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Abstract In this paper, we introduce a new class of nonnegative tensors — strictly nonnegative tensors.

A weakly irreducible nonnegative tensor is a strictly nonnegative tensor but not vice versa. We show that

the spectral radius of a strictly nonnegative tensor is always positive. We give some sufficient and necessary

conditions for the six well-conditional classes of nonnegative tensors, introduced in the literature, and a full

relationship picture about strictly nonnegative tensors with these six classes of nonnegative tensors. We then

establish global R-linear convergence of a power method for finding the spectral radius of a nonnegative tensor

under the condition of weak irreducibility. We show that for a nonnegative tensor T , there always exists a

partition of the index set such that every tensor induced by the partition is weakly irreducible; and the spectral

radius of T can be obtained from those spectral radii of the induced tensors. In this way, we develop a convergent

algorithm for finding the spectral radius of a general nonnegative tensor without any additional assumption.

Some preliminary numerical results show the feasibility and effectiveness of the algorithm..
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1 Introduction

Recently, the research topic on eigenvalues of nonnegative tensors has attracted much attention [2–8,10–

14,16,18–27]. Researchers studied the Perron-Frobenius theorem for nonnegative tensors and algorithms

for finding the largest eigenvalue, i.e., the spectral radius, of a nonnegative tensor. Six well-conditional

classes of nonnegative tensors have been introduced: irreducible nonnegative tensors [3, 12], essentially

positive tensors [16], primitive tensors [4], weakly positive tensors [25], weakly irreducible nonnegative

tensors [8] and weakly primitive tensors [8]. Zhang, Qi and Xu [25] concluded the relationships among the

first four classes of nonnegative tensors. Friedland, Gaubert and Han [8] introduced weakly irreducible

nonnegative tensors and weakly primitive tensors. These two classes, as their names suggest, are broader

than the classes of irreducible nonnegative tensors and primitive tensors respectively.

In the next section, we propose a new class of nonnegative tensors, we call them strictly nonnega-

tive tensors. We show that the class of strictly nonnegative tensors strictly contains the class of weakly
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irreducible nonnegative tensors mentioned above. We also prove that the spectral radius of a strictly non-

negative tensor is always positive. This further strengthens the Perron-Frobenius results for nonnegative

tensors in the literature [3–5,8, 18,19].

In Section 3, we give sufficient and necessary conditions for the six well-conditional classes of non-

negative tensors, introduced in the literature, and a full relationship picture about strictly nonnegative

tensors with these six classes of nonnegative tensors.

Friedland, Gaubert and Han [8] proposed a power method for finding the largest eigenvalue of a

weakly irreducible nonnegative tensor, and established its R-linear convergence under the condition of

weak primitivity. In Section 4, we modify that method and establish its global R-linear convergence for

weakly irreducible nonnegative tensors.

It is well known for nonnegative matrices that: for a general nonnegative matrix, we can place it into

an upper block triangular form with irreducible blocks through simultaneous row/column permutations,

and the spectral radius is equal to the largest of the spectral radii of the block sub-matrices. Can this

result be generalized for nonnegative tensors? The answer is not so obviously: there are two concepts

of “irreducibility”, namely irreducibility [3, 12] and weak irreducibility [8]. Can the above result be

generalized based on either, both or neither? We will give an affirmative answer to these questions. We

show that the result can be generalized based on weak reducibility but not reducibility in Section 5. We

show that for a nonnegative tensor T , always there exists a partition of the index set {1, . . . , n} such

that every tensor induced by the partition is weakly irreducible, and the largest eigenvalue of T can be

obtained from those largest eigenvalues of the induced tensors.

In Section 6, based on the power method for weakly irreducible nonnegative tensors proposed in

Section 4, we develop a convergent algorithm for finding the spectral radius of a general nonnegative

tensor without any additional assumption. We report some preliminary numerical results of the proposed

method for general nonnegative tensors. These numerical results demonstrate the feasibility and efficiency

of the proposed algorithm. Conclusions and remarks are given in Section 7.

Here is some notation in this paper. A tensor T in the field ℜ of real numbers of order m and

dimension n with m,n > 2 is an m-way array which can be denoted by (Ti1...im) with Ti1...im ∈ ℜ for all

ij ∈ {1, . . . , n} and j ∈ {1, . . . ,m}. For a tensor T of order m > 2 and dimension n > 2, if there exist

λ ∈ C and x ∈ Cn \ {0} such that

(Txm−1)i :=
n∑

i2,...,im=1

Tii2...imxi2 · · ·xim = λxm−1
i , ∀i ∈ {1, . . . , n} (1.1)

holds, then λ is called an eigenvalue of T , x is called a corresponding eigenvector of T with respect to

λ, and (λ, x) is called an eigenpair of T . This definition was introduced by Qi [17] when m is even

and T is symmetric (i.e., Tj1...jm = Ti1...im among all the permutations (j1, . . . , jm) of (i1, . . . , im)).

Independently, Lim [12] gave such a definition but restricted x to be a real vector and λ to be a real

number. Let ℜn
+ := {x ∈ ℜn | x > 0} and ℜn

++ := {x ∈ ℜn | x > 0}. Suppose that T is a nonnegative

tensor, i.e., that all of its entries are nonnegative. It can be seen that if we define function FT : ℜn
+ → ℜn

+

associated the nonnegative tensor T as

(FT )i(x) :=

 n∑
i2,...,im=1

Tii2...imxi2 · · ·xim

 1
m−1

(1.2)

for all i ∈ {1, . . . , n} and x ∈ ℜn
+, then (1.1) is strongly related to the eigenvalue problem for the

nonlinear map FT discussed in [15]. Denote by ρ(T ) := max{|λ| | λ ∈ σ(T )} where σ(T ) is the set of

all the eigenvalues of T . We call ρ(T ) and σ(T ) the spectral radius and the spectrum of the tensor T ,

respectively.
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2 Strictly nonnegative tensors

In this section, we propose and analyze a new class of nonnegative tensors, namely strictly nonnegative

tensors. To this end, we first recall several concepts related to nonnegative tensors in the literature

[3, 4, 8, 12,16,25].

Definition 2.1. Suppose that T is a nonnegative tensor of order m and dimension n.

• T is called reducible if there exists a nonempty proper index subset I ⊂ {1, . . . , n} such that

Ti1i2...im = 0, ∀i1 ∈ I, ∀i2, . . . , im /∈ I. (2.1)

If T is not reducible, then T is called irreducible.

