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Abstract. In this paper, we study ordinary differential equations (ODE) coupled with solu-4
tions of a stochastic nonsmooth convex optimization problem (SNCOP). We use the regularization5
approach, the sample average approximation and the time-stepping method to construct discrete6
approximation problems. We show the existence of solutions to the original problem and the discrete7
problems. Moreover, we show that the optimal solution of the SNCOP with a strong convex objec-8
tive function admits a linear growth condition and the optimal solution of the regularized SNCOP9
converges to the least-norm solution of the original SNCOP, which are crucial for us to derive the10
convergence results of the discrete problems. We illustrate the theoretical results and applications11
for the estimation of the time-varying parameters in ODE by numerical examples.12

Key words. Dynamic system, stochastic nonsmooth optimization, regularization method, sam-13
ple average approximation, convergence analysis.14

MSC codes. 90C15, 90C33, 90C3915

1. Introduction. Let ξ be a random variable defined in the probability space16

(Ω,F ,P) with support set Ξ := ξ(Ω) ⊆ Rd. Let f : R × Rn × Rm × Ξ → Rn,17

g : R × Rn × Rm × Ξ → R, A : Ξ → Rq×n, B : Ξ → Rq×m and Q : R × Ξ → Rq18

be given mappings. In this paper, we consider the following dynamic system coupled19

with solutions of stochastic nonsmooth convex optimization:20

ẋ(t) = E[f(t, x(t), y(t), ξ)], x(0) = x0,(1.1)21

y(t) ∈ arg min
y∈Rm

E[g(t, x(t),y, ξ)]

s.t. y ∈ K(t, x(t)),
(1.2)22

where x0 ∈ Rn is an initial vector, and the set-valued function K : R+ ×Rn ⇒ Rm is23

defined as below24

K(t, x(t)) , {y ∈ Rm : E[A(ξ)]x(t) + E[B(ξ)]y + E[Q(t, ξ)] ≤ 0}.25

We assume that all expected values in problem (1.1)-(1.2) are well defined.26

Let ‖ · ‖ denote the Euclidean norm of a vector and a matrix. We suppose that27

there exists a measurable function κf : Ξ→ R+ with E[κf (ξ)] <∞ such that for any28

t1, t2 ∈ R+, u1, u2 ∈ Rn, v1, v2 ∈ Rm and almost everywhere (a.e.) ξ ∈ Ξ,29

‖f(t1, u1, v1, ξ)− f(t2, u2, v2, ξ)‖ ≤ κf (ξ)(|t1 − t2|+ ‖u1 − u2‖+ ‖v1 − v2‖).(1.3)30

We also assume that g(t, x(t), ·, ξ) is convex for any t ∈ R+, x(t) ∈ Rn and a.e. ξ ∈ Ξ,31

the functions g(·, ·, ·, ξ) and Q(·, ξ) are both continuous for a.e. ξ ∈ Ξ, and there exists32

a measurable function κQ : Ξ→ R+ with E[κQ(ξ)] <∞ such that ‖Q(t, ξ)‖ ≤ κQ(ξ)t33
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2 J. LUO AND X. CHEN

for any t ∈ R+ and a.e. ξ ∈ Ξ. Assume that g(·, ·, ·, ξ) is dominated by an integrable34

function for a.e. ξ ∈ Ξ. Then we know E[f(t, x(t), y(t), ξ)] is Lipschitz continuous and35

E[g(t, x(t), y(t), ξ)] is continuous with respect to (w.r.t.) (t, x(t), y(t)).36

The optimization problem (1.2) is a stochastic convex program for any fixed37

t ∈ R+ and x(t) ∈ Rn, since the objective function E[g(t, x(t), ·, ξ)] is convex and the38

feasible set K(t, x(t)) is a convex set. The objective function E[g(t, x(t), ·, ξ)] is not39

necessarily differentiable and the solution set of (1.2) may have multiple elements.40

Problem (1.1)-(1.2) can be equivalently written as the following dynamic generalized41

stochastic variational inequality:42 {
ẋ(t) = E[f(t, x(t), y(t), ξ)], x(0) = x0,

0 ∈ ∂y(t)E[g(t, x(t), y(t), ξ)] +NK(t,x(t))(y(t)),
(1.4)43

where ∂y(t)E[g(t, x(t), y(t), ξ)] is the subdifferential of E[g(t, x(t), y(t), ξ)] at the point44

y(t) and NK(t,x(t))(y(t)) denotes the normal cone of K(t, x(t)) at y(t) [24]. When45

the function E[g(t, x(t), ·, ξ)] is continuously differentiable, we can derive a differential46

stochastic variational inequality (DSVI):47 {
ẋ(t) = E[f(t, x(t), y(t), ξ)], x(0) = x0,

0 ∈ ∇y(t)E[g(t, x(t), y(t), ξ)] +NK(t,x(t))(y(t)).
(1.5)48

It is easy to see that problem (1.5) is a special case of (1.4) and problem (1.1)-(1.2).49

The DSVI (1.5) includes the deterministic differential variational inequality (DVI),50

which has many important applications in engineering, economics and biology. The51

