e. λ1 6= λ2) for the
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Figure 5. Numerical simulations of large-time solution profiles
of (41) with χ1(w) = lnw,χ2(w) = 1, where the value of λ1 is
indicated in the figure.

same advective sensory response mechanism (i.e. χ1(w) = χ2(w)). The numeri-
cal results are shown in Fig.6 for the logarithmic response and Fig.7 for the linear
response.

For the logarithmic response functions χi(w) = lnw(i = 1, 2), we find that if the
ratio λ1

λ2
is large, then competitive exclusion will occur and the species with weaker

advection strength wins (see Fig.6-(a)). While if λ1

λ2
≈ 1, two competing species may

coexist (see Fig.6-(b) and Fig.6-(c)) but the species with weaker advection strength
have slight advantage in terms of the population number supported. For linear
response functions χi(w) = w(i = 1, 2), we find that if λ1

λ2
is large, co-existence may

be achieved (see Fig.7-(a) and Fig.7-(b)) which is substantially different from the
case of logarithmic response functions shown in Fig.6-(a). If λ1

λ2
≈ 1, co-existence

may be achieved only if the advection strength of two species are very close (see
Fig.7-(d)) and there is an intermediate value of λ1

λ2
= 1.5 such that the competitive

exclusion happens and the species with stronger advection strength wins (see Fig.7-
(c)) which is distinct from the case of logarithmic responses shown in Fig.6-(b).
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Figure 6. Numerical simulations of large-time profile of the solu-
tion to (41), where d1 = d2 = 1, χ1(w) = χ2(w) = lnw.

From numerical simulations shown in Fig.6 and Fig.7, we can make the following
general conclusions.

• Given the same advective sensory response functions χi(w) (i = 1, 2), the ad-
vective response strength ratio λ1

λ2
between species is a key factor determining

the competition outcomes (see Fig.6 or Fig.7);
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Figure 7. Numerical simulations of large-time profile of the solu-
tion to (41), where d1 = d2 = 1, χ1(w) = χ2(w) = w.

• Given the same ratio λ1

λ2
, different advective sensory response functions χi(w)

(i = 1, 2) may result in different competition outcomes (compare Fig.6-(a)
with Fig.7-(b) and Fig.6-(c) with Fig.7-(c)).

In summary, from the numerical simulations demonstrated above, we find that
global dynamics of the competition system (41) are quite different from (1) if the
advection, as a dispersal strategy different from diffusion, is taken into account.
Typically the prevailing phenomenon “slower diffuser prevails” appeared in (1) may
not occur in (41). This implies that the resource temporal dynamics is an indispens-
able factor to predict the competition outcomes more precisely. We also numerically
find that different advective sensory mechanisms (linear or logarithmic) may give
rise to very different competition outcomes. For the same advective sensory mecha-
nism, the relative sensory response strength between species (i.e. the value of ratio
λ1

λ2
) is a key factor in determining which species will win the competition. The

numerical simulations have partially illustrated wealthy dynamics and patterns of
the competition system (41) when the resource intrinsic growth rate r(x) is non-
constant. However the justification of these numerical observations remains open.
These are difficult questions to explore since the system (41) has three equations
and cross diffusions. Our numerical simulations undoubtedly provide some useful
clues for further studies.
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