• T is called essentially positive if Txm−1 ∈ ℜn
++ for any nonzero x ∈ ℜn

+.

• T is called primitive if for some positive integer k, F k
T (x) ∈ ℜn

++ for any nonzero x ∈ ℜn
+, here

F k
T := FT (F

k−1
T ).

• A nonnegative matrix M(T ) is called the majorization associated to the nonnegative tensor T , if

the (i, j)-th element of M(T ) is defined to be Tij...j for any i, j ∈ {1, . . . , n}. T is called weakly

positive if [M(T )]ij > 0 for all i ̸= j.

In Definition 2.1, the concepts of reducibility and irreducibility were proposed by Chang, Pearson

and Zhang [3, Definition 2.1] and Lim [12, Page 131], the concept of essential positivity was given by

Pearson [16, Definition 3.1], and the concept of primitivity was given by Chang, Pearson and Zhang [4,

Definition 2.6] while we used its equivalent definition [4, Thoerem 2.7]. In addition, the concept of

majorization was given by Chang, Pearson and Zhang [3, Definition 3.5] and earned this name in [16,

Definition 2.1]; and the concept of weak positivity was given by Zhang, Qi and Xu [25, Definition 3.1].

Friedland, Gaubert and Han [8] defined weakly irreducible polynomial maps and weakly primitive poly-

nomial maps by using the strong connectivity of a graph associated to a polynomial map [9]. Their

concepts for homogeneous polynomials gave the following two classes of nonnegative tensors.

Definition 2.2. Suppose that T is a nonnegative tensor of order m and dimension n.

• We call a nonnegative matrix G(T ) the representation associated to the nonnegative tensor T , if the

(i, j)-th element of G(T ) is defined to be the summation of Tii2...im with indices {i2, . . . , im} ∋ j.

• We call the tensor T weakly reducible if its representation G(T ) is a reducible matrix, and weakly

primitive if G(T ) is a primitive matrix. If T is not weakly reducible, then it is called weakly

irreducible.

Now, we introduce strictly nonnegative tensors.

Definition 2.3. Suppose that T is a nonnegative tensor of order m and dimension n. Then, it is called

strictly nonnegative if FT (x) > 0 for any x > 0.

Lemma 2.1. An m-th order n dimensional nonnegative tensor T is strictly nonnegative if and only if

the vector R(T ) with its i-th element being
∑n

i2,...,im=1 Tii2···im is positive.

Proof. By Definition 2.3, Tem−1 > 0 with e being the vector of all ones. So,

(
Tem−1

)
i
=

n∑
i2,...,im=1

Tii2···im > 0

for all i ∈ {1, . . . , n}. The “only if ” part follows.

Now, suppose R(T ) > 0. Then, for every i ∈ {1, . . . , n}, we could find j2i , . . . , jmi such that Tij2i ···jmi
>

0. So, for any x > 0, we have

(
Txm−1

)
i
=

n∑
j2,...,jm=1

Tij2···jmxj2 · · ·xjm > Tij2i ···jmi
xj2i

· · ·xjmi
> 0
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for all i ∈ {1, . . . , n}. Hence, the “if” part follows. The proof is complete. 2

Corollary 2.1. An m-th order n dimensional nonnegative tensor T is strictly nonnegative if it is weakly

irreducible.

Proof. Suppose that T is weakly irreducible. By the definition, we have that the signs of vectors G(T )e

and R(T ) are the same. Moreover, G(T )e is positive since T is weakly irreducible. Because, otherwise, we

would have a zero row of the matrix G(T ), which further implies that G(T ) is reducible, a contradiction

to Definition 2.2. So, by Lemma 2.1, T is strictly nonnegative. 2

A result similar to this corollary was given in (3.2) of [8]. On the other hand, the converse of Corollary

2.1 is not true in general.

Example 2.1. Let third order two dimensional nonnegative tensor T be defined as:

T122 = T222 = 1, and Tijk = 0 for other i, j, k ∈ {1, 2},

then R(T ) =

(
1

1

)
> 0. So T is strictly nonnegative by Lemma 2.1. While, G(T ) =

(
0 1

0 1

)
is a

reducible nonnegative matrix, so T is weakly reducible.

Proposition 2.1. An m-th order n dimensional nonnegative tensor T is strictly nonnegative if and only

if FT is strictly increasing [4], i.e., FT (x) > FT (y) for any x > y > 0.

Proof. If FT is strictly increasing, then, for any x > 0, we have Txm−1 > T0m−1 = 0. So, T is strictly

nonnegative. The “if” part follows.

Now, suppose that T is strictly nonnegative. Then, R(T ) > 0 by Lemma 2.1. So, for every i ∈
{1, . . . , n}, we could find j2i , . . . , jmi such that Tij2i ···jmi

> 0. If 0 6 x < y, then xj2i
· · ·xjmi

<

yj2i · · · yjmi
for any i ∈ {1, . . . , n}. Hence,

(
Tym−1

)
i
−
(
Txm−1

)
i

=

n∑
j2,...,jm=1

Tij2···jm (yj2 · · · yjm − xj2 · · ·xjm)

> Tij2i ···jmi

(
yj2i · · · yjmi

− xj2i
· · ·xjmi

)
> 0

for any i ∈ {1, . . . , n}. So, by (1.2), the “only if” part follows. The proof is complete. 2

We now show that the spectral radius of a strictly nonnegative tensor is always positive. At first, we

present some notation. For any nonnegative tensor T of order m and dimension n and a nonempty subset

I of {1, . . . , n}, the induced tensor denoted by TI of I is defined as the m-th order |I| dimensional tensor

{Ti1...im | i1, . . . , im ∈ I}. Here |I| denotes the cardinality of the set I.

Lemma 2.2. For any m-th order n dimensional nonnegative tensor T and nonempty subset I ⊆
{1, . . . , n}, ρ(T ) > ρ(TI).

Proof. Let K be a nonnegative tensor of the same size of T with KI = TI and zero anywhere else.

Then, obviously, T > K > 0 in the sense of componentwise and ρ(K) = ρ(TI). Now, by [19, Lemma 3.4],

ρ(K) 6 ρ(T ). So, the result follows immediately. 2

Theorem 2.1. If nonnegative tensor T is strictly nonnegative, then ρ(T ) > 0.

Proof. By Lemma 2.1, R(T ) > 0, so G(T )e > 0. We have two cases.