DVI involves dynamics, variational inequalities and equilibrium conditions, and has52

been studied in [3, 8, 9, 10, 22, 28, 30, 31].53

It should be noted that, when the variational inequality (VI) or optimization54

problem (1.2) has multiple solutions, a wrong selection of solutions may make the55

corresponding ODE unsolvable or numerical scheme divergent. The authors in [14]56

proposed to use the least-norm solution of the VI to ensure the convergence of time-57

stepping method for a special class of monotone DVI, which inspires our regularization58

approach for problem (1.1)-(1.2) in this paper.59

The dynamic systems coupled with solutions of an optimization problem have a60

wide applications in many fields such as atmospheric chemistry [4, 16] and dynamic61

flux balance analysis in biological systems [33]. They have been extended to stochastic62

case in [23], where the authors investigated a dynamic flux balance analysis model63

with uncertainty. As mentioned in [16], the deterministic dynamic systems coupled64

with solutions of a convex optimization problem can be seen as an ODE-constrained65

optimization problem, which is proposed to estimate parameters for the ODE in [11].66

In [16], the authors proposed a numerical method for the differential equations coupled67

with a smooth nonconvex optimization problem and applied the Karush-Kuhn-Tucker68

conditions to reformulate the problem as the DVI. However, as we mentioned before,69

when the objective function is nonsmooth, we cannot transform problem (1.1)-(1.2)70

as the DVI and apply the existing methods and results. Therefore, we present the71

existence of solutions, numerical methods, convergence analysis and applications of72

(1.1)-(1.2) in this paper.73

The main contributions of this paper are twofold. (i) We give sufficient condi-74

tions for the existence of a solution (x, y) of problem (1.1)-(1.2) on [0, T ], where x75

is absolutely continuous and y is integrable. In addition, if the objective function76

in (1.2) is strongly convex, then problem (1.1)-(1.2) has a solution (x, y) over [0, T̃ ]77
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with x being continuously differentiable, and y being continuous for a positive number78

T̃ and admitting a linear growth condition. (ii) We propose a regularization meth-79

od to approximate the objective function in (1.2) by a strongly convex function and80

show the unique optimal solution of the regularized optimization problem converges81

to the least-norm optimal solution of (1.2) when the regularization parameter goes82

to zero. Moreover, we prove the existence of solutions to the discrete regularization83

problem using the sample average approximation (SAA) and the implicit Euler time-84

stepping scheme. We show the solution of the approximation problem constructed by85

the regularization approach, SAA and time-stepping method converges to a solution86

of (1.1)-(1.2) with probability 1 (w.p.1) by the repeated limits in the order of the87

regularization parameter goes to zero, the SAA sample size goes to infinity and the88

time-stepping step size goes to zero.89

The paper is organised as follows: Section 2 deals with the existence of solutions90

of problem (1.1)-(1.2). Section 3 studies the existence of solutions of the regularized91

problem of (1.1)-(1.2) and the convergence to the original problem as the regulariza-92

tion parameter approaches to zero. In Section 4, we present the existence of solutions93

of the SAA of (1.1)-(1.2) and the convergence analysis. In Section 5, we study the94

convergence of the time-stepping scheme and show the convergence properties of the95

discrete method using the SAA and the implicit Euler time-stepping scheme. Section96

6 gives a numerical example to illustrate the theoretical results obtained in this paper.97

And Section 7 shows the application of the estimation of the time-varying parameters98

in ODE. Some final conclusion remarks are presented in Section 8.99

1.1. Notation. Denote by B(v, r) the open ball centered by v ∈ Rn with the ra-100

dius of r in the Euclidean norm. For sets S1, S2 ⊆ Rn, we denote the distance from v ∈101

Rn to S1 and the deviation of the set S1 from the set S2 by dist(v, S1) = infv′∈S1
‖v−102

v′‖, and D(S1, S2) = supv∈S1
dist(v, S2), respectively. We also define the Hausdorff103

distance between the set S1 and the set S2 by H(S1, S2) = max{D(S1, S2),D(S2, S1)}.104

We define S1 +S2 = {z1 +z2 : z1 ∈ S1, z2 ∈ S2}. For a set S, intS denotes the interior105

of S and τS = {τz : z ∈ S} with a scalar τ . Let C1([a, b]) and C0([a, b]) be the spaces106

of continuously differentiable vector-valued functions and continuous vector-valued107

functions on [a, b], respectively.108

2. Existence of solutions. In this section, we show the existence of solutions109

to problem (1.1)-(1.2).110

Definition 2.1. [12, 26]111

(i) (lower semicontinuity). A set-valued mapping S : Rn1 ⇒ Rm1 is lower semi-112

continuous at z̄ ∈ Rn1 if for any open set BS with BS ∩S(z̄) 6= ∅, there exists113

σ > 0 such that S(z) ∩ BS 6= ∅ for any z ∈ B(z̄, σ).114

(ii) (upper semicontinuity). A set-valued mapping S : Rn1 ⇒ Rm1 is upper semi-115

continuous at z̄ ∈ Rn1 if for any open set BS with S(z̄) ⊆ BS , there exists116

σ > 0 such that S(z) ⊆ BS for any z ∈ B(z̄, σ).117

A set-valued mapping S is said to be continuous if and only if it is both upper118

and lower semicontinuous. Obviously, upper (lower) semicontinuity is nothing else119

than continuity if S is single-valued.120

Let S(t, x(t)) denote the optimal solution set of (1.2) for fixed t ∈ R+ and x(t) ∈121

