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a b s t r a c t

This paper considers the existence and stability of traveling wave solutions of the Boussinesq–
Burgers system describing the propagation of bores. Assuming the fluid is weakly dispersive, we
establish the existence of three different wave profiles by the geometric singular perturbation theory
alongside phase plane analysis. We further employ the method of weighted energy estimates to
prove the nonlinear asymptotic stability of the traveling wave solutions against small perturbations.
The technique of taking antiderivative is utilized to integrate perturbation functions because of the
conservative structure of the Boussinesq–Burgers system. Using a change of variable to deal with the
dispersion term, we perform numerical simulations for the Boussinesq–Burgers system to showcase
the generation and propagation of various wave profiles in both weak and strong dispersions. The
numerical simulations not only confirm our analytical results, but also illustrate that the Boussinesq–
Burgers system can generate numerous propagating wave profiles depending on the profiles of initial
data and the intensity of fluid dispersion, where in particular the propagation of bores can be generated
from the system in the case of strong dispersion.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

A bore is a sudden increase in water depth in a free-surface
low (cf. [1,2]) due to dam-break, initial mound of water, and
olitary-wave breaking and so on. A typical example is the tidal
ore — sudden elevation of the water surface that travels up-
tream an estuary with the incoming flood tide. The first study in
laboratory was made in [3] where a barrier separating different

evels of water is suddenly removed and the surface motion of
ater flows is described by bores. In general two classes of wave
otions can be observed depending on the levels of water on the

wo sides of the barrier, named as strong (or turbulent) bores and
eak (or undular) bores. Strong bores represent the motion of the
udden violent change of water level and the weak bores describe
he gently sloping or oscillatory transition between the different
evels (see more detailed description in [4]). Strong bores are
ften more difficult to study mathematically than the weak bores.
There are various physical models for the description of weak

ores and many theories have been developed (cf. [5–11]). Among
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them is the Boussinesq system [7,9]:{
ρt + ux + (uρ)x = 0,
ut + ρx + uux − ϵuxxt = 0,

(1.1)

here ρ(x, t) and u(x, t) represent the height and velocity of the
ree surface of the fluid above the bottom, respectively, and ϵ > 0
s a parameter accounting for the intensity of fluid dispersion. The
oussinesq system includes the nonlinear and dispersive effects
ut not fluid viscosity. Nevertheless it was pointed out in [12–14]
hat dissipative effects must be considered to accurately predict
ave propagation, at least at the laboratory scale. Appending
iffusion and viscosity to the Boussinesq system, one arrives at
he following so-called Boussinesq–Burgers system (cf. [15]):{
ρt + ux + (uρ)x = µρxx,

ut + ρx + uux − ϵuxxt = µuxx.
(1.2)

or convenience, one can make a change of variable w(x, t) =

+ ρ(x, t) and transform (1.2) into the following one:{
wt + (wu)x = µwxx,

u2 (1.3)

ut + (w + 2 )x = ϵuxxt + µuxx.
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hen we ignore the diffusion, viscosity and dispersion terms,
.e. ϵ = µ = 0, the system is reduced to a shallow water wave
quation (cf. [16]).
There are a few mathematical results developed for the

oussinesq–Burgers system. In paper [17], the global existence
nd asymptotic behavior of solutions of (1.3) in a bounded in-
erval with Neumann–Dirichlet boundary conditions were es-
ablished. Furthermore when the boundary conditions are time-
ependent (i.e., dynamical boundary conditions), the global ex-
stence and asymptotic profile of solutions were studied in [18].
he large-time behavior of solutions to the Cauchy problem of a
eneralized Boussinesq–Burgers system was investigated in [19]
ollowed by a work [20] giving the decay rates of solutions.

By making the following change of variables:

→ t/µ, x → x/µ, ϵ → ϵ/µ2,

e can rewrite the Boussinesq–Burgers system (1.3) by reducing
ne parameter as{
wt + (wu)x = wxx,

ut + (w +
u2
2 )x = ϵuxxt + uxx.

(1.4)

ence without loss of generality we may assume µ = 1 in (1.3).
he goal of this paper is to study the existence and stability
f traveling wave solutions of (1.4) with one-dimensional space
ariable and supplemented with the initial data

w, u)(x, 0) = (w0, u0)(x) →

{
(w−, u−) as x → −∞,

(w+, u+) as x → +∞.
(1.5)

traveling wave solution of (1.4) in (x, t) ∈ R × [0,∞) is a
non-constant solution in the form

(w, u)(x, t) = (W ,U)(z), z = x − ct (1.6)

with W ,U ∈ C∞(R) satisfying the boundary conditions (i.e. end
states)

W (±∞) = w±, U(±∞) = u±, (1.7)

where c is the wave speed assumed to be non-negative without
loss of generality, z is called the wave variable. The constants w±

nd u± are called end states of w and u, respectively, describing
he asymptotic behavior of traveling wave solutions as z → ±∞.

Substituting the wave ansatz (1.6) into (1.4) yields⎧⎪⎨⎪⎩
−cWz + (WU)z = Wzz, z ∈ R,
−cUz + (W +

U2

2 )z = Uzz − cϵUzzz, z ∈ R,
(W ,U)(±∞) = (w±, u±).

(1.8)

By assumingw± = 0 and u+ = 0, under the condition 4ϵc2 ≤ 1, it
was shown in [15, Theorem 2.4] that the Boussinesq–Burgers sys-
tem (1.3) admits a traveling wave solution (W ,U) in R connecting
(0, 2c) to (0, 0), where Uz < 0 (see [15, Theorem 2.6]). This was
proved by phase plane analysis performed to the system (1.8) in
a three-dimensional phase space. Note that the work [15] only
considered the existence of traveling wave solutions for a special
case w± = 0, u+ = 0. However, whether there are possible
traveling wave solutions connecting other possible end states w±

and u± remains unknown as mentioned in [15]. The goal of this
paper is twofold. First, we prove that the Boussinesq–Burgers
system (1.4) admits traveling wave solutions connecting any two
critical points between O(0, 0), A(0, 2c) and B( c

2

2 , c) if ϵ > 0 is
small. Our proof strategy is to first prove the existence of traveling
wave solutions for the dispersion-free system (1.8) (i.e. ϵ= 0)
nd then prove the results hold true for small ϵ > 0 by means
f the geometric singular perturbation theory. The second goal
f this paper is to show the nonlinear stability of traveling wave
olutions. Roughly speaking, we prove that all the traveling wave
2

solutions obtained above are asymptotically stable if the initial
data are sufficiently close to them. Our proof is based on the
technique of taking antiderivative originally developed in [21,22],
owing to the conservative structure of the Boussinesq–Burgers
system, alongside the method of energy estimates in spatially
weighted Sobolev spaces.

The rest of this paper is organized as follows. In Section 2, we
state our main results on the existence and stability of travel-
ing wave solutions to the Boussinesq–Burgers system (1.4)–(1.5).
Then we prove the existence results in Section 3 and stability
results in Section 4. In Section 5, we use numerical simulations to
illustrate the wave profiles generated by the Boussinesq–Burgers
system (1.4)–(1.5) and discuss the implications of the numerical
results.

2. Statement of main results

We shall prove there are three possible different traveling
wave profiles generated by the Boussinesq–Burgers system (1.4)–
(1.5), which connect critical points between O, A and B. Thereof
a natural question is under what conditions a specific traveling
wave profile will be produced. The answer relies on the initial
profile (w0, u0) in which the asymptotic states (w±, u±) play
dominant roles. Since w(x, t) and u(x, t) represent the height and
speed of the free surface of the fluid, we assume without loss
of generality that w± ≥ 0 and u± ≥ 0. The first results on the
existence of traveling wave solutions are stated below.

Theorem 2.1. Consider the Cauchy problem (1.4)–(1.5) with fixed
constant u− > 0. If ϵ = 0 or ϵ > 0 is sufficiently small, then the
following results hold.

(i) If u+ = 0 and w− > 0, then there is a unique wave speed
c = u− such that the system (1.4)–(1.5) has a unique traveling
wave solution (W ,U) up to a translation satisfying (1.8) with
w− =

u2
−

2 andw+ = 0. Moreover, the solution satisfies Wz < 0
and Uz < 0.