(I) If G(T ) is an irreducible matrix, then T is weakly irreducible by Definition 2.2. By Perron-Frobenius

Theorem [8], there is x > 0 such that Txm−1 = ρ(T )x[m−1]. Thus, by Lemma 2.1, the strict

positivity of T implies ρ(T ) > 0.

(II) If G(T ) is a reducible matrix, then T is weakly reducible by Definition 2.2. T may not have a

positive eigenvector. While, we can find a nonempty I ⊆ {1, . . . , n} such that [G(T )]ij = 0 for all

i ∈ I and j /∈ I. Denote by K the principal submatrix of G(T ) indexed by I, and T ′ the tensor
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induced by I. Since G(T )e > 0 and [G(T )]ij = 0 for all i ∈ I and j /∈ I, we still have Ke > 0.

Hence, T ′ is also strictly nonnegative since G(T ′) = K and Ke > 0. By Lemma 2.2, we have that

ρ(T ) > ρ(T ′).

So, inductively, we can finally get a tensor sequence T, T ′, . . . , T ∗ (since n is finite) with

ρ(T ) > ρ(T ′) > · · · > ρ(T ∗).

Moreover, T ∗ is either a weakly irreducible tensor when the dimension of T ∗ is higher than 1, or a positive

scalar since T ∗ is strictly positive. In both cases, ρ(T ∗) > 0 by (I). The proof is complete. 2

Example 2.2. Let third order 2 dimensional nonnegative tensor T be defined as:

T122 = 1, and Tijk = 0 for other i, j, k ∈ {1, 2}.

The eigenvalue equation of the tensor T becomes{
x2
2 = λx2

1,

0 = λx2
2.

Obviously, ρ(T ) = 0. Hence, a nonzero nonnegative tensor may have zero spectral radius. So, Theorem

2.1 is not vacuous in general.

At the end of this section, we summarize the Perron-Frobenius theorem for nonnegative tensors as

follows.

Theorem 2.2. Let T be an m-th order n dimensional nonnegative tensor, then

• (Yang and Yang [19]) ρ(T ) is an eigenvalue of T with a nonnegative eigenvector;

• (Theorem 2.1) if furthermore T is strictly nonnegative, then ρ(T ) > 0;

• (Friedland, Gaubert and Han [8]) if furthermore T is weakly irreducible, then ρ(T ) has a unique

positive eigenvector;

• (Chang, Pearson and Zhang [3]) if furthermore T is irreducible and if λ is an eigenvalue with a

nonnegative eigenvector, then λ = ρ(T );

• (Yang and Yang [19]) if T is irreducible, and T has k distinct eigenvalues of modulus ρ(T ), then

the eigenvalues are ρ(T ) exp(i2πj/k) with i2 = −1 and j = 0, . . . , k − 1;

• (Chang, Pearson and Zhang [4]) if furthermore T is primitive, then k = 1; and

• (Pearson [16]) if T is further essentially positive and m is even, ρ(T ) is real geometrically simple.

3 Relationships of the seven classes of nonnegative tensors

In this section, we make a clear diagram of the relationships among the concepts of nonnegative tensors

mentioned above. Let T be a nonnegative tensor of order m and dimension n throughout this section. Let

E be the identity tensor of order m and dimension n with its diagonal elements being 1 and off-diagonal

elements being 0 (when m = 2, E is the usual identity matrix).

The relationships among irreducibility, primitivity, weak positivity and essential positivity were char-

acterized in [25, Section 3], which can be summarized as follows:

• If T is essentially positive, then T is both weakly positive and primitive. But the converse is not

true. Moreover, there exists a tensor which is weakly positive and primitive simultaneously, but

not essentially positive.
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• There is no inclusion relation between the class of weakly positive tensors and the class of primitive

tensors.

• If T is weakly positive or primitive, then T is irreducible. But the converse is not true.

Actually, there are close relationships between (weakly) irreducibility and (weakly) primitivity, and

between weak positivity and essential positivity.

Theorem 3.3. A nonnegative tensor T is weakly irreducible / irreducible / weakly positive if and only if

T +E is weakly primitive / primitive / essentially positive. A nonnegative tensor T is essentially positive

if and only if it is weakly positive, and all of its diagonal elements are positive.

Proof.

• (Weakly irreducible / Weakly primitive) We have that nonnegative representation matrix G(T ) is

irreducible if and only if matrix G(T + E) is primitive [1, Theorem 2.1.3 and Corollary 2.4.8]. So,

by Definition 2.2, tensor T is weakly irreducible if and only if tensor T + E is weakly primitive.

• (Weakly positive / Essentially positive) The claims follow directly from Definition 2.1 and the

nonnegativity of T .

• (Irreducible / Primitive) First, it follows from [19, Theorem 6.6] immediately that T is irreducible

if and only if Fn−1
T+E(x) > 0 for any nonzero x ∈ ℜn

+.

Second, if T + E is primitive, then T + E is irreducible. We can prove that Fn−1
T+E(x) > 0 for

any nonzero x ∈ ℜn
+, which implies that T is irreducible by the above result. Actually, let K :=

T + 1
2E, then, 2K is irreducible and nonnegative. We have 2(T +E) = 2(K + 1

2E) = 2K +E and

Fn−1
2(T+E)(x) = Fn−1

2K+E(x) > 0 for any nonzero x ∈ ℜn
+ by the above result. It is straightforward to

check that Fn−1
2(T+E)(x) = 2

n−1
m−1Fn−1

T+E(x) for any nonzero x ∈ ℜn
+. So, the result follows. 2

We now discuss some other relations among these six classes of nonnegative tensors. By Definitions

2.1 and 2.2, if T is irreducible, then it is weakly irreducible. Nevertheless, the converse is not true in

general, which can be seen from the following example.

Example 3.3. Let T be a third order three dimensional tensor which is defined by T123 = T221 = T223 =

T312 = T332 = 1 and Tijk = 0 for other i, j, k ∈ {1, 2, 3}. Then, G(T ) =


0 1 1

1 2 1

1 2 1

 is irreducible but

T2ij = 0 for all i, j ∈ {1, 3}, which says that T is reducible.

By Definition 2.2, if T is weakly primitive, then T is weakly irreducible. The following example

demonstrates that the converse is not true.

Example 3.4. Let T be a third order three dimensional tensor which is defined by T122 = T233 = T311 = 1

and Tijk = 0 for other i, j, k ∈ {1, 2, 3}. Then, T is not weakly primitive, since its representation matrix

G(T ) =


0 1 0

0 0 1

1 0 0

 is not primitive. But it is an irreducible matrix, and hence, T is weakly irreducible

by Definition 2.2.