Rn. For some T > 0, if there exists (x, y) ∈ C1([0, T ])× C0([0, T ]) fulfilling problem122

(1.1)-(1.2), we call (x, y) a classic solution of problem (1.1)-(1.2) on [0, T ]. We call123

(x, y) a weak solution of problem (1.1)-(1.2) over [0, T ] if x is absolutely continuous124
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4 J. LUO AND X. CHEN

and y is integrable over [0, T ] with y(t) ∈ S(t, x(t)) and125

x(t) = x0 +

∫ t

0

E[f(τ, x(τ), y(τ), ξ)]dτ.126

We first show the existence of solutions of problem (1.1)-(1.2) under the following127

assumption.128

Assumption 2.2. The set intK(0, x0) is not empty, the function E[g(0, x0, ·, ξ)] is129

level-bounded over K(0, x0) (i.e. all sets {y ∈ K(0, x0) : E[g(0, x0,y, ξ)] ≤ α} for130

α ∈ R are bounded) and the function f(t,x, ·, ξ) is affine for any t ∈ R, x ∈ Rn and131

a.e. ξ ∈ Ξ.132

Theorem 2.3. Suppose that Assumption 2.2 holds. Then there exists T0 > 0133

such that problem (1.1)-(1.2) has at least a weak solution (x∗, y∗) on [0, T ] for any134

T ≤ T0.135

Proof. Let K1(x,q) = {y ∈ Rm : E[A(ξ)]x + E[B(ξ)]y + q ≤ 0} for x ∈ Rn136

and q ∈ Rq. Denote q0 = E[Q(0, ξ)]. It is easy to see K1(x0,q0) = K(0, x0). Since137

intK1(x0,q0) 6= ∅, there are σ̆ > 0 and δ̆ > 0 such that intK1(x,q) 6= ∅ for any138

(x,q) ∈ B(x0, σ̆) × B(q0, δ̆). By the continuity of E[Q(·, ξ)], we conclude that there139

are σ̂ > 0 and δ̂ > 0 such that intK(t, x(t)) 6= ∅ for any (t, x(t)) ∈ [0, σ̂] × B(x0, δ̂)140

with x ∈ C0([0, σ̂]).141

It is easy to verify that K1(τx1 + (1 − τ)x2, τq1 + (1 − τ)q2) ⊃ τK1(x1,q1) +142

(1− τ)K1(x2,q2) for τ ∈ (0, 1), x1, x2 ∈ B(x0, σ̆) and q1, q2 ∈ B(q0, δ̆), which means143

that K1 is graph-convex. Then following from [24, Corollary 9.34], K1 is strictly144

continuous at any point of B(x0, σ̆)× B(q0, δ̆).145

Therefore, by the continuity of E[g(·, ·, ·, ξ)] and Assumption 2.2, there are two146

scalars σ and δ with σ̂ ≥ σ > 0 and δ̂ ≥ δ > 0 such that K is continuous over147

[0, σ]×B(x0, δ) and E[g(t, x(t), ·, ξ)] is level-bounded over K(t, x(t)) for any (t, x(t)) ∈148

[0, σ] × B(x0, δ) with x ∈ C0([0, σ]). According to [24, Example 1.11], we know149

that S(t, x(t)) is nonempty and compact for any (t, x(t)) ∈ [0, σ] × B(x0, δ) with150

x ∈ C0([0, σ]). It then derives that, by [26, Theorem 3.1], S is convex-valued and151

upper semicontinuous over [0, σ] × B(x0, δ), which means that there exists ρs > 0152

(independent of (t, x(t))) such that sup{‖y‖ : y ∈ S(t, x(t))} ≤ ρs over [0, σ]×B(x0, δ).153

Since S is convex-valued and E[f(t, x(t), ·, ξ)] is affine for t ∈ R and x(t) ∈ Rn,154

the set-valued mapping155

fS(t, x(t)) = {E[f(t, x(t),y, ξ)] : y ∈ S(t, x(t))}156

is convex-valued. Following from the Lipschitz property of E[f(·, ·, ·, ξ)], we know that157

there exists ρ̌f > 0 such that ‖E[f(t, x(t), y(t), ξ)]‖ ≤ ρ̌f (1 + |t| + ‖x(t)‖ + ‖y(t)‖).158

Therefore, there exists ρf > 0 such that the following linear growth condition holds159

for any (t, x(t)) ∈ [0, σ]× B(x0, δ)160

(2.1) sup{‖E[f(t, x(t), y(t), ξ)]‖ : y(t) ∈ S(t, x(t))} ≤ ρf (1 + ‖x(t)‖).161

It is obvious that fS is closed by the compactness of S. We then know that fS is162

upper semicontinuous over (t, x(t)) ∈ [0, σ]×B(x0, δ) since it is bounded on compact163

sets [1, Corollary 1 in Section 1 of Chapter 1].164

According to [12, Theorem 5.1] and [22, Lemma 6.1], we know that the following165
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differential inclusion166 {
ẋ(t) ∈ fS(t, x(t)),

x(0) = x0,
167

has at least one absolutely continuous solution x∗. According to [1, Corollary 1 in168

Section 14 of Chapter 1] and [22, Lemma 6.3], there exists an integrable function169

y∗(t) ∈ S(t, x∗(t)) such that170

x∗(t) = x0 +

∫ t

0

E[f(τ, x∗(τ), y∗(τ), ξ)]dτ.171

Clearly, there exists σT > 0 such that x∗(t) ∈ B(x0, δ) for any t ∈ [0, σT ]. By choosing172