(ii) If u+ > 0, then there is a wave speed c =
u−

2 such that the
system (1.4)–(1.5) has a unique traveling wave solution (W ,U)
up to a translation satisfying (1.8) with w− = 0, w+ =

u2
−

8 and
u+ =

u−

2 . Moreover, the solution satisfies Wz > 0 and Uz < 0.
(iii) If u+ = 0 and w− = 0, then there is a unique wave speed

c =
u−

2 such that the system (1.4)–(1.5) has a traveling wave
solution (W ,U) satisfying (1.8) with w+ = 0 and Uz < 0,
where the wave profile W is non-monotone and there is a point
z0 ∈ R such that Wz > 0 when z ∈ (−∞, z0) and Wz < 0
when z ∈ (z0,∞).

The second result of this paper is concerned with the nonlinear
local stability of the traveling wave solutions obtained in The-
orem 2.1. As asserted in Theorem 2.1, there are three different
types of traveling wave profiles. Hence naturally we ask which of
them is stable or unstable. Interestingly we are able to show that
they are all locally stable by a unified approach — weighted en-
ergy estimates. In the results of Theorem 2.1, the traveling wave
profile W could be monotone increasing or decreasing or non-
monotone, while U is always monotone decreasing. Fortunately
our stability analysis depends only on the monotonicity of U ,
which offers us a chance to employ a unified approach to prove
the stability for different traveling wave profiles.

Our energy estimates cover the singularities at w+ = 0 and/or
w− = 0. In this paper, we shall introduce a weight function ω(z)
to overcome the singularities and perform weighted energy esti-
mates to prove the nonlinear stability of traveling wave solutions
in the case w+ = 0 and/or w− = 0. The weight function is chosen
as

ω(z) = W (z)−1, z ∈ R. (2.1)
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n what follows, by Hk
ω(R) we denote the space of measurable

unctions f so that
√
ω∂

j
xf ∈ L2(R) for 0 ≤ j ≤ k with

norm ∥f ∥Hk
ω(R)

:=
(∑k

j=0

∫
R ω(x)|∂

j
xf |

2
dx

)1/2
. For simplicity, the

convention ∥·∥ := ∥·∥L2(R), ∥·∥k := ∥·∥Hk(R) and ∥·∥k,ω := ∥·∥Hk
ω(R)

will be adopted.
The nonlinear local stability of traveling wave solutions to

(1.4)–(1.5) is given below.

Theorem 2.2. Let the assumptions in Theorem 2.1 hold, and let
(W ,U)(z) be the traveling wave solutions obtained in Theorem 2.1.
Assume that there exists a constant x0 such that the initial pertur-
bation from the spatially shifted traveling waves with shift x0 is of
integral zero, namely φ0(∞) = ψ0(∞) = 0, where

(φ0, ψ0)(x) :=

∫ x

−∞

(w0(y) − W (y + x0), u0(y) − U(y + x0))dy.

Then there exists a constant δ0 > 0 such that if ∥φ0∥w + ∥ψ0∥ +

∥w0 − W∥1,w + ∥u0 − U∥2 ≤ δ0, then the Cauchy problem (1.4)–
(1.5) with sufficient small ϵ > 0 has a unique solution (w, u)(x, t)
satisfying

w − W ∈ C([0,∞),H1
w) ∩ L2((0,∞),H2

w),

u − U ∈ C([0,∞),H2) ∩ L2((0,∞),H2)

with the following asymptotic stability:

sup
x∈R

|(w, u, ux)(x, t) − (W ,U,Ux)(x + x0 − st)| → 0 as t → ∞.

3. Existence: Proof of Theorem 2.1

As mentioned previously, we shall prove the existence of
traveling wave solutions to (1.4)–(1.5) for small ϵ > 0 by the
geometric singular perturbation theory. Integrating the equations
in (1.8) once, we get{

−cW + WU = Wz + ρ1,

−cU + W +
U2

2 = Uz − cϵUzz + ρ2,
(3.1)

here ρ1, ρ2 ∈ R are constants of integration. Evaluating equa-
ions in (3.1) at z = ±∞, we find{
ρ1 = −cw+ + w+u+ = −cw− + w−u−,

ρ2 = −cu+ + w+ +
u2
+

2 = −cu− + w− +
u2
−

2 .
(3.2)

o avoid excessive technicalities, we shall only consider the case
1 = ρ2 = 0 in this paper. The extensions to the case ρ1 ̸= 0 or
2 ̸= 0 are possible but will not be considered in this paper. Then
e get

w−(c − u−) = 0,

−cu− + w− +
u2
−

2 = 0,
and

{
w+(c − u+) = 0,

−cu+ + w+ +
u2
+

2 = 0.

(3.3)

With ρ1 = ρ2 = 0, (3.1) becomes{
Wz = −cW + WU,
Uz − cϵUzz = −cU + W +

U2

2 .
(3.4)

e first consider the case ϵ = 0. For convenience, we rewrite
3.4) with ϵ = 0 as{
Uz = −cU + W +

U2

2 ,

Wz = −cW + WU,
(3.5)

nd study its dynamics in the UW -plane. Let

(U,W ) =

(
−cU + W +

U2

2

)
:=

(
f (U,W )

)
. (3.6)
−cW + WU g(U,W )

3

Table 1
Classification of critical points of (3.5).
Critical points Type Eigenvalues

O(0, 0) Stable node λ1 = λ2 = −c
A(2c, 0) Unstable node λ1 = λ2 = c
B(c, c2

2 ) Saddle λ1 = −
c

√
2
, λ2 =

c
√
2

Fig. 1. Phase portrait of system (3.5) with c = 1.

Solving F (U,W ) = (0, 0)T, we find that (3.5) has only three
critical points

O(0, 0), A(2c, 0) and B(c, c2/2).

By J(uc, wc) we denote the Jacobian of F (U,W ) at (uc, wc). Then
it follows that

J(uc, wc) =

(
−c + uc 1
wc −c + uc

)
. (3.7)

The eigenvalues of J(uc, wc) are denoted by λ1 and λ2. Then the
critical points of (3.5) can be classified based on λ1 and λ2, and
e summarize the results in Table 1.
It is clear that traveling wave solutions will not exist for c = 0

ince all critical points are centers then. In what follows we shall
ssume c > 0 without further reminder. We further use the
‘pplane’’ program [23] in Matlab to generate the phase portrait
f (3.5) shown in Fig. 1, which is consistent with the results given
n Table 1. From the phase portrait shown in Fig. 1, we see there
re three different types of orbits connecting B(c, c2

2 ) to O(0, 0),
A(2c, 0) to B(c, c2

2 ) and A(2c, 0) to O(0, 0). We shall rigorously
prove the existence of these orbits below by phase plane analysis.

3.1. Heteroclinic orbit connecting B(c, c2
2 ) to O(0, 0)

Since B(c, c2
2 ) is a saddle point containing an unstable manifold

and O(0, 0) is a stable node, we expect there is a heteroclinic orbit
connecting B(c, c2

2 ) to O(0, 0). We shall construct a triangular
region OBC where C(c, 0) is the middle point of OA (see the
schematic in Fig. 2), and show it constitutes an invariant set for
the flow of (3.5). Next we shall show that the triangular region
OBC is an invariant set for the system (3.5) by studying the flow
direction on each side of the triangle.

First, we check the segment OB which can be represented by
the equation L1(U,W ) = 0, where

L1(U,W ) =
c
U − W , for 0 ≤ U ≤ c, 0 ≤ W ≤

c2
.

2 2
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Fig. 2. A schematic of invariant set for the heteroclinic orbit connecting B(c, c2
2 )

o O(0, 0).

t is clear that L1 < 0 on the left side of the line and L1 > 0 on
he right side of the line. If there is a flow/orbit leaving OB, there
ust exist a point p on OB such that dL1

dz

⏐⏐
p < 0. We calculate dL1

dz
y substituting (3.5) and W =

c
2U into the differentiation and get

dL1
dz

=
c
2
Uz − Wz

=
c
2
(−cU + W +

U2

2
) − (−cW + WU) =

c
4
U(c − U).

ince 0 < U < c , dL1
dz > 0 and hence a contradiction arises.

herefore, there are no orbits that can leave the triangular region
BC through the hypotenuse OB.
Next, along the line BC: U = c , 0 < w < c2

2 , we have

z = W (−c + U) = 0, Uz = −cU + W +
U2

2
= W −

c2

2
< 0.