We now discuss the relations between primitivity and weak primitivity. The following result is a

complementary to that in Chang, Pearson and Zhang [4].

Lemma 3.3. For a nonnegative tensor T of order m and dimension n, if M(T ) is primitive, then T is

primitive, and if T is primitive, then G(T ) is primitive.

Proof. If M(T ) is primitive, then let K := [M(T )]
k
with k := n2 − 2n + 2, we have Kij > 0 for any

i, j ∈ {1, . . . , n} [1, Theorem 2.4.14]. Now, for any nonzero x ∈ ℜn
+, suppose xj > 0. Then, for any i ∈

{1, . . . , n}, there exist i2, . . . , ik such that M(T )ii2 ,M(T )i2i3 , . . . ,M(T )ikj > 0. So, Tii2...i2 , . . . , Tikj...j >
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0. Thus, we have
[
F k
T (x)

]
i
> 0 for any i ∈ {1, . . . , n}. As the above inequalities hold for any nonzero

x ∈ ℜn
+, we obtain that T is primitive.

If T is primitive, then for some integer k > 0, F k
T (x) > 0 for any nonzero x ∈ ℜn

+. For any i ∈ {1, . . . , n},
let ej denote the j-th column of the n × n identity matrix for any j ∈ {1, . . . , n}. We thus have[
F k
T (ej)

]
i
> 0. So, we must have indices {i22, . . . , i2m}, {i31, . . . , i3m}, . . ., {ik−1

1 , . . . , ik−1
m }, ik such that

Tii22...i
2
m
, Ti31...i

3
m
, . . . , Tik−1

1 ...ik−1
m

, Tikj...j > 0 and il+1 ∈ {il2, . . . , ilm} for l ∈ {1, . . . , k − 1}. Thus, if we let

L := [G(T )]
k
, we should have Lij > 0 for all i, j ∈ {1, . . . , n}. Hence, G(T ) is primitive. 2

By Lemma 3.3 and Definition 2.2, if T is primitive, then T is weakly primitive.

We list some further relationships among the concepts mentioned above as follows:

• By Example 3.3, we see that G(T ) is primitive but T is reducible since T2ij = 0 for all i, j ∈ {1, 3}.
Hence, there exists a nonnegative tensor which is weakly primitive but not irreducible.

• Let T be a third order two dimensional tensor which is defined by T122 = T211 = 1 and Tijk = 0 for

other i, j, k ∈ {1, 2}. Then, T is weakly positive, and hence, irreducible, but not weakly primitive.

• Let T be a third order two dimensional tensor which is defined by T122 = T211 = T212 = T121 = 1

and Tijk = 0 for other i, j, k ∈ {1, 2}. Then, T is weakly positive but not primitive, since Te21 = e2

and Te22 = e1. However, it is weakly primitive, since G(T ) =

(
1 2

2 1

)
is obviously primitive.

Using Corollary 2.1 and Example 2.1, we can summarize the relationships obtained so far in Figure 1.

Strictly Nonnegative

Weakly Irreducible

Weakly Primitive

Irreducible

Primitive
Essentially

Positive
Weakly

Positive

Figure 1 Relationships of the seven classes of nonnegative tensors

4 Global R-linear convergence of a power method for weakly irreducible

nonnegative tensors

We present here a modification of the power method proposed in [8].
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Algorithm 4.1. (A Higher Order Power Method (HOPM))

Step 0 Initialization: choose x(0) ∈ ℜn
++. Let k := 0.

Step 1 Compute

x̄(k+1) := T (x(k))m−1, x(k+1) :=
(x̄(k+1))

[ 1
m−1

]

eT
[
(x̄(k+1))

[ 1
m−1

]
] ,

α
(
x(k+1)

)
:= max16i6n

(T (x(k))m−1)
i

(x(k))
m−1

i

and β
(
x(k+1)

)
:= min16i6n

(T (x(k))m−1)
i

(x(k))
m−1

i

.

Step 2 If α
(
x(k+1)

)
= β

(
x(k+1)

)
, stop. Otherwise, let k := k + 1, go to Step 1.

Algorithm 4.1 is well-defined if the underlying tensor T is a strictly nonnegative tensor, as in this case,

Txm−1 > 0 for any x > 0. Hence, Algorithm 4.1 is also well-defined for weakly irreducible nonnegative

tensors. The following theorem establishes the convergence of Algorithm 4.1 if the underlying tensor T

is weakly primitive, where we need to use the concept of Hilbert’s projective metric [15]. We first recall

such a concept. For any x, y ∈ ℜn
+ \ {0}, if there are α, β > 0 such that αx 6 y 6 βx, then x and y are

called comparable. If x and y are comparable, and define

m(y/x) := sup{α > 0 | αx 6 y} and M(y/x) := inf{β > 0 | y 6 βx},

then, the Hilbert’s projective metric d can be defined by

d(x, y) :=

{
log(M(y/x)

m(y/x) ), if x and y are comparable,

+∞, otherwise

for x, y ∈ ℜn
+ \ {0}. Note that if x, y ∈ ∆n := {z ∈ ℜn

++ | eT z = 1}, then d(x, y) = 0 if and only if x = y.

Actually, it is easy to check that d is a metric on ∆n.

Theorem 4.4. Suppose that T is a weakly irreducible nonnegative tensor of order m and dimension n.

Then, the following results hold.

(i) T has a positive eigenpair (λ, x), and x is unique up to a multiplicative constant.

(ii) Let (λ∗, x
∗) be the unique positive eigenpair of T with

∑n
i=1(x

∗)i = 1. Then,

min
x∈ℜn

++

max
16i6n

(
Txm−1

)
i

xm−1
i

= λ∗ = max
x∈ℜn

++

min
16i6n

(
Txm−1

)
i

xm−1
i

.

(iii) If (ν, v) is another eigenpair of T , then |ν| 6 λ∗.

(iv) Suppose that T is weakly primitive and the sequence {x(k)} is generated by Algorithm 4.1. Then,

{x(k)} converges to the unique vector x∗ ∈ ℜn
++ satisfying T (x∗)m−1 = λ∗(x

∗)[m−1] and
∑n

i=1 x
∗
i =

1, and there exist constant θ ∈ (0, 1) and positive integer M such that

d(x(k), x∗) 6 θ
k
M
d(x(0), x∗)

θ
(4.1)

holds for all k > 1.