T0 = min{σT , σ}, we can conclude the result.173

If optimization problem (1.2) has equality constraints with K(t, x(t)) = {y ∈174

Rm : E[A(ξ)]x(t) + E[B(ξ)]y + E[Q(t, ξ)] = 0}, we can replace “intK(0, x0) is not175

empty” by “K(0, x0) is not empty” in Assumption 2.2 and consider the relaxation set176

K(t, x(t), ε) , {y ∈ Rm : ‖E[A(ξ)]x(t) +E[B(ξ)]y+E[Q(t, ξ)]‖∞ ≤ ε}, where ε ≥ 0 is177

a scalar. Since K(0, x0) is not empty, we have intK(0, x0, ε) with ε > 0 is not empty.178

Let K̃(ε) = K(0, x0, ε). It is easy to see that K̃(ε) is graph-convex and the graph K̃(ε)179

is polyhedral, which implies from [24, Example 9.35] that K̃(ε) is Lipschitz continuous180

w.r.t. ε. Therefore, from the function E[g(0, x0, ·, ξ)] is level-bounded over K(0, x0),181

we have that E[g(0, x0, ·, ξ)] is level-bounded over K(0, x0, ε) with any sufficiently182

small ε > 0, which means that Assumption 2.2 holds to the relaxation optimization183

problem with intK(0, x0, ε) 6= ∅ for any sufficiently small ε > 0.184

It is obvious that K(t, x(t), ε) is also Lipschitz continuous w.r.t. ε with any given185

t and x(t). It means from [24, Definition 9.26, Corollary 4.7] that K(t, x(t), ε) ↓186

K(t, x(t)) as ε ↓ 0. Moreover, from [24, Proposition 7.4(f), Exercise 7.8(a)], we know187

that E[g(t, x(t), ·, ξ)] + IK(t,x(t),ε) →epi E[g(t, x(t), ·, ξ)] + IK(t,x(t)) as ε ↓ 0, where188

IK is the indicator function of set K. It then concludes by [24, Theorem 7.33] that189

limε↓0 D(Sε(t, x(t)),S(t, x(t))) = 0, where S(t, x(t)) and Sε(t, x(t)) denote the optimal190

solution sets of optimization problem (1.2) with equality constraints and its relaxation191

optimization problem with ε > 0, respectively. Hence by using this relaxation method,192

the results of this paper are also applicable without assume that intK(t, x(t)) 6= ∅.193

2.1. Existence in the strong convex case. In this subsection, we consider a194

special case of (1.2) where the objective function is strongly convex.195

Assumption 2.4. There exists a measurable function % : Ξ → R++ with 0 <196

E[%(ξ)] <∞ such that for any y1, y2 ∈ Rm and τ ∈ (0, 1),197

g(t,x, (1−τ)y1+τy2, ξ) ≤ (1−τ)g(t,x,y1, ξ)+τg(t,x,y2, ξ)−
1

2
%(ξ)τ(1−τ)‖y1−y2‖2198

holds for any fixed t ∈ R+, x ∈ Rn and a.e. ξ ∈ Ξ.199

Assumption 2.4 means that g(t,x, ·, ξ) is strongly convex for any fixed t ∈ R+,200

x ∈ Rn and a.e. ξ ∈ Ξ and E[g(t,x, ·, ξ)] is also strongly convex. Under Assumption201

2.4 we have the following result about the existence of solutions of problem (1.1)-(1.2).202

Theorem 2.5. Suppose that Assumption 2.4 holds and intK(0, x0) 6= ∅. Then203

there exists T̃ > 0 such that problem (1.1)-(1.2) has a classic solution (x̃, ỹ) on [0, T̃ ].204

In addition, there exists ρ > 0 such that205

(2.2) ‖ỹ(t)‖ ≤ ρ(1 + |t|+ ‖x̃(t)‖) for t ∈ [0, T̃ ].206
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6 J. LUO AND X. CHEN

Proof. Following the proof of Theorem 2.3, there are σ > 0 and δ > 0 such207

that K(t, x(t)) is convex and nonempty for any (t, x(t)) ∈ [0, σ] × B(x0, δ) with x ∈208

C0([0, σ]). It then derives the existence of a unique optimal solution ŷ(t, x(t)) for any209

(t, x(t)) ∈ [0, σ]×B(x0, δ) by the strong convexity of E[g(t, x(t), ·, ξ)]. In addition, we210

can obtain that the optimal solution set S of the optimization problem (1.2) is also211

upper semicontinuous over [0, σ]×B(x0, δ), which means that ŷ(t, x(t)) is continuous212

w.r.t. t and x(t) for any x ∈ C0([0, σ]) since S is single-valued.213

Therefore, applying the Peano existence theorem [27], we find that214

(2.3)

{
ẋ(t) = E[f(t, x(t), ŷ(t, x(t)), ξ)],

x(0) = x0,
215

has a solution x̃(t), where x̃ ∈ C1([0, σ]). Write ỹ(t) = ŷ(t, x̃(t)) and then ỹ ∈216