Hence the flow of (3.5) will point to the left across BC .
Lastly, for the line OC: W = 0, 0 < U < c , we have

Wz = W (−c + U) = 0, Uz = −cU + W +
U2

2
= −cU

−
c2

2
= U(−c +

U
2
) < 0.

This indicates that the orbits inside the triangular region OBC
annot cross the segment OC to leave the region. Once the flow
ouches OC , it will move towards O along OC as indicated by the
rrows in Fig. 2.
In summary we have shown that the closed bounded triangle

BC is an invariant set, namely once a flow of (3.5) enters the
egion OBC , it cannot leave it. Next we show there is an orbit
manating from B and entering the triangular region OBC . Since
(c, c2

2 ) is a saddle, the unstable manifold of (3.5) at B is tangential
o the eigenvector associated with the positive eigenvalue λ2 =
c

√
2
(see Table 1) of the Jacobian at B(c, c2

2 ). By (J − λ2I)v⃗ = 0,
we get the eigenvector v⃗ = (1, c

√
2
)T associated with the positive

igenvalue λ2 =
c

√
2
. In the following, we denote the slope of a

traight line L by m|L. Note that the eigenvector v⃗ has the slope
c

√
2
. Since m|OB =

c
2 and m|BC = ∞, we have c

2 <
c

√
2
< ∞. This

indicates that the unstable manifold (orbit) emanating from Bwill
enter the triangular region OBC . We further show that this orbit
has to converge to the critical point O by the Poincaré–Bendixson
theorem. To this end, it remains to prove there is no periodic
(closed) orbit inside the triangular region OBC . We shall show this
by Bendixson’s criterion. Indeed it follows from (3.5) and (3.6)
that

∂ f
∂U

+
∂g
∂W

=
∂

∂U
(−cU + W +

U2

2
) +

∂

∂W
(−cW + WU) = 2(U − c).
(3.8)
4

Fig. 3. A schematic of invariant set for the heteroclinic orbit connecting B(c, c2
2 )

to A(2c, 0).

Inside the triangle OBC , it has that U ∈ (0, c) and W ∈ (0, c2
2 ).

herefore
∂ f
∂U

+
∂g
∂W

̸= 0.

Thus, by the Bendixson’s criterion (cf. [24,25]), there is no closed
orbit inside the triangle OBC . Further by the Poincaré–Bendixson
theorem (cf. [24,25]), the above orbit emanating from B and
entering the closed bounded triangular region OBC will converge
to the critical point O(0, 0) as z → ∞. This generates a hetero-
clinic orbit connecting B to O, which corresponds to a traveling
wave solution (U, V ) satisfying (3.5). Since the traveling wave
ODE system (3.5) is autonomous, if (U,W )(z) is a solution, then
so is (U,W )(z) = (U,W )(z − z0) for any constant z0, which
has the same orbit as (U,W )(z) and corresponds to a traveling
wave solution of the same speed that is translated by a constant
distance z0. Noticing that B is a saddle and there is only one
unstable manifold emanating from B and entering the triangular
region OBC , this heteroclinic orbit is unique up to a translation.
Since inside the invariant set OBC , U < c and W < c

2U , we must
have Uz = −cU +W +

U2

2 < −cU +
c
2U +

U2

2 =
U
2 (U − c) < 0 and

Wz = W (U − c) < 0. This implies that both profiles U and W are
monotone decreasing and completes the proof of Theorem 2.1-(i)
for ϵ = 0.

3.2. Heteroclinic orbit connecting A(2c, 0) to B(c, c2
2 )

Since A(2c, 0) is an unstable node, we cannot construct an
nvariant region containing A as a vertex for the system (3.5) to
how the existence of a heteroclinic orbit connecting A(2c, 0) to
B(c, c2

2 ). Here we shall achieve our goal by reversing the flow
direction. That is, we define ξ = −z = −x + ct and show the
existence of a heteroclinic orbit connecting B(c, c2

2 ) to A(2c, 0)
in the phase plane by using ξ as the independent variable. With
ξ = −z = −x+ct and (u, w)(x, t) = (U,W )(ξ ), we get from (3.5)
that{
Uξ = cU − W −

U2

2 ,

Wξ = cW − WU .
(3.9)

The critical points of (3.9) are the same as those for the system
(3.5), which are O(0, 0), A(2c, 0), and B(c, c2

2 ). Now we are looking
for a heteroclinic orbit connecting B(c, c2

2 ) to A(2c, 0). It can be
directly checked that A(2c, 0) is a stable node of (3.9) and B(c, c2

2 )
s a saddle point of (3.9).

Let A = (2c, 0), B = (c, c2
2 ) and C = (c, 0). Now, we prove the

triangular region ABC , as plotted in Fig. 3, is an invariant set of
he system (3.9).

First, we check the side BA, which is given by the equation

= −
c
U + c2, c ≤ U ≤ 2c, 0 ≤ W ≤

c2
.

2 2
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hen the inner product between the inward normal vector
−

c
2 ,−1) to BA and the vector field of (3.9) along the side BA

s given by

1 =: (−
c
2
,−1) · (Uξ ,Wξ ) = −

c
2
Uξ − Wξ

= −(cW − WU) −
c
2
(cU − W −

U2

2
)

= −
c
4

(
U2

− 3cU + 2c2
)
.

e let h(U) = U2
− 3cU + 2c2. Since h(·) is a quadratic function

nd h(c) = h(2c) = 0, we know that h(U) < 0 for c < U < 2c .
his gives p1 > 0 for c < U < 2c , which means that the angle
etween the inward normal vector (− c

2 ,−1) to BA and the vector
ield of (3.9) at the boundary BA is acute and hence the vector
ield of (3.9) will flow into the triangular region ABC across the
ypotenuse BA.
Next, we check the side BC , which is given by U = c for
≤ W ≤

c2
2 . Along the side BC , Wξ = W (c − U) = 0 and

ξ = cU − W −
U2

2 = c2 − W −
c2
2 =

c2
2 − W > 0 since W ∈

(0, c2
2 ). This implies that the vector field of (3.9) will flow into the

riangular region ABC across the side BC and is perpendicular to
C , as sketched in Fig. 3.
Last, along the side CA: W = 0, c < U < 2c , we find
ξ = W (c − U) = 0 and Uξ = cU −

U2

2 = U(c −
U
2 ) > 0

since U ∈ (c, 2c). This indicates that the side CA is an invariant
set of (3.9) and the orbit of (3.9) must stay on CA whenever it
touches the side CA.

The above results have collectively shown that the triangular
region ABC is an invariant set for the system (3.9). We proceed
to show that (3.9) has no periodic orbit contained inside the
triangle ABC where U ∈ (c, 2c) and W ∈ (0, c2

2 ). Indeed with
f̃ (U,W ) = cU − W −

U2

2 and g̃ = cW − WU , we can check that

∂ f̃
∂U

+
∂ g̃
∂W

=
∂

∂U
(cU − W −

U2

2
) +

∂

∂W
(cW − WU) = 2(c − U) ̸= 0

which alongside the Bendixson’s criterion entails that there is not
a periodic (closed) orbit contained within the triangular region
ABC . Finally we prove there is an orbit departing from B and
ntering the triangular region ABC . To this end, we check the
irection of the unstable manifold emanating from the saddle
oint B, which is tangential to the eigenvector associated with the
ositive eigenvalue of the Jacobian matrix of (3.9) at B. It is easy
o find that the Jacobian matrix of (3.9) at B has two eigenvalues
λ± = ±

c
√
2

and the eigenvector associated with the positive
igenvalue λ+ =

c
√
2
is v⃗ = (1,− c

√
2
)T , which has slope −

c
√
2
.

ote that the slope of BA is −
c
2 and the slope of BC is ∞. Hence

he fact −
c
2 < −

c
√
2
< ∞ asserts that the unstable manifold

manating from the saddle point Bwill enter the triangular region
BC . Since there is not a periodic orbit contained within the
riangular region ABC , this orbit will converge to the critical point
as ξ → +∞, which forms a heteroclinic orbit connecting B to
that is unique up to a translation. If we reverse the direction of

his orbit (i.e. changing −ξ to z), we obtain a heteroclinic orbit
connecting A to B, which generates a traveling wave solution for
he system (3.5). This finishes the proof of Theorem 2.1-(ii) for
= 0.