Proof. Except the result in (4.1), all the other results in this theorem can be easily obtained from [8,

Theorem 4.1, Corollaries 4.2, 4.3 and 5.1]. So, we only give the proof of (4.1) here. We have the following

observations first:

• ℜn
+ is a normal cone in Banach space ℜn [15], since y > x > 0 implies ∥y∥ > ∥x∥;
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• ℜn
+ has nonempty interior ℜn

++ which is an open cone, and FT : ℜn
++ → ℜn

++ is continuous and

order-preserving by Corollary 2.1 and the nonnegativity of tensor T ;

• FT is homogeneous of degree 1 in ℜn
++;

• the set ∆n is connected and T has an eigenvector x∗ in ∆n by Theorem 4.4 (i);

• by (1.2), FT is continuously differentiable in an open neighborhood of x∗, since x∗ > 0;

• by Definition 2.2, G(T ) is primitive, hence there exists an integer N such that [G(T )]
N

> 0. So,

[G(T )]
N
x is comparable with x∗ for any nonzero x ∈ ℜn

+;

• G(T ) : ℜn → ℜn is a compact linear map, hence its essential spectrum radius is zero [15, Page 38],

while its spectral radius is positive since it is a primitive matrix [1].

Hence, by [15, Corollary 2.5 and Theorem 2.7], we have that there exist a constant θ ∈ (0, 1) and a

positive integer M such that

d(x(Mj), x∗) 6 θjd(x(0), x∗), (4.2)

where d denotes the Hilbert’s projective metric on ℜn
+ \ {0}.

By [15, Proposition 1.5], we also have that

d(FT (x), FT (y)) 6 d(x, y) (4.3)

for any x, y ∈ ℜn
+. Since λ∗ > 0, by the property of Hilbert’s projective metric d [15, Page 13] we have

that

d(x(k+1), x∗) = d

(
FT (x

(k))

eTFT (x(k))
, x∗
)

= d

(
FT (x

(k))

eTFT (x(k))
,

1

(λ∗)
1

m−1

FT (x
∗)

)
= d(FT (x

(k)), FT (x
∗)) 6 d(x(k), x∗)

holds for any k. So, for any k > M , we can find the largest j such that k > Mj and M(j + 1) > k.

Hence,

d(x(k), x∗) 6 d(x(Mj), x∗) 6 θjd(x(0), x∗) 6 θ
k
M −1d(x(0), x∗)

which implies (4.1) for all k > M . When 1 6 k < M , we have θ
k
M > θ, since θ ∈ (0, 1). Therefore, (4.1)

is true for all k > 1. 2

We denote by x[p] a vector with its i-th element being xp
i .

By Theorems 3.3 and 4.4, the following result holds obviously.

Theorem 4.5. Suppose that T is a weakly irreducible nonnegative tensor of order m and dimension n,

and the sequence {x(k)} is generated by Algorithm 4.1 with T being replaced by T + E. Then, {x(k)}
converges to the unique vector x∗ ∈ ℜn

++ satisfying T (x∗)m−1 = λ∗(x
∗)[m−1] and

∑n
i=1 x

∗
i = 1, and there

exist a constant θ ∈ (0, 1) and a positive integer M such that (4.1) holds for all k > 1.

Remark 4.1. (i) Compared with [8, Corollaries 5.1 and 5.2], a main advantage of our results is that

(4.1) in Theorem 4.4(iv) gives the global R-linear convergence of Algorithm 4.1; while the geometric

convergence given in [8, Corollary 5.2] is essentially a result of local R-linear convergence. (ii) Compared

with the results in [25], a main advantage of our results is that the problem we considered in Theorem 4.5

is broader than that in [25], i.e., our results are obtained for the weakly irreducible nonnegative tensors;

while the results in [25] hold for the irreducible nonnegative tensors. There are also other differences

between Theorem 4.5 and those in [25], such as, Theorem 4.5 gives the global R-linear convergence of

the iterated sequence {x(k)} of Algorithm 4.1 for weakly irreducible nonnegative tenors; while the

Q-linear convergence of the corresponding eigenvalue sequence was proved in [25] for weakly positive

nonnegative tensors.

Theorem 4.5 is one of the corner stones for us to develop a method for finding the spectral radius of a

general nonnegative tensor.
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5 Partition a general nonnegative tensor to weakly irreducible nonnegative

tensors

If a nonnegative tensor T of order m and dimension n is weakly irreducible, then from Theorem 4.5, we

can find the spectral radius and the corresponding positive eigenvector of T by using Algorithm 4.1. If

T is not weakly irreducible, there is no guarantee for the convergence as that in Theorem 4.5.

In this section, we show that if a nonnegative tensor T is not weakly irreducible, then there exists

a partition of the index set {1, . . . , n} such that every tensor induced by the set in the partition is

weakly irreducible, and the largest eigenvalue of T can be obtained from these induced tensors. Thus,

we can find the spectral radius of a general nonnegative tensor by using Algorithm 4.1 for these induced

weakly irreducible tensors. At the end of this section, we show that, if weakly reducibility is replaced by

reducibility, a similar method does not work.

The following result is useful.

Theorem 5.6. [19, Theorem 2.3] For any nonnegative tensor T of order m and dimension n, ρ(T ) is an

eigenvalue with a nonnegative eigenvector x ∈ ℜn
+ corresponding to it.

To develop an algorithm for general nonnegative tensors, we prove the following theorem which is an

extension of the corresponding result for nonnegative matrices [1]. For the convenience of the subsequent

analysis, a one dimensional tensor is always considered as irreducible, hence weakly irreducible. Similarly,

one dimensional positive tensors are considered as primitive. Note that Algorithm 4.1 works for one

dimensional primitive tensor as well. However, weakly irreducible nonnegative tensors with dimension

one may have zero spectral radius, but they are always positive when the dimension n > 2 by Theorem

2.1. Note that, n is assumed to be no smaller than two throughout this paper, while the case of one

dimensional tensors is needed in the presentation of the partition results in this section.

Theorem 5.7. Suppose that T is a nonnegative tensor of order m and dimension n. If T is weakly

reducible, then there is a partition {I1, . . . , Ik} of {1, . . . , n} such that every tensor in {TIj | j ∈ {1, . . . , k}}
is weakly irreducible.

Proof. Since T is weakly reducible, by Definition 2.2 we can obtain that the matrix G(T ) is reducible.