C0([0, σ]). Noting217

x̃(t) = x0 +

∫ t

0

E[f(τ, x̃(τ), ỹ(τ), ξ)]dτ.218

Clearly, there exists σT̃ > 0 such that x̃(t) ∈ B(x0, δ) for t ∈ [0, σT̃ ], which derives219

that problem (1.1)-(1.2) has a classic solution (x̃, ỹ) on [0, T̃ ] with T̃ = min{σ, σT̃ }.220

Now we prove (2.2). Following from [24, Example 9.14] and the continuity and221

convexity of E[g(t, x(t), ·, ξ)], ∂y(t)E[g(t, x(t), y(t), ξ)] is nonempty and compact for any222

t ∈ R+, x(t) ∈ Rn and y(t) ∈ C with a compact subset C of Rm. Since E[g(t, x̃(t), ·, ξ)]223

is strongly convex, the set-valued mapping ∂y(t)E[g(t, x̃(t), ·, ξ)] is strongly monotone224

with constant E[%(ξ)] over K(t, x̃(t)). To derive (2.2), it suffices to show the linear225

growth condition of ŷ(t, x̃(t)) w.r.t. t and x̃(t). It is known that ŷ(t, x̃(t)) is the unique226

optimal solution of the optimization problem (1.2) if and only if (ŷ(t, x̃(t)), ẑ(t, x̃(t)))227

with ẑ(t, x̃(t)) ∈ ∂y(t)E[g(t, x̃(t), ŷ(t, x̃(t)), ξ)] is the unique solution of the generalized228

variational inequality: find (ŷ, ẑ) with ẑ ∈ ∂y(t)E[g(t, x̃(t), ŷ, ξ)] such that (y−ŷ)>ẑ ≥229

0 for any y ∈ K(t, x̃(t)).230

Note that K(t, x̃(t)) is a polyhedron for any given t and x̃(t). Let ỹ be the231

least-norm element of K(t, x̃(t)). By Hoffman’s error bound for linear systems [13,232

Lemma 3.2.3], we know that there exists α > 0 (independent of t) such that ‖ỹ‖ ≤233

α(1+ |t|+‖x̃(t)‖) for all t and x̃(t) with K(t, x̃(t)) 6= ∅. Let z̃ ∈ ∂y(t)E[g(t, x̃(t), ỹ, ξ)],234

we have235

0 ≤ (ỹ − ŷ(t, x̃(t)))>ẑ(t, x̃(t)).236

By the strong monotonicity of ∂y(t)E[g(t, x̃(t), ·, ξ)], we have237

E[%(ξ)]‖ỹ − ŷ(t, x̃(t))‖2 ≤ (ỹ − ŷ(t, x̃(t)))>(z̃− ẑ(t, x̃(t)))238

≤ (ỹ − ŷ(t, x̃(t)))>z̃ ≤ ‖ỹ − ŷ(t, x̃(t))‖‖z̃‖,239

which implies that ‖ỹ− ŷ(t, x̃(t))‖ ≤ E[%(ξ)]−1‖z̃‖. By ‖ỹ‖ ≤ α(1 + |t|+ ‖x̃(t)‖) and240

the boundeness of ∂y(t)E[g(t, x̃(t), ỹ, ξ)], there exists ρ > 0 such that ‖ŷ(t, x̃(t))‖ ≤241

ρ(1 + |t|+ ‖x̃(t)‖).242

Remark 2.6. Following the proofs of Theorems 2.3 and 2.5, The linear growth con-243

dition (2.2) in Theorem 2.5 plays an important role on the subsequent convergence244

analysis. The paper [15] investigated a parameterized convex program with linear245

constraints and a nonsmooth objective function. By assuming the superquadratic246
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and subquadratic growth conditions for the objective function and the Mangasarian-247

Fromovitz regularity condition (MFC), the authors showed the upper Lipschitz conti-248

nuity of the unique optimal solution. We can also derive (2.2) by the upper Lipschitz249

continuity of the optimal solution of problem (1.2) w.r.t. (t, x) at the point (0, x0).250

Our conditions (conditions of Theorem 2.5) are easier to verify and weaker than the251

conditions in [15].252

The authors in [22] also established a linear growth condition for the algebraic253

variable (the solution of a VI) to ensure the convergence of the implicit Euler meth-254

od for the DVI. Moreover, in [14], Han et al. derived a linear growth condition for255

the least-norm solution of a monotone linear complementarity problem and proposed256

an implicit time-stepping method using the least-norm solutions for differential com-257

plementarity systems. Without computing the least-norm solution for a monotone258

DVI, Chen and Wang [9] proposed a regularized time-stepping method for the DVI259

and provided the corresponding convergence analysis. These results can be extended260

to problem (1.1)-(1.2) if g is continuously differentiable and independent of ξ. This261

papers focus on the case that g is nonsmooth and random.262

3. Regularization method. Since g(t,x, ·, ξ) is convex for any t ∈ R+, x ∈ Rn263

and a.e. ξ ∈ Ξ, E[g(t,x, ·, ξ)] is convex for any t ∈ R and x ∈ Rn. Therefore, we add264

a regularization term µ‖y‖2 with µ > 0 to the objective function in (1.2) and get the265

following regularization optimization problem:266

(3.1)
yµ(t) = arg min

y∈Rm
gµ(t, x(t),y)

s.t. y ∈ K(t, x(t)),
267

where gµ(t, x(t),y) = E[g(t, x(t),y, ξ)] + µ‖y‖2.268

Obviously, under the assumption that intK(0, x0) 6= ∅, there are σ > 0 and δ > 0269

such that the optimization problem (3.1) has a unique optimal solution ŷµ(t, x(t))270

over K(t, x(t)) for any (t, x(t)) ∈ [0, σ]× B(x0, δ) with x ∈ C0([0, σ]).271

Proposition 3.1. Suppose that Assumption 2.2 holds. Let ŷµ(t, x(t)) be the u-272

nique optimal solution of problem (3.1) with some µ > 0, t ∈ R+ and x(t) ∈ Rn.273