.3. Heteroclinic orbit connecting A(2c, 0) to O(0, 0)

Now we prove that the system (3.5) admits heteroclinic orbits
onnecting A(2c, 0) to O(0, 0). In Section 3.1, we showed that
5

Fig. 4. A schematic of invariant set for the heteroclinic orbit connecting A(2c, 0)
to O(0, 0).

there is a heteroclinic orbit connecting B(c, c2
2 ) to O(0, 0), which is

ndeed a separatrix denoted by Γ1 in the following. In Section 3.2,
e showed that there is a heteroclinic orbit connecting A(2c, 0)

to B(c, c2
2 ), which is another separatrix denoted by Γ2. Now we

consider a region, denoted by R, bounded by Γ1, Γ2 and Γ3
denoting the segment OA, as shown in Fig. 4. We have shown
previously that A is an unstable node and O is a stable node. Hence
any unstable manifold emanating from A and entering the region
R cannot touch or intersect with Γi (i = 1, 2, 3), since otherwise
the uniqueness of solutions of the ODE system (3.5) is violated.
Next we shall use Bendixson–Dulac theorem to show that there
is no closed (periodic) orbit within the region R. To this end, we
construct a Dulac function: ϕ(U,W ) = U−α , where α ≫ 1. By
(3.5) and (3.8), we have
∂

∂U
(ϕf ) +

∂

∂W
(ϕg) =

∂

∂U
(U−α f ) +

∂

∂W
(U−αg)

= U−α

(
∂ f
∂U

+
∂g
∂W

)
− αU−α−1f

= U−α(2(U − c)) − αU−α−1(−cU+W+
U2

2
)

=
(
2 −

α

2

)
U−α−1

(
U2

+
α − 2
2 −

α
2
cU−

αW
2 −

α
2

)
.

oting that α ≫ 1, one can easily check that

lim
→∞

(
U2

+
α − 2
2 −

α
2

cU −
αW
2 −

α
2

)
= 2(−cU + W +

U2

2
).

Since the region R is always below the curve f (U,W ) = −cU +

+
U2

2 = 0 except the vertex B, we have 2(−cU +W +
U2

2 ) < 0
for any (U,W ) within the region R. Therefore, when α > 0 is
sufficiently large, we have 2 −

α
2 < 0 and consequently

∂

∂U
(ϕf ) +

∂

∂W
(ϕg) > 0.

That means ∂
∂U (ϕf ) +

∂
∂W (ϕg) ̸= 0 within the region R. Hence,

y the Bendixson–Dulac theorem, there are no periodic orbits
ying within the region R. Furthermore it follows from Poincaré–
endixson theorem that the orbits emanating from the unstable
anifolds of A and entering the region R will converge to the
ritical points O or B as z → +∞. But the convergence to the
ritical point B is impossible since B is a saddle point and Γ2
s a separatrix. Therefore such orbits have to converge to the
table node O as z → +∞. Since there are infinitely many
utgoing unstable manifolds from A entering the region R, there
ill be infinitely many such heteroclinic orbits connecting A to O,
hich generate infinitely many traveling wave solutions connect-

ng A(2c, 0) to O(0, 0). Note that all orbits within the region R are
nder the parabola f (U,W ) = 0. Hence Uz = −cU +W +

U2

2 < 0
and there is a unique point z ∈ R such that U(z ) = c . Therefore
0 0
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z = W (U −c) > 0 if z < z0 while Wz = W (U −c) < 0 if z > z0.
This completes the proof of Theorem 2.1-(iii) for ϵ = 0.

3.4. Geometric singular perturbation

In this section, we apply the geometric singular perturbation
theory to show the existence of traveling wave solutions to the
Boussinesq–Burgers system (1.4)–(1.5) when ϵ > 0 is small and
hence complete the proof of Theorem 2.1.

From the analysis in Section 2, we know that the traveling
wave profile (W ,U)(z) of the original Boussinesq–Burgers system
(1.4) satisfies{
Wz = −cW + WU,
−ϵcUzz + Uz = −cU + W +

U2

2

(3.10)

where the constants of integration have been assumed to be zero,
see also (3.4). With V = Uz , we rewrite the above equations as a
system of first order ODEs:⎧⎪⎨⎪⎩

Uz = V ,
Wz = −cW + WU,
ϵVz = U +

1
c (V − W −

U2

2 )
(3.11)

which is a so-called slow system (cf. [26–28]). We see that the
critical manifold M0 as a set of critical points is a compact subset
contained in the following manifold

L =

{
(U,W , V )

⏐⏐V = −cU + W +
U2

2
=: h0(U,W )

}
.

Hence on the manifoldM0, (U,W ) satisfies the following reduced
system{
Uz = −cU + W +

U2

2 ,

Wz = −cW + WU
(3.12)

hich is nothing but the system (3.5). We have proved in the
receding subsections that the system (3.5) subject to (1.7) ad-
its three different types of heteroclinic orbits (or solutions) for
hich we denote by (U0,W 0)(z). That is, the slow system with
= 0 has solutions (U0,W 0, V 0) with V 0

= h0(U0,W 0) =

cU0
+ W 0

+
(U0)2

2 .
Now we define the so-called fast variable τ =

z
ϵ
and write the

low system (3.11) into a fast system⎧⎪⎨⎪⎩
U̇ = ϵV ,
Ẇ = ϵ(−cW + WU),
V̇ = U +

1
c (V − W −

U2

2 )
(3.13)

where ḟ =
df
dτ . It is clear that

∂

∂V
G(U,W , V )

⏐⏐
M0

=
1
c
, where G(U,W , V ) = V̇

= U +
1
c

(
V − W −

U2

2

)
,

which implies that the manifold M0 is normally hyperbolic for
the fast system (3.13) (cf. [26,27]). Then by the Fenichel’s invari-
ant manifold theorem [27,29], for ϵ > 0 sufficiently small, there
is a slow manifold Mϵ that lies within O(ϵ) neighborhood of M0
and is diffeomorphic to M0. Moreover it is locally invariant under
the flow of (3.13) and can be written as

Mϵ = {(U,W , V ) | V = hϵ(U,W ) = h0(U,W ) + O(ϵ)}.

Then the slow system (3.11) on Mϵ can be written as{
Uz = −cU + W +

U2

2 + O(ϵ),

Wz = −cW + WU,

6

which implies that the manifold M0 is normally hyperbolic for
the fast system (3.13) (cf. [26,27]). Then by the Fenichel’s invari-
ant manifold theorem [27,29], for ϵ > 0 sufficiently small, there
is a slow manifold Mϵ that lies within O(ϵ) neighborhood of M0
and is diffeomorphic to M0. Moreover it is locally invariant under
the flow of (3.13) and can be written as

Mϵ = {(U,W , V ) | V = hϵ(U,W ) = h0(U,W ) + O(ϵ)}.

Then the slow system (3.11) on Mϵ can be written as{
U ′

= −cU + W +
U2

2 + O(ϵ),
W ′

= −cW + WU,

which is a regular perturbation of (3.12). Next we show that the
heteroclinic orbits connecting B to O, A to B, and A to O for ϵ = 0
n M0 persist to small ϵ > 0 on Mϵ . Below we shall discuss
he case of heteroclinic orbits connecting B to O only while other
wo cases are similar. By [30, Theorem 3.1], we just need to
erify that the unstable manifold of the critical point B(c, c2/2)

(denoted by N u
B ) and the stable manifold of another critical point

(0, 0) (denoted by N s
O) intersect transversally along the so-

alled singular heteroclinic orbit. Since the manifold L consists
f only one branch, namely the critical points B and O lie in the

same branch of the manifold of the reduced problem (i.e. the
heteroclinic orbits of (3.12)), then the transversal intersection of
N u

B andN s
O is completely determined by the reduced problem (see

the discussion in section 3 of [30]). However we have shown in
Section 3.1 that the reduced problem admits a heteroclinic orbit
connecting B to O along which N u

B and N s
O intersect transversally.