Thus, we can find a partition {J1, . . . , Jl} of {1, . . . , n} such that

(⋆) every matrix (a second order tensor) in {[G(T )]Ji
| i ∈ {1, . . . , l}} is irreducible and [G(T )]st = 0

for any s ∈ Jp and t ∈ Jq such that p > q.

Actually, by the definition of reducibility of a matrix, we can find a partition {J1, J2} of {1, . . . , n} such

that [G(T )]st = 0 for any s ∈ J2 and t ∈ J1. If both [G(T )]J1
and [G(T )]J2

are irreducible, then we are

done. Otherwise, we can repeat the above analysis to any reducible block(s) obtained above. In this way,

since {1, . . . , n} is a finite set, we can arrive at the desired result (⋆).

Now, if every tensor in {TJi | i ∈ {1, . . . , l}} is weakly irreducible, then we are done. Otherwise, we

repeat the above procedure to generate a partition of T to these induced tensors which are not weakly

irreducible. Since {1, . . . , n} is finite, this process will stop in finite steps. Hence, the theorem follows.

2

By Theorems 5.7 and 3.3, we have the following corollary.

Corollary 5.2. Suppose that T is a nonnegative tensor of order m and dimension n. If T is weakly

irreducible, then T +E is weakly primitive; otherwise, there is a partition {I1, . . . , Ik} of {1, . . . , n} such

that every tensor in {(T + E)Ij | j ∈ {1, . . . , k}} is weakly primitive.

Given a nonempty subset I of {1, . . . , n} and an n vector x, we will denote by xI an n vector with its

i-th element being xi if i ∈ I and zero otherwise; and x(I) a |I| vector after deleting xj for j /∈ I from x.

Theorem 5.8. Suppose that T is a weakly reducible nonnegative tensor of order m and dimension n,

and {I1, . . . , Ik} is the partition of {1, . . . , n} determined by Theorem 5.7. Then, ρ(T ) = ρ(TIp) for some

p ∈ {1, . . . , k}.
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Proof. By the proof of Theorem 5.7, for the nonnegative matrix G(T ), we can find a partition {J1, . . . , Jl}
of {1, . . . , n} such that

• every matrix in {[G(T )]Ji
| i ∈ {1, . . . , l}} is irreducible and [G(T )]st = 0 for any s ∈ Jp and t ∈ Jq

such that p > q.

First, we have that ρ(TJi) 6 ρ(T ) for all i ∈ {1, . . . , l} by Lemma 2.2.

Then, denote by (ρ(T ), x) a nonnegative eigenpair of T which is guaranteed by Theorem 5.6. Since

[G(T )]ij = 0 for all i ∈ Jl and j ∈ ∪l−1
s=1Js. We must have

Tii2...im = 0 ∀i ∈ Jl, ∀{i2, . . . , im} ̸⊆ Jl. (5.1)

Hence, for all i ∈ Jl, we have

ρ(T )xm−1
i = (Txm−1)i

=

n∑
i2,...,im=1

Tii2...imxi2 · · ·xim

=
n∑

{i2,...,im}⊆Jl

Tii2...imxi2 · · ·xim

=
{
TJl

(x(Jl))
m−1

}
i
,

where the third equality follows from (5.1). If x(Jl) ̸= 0, then (ρ(T ), x(Jl)) is a nonnegative eigenpair of

tensor TJl
, and if x(Jl) = 0, then we have

T∪l−1
j=1Jj

(
x(∪l−1

j=1Jj)
)m−1

= ρ(T )
[
x(∪l−1

j=1Jj)
][m−1]

.

In the later case, repeat the above analysis with T being replaced by T∪l−1
j=1Jj

. Since x ̸= 0 and l is finite,

we must find some t ∈ {1, . . . , l} such that x(Jt) ̸= 0 and (ρ(T ), x(Jt)) is a nonnegative eigenpair of the

tensor TJt .

Now, if TJt is weakly irreducible, we are done since Jt = Ip for some p ∈ {1, . . . , k} by the proof

of Theorem 5.7. Otherwise, repeat the above analysis with T and x being replaced by TJt and x(Jt),

respectively. Such a process is finite, since n is finite. Thus, we always obtain a weakly irreducible

nonnegative tensor TIp with Ip ⊆ {1, . . . , n} for some p such that (ρ(T ), x(Ip)) is a nonnegative eigenpair

of the tensor TIp . Furthermore, (ρ(T ), xS) with S := ∪p
i=1Ip is a nonnegative eigenpair of tensor T .

The proof is complete. 2

Note that if T is furthermore symmetric, then we can get a diagonal block representation of T with

diagonal blocks TIi (after some permutation, if necessary). Then, by Corollary 5.2 and Theorems 4.5, 5.7

and 5.8, we can get the following theorem.

Theorem 5.9. Suppose that T is a nonnegative tensor of order m and dimension n.

(a) If T is weakly irreducible, then T + E is weakly primitive by Theorem 3.3, and hence, Algorithm

4.1 with T being replaced by T + E converges to the unique positive eigenpair (ρ(T + E), x) of

T + E. Moreover, (ρ(T + E)− 1, x) is the unique positive eigenpair of T .

(b) If T is not weakly irreducible, then, we can get a set of weakly irreducible tensors {TIj | j = 1, . . . , k}
with k > 1 by Theorem 5.7. For each j ∈ {1, . . . , k}, we use item (a) to find the unique positive

eigenpair (ρ(TIj ), x
j) of TIj which is guaranteed by Corollary 5.2 when |Ij | > 2 or eigenpair (TIj , 1)

when |Ij | = 1. Then, ρ(T ) = maxj=1,...,k ρ(TIj ) by Theorem 5.8. If T is furthermore symmetric,

then, x with x(Ij∗) = xj∗ is a nonnegative eigenvector of T where j∗ ∈ argmaxj=1,...,kρ(TIj )

Remark 5.2. By Theorem 5.9 and Algorithm 4.1, if nonnegative tensor T is weakly irreducible, then,

the spectral radius of T can be found directly by Algorithm 4.1 with T being replaced by T + E. If
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T is not weakly irreducible, then, we have to find the partition of {1, . . . , n} determined by Theorem

5.7. Fortunately, we can find such a partition through the corresponding partition of the nonnegative

representation matrix of T and its induced tensors according to Theorem 5.8. The specific method of

finding such a partition is given in the next section.