Then it holds that274

(3.2) ‖ŷµ(t, x(t))‖ ≤ min
y∈S(t,x(t))

‖y‖,275

where S(t, x(t)) is the optimal solution set of problem (1.2) with t ∈ R+ and x(t) ∈ Rn.276

Proof. Since ŷµ(t, x(t)) is the unique optimal solution of the optimization problem277

(3.1), there exists ẑµ(t, x(t)) ∈ ∂y(t)E[g(t, x(t), ŷµ(t, x(t)), ξ)] such that278

(y − ŷµ(t, x(t)))>(ẑµ(t, x(t)) + µŷµ(t, x(t))) ≥ 0, ∀y ∈ K(t, x(t)).279

Let z̄(t, x(t)) ∈ ∂y(t)E[g(t, x(t), ȳ(t, x(t)), ξ)], where ȳ(t, x(t)) is the least-norm element280

of S(t, x(t)). Then we have281

(ȳ(t, x(t))− ŷµ(t, x(t)))>(ẑµ(t, x(t)) + µŷµ(t, x(t))) ≥ 0(3.3)282

and283

(ŷµ(t, x(t))− ȳ(t, x(t)))>z̄(t, x(t)) ≥ 0.(3.4)284
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Since E[g(t, x(t), ·, ξ)] is convex, the set-valued mapping ∂y(t)E[g(t, x(t), ·, ξ)] is mono-285

tone [24, Theorem 12.17]. Therefore, from (3.4), we can obtain286

(ŷµ(t, x(t))− ȳ(t, x(t)))>ẑµ(t, x(t)) ≥ 0.287

We then get from (3.3) that µ(ȳ(t, x(t)) − ŷµ(t, x(t)))>ŷµ(t, x(t)) ≥ 0, which implies288

that ‖ŷµ(t, x(t))‖ ≤ ‖ȳ(t, x(t))‖.289

Theorem 3.2. Suppose that the set intK(0, x0) is not empty. Then there exists290

T̂ (µ) > 0 such that problem (1.1) with (3.1) has a solution (xµ, yµ) ∈ C1([0, T̂ (µ)])×291

C0([0, T̂ (µ)]) for any µ > 0. Moreover, there is a positive number T̂0 such that292

T̂ (µ) ≥ T̂0 for any µ > 0 if the optimal solution set of problem (1.2) is not empty.293

Proof. Similar with the proof of Theorem 2.5, there are σ > 0 and σ̄(µ) > 0 such294

that T̂ (µ) = min{σ, σ̄(µ)}.295

Now we illustrate the existence of T̂0. By (3.2), there is ρα > 0 such that296

‖ŷµ(t, x(t))‖ ≤ ρα for any t, x(t) and µ. Obviously, if σ̄(µ) ≥ σ for any µ > 0,297

we have T̂0 = σ. If σ̄(µ) < σ for some µ > 0, we know that there is δ0 ∈ (0, δ] such298

that ‖xµ(σ̄(µ))− x0‖ = δ0. From ‖xµ(t)− x0‖ ≤ δ for any t ∈ [0, σ̄(µ)), we obtain299

δ0 =

∥∥∥∥∥
∫ σ̄(µ)

0

E[f(τ, xµ(τ), ŷµ(τ, xµ(τ)), ξ)]dτ

∥∥∥∥∥ ≤
∫ σ̄(µ)

0

(ρ̌fτ + Θ)dτ300

which means that σ̄(µ) ≥
√

Θ2 + 2ρ̌fδ0 − Θ > 0, where Θ = ρ̌f (1 + ‖x0‖ + δ + ρα).301

Therefore, we conclude the desired result.302

In the convergence analysis of the regularization method as µ ↓ 0, we use the fol-303

lowing notations. Let XT denote the space of n-dimensional vector-valued continuous304

functions over [0, T ] equipped with the norm305

‖u‖s := sup
t∈[0,T ]

‖u(t)‖306

and YT denote the space of m-dimensional vector-valued square integrable functions307

over [0, T ] equipped with the norm308

‖v‖L2 :=

(∫ T

0

‖v(t)‖2dt

) 1
2

.309

We define the norm for (u, v) ∈ XT × YT by310

‖(u, v)‖XT×YT = ‖u‖s + ‖v‖L2 .311

Let XT and YT denote the space of real-valued continuous functions and real-valued312

square integrable functions over [0, T ], respectively. When n = 1, we have XT = XT .313

Let ZT denote the space of m-dimensional vector-valued continuous functions over314

[0, T ]. Similarly, we define315

‖(u, v)‖XT×ZT = ‖u‖s + sup
t∈[0,T ]

‖v(t)‖, ∀ (u, v) ∈ XT ×ZT ,

‖(u, v)‖XT×XT = ‖u‖s + sup
t∈[0,T ]

|v(t)|, ∀ (u, v) ∈ XT × XT ,

‖(u, v)‖XT×YT
= ‖u‖s +

(∫ T

0

v2(τ)dτ

) 1
2

, ∀ (u, v) ∈ XT ×YT .