Thus by [30, Theorem 3.1], for sufficiently small ϵ > 0, there is
a transversal heteroclinic orbit (Uϵ,W ϵ, V ϵ)(z) of the singularly
perturbed system (3.11) on Mϵ , which is a small perturbation
of (U0,W 0, V 0) and connects the two critical points B and O as
illustrated in Fig. 1 where the reduced system (3.12) on M0 and
the singularly perturbed system (3.11) share the same critical
points. This heteroclinic orbit (Uϵ,W ϵ, V ϵ)(z) gives a traveling
wave solution to the singularly perturbed system (3.11) with
small ϵ > 0. Alongside the results established for the reduced
problem (3.12) in preceding sections, we complete the proof of
Theorem 2.1.

4. Nonlinear asymptotic stability

In this section, we prove the nonlinear asymptotic stability
of the traveling wave solutions obtained in Theorem 2.1. Specif-
ically, we show that the solution of (1.4)–(1.5) approaches the
traveling wave solution (W ,U)(x− ct), properly translated by an
amount x0, i.e.,

sup
x∈R

|(w, u)(x, t) − (W ,U)(x + x0 − ct)| → 0, as t → +∞,

where x0 satisfies the following identity derived from the princi-
ple of ‘‘conservation of mass’’ (see details in [31]):∫

+∞

−∞

(
w0(x) − W (x)
u0(x) − U(x)

)
dx = x0

(
w+ − w−

u+ − u−

)
+βr1(w−, u−), (4.1)

here r1(w−, u−) denotes the first right eigenvector of the Jaco-
ian matrix of (1.4) with µ = ϵ = 0 evaluated at (w−, u−). The
oefficient β yields the diffusion wave in general [32]. Both β and
0 are uniquely determined by the initial data (w0, u0). For the
tability of small-amplitude viscous shock waves of conservation
aws with diffusion wave (i.e. β ̸= 0), we refer to [33,34] for
etails.
In this paper, we neglect the diffusion wave by assuming β =

(equivalent to the assumption in Theorem 2.2), but consider
he stability of large-amplitude waves (meaning that the wave
trengths |w − w | and |u − u | are allowed to be arbitrarily
− + − +
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arge). It is worth mentioning that the stability of large-amplitude
raveling waves of conservation laws is a prominent question and
here is no result for general conservation laws (cf. [21,33,35,
6]), except a few for particular systems (e.g., some system of
onserved equations derived from chemotaxis model [32,37–39]).
hen using the conservative property of the equations in (1.4) and
1.8), along with the boundary conditions and (4.1), we can show
hat∫

+∞

−∞

(
w(x, t) − W (x + x0 − ct)
u(x, t) − U(x + x0 − ct)

)
dx∫

+∞

−∞

(
w0(x) − W (x + x0)
u0(x) − U(x + x0)

)
dx

=

∫
+∞

−∞

(
w0(x) − W (x)
u0(x) − U(x)

)
dx +

∫
+∞

−∞

(
W (x) − W (x + x0)
U(x) − U(x + x0)

)
dx

=

∫
+∞

−∞

(
w0(x) − W (x)
u0(x) − U(x)

)
dx − x0

(
w+ − w−

u+ − u−

)
=

(
0
0

)
.

(4.2)

This allows us to make use of the technique of taking antideriva-
tive to decompose the solution of (1.4) as

(w, u)(x, t) = (W ,U)(x + x0 − ct) + (φz, ψz)(z, t), (4.3)

where z = x − ct . That is

(φ(z, t), ψ(z, t)) =

∫ z

−∞

(w(y, t) − W (y + x0 − ct), u(y, t)

− U(y + x0 − ct))dy

for all z ∈ R and t ≥ 0. It then follows from (4.2) that

φ(±∞, t) = ψ(±∞, t) = 0, for all t ≥ 0.

Next we derive the equations for (φ,ψ). Indeed, substitut-
ing (4.3) into (1.4) and using (3.4), we integrate the resulting
equations with respect to z and get⎧⎪⎪⎨⎪⎪⎩
φt = φzz + (c − U)φz − Wψz − φzψz,

ψt = ψzz + (c − U)ψz − φz −
1
2
ψ2

z − ϵcψzzz + ϵψzzt ,

φ(±∞) = ψ(±∞) = 0,

(4.4)

here the initial value of (φ,ψ) satisfies

φ0, ψ0)(z) =

∫ z

−∞

(w0(y) − W (y + x0), u0(y) − U(y + x0))dy (4.5)

with (φ0, ψ0)(±∞) = (0, 0).
We look for solutions of system (4.4) in the following weighted

functional space:

X(0, T ) := {(φ(z, t), ψ(z, t)) : φ ∈ C([0, T ];H2
ω), φz ∈ L2((0, T );H2

ω),

ψ ∈ C([0, T ];H3), ψz ∈ L2((0, T );H2)},

where ω(z) = 1/W (z). From the analysis in Section 3 (see Fig. 1
also), we know that 0 < W (z) < u2

−
/2 for all x ∈ R with

given u− > 0 and hence there is constant m = u2
−
/2 such that

> m > 0. Define

(t) := sup
τ∈[0,t]

(∥φ(τ )∥2,ω + ∥ψ(τ )∥3),

where ∥f (·)∥N =
∑N

k=0 ∥∂kx f ∥L2(R) and ∥f (·)∥N,ω =
∑N

k=0 ∥
√
ω

∂kx f ∥L2(R). In the sequel, we shall abbreviate ∥f ∥L2(R) as ∥f ∥ if
there is no danger of confusion and denote ∥f ∥ω = ∥

√
ωf ∥.

hanks to the first equation of (3.4) and monotonicity of U ,
7

one has
|Wz |

W
= |U − c| ≤ u−, and

⏐⏐⏐⏐( φ
√
W

)
z

⏐⏐⏐⏐
=

⏐⏐⏐⏐ φz
√
W

−
φWz

2W
√
W

⏐⏐⏐⏐ ≤
|φz |
√
W

+
u−

2
·

|φ|
√
W
. (4.6)

Hence by the basic inequality: ∥f ∥2
L∞ ≤ 2∥f ∥L2∥fx∥L2 , for all f ∈

W 1,2(R), it holds that

sup
τ∈[0,t]

{φ(τ )√
W


L∞
,

φz(τ )
√
W


L∞
, ∥ψ(τ )∥L∞ , ∥ψz(τ )∥L∞

}
≤ C0N(t), (4.7)

here C0 = [2(1 +
u−

2 )]
1
2 is a positive constant. Owing to (4.3),

Theorem 2.2 is a consequence of the following result for the
reformulated system (4.4).

Proposition 4.1. There exists a positive constant δ0, such that if
N(0) ≤ δ0, then the Cauchy problem (4.4)–(4.5) has a unique global
solution (φ,ψ) ∈ X(0,+∞) satisfying

∥φ(t)∥2
2,ω + ∥ψ(t)∥2

3 +

∫ t

0
(∥φz(τ )∥2

2,ω + ∥ψz(τ )∥2
2)dτ

≤ C(∥φ0∥
2
2,ω + ∥ψ0∥

2
3)

(4.8)

or all t ∈ [0,+∞), where the constant C > 0 is independent of t.
oreover, it holds that

sup
z∈R

|(φz, ψz, ψzz)(z, t)| → 0 as t → ∞. (4.9)

To prove Proposition 4.1, we first present the local existence
nd uniqueness of solutions to the Cauchy problem (4.4)–(4.5).

roposition 4.2 (Local Existence). For any δ1 > 0, there exists a
ositive constant T0 depending on δ1, such that if (φ0, ψ0) ∈ H2

ω×H3

nd N(0) ≤ δ1, then (4.4)–(4.5) has a unique solution (φ,ψ) ∈

(0, T0) satisfying N(t) ≤ 2N(0) for any t ∈ [0, T0].