Most of the known papers, which established the Perron-Frobenius theorem and showed the convergence

of the power method for nonnegative tensors, concentrated on the class of irreducible nonnegative tensors

[6]. A natural question is that, for any given reducible nonnegative tensor T , whether a partition of T

similar to the result given in Theorem 5.7 can be derived or not. If so, whether the spectral radius of T

can be obtained by using the power method for the induced irreducible nonnegative tensors or not. At the

end of this section, we answer these two questions. The answer to the first question is positive, which is

given as follows.

Theorem 5.10. Suppose that T is a nonnegative tensor of order m and dimension n. If T is reducible,

then there is a partition {I1, . . . , Ik} of {1, 2, . . . , n} such that any one of the tensors {TIj | j ∈ {1, . . . , k}}
is irreducible and

Tst2...tm = 0, ∀s ∈ Ip, ∀{t2, . . . , tm} ⊂ Iq, ∀p > q.

Proof. Since T is reducible, by the definition of reducibility, there exists a nonempty proper subset I2
of {1, . . . , n} such that

Tii2...im = 0, ∀i ∈ I2, ∀i2, . . . , im ∈ I1 := {1, . . . , n} \ I2.

If both TI1 and TI2 are irreducible, then we are done. Without loss of generality, we assume that TI1 is

irreducible and TI2 is reducible. Then, by the reducibility of TI2 , we can get a partition {J2, J3} of I2
such that

Tii2...im = 0, ∀i ∈ J3, ∀i2, . . . , im ∈ J2 := I2 \ J3.

If both TJ2 and TJ3 are irreducible, then we are done, since {I1, J2, J3} is the desired partition of

{1, . . . , n}. Otherwise, repeating the above procedure, we can get the desired results, since n is finite. 2

However, the answer to the second question is negative, which can be seen by the following example.

Example 5.5. Let T be a third order two dimensional tensor which is defined by

T111 = 1, T112 = T121 = T211 = 4, T122 = T212 = T221 = 0, and T222 = 1.

Since T122 = 0, the tensor T is reducible. And T111 = T222 = 1 is the largest eigenvalue of both induced

tensors by Theorem 5.10. While the nonnegative eigenpairs of T are

(1, (0, 1)T ) and (7.3496, (0.5575, 0.4425)T ).

This example prevents us to use ρ(TIi)s’ to get ρ(T ) under the framework of irreducibility. In addition,

it is easy to see that checking weak irreducibility of a tensor T is much easier than checking irreducibility

of the tensor T , since the former is based on a nonnegative matrix which has both sophisticated theory

and algorithms [1].

6 A specific algorithm and numerical experiments

In this section, based on Algorithm 4.1, Theorem 4.5, and the theory established in Section 5, we develop

a specific algorithm for finding the spectral radius of a general nonnegative tensor.
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6.1 A specific algorithm

In this subsection, we give an algorithm for finding the spectral radius of a nonnegative tensor. We need

an algorithm to find the irreducible blocks of a nonnegative matrix M . There are sophisticated algorithms

for it. For example, the following naive approach is based on the fact that a nonnegative matrix M is

irreducible if and only if (M + E)
n−1

> 0 [1].

Algorithm 6.2. (Irreducible blocks of nonnegative matrices)

Step 0 Given a nonnegative matrix M , let k = 1 and C1 := M + E.

Step 1 Until k = n− 1, repeat Ck := Ck−1(M + E) and k := k + 1.

Step 2 Sort the numbers of nonzero elements of columns of Cn−1 in ascend order, then perform sym-

metric permutation to Cn−1 according to the sorting order into a matrix K; sort the numbers

of nonzero elements of rows of K in descend order, then perform symmetric permutation to K

according to the sorting order into a matrix L. Record the two sorting orders.

Step 3 Let i = 1, j = 1 and s = 1, create an index set Ij and an vector ind, put i into Ij and index it

to be the s-th element in Ij , and set ind(i) to be 1.

Step 4 If L(d, Ij(s)) > 0 and L(Ij(s), d) > 0 for some d ∈ {1, . . . , n} with ind(d) being not 1, where

Ij(s) is the s-th element in Ij , set s := s+ 1 and put d into Ij and index it to be the s-th element

in Ij . Set ind(d) to be 1, and i := i+ 1. If there is no such d or i = n, go to Step 6; if there is no

such d but i < n, go to Step 5.

Step 5 Let j := j + 1 and s := 1. Create index set Ij , and find a d with ind(d) being not 1, put d into

Ij and index it to be the s-th element in Ij . Set ind(d) to be 1, go back to Step 4.

Step 6 Using sorting orders in Step 2 and partition {I1, . . . , Ik} found by Steps 3-5, we can find the

partition for the matrix M easily.

Now, we propose a specific algorithm for finding the spectral radius of a general nonnegative tensor.

Algorithm 6.3. (Spectral radius of a nonnegative tensor)

Step 0 Let v be an n vector with its elements being zeros, and i = 1.

Step 1 Given a nonnegative tensor T of order m and dimension n, compute its representation matrix

G(T ) as Definition 2.2.

Step 2 Finding out the partition {I1, . . . , Ik} of {1, . . . , n} using Algorithm 6.2 with M being replaced

by G(T ).

Step 3 If k = 1, using Algorithm 4.1 to finding out the spectral radius ρ of T , set v(i) = ρ, and i = i+1.

Otherwise, go to Step 4.

Step 4 For j = 1, . . . , k, computing the induced tensor TIj and its corresponding representation matrix

Gj , set T as TIj , G(T ) as Gj and n as |Ij |, run subroutine Steps 2-4.

Step 5 Out put the spectral radius of T as maxni=1 v(i).

6.2 Numerical experiments

In this subsection, we report some preliminary numerical results for computing the spectral radius of a

general nonnegative tensor using Algorithm 6.3 (with Algorithm 4.1). All experiments are done on a PC

with CPU of 3.4 GHz and RAM of 2.0 GB, and all codes are written in MATLAB.

To demonstrate that Algorithm 6.3 works for general nonnegative tensors, we randomly generate third

order nonnegative tensors with dimension n which is specialized in Table 1. We generate the testing
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tensors by randomly generating their every element uniformly in [0, 1] with a density Den which is

specialized in Table 1. We use Algorithm 6.3 to find the spectral radii of the generated tensors for

every case, i.e., with different dimensions n and element density Den. The algorithm is terminated

if |α(x(k)) − β(x(k))| 6 10−6. For every case, we simulate 50 times to get the average spectral radius

ρ := α(x(k))+β(x(k))
2 , the average number of iterations Ite performed by Algorithm 4.1, the average weakly

irreducible blocks of the generated tensors Blks (which is the number of the sets in the partition), and

the average residual of Tx2 − ρx[2] with the found spectral radius ρ and its corresponding eigenvector x

in 2-norm Res. We also use Per to denote the percentage of weakly irreducible tensors generated among

the 50 simulations, and TolCpu to denote the total cputime spent for the simulation in every case. All

results are listed in Table 1.