316
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Denote the optimal value function of optimization problem (1.2) by gmin(t, x(t))317

with t ∈ R+ and x(t) ∈ Rn. According to [26, Theorem 3.1], we know that gmin is318

continuous over [0, σ]×B(x0, δ) under Assumption 2.2 for some σ and δ in the proof319

of Theorem 2.3. Define320

Φ(x, y)(t) =

(
x(t)− x0 −

∫ t
0
E[f(τ, x(τ), y(τ), ξ)]dτ

E[g(t, x(t), y(t), ξ)]− gmin(t, x(t))

)
.321

Let some suitable T with σ ≥ T > 0 be fixed. Obviously, we have Φ(x, y) ∈ XT ×322

YT for any (x, y) ∈ XT × YT , and Φ(x, y) ∈ XT × XT for any (x, y) ∈ XT × ZT .323

Moreover, we know that ‖Φ(x, y)‖XT×YT
= 0 and y(t) ∈ K(t, x(t)) imply that (x, y)324

is a weak solution of problem (1.1)-(1.2). And for a continuous function y ∈ ZT ,325

‖Φ(x, y)‖XT×XT = 0 and y(t) ∈ K(t, x(t)) imply that (x, y) is a classic solution of326

problem (1.1)-(1.2). Similarly, let gµmin(t, x(t)) denote the optimal value function of327

the optimization problem (3.1) with t ∈ R, x(t) ∈ Rn and µ > 0, and define328

(3.5) Φµ(x, y)(t) =

(
x(t)− x0 −

∫ t
0
E[f(τ, x(τ), y(τ), ξ)]dτ

E[g(t, x(t), y(t), ξ)] + µ‖y(t)‖2 − gµmin(t, x(t))

)
.329

If (xµ, yµ) ∈ C1([0, T ])× C0([0, T ]) is a solution of problem (1.1) with (3.1), we have330

‖Φµ(xµ, yµ)‖XT×XT = 0 and then ‖Φµ(xµ, yµ)‖XT×YT
= 0.331

Let U1 and U2 be the spaces taken either U1 = XT × XT or U1 = XT ×YT , and332

U2 = XT × ZT or U2 = XT × YT . A sequence {Ψk}∞k=1 is said to be epigraphically333

convergent to a function Ψ, denoted by Ψk →epi Ψ, if334

(i) lim infk→∞Ψk(xk, yk) ≥ Ψ(x, y) for any sequence {(xk, yk)}∞k=1 ⊆ U2 with335

(xk, yk)→ (x, y) by the norm ‖ · ‖U2
;336

(ii) lim supk→∞Ψk(xk, yk) ≤ Ψ(x, y) for some sequence {(xk, yk)}∞k=1 ⊆ U2 with337

(xk, yk)→ (x, y) by the norm ‖ · ‖U2 .338

To study the convergence of {(xµ, yµ)} in U2, we firstly have the following lemma339

about the mapping ‖Φµ‖U1
is epigraphically convergent to ‖Φ‖U1

as µ ↓ 0.340

Lemma 3.3. Suppose that Assumption 2.2 holds. Let {µk}∞k=1 ↓ 0 be given and341

Φk = Φµk be defined in (3.5). Then for any sequence {(xk, yk)}∞k=1 ⊂ U2 with342

(xk, yk)→ (x, y) by the norm ‖·‖U2
as k →∞, we have ‖Φk(xk, yk)‖U1

→ ‖Φ(x, y)‖U1
343

and ‖Φk‖U1
→epi ‖Φ‖U1

.344

Proof. For any given µ > 0, t ∈ R+ and x(t) ∈ Rn, it is clear that gmin(t, x(t)) ≤345

gµmin(t, x(t)) as ŷµ(t, x(t)) ∈ K(t, x(t)). In addition,346

gµmin(t, x(t)) = E[g(t, x(t), ŷµ(t, x(t)), ξ)] + µ‖ŷµ(t, x(t))‖2

= min
y∈K(t,x(t))

{E[g(t, x(t),y, ξ)] + µ‖y‖2}

≤ min
y∈S(t,x(t))

{E[g(t, x(t),y, ξ)] + µ‖y‖2}

≤ gmin(t, x(t)) + µ min
y∈S(t,x(t))

‖y‖2,

347

which means that |gµmin(t, x(t)) − gmin(t, x(t))| ≤ µminy∈S(t,x(t)) ‖y‖2 for any given348

(t, x(t)) ∈ [0, σ]× B(x0, δ), since E[g(t, x(t), ŷµ(t, x(t)), ξ)] ≥ gmin(t, x(t)) and349

ŷµ(t, x(t)) ∈ K(t, x(t)). By the uniform boundedness of S(t, x(t)) for any (t, x(t)) ∈350

[0, σ]×B(x0, δ) and gµ1

min(t, x(t)) ≤ gµ2

min(t, x(t)) for µ1 ≤ µ2, we can obtain that gµmin351

converges to gmin uniformly as µ ↓ 0 over (t, x(t)) ∈ [0, σ]× B(x0, δ).352
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Let (xk, yk) → (x, y) by the norm ‖ · ‖U2
as k → ∞. Taking U1 = XT × XT and353