In [40] (see also [41,42]), the local existence and unique-
ess of solutions (in the Hs space) to the Cauchy problem of
he Boussinesq-abcd system was proved in detail. The approach
tilized therein consists of well-known reasonings, such as mol-
ification of initial data, integral representation of solutions by
ourier transform, local existence and uniqueness of smooth ap-
roximate solutions by contraction mapping principle, a priori es-
imate, and compactness argument. Since the Boussinesq–Burgers
quations (1.3) is an appended version of a specific member of
he Boussinesq-abcd system by adding diffusion, and since the
raveling wave solution is a smooth function of its arguments, we
an perform the similar procedures as in [40] to prove the local
xistence and uniqueness of solutions to (4.4)–(4.5) by modifying
ome computations. As usual, the essence of the proof is the
priori estimates of the solution. Hence, we omit most of the

tandard technical details for brevity, while focus on deriving
he a priori estimates. Moreover, as in the typical situation (see
.g. [40]), the a priori estimates are indeed performed on the
mooth approximate solutions obtained from the mollified initial
ata and contraction mapping principle. Hence the required reg-
larity of the solution in our subsequent estimates is warranted
nd we shall derive the requisite a priori estimates below.

roposition 4.3 (A priori Estimates). Suppose that (φ,ψ) ∈ X(0, T )
s a solution to (4.4)–(4.5) obtained in Proposition 4.2 for some
> 0. Then there exists a constant δ2 > 0 independent of T , such

hat if N(t) ≤ δ2 for any t ∈ [0, T ], then the solution (φ,ψ) satisfies
4.8) for any t ∈ [0, T ].
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After this proposition is established, we can extend the local
solution obtained in Proposition 4.2 by repeating the procedures
mentioned above. More importantly, since the a priori estimates
re independent of time, the extension can be made on consecu-
ive time intervals with equal length which is the lifespan of the
ocal solution. Hence, the construction of a unique global solution
s complete.

The proof of Proposition 4.3 is based on the following se-
ies of lemmas. In what follows, for the sake of simplicity we
hall abbreviate

∫
R f (x, t)dx and

∫ t
0

∫
R f (x, τ )dxdτ as

∫
R f (x, t) and∫ t

0

∫
R f (x, τ ), respectively.

Lemma 4.4. Under the assumptions of Proposition 4.3, there exists
a constant C > 0, independent of t, such that if C0N(t) ≤ 1/2, then

∥φ(t)∥2
ω + ∥ψ(t)∥2

1

+

∫ t

0
(∥φz(τ )∥2

ω + ∥ψz(τ )∥2)dτ ≤ C(∥φ0∥
2
ω + ∥ψ0∥

2
1).

(4.10)

Proof. Multiplying the first equation of (4.4) by 2φ
W and the

second one by 2ψ , and adding the results, we obtain(
φ2

W
+ ψ2

+ ϵψ2
z

)
t
+

2φ2
z

W
+ 2ψ2

z

+

[
−

(
1
W

)
zz

+

(
c − U
W

)
z

]
φ2

− Uzψ
2[

2φφz

W
−

(
1
W

)
z
φ2

+
c − U
W

φ2
− 2φψ

+2ϵψψzt + 2ψzψ + (c − U)ψ2]
z

−
2φφzψz

W
− ψψ2

z − 2ϵcψzzzψ. (4.11)

By the first equation of (3.4), a direct calculation yields

−

(
1
W

)
zz

+

(
c − U
W

)
z
= 0. (4.12)

Integrating (4.11) in z and t , noticing Uz < 0, 2ϵcψzzzψ =

ϵc(ψzzψ)z − ϵc(ψ2
z )z , and utilizing (4.12), we can show that∫

R

(
φ2

W
+ ψ2

+ ϵψ2
z

)
+ 2

∫ t

0

∫
R

(
φ2
z

W
+ ψ2

z

)
2
∫ t

0

∫
R

|φφzψz |

W
+

∫ t

0

∫
R

|ψ |ψ2
z +

∫
R

(
φ2
0

W
+ ψ2

0 + ϵψ2
0z

)
.

(4.13)

The two terms on the right hand side of (4.13) can be estimated
by Young’s inequality alongside (4.7) as follows:

2
∫ t

0

∫
R

|φφzψz |

W
≤ 2

∫ t

0

φ(τ )√
W


L∞

∫
R

|φzψz |
√
W

≤ C0N(t)
∫ t

0

∫
R

(
φ2
z

W
+ ψ2

z

)
nd
t

0

∫
R

|ψ |ψ2
z ≤

∫ t

0
∥ψ(τ )∥L∞

∫
R
ψ2

z ≤ C0N(t)
∫
R
ψ2

z .

Then substituting the above two inequalities into (4.13) yields
that∫

R

(
φ2

W
+ ψ2

+ ϵψ2
z

)
+ 2(1 − C0N(t))

∫ t

0

∫
R

(
φ2
z

W
+ ψ2

z

)
≤

∫
R

(
φ2
0

W
+ ψ2

0 + ϵψ2
0z

)
,

which gives (4.10) under our assumption C0N(t) ≤
1
2 . □
8

We proceed to derive the estimate of the first order derivatives
of (φ,ψ).

Lemma 4.5. Under the assumptions of Proposition 4.3, there exists
a constant C > 0, independent of t, such that if C0N(t) ≤ 1/2, then
the following a priori estimate holds:

∥φz(t)∥2
ω + ∥ψz(t)∥2

1 +

∫ t

0
(∥φzz(τ )∥2

ω + ∥ψzz(τ )∥2)dτ

≤ C(∥φ0∥
2
1,ω + ∥ψ0∥

2
2).

(4.14)

roof. Differentiating (4.4) with respect to z yields⎧⎨⎩
φzt = φzzz + (c − U)φzz − Uzφz − Wψzz − Wzψz − (φzψz)z,
ψzt = ψzzz + (c − U)ψzz − Uzψz − φzz − ψzψzz − cϵψzzzz

+ ϵψzzzt .

(4.15)

ultiplying the first equation of (4.15) by 2φz
W and the second

equation by 2ψz , after some careful calculations, we end up with(
φ2
z

W
+ ψ2

z + ϵψ2
zz

)
t

+
2φ2

zz

W
+ 2ψ2

zz +

[
−

(
1
W

)
zz

+

(
c − U
W

)
z

]
φ2
z

=

[
2φzzφz

W
−

(
1
W

)
z
φ2
z +

(c − U)
W

φ2
z − 2ψzφz

+2ψzψzz + 2ϵψzψzzt + (c − U)ψ2
z −

2
3
ψ3

z

]
z

−
2Uzφ

2
z

W
−

2Wzφzψz

W
− Uzψ

2
z −

2φz(φzψz)z
W

− 2cϵψzψzzzz .

(4.16)

Using the first piece of information in (4.6) and boundedness of
W , we can show that⏐⏐⏐⏐2Wzφzψz

W

⏐⏐⏐⏐ ≤ 2u−|φzψz | ≤ u−

(
φ2
z

W
+ Wψ2

z

)
≤ u−

(
φ2
z

W
+ wψ2

z

)
, (4.17)

where w > 0 denotes the upper bound of W (indeed w = u2
−
/2

from the analysis in Section 2). From the second equation of (3.4)
we infer:

− Uz =
1
cϵ

e
z
cϵ

∫
∞

z
e−

ξ
cϵ [−f (U,W )]dξ, (4.18)

here f (U,W ) = −cU + W +
U2

2 . Note that Uz < 0 and

|f (U,W )| ≤ cu− + w +
u2
−

2 := ℓ. Then we update (4.18) as

Uz | ≤
ℓ

cϵ
e

z
cϵ

∫
∞

z
e−

ξ
cϵ dξ = ℓ. (4.19)

With the fact 2cϵψzψzzzz = 2cϵ(ψzψzzz)z − cϵ(ψ2
zz)z , as well as

φz(φzψz)z
W

=
φz

√
W

·
φzz
√
W

· ψz +
φz

√
W

·
φz

√
W

· ψzz,

we derive from (4.16), (4.12) and (4.10):∫
R

(
φ2
z

W
+ ψ2

z + ϵψ2
zz

)
+ 2

∫ t

0

∫
R

(
φ2
zz

W
+ ψ2

zz

)
≤ C

∫ t

0

∫
R

(
φ2
z

W
+ ψ2

z

)
+

∫ t

0

∫
R

2|φz(φzψz)z |
W

+

∫ (
φ2
0z

+ ψ2
0z + ϵψ2

0zz

)

R W
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≤

≤

w
a
S
(

t

L
a
h

∥

P

e

=

F

|

T

∥

s

w
a
c

C
∫ t

0

∫
R

(
φ2
z

W
+ ψ2

z

)
+ C0N(t)

∫ t

0

∫
R

(
φ2
zz

W
+ ψ2

zz

)
+

∫
R

(
φ2
0z

W
+ ψ2

0z + ϵψ2
0zz

)
C0N(t)

∫ t

0

∫
R

(
φ2
zz

W
+ ψ2

zz

)
+ C

∫
R

(
φ2
0z

W
+
φ2
0

W
+ ψ2

0zz + ψ2
0z + ψ2

0

)
, (4.20)

here we have used (4.17) and (4.19) in the first inequality,
nd applied (4.7) in the second inequality alongside the Cauchy–
chwarz inequality. Therefore, if C0N(t) ≤ 1/2, the inequality
4.14) follows immediately from (4.20). □

Next we establish the estimates of the second order deriva-
ives of (φ,ψ).

emma 4.6. Under the assumptions of Proposition 4.3, there exists
constant C > 0, independent of t, such that if C0N(t) ≤ 1/2, we
ave the following a priori estimate:

φzz(t)∥2
ω + ∥ψzz(t)∥2

1 +

∫ t

0
(∥φzzz(τ )∥2

ω + ∥ψzzz(τ )∥2)dτ

≤ C
(
∥φ0∥

2
2,ω + ∥ψ0∥

2
3

)
.