Table 1 Numerical results

n Den ρ Per Ite Blks Res TolCpu

3 0.10 0.148 0.00 6.88 2.88 2.0516e-008 0.30

3 0.20 0.409 14.00 17.88 2.52 1.3521e-007 0.38

3 0.30 0.671 36.00 25.32 2.06 6.2038e-008 0.44

3 0.40 0.787 44.00 27.6 1.9 1.4773e-006 0.41

3 0.50 1.113 66.00 31.06 1.38 8.1021e-008 0.42

3 0.60 1.032 72.00 33.76 1.44 9.8837e-008 0.44

3 0.70 1.196 78.00 31.4 1.34 8.6830e-008 0.47

3 0.80 1.244 80.00 37.82 1.28 7.3281e-007 0.50

3 0.90 1.528 86.00 33.26 1.22 2.1994e-006 0.44

4 0.10 0.368 14.00 19.56 3.26 3.5644e-008 0.47

4 0.20 0.554 24.00 27.04 2.74 7.1762e-008 0.48

4 0.40 1.060 62.00 42.28 1.64 1.6366e-006 0.50

4 0.80 1.945 90.00 35.76 1.1 6.5548e-008 0.47

10 0.05 0.466 14.00 51.6 5.72 1.8168e-006 0.94

10 0.10 1.214 56.00 49.44 2.34 5.5063e-007 1.05

10 0.15 2.363 78.00 40.96 1.26 1.5255e-008 0.98

10 0.20 3.124 88.00 31.44 1.2 1.2771e-008 0.95

20 0.05 2.537 56.00 39.54 2.08 4.8818e-009 3.58

20 0.10 5.606 86.00 31.34 1.14 4.7892e-009 3.28

30 0.05 6.103 80.00 31.84 1.28 2.9270e-009 9.42

30 0.10 12.173 84.00 27.06 1.16 2.6974e-009 8.02

40 0.05 10.698 82.00 28.18 1.26 1.8279e-009 18.02

50 0.05 16.740 94.00 27.2 1.06 1.3807e-009 36.80

In addition, we also test the following example and the related numerical results are listed in Table

2, where Blk denotes the block number of the computation, Ite denotes the iteration number, and the

other items are clear from Algorithm 6.3. The initial points for both tests in Tables 1 and 2 are randomly

generated with their every element uniformly in (0, 1). All the simulated tensors are strictly nonnegative
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by the above simulation strategy, since every component of R(T ) is the summation of so many terms, it

is never zero in our simulation.

Example 6.6. Let third order three dimensional tensor T be defined by T111 = T222 = 1, T122 = 3,

T211 = 5, T333 = 4 and Tijk = 0 for other i, j, k ∈ {1, 2, 3}. Then, the eigenvalue problem (1.1) reduces

to: 
x2
1 + 3x2

2 = λx2
1,

5x2
1 + x2

2 = λx2
2,

4x2
3 = λx2

3.

It is easy to see that the tensor T is not weakly irreducible and the nonnegative eigenpairs of T are

(4, (0, 0, 1)T ) and (4.8730, (0.4365, 0.5635, 0)T ).

Hence, the spectral radius of T is 4.8730 which agrees the numerical results in Table 2. The algorithm

finds the partition as {I1 = {1, 2}, I2 = {3}}, which is the expected one.

Table 2 Numerical results for Example 6.6

Blk Ite α(x(k)) β(x(k)) α(x(k))− β(x(k)) ∥T (x(k))2 − α(x(k))+β(x(k))
2 (x(k))[2]∥

1 1 6.000 4.000 2.000e+000 1.414e+000

1 2 5.200 4.571 6.286e-001 1.134e-001

1 3 4.974 4.774 2.002e-001 3.573e-002

1 4 4.905 4.841 6.383e-002 1.143e-002

1 5 4.883 4.863 2.035e-002 3.641e-003

1 6 4.876 4.870 6.491e-003 1.162e-003

1 7 4.874 4.872 2.070e-003 3.704e-004

1 8 4.873 4.873 6.602e-004 1.181e-004

1 9 4.873 4.873 2.106e-004 3.767e-005

1 10 4.873 4.873 6.715e-005 1.201e-005

1 11 4.873 4.873 2.141e-005 3.832e-006

1 12 4.873 4.873 6.830e-006 1.222e-006

1 13 4.873 4.873 2.178e-006 3.897e-007

1 14 4.873 4.873 6.946e-007 1.243e-007

2 1 4.000 4.000 0.000e+000 0.000e+000

From Tables 1 and 2, we have some preliminary observations:

• Algorithm 6.3 can find the spectral radius of a general nonnegative tensor efficiently.

• As expected, the more dense of nonzero elements of the underlying tensor, the higher the probability

of it being weakly irreducible. We note that function sprand which is used in our test in MATLAB

does not return a full-dense matrix even with the density parameter being 1, so the percentage Per

for n = 3 is not close enough to 100 even when Den = 0.9.

• From Definition 2.2, we note that elements of G(T ) are the summation of so many elements of T .

So, it is possible that G(T ) is an irreducible matrix even when T is a very sparse tensor. This can

be noticed from the last several rows in Table 1.
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7 Conclusions and remarks

In this paper, we proposed a new class of nonnegative tensors — strictly nonnegative tensors, and proved

that the spectral radii for strictly nonnegative tensors are always positive. We discussed the relationships

among the seven well-conditional classes of nonnegative tensors, and showed that the class of strictly

nonnegative tensors strictly contains the other six classes of nonnegative tensors. We showed that a

modification of the power method in [8] for finding the spectral radius of a nonnegative tensor is globally

R-linearly convergent for weakly irreducible nonnegative tensors. We also showed that the spectral radius

of a general nonnegative tensor is equal to the spectral radii of some weakly irreducible sub-tensors of

it. Based on these two results, we proposed an algorithm for finding the spectral radius of a general

nonnegative tensor. The preliminary numerical results addressed the efficiency of the method.
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