(4.21)

roof. We differentiate (4.15) with respect to z to get⎧⎪⎪⎨⎪⎪⎩
φzzt = φzzzz + (c − U)φzzz − 2Uzφzz − Uzzφz − Wzzψz

− 2Wzψzz − Wψzzz − (φzψz)zz,
ψzzt = ψzzzz + (c − U)ψzzz − 2Uzψzz − Uzzψz − φzzz

− (ψzψzz)z − cϵψzzzzz + ϵψzzzzt .

(4.22)

Multiplying the first equation of (4.22) by 2φzz
W and the second

quation by 2ψzz , with some tedious computations, we have(
φ2
zz

W
+ ψ2

zz + ϵψ2
zzz

)
t
+

2φ2
zzz

W
+ 2ψ2

zzz

+

[
−

(
1
W

)
zz

+

(
c − U
W

)
z

]
φ2
zz[

2φzzzφzz

W
−

(
1
W

)
z
φ2
zz +

(c − U)
W

φ2
zz − 2ψzzφzz

+ 2ψzzψzzz + (c − U)ψ2
zz + 2ϵψzzψzzzt

− 2ψzψ
2
zz −

2(φzψz)zφzz

W

]
z

−
4Uzφ

2
zz

W
−

2Uzzφzφzz

W
−

2Wzzφzzψz

W
−

4Wzφzzψzz

W

− 3Uzψ
2
zz − 2Uzzψzψzz + 2(φzψz)z

(
φzz

W

)
z

+ 2ψzψzzψzzz − 2cϵψzzψzzzzz . (4.23)

rom (3.4) and (4.19), one can find a constant C > 0 such that

Uzz | ≤ C, and
|Wzz |

W
≤ (U − c)2 + |Uz | ≤ C . (4.24)

hus, by (4.24) and the boundedness of W , one can show that

2|Wzzφzzψz |

W
≤ C

(
φ2
zz

W
+ ψ2

z

)
, and

4|Wzφzzψzz |

W

≤ C
(
φ2
zz

+ ψ2
zz

)
.

W
9

Moreover, a direct calculation gives us

2
⏐⏐⏐⏐(φzψz)z

(
φzz

W

)
z

⏐⏐⏐⏐ ≤ 2
⏐⏐⏐⏐ψz

φzz
√
W

φzzz
√
W

⏐⏐⏐⏐ + 2
⏐⏐⏐⏐ φz
√
W
ψzz

φzzz
√
W

⏐⏐⏐⏐
+ 2

⏐⏐⏐⏐Wz

W
φz

√
W
ψzz

φzz
√
W

⏐⏐⏐⏐ + 2
⏐⏐⏐⏐Wz

W
ψz
φ2
zz

W

⏐⏐⏐⏐ .
Note that 2cϵψzzψzzzzz = 2cϵ(ψzzψzzzz)z − cϵ(ψ2

zzz)z . Then inte-
grating (4.23) in z and t , we can show that∫

R

(
φ2
zz

W
+ ψ2

zz + ϵψ2
zzz

)
+ 2

∫ t

0

∫
R

(
φ2
zzz

W
+ ψ2

zzz

)
≤ C0N(t)

∫ t

0

∫
R

(
φ2
zzz

W
+ ψ2

zzz

)
+ C

∫ t

0

∫
R

(
φ2
zz

W
+
φ2
z

W
+ ψ2

zz + ψ2
z

)
+

∫
R

(
φ2
0zz

W
+ ψ2

0zz + ϵψ2
0zzz

)
,

where we have used (4.6), (4.7), (4.12) and (4.24). Therefore, we
get the desired inequality (4.21) from (4.10) and (4.14) under the
assumption C0N(t) ≤ 1/2. □

Proof of Proposition 4.1. As mentioned before, the global ex-
istence of a unique solution follows from Proposition 4.2 and
Proposition 4.3. The global estimate (4.8) follows directly from
Lemmas 4.4–4.6. It remains to derive (4.9) which is obtained in
the following two steps.

Step 1. From the global estimate (4.8) alongside the following
well-known fact (cf. [43])

if f ∈ W 1,1(0,∞) and f ≥ 0, then f → 0 as t → ∞, (4.25)

we claim that

∥φz(t)∥ → 0 and ∥ψz(t)∥1 → 0 as t → ∞. (4.26)

Case 1. We first show that ∥φz(t)∥ → 0 as t → ∞. Note that
φz∥

2
∈ L1(0,∞) was given by (4.8) directly. Hence it remains to

how d
dt ∥φz∥

2
∈ L1(0,∞). To this end, we remark that the results

of Theorem 2.1 and the first equation of (3.10) directly entail
that U,W and Wz are bounded. Furthermore from the second
equation of (3.10), we obtain

Uz =
1
cϵ

e
1
cϵ z

∫
∞

z
e−

1
cϵ ξ

(
−cU + W +

U2

2

)
dξ .

Simple calculation from the above identity asserts that Uz is
bounded since U and W are bounded. Then from (4.15), (4.6) and
(4.7), we find
d
dt

∥φz∥
2

=
d
dt

∫
R
φ2
z = 2

∫
R
φzφzt

= 2
∫
R
φz[φzzz + (c − U)φzz − Uzφz

− Wψzz − Wzψz − (φzψz)z]

≤ C
∫
R
(φ2

z + φ2
zz + ψ2

z + ψ2
zz)

≤ C(∥φz(t)∥2
1,ω + ∥ψz(t)∥2

1)

here we have used integration by parts and Young’s inequality,
long with the fact ∥φz(t)∥1 ≤ c1∥φz(t)∥1,ω for some constant
1 > 0. Then it follows from the global estimate (4.8) that
d
dt ∥φz∥

2
∈ L1(0,∞), which further indicates that ∥φz(t)∥2

→ 0
by (4.25) and hence ∥φz(t)∥ → 0 as t → ∞.

Case 2. We next show that ∥ψz(t)∥1 → 0 as t → ∞. Noticing
that ∥ψz∥

2
+ ϵ∥ψzz∥

2
∈ L1(0,∞) has been given by (4.8), we

just need to show d (∥ψ ∥
2

+ ϵ∥ψ ∥
2) ∈ L1(0,∞). Similar to
dt z zz
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Fig. 5. Numerical simulations of wave propagation and stabilization of the model (1.4) with initial data (w0, u0) given by (5.4).
the argument in Case 1, using integration by parts and Young’s
inequality, we have from (4.15), (4.6) and (4.7) that

d
dt

∥ψz∥
2

= 2
∫
R
ψzψzt

= 2
∫
R
ψz[ψzzz + (c − U)ψzz − Uzψz − φzz

− ψzψzz − cϵψzzzz + ϵψzzzt ]

≤ C
∫
R
(φ2

zz + ψ2
z + ψ2

zz) − ϵ
d
dt

∫
R
ψ2

zz

≤ C(∥φ(t)∥2
2,ω + ∥ψ(t)∥2

2) − ϵ
d
dt

∫
R
ψ2

zz

which alongside (4.8) implies d
dt (∥ψz∥

2
+ ϵ∥ψzz∥

2) ∈ L1(0,∞).
This shows that ∥ψz(t)∥2

+ ϵ∥ψzz∥
2

→ 0 by (4.25) and hence
∥ψz(t)∥1 → 0 as t → ∞.

Step 2. For all z ∈ R, it follows from (4.8) and (4.26) that

φ2
z (z, t) = 2

∫ z

−∞

φzφzz(y, t)dy

≤ 2∥φz(t)∥∥φzz(t)∥
≤ 2∥φz(t)∥∥φzz(t)∥ω → 0 as t → ∞.

This gives that supz∈R |φz(z, t)| → 0 as t → ∞. Applying the
same procedure to ψz and ψzz leads to

sup
z∈R

(|ψz(z, t)| + |ψzz(z, t)|) → 0 as t → ∞.
10
Hence (4.9) is proved and the proof of Proposition 4.1 is
finished. □

5. Numerical simulations and discussion

Using the geometric singular perturbation theory alongside
phase plane analysis, we have established the existence of travel-
ing wave solutions to the Boussinesq–Burgers system (1.4)–(1.5)
when the dispersion rate parameter ϵ > 0 is small. Depending on
the values of the asymptotic states w± and u±, we showed there
are three different types of traveling wave profiles connecting
critical points between O, A and B as illustrated in the phase
portrait diagram in Fig. 1. The detailed results are recorded in
Theorem 2.1. The existence of traveling wave solutions relevant to
the orbit connecting the critical point A to O has been previously
shown in the paper [15, Theorem 4.2] when 4ϵc2 ≤ 1. Our
results supplement those of [15] by showing that the Boussinesq–
Burgers system (1.4)–(1.5) indeed admits more types of traveling
wave profiles connecting B to O and A to B. We further showed
that these three different traveling wave profiles are nonlinearly
asymptotically stable when the initial data are sufficiently close
to them, see the statement of Theorem 2.2. We proved the stabil-
ity results by a unified approach based on the method of weighted
energy estimates and the technique of taking antiderivative. The
essential property of traveling wave profiles used in our stability
analysis is the monotonicity of the wave profile U . Fortunately in
the three different wave profiles we constructed, U has the same
monotonicity property. This enables us to use a unified approach
to prove the stability results without distinguishing wave profiles.
As far as we know, there is not any result investigating the
stability of traveling wave solutions of the Boussinesq–Burgers
system (1.4) in the literature.
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w

(

w

v

Fig. 6. Numerical simulations of wave propagation and stabilization of the model (1.4) with initial data (w0, u0) given by (5.5).
w

w

In the rest of this section, we shall use numerical simulations
to demonstrate the wave profiles generated by the Boussinesq–
Burgers system (1.4)–(1.5) and to discuss whether the Boussinesq–
Burgers system is capable of describing the bore propagation. To
resolve the difficulty brought by the dispersion term ϵuxxt , we
shall introduce a change of variable

v = u − ϵuxx

and transform the Boussinesq–Burgers system (1.4)–(1.5) to a
system of three equations⎧⎪⎨⎪⎩
wt + (wu)x = wxx,

vt + (w +
u2
2 )x =

1
ϵ
(u − v),

uxx =
1
ϵ
(u − v),

(5.1)

ith initial value

w, v)(x, 0) = (w0, v0)(x) →

{
(w−, v−) as x → −∞,

(w+, v+) as x → +∞
(5.2)

here v± = u± and

= u − ϵu . (5.3)
0 0 0xx

11
Below we shall numerically solve the transformed system (5.1)–
(5.2) by the Matlab PDEPE solver based on finite difference
scheme and implement three different types of initial data related
to the three different wave profiles constructed in Theorem 2.1.
For each type of initial data, we numerically solve (5.1)–(5.2)
for weak dispersion (i.e. ϵ > 0 is small) and strong dispersion
(i.e. ϵ > 0 is large) to illustrate the generated wave profiles and
to explore the effect of dispersion on the wave propagation. In all
cases, u− is a given positive constant (see Theorem 2.1).

We first consider the generation of traveling wave profiles
connecting B to O shown in Theorem 2.1-(i), where u+ = 0,

− =
u2
−

2 and w+ = 0. In this case we assume the initial data
(w0, u0) are given by

0 =
w−

1 + e2(x−50) , u0 =
u−

1 + e2(x−50) (5.4)

and v0 is given through (5.3). In the simulations, we choose
u− = 1, w− = 0.5. The numerical solutions of (5.1) with (5.4)
are plotted in Fig. 5 where we only show the numerical results
for w and u which are unknowns of the original Boussinesq–
Burgers system (1.4)–(1.5). From the simulations shown in Fig. 5,
we observe that monotonically decreasing traveling waves are
generated when the fluid dispersion is weak (see the case ϵ = 0.1
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Fig. 7. Numerical simulations of wave propagation and stabilization of the model (1.4) with initial data (w0, u0) given by (5.6).
d
i

c

in column (a) of Fig. 5), which is well consistent with the results of
Theorem 2.1-(i). If the dispersion is strong (see the case ϵ = 40 in
column (b) of Fig. 5), we find that the Boussinesq–Burgers system
will generate propagating non-monotone wave profiles where in
particular there is a wave surge appearing (see the profile of w in
Fig. 5-(b)) which is relevant to the bore formation.

Next we consider the development of traveling wave profiles
connecting B to A shown in Theorem 2.1-(ii), where u+ =

u−

2 > 0,

w− = 0 and w+ =
u2
−

8 . For numerical simulations, we set the
initial data as

w0 =
w+

1 + e−2(x−50) , u0 = u+ +
1

1 + e2(x−50) . (5.5)

n our simulations, we choose u− = 2 and hence u+ = 1, w+ =

.5. We plot the numerical simulations in Fig. 6. On one hand, we
ee that the monotone propagation waves are generated for both
and u when the dispersion is weak (small ϵ), which confirms

he results of Theorem 2.1-(ii). On the other hand, we also observe
hat the strong fluid dispersion will have large impact on the fluid
peed u which becomes oscillatory at the wave trailing edge. It
s straightforward to observe that the fluid dispersion has much
arger influence on the fluid speed than the fluid free surface
eight, in contrast to the case shown in Fig. 5 where the fluid
12
ispersion has stronger influence on the fluid free surface height
nstead.

Finally we explore the development of traveling wave profiles
onnecting A to O shown in Theorem 2.1-(iii), where u+ = 0,
w− = 0 and w+ = 0. For this case, we set the initial data for our
numerical simulations as

w0 =
ex−50

1 + e2(x−50) , u0 =
u−

1 + e2(x−50) (5.6)

and v0 is again given by (5.3). By choosing u− = 1, the numerical
simulations of stable propagation waves generated by (5.1)–(5.2)
are shown in Fig. 7, where we see that when the fluid dispersion
is weak, wave propagation appears where the profile of the fluid
surface w is non-monotone (i.e. solitary wave) and changes the
monotonicity once while the fluid speed profile u is monotone.
However if the dispersion intensity is large, the wave speed is
no longer monotone but becomes oscillatory at the trailing edge.
This again shows that strong dispersion will have considerable
impact on the wave propagation properties, especially on the
fluid propagation speed. More importantly, the numerical simu-
lations illustrate that the solitary wave profile w along with the
wavy profile u in the case of strong dispersion is consistent with
the profiles of weak bores. This implies the Boussinesq–Burgers
system is capable of describing the propagation of bores.
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From the above numerical simulations, we find that the
Boussinesq–Burgers system (1.4)–(1.5) with weak dispersion (ϵ is
small) may generate traveling wave solution pairs (W ,U) where
the fluid velocity U is always monotonically decreasing. This
monotonicity property of U enables us to prove the nonlinear
stability of traveling wave solutions as asserted in Theorem 2.2.
However, if the dispersion is strong (ϵ is large), we are un-
ble to prove the existence of traveling wave solutions to the
oussinesq–Burgers system (1.4)–(1.5). Our numerical simula-
ions indicate that the wave profiles connecting the asymptotic
tates (w−, u−) and (w+, u+) still exist for the strong dispersion,
ut the profile U will lose monotonicity. As a consequence, the
stimates of proving the stability results shown in Section 4 are
o longer valid. Hence the global dynamics and asymptotic pro-
iles of the Boussinesq–Burgers system (1.4) with large dispersion
emains an interesting analytical question for future studies.
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