U2 = XT ×ZT , we have354

‖Φk(xk, yk)− Φ(xk, yk)‖U1

≤ µk sup
t∈[0,T ]

‖yk(t, xk(t))‖2 + sup
t∈[0,T ]

|gµkmin(t, xk(t))− gmin(t, xk(t))| → 0 as µk ↓ 0.355

If we take U1 = XT ×YT and U2 = XT × YT , we have356

‖Φk(xk, yk)− Φ(xk, yk)‖U1

≤ µk‖yk(·, xk)‖2L2 +

(∫ T

0

(gµkmin(t, xk(t))− gmin(t, xk(t)))2dt

) 1
2

→ 0 as µk ↓ 0.
357

Moreover ‖Φ(xk, yk)‖U1
→ ‖Φ(x, y)‖U1

as k →∞ since ‖Φ‖U1
is continuous. We then358

obtain ‖Φk(xk, yk)‖U1
→ ‖Φ(x, y)‖U1

by359

‖Φk(xk, yk)− Φ(x, y)‖U1

≤ ‖Φk(xk, yk)− Φ(xk, yk)‖U1
+ ‖Φ(xk, yk)− Φ(x, y)‖U1

.
360

It then implies that ‖Φk‖U1
→epi ‖Φ‖U1

.361

Theorem 3.4. Suppose that Assumption 2.2 holds. Let (xµ, yµ) ∈ C1([0, T̂0]) ×362

C0([0, T̂0]) be a solution of problem (1.1) with (3.1) for any µ > 0. Then there exists363

a sequence {µk}∞k=1 ↓ 0 such that xµk → x∗ as k → ∞ uniformly over [0, T̂0] and364

yµk → y∗ as k →∞ weakly in YT̂0
. In addition,365

(i) if yµk → y∗ w.r.t. ‖ · ‖L2 as k → ∞, then (x∗, y∗) is a weak solution of366

(1.1)-(1.2) over [0, T̂0];367

(ii) if yµk → y∗ uniformly as k →∞, then (x∗, y∗) is a classic solution of (1.1)-368

(1.2) over [0, T̂0]; moreover, y∗(t) is the unique least-norm optimal solution369

of problem (1.2) with t and x∗(t).370

Proof. Notice that the Lipschitz property (1.3) implies that E[f(·, ·, ·, ξ)] has linear371

growth in (t,x,y) ∈ R×Rn×Rm, i.e., there exists ρ̌f > 0 such that ‖E[f(t,x,y, ξ)]‖ ≤372

ρ̌f (1+ |t|+‖x‖+‖y‖). Let (xµ, yµ) ∈ C1([0, T̂0])×C0([0, T̂0]) be a solution of problem373

(1.1) with (3.1) for any µ > 0. According to (3.2) and the compactness of the optimal374

solution set of problem (1.2), there is ρα > 0 (independent of µ, t and x(t)) such that375

‖yµ(t)‖ ≤ ρα. We then have376

‖xµ(t)‖ ≤ ‖x0‖+

∫ t

0

‖E[f(τ, xµ(τ), yµ(τ), ξ)]‖dτ

≤ ‖x0‖+ ρ̌f

∫ t

0

(1 + ρα + |τ |+ ‖xµ(τ)‖)dτ,
377

which implies that for any t ∈ [0, T̂0] there exists ρ̄f > 0 such that378

‖xµ(t)‖ ≤ ‖x0‖+ ρ̄f

∫ t

0

(1 + ‖xµ(τ)‖)dτ.379

We then have ‖xµ‖s ≤ (1 + ‖x0‖) exp(ρ̄f T̂0)− 1, according to [9, Lemma 2.6]. Hence,380

{xµ} is uniformly bounded on [0, T̂0] for any µ > 0 and then so is {ẋµ}, which means381
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that {xµ} is equicontinuous over [0, T̂0] for any µ > 0. By Arzelá-Ascoli theorem [17],382

there exists a sequence {µk}∞k=1 ↓ 0 such that {xµk} is convergent to a point x∗ ∈ XT̂0
383

uniformly over [0, T̂0].384

In addition, we know that {yµ} is uniformly bounded on [0, T̂0] for any µ > 0 by385

‖yµ(t)‖ ≤ ρα(1+|t|+‖xµ(t)‖). By Alaglu’s theorem [17], there exists a subsequence of386

{yµk}, which we may assume without loss of generality to be {yµk} itself, has a weak*387

limit, named y∗, in YT̂0
. Since YT̂0

is a Hilbert space, it is a reflexive Banach space,388

which implies that weak* convergent sequences are also weakly convergent sequences.389

By [24, Example 9.35], we know that K(t, ·) is Lipschitz continuous on its domain390

for any t ∈ R, which means that H(K(t, xµ(t)),K(t, x∗(t)))→ 0 as xµ → x∗ uniformly.391

Then by yµ(t) ∈ K(t, xµ(t)), we have y∗(t) ∈ K(t, x∗(t)). Then following Lemma 3.3,392

we know that if yµk → y∗ w.r.t. ‖ · ‖L2 , (x∗, y∗) is a weak solution of (1.1)-(1.2)393

over [0, T̂0]; if yµk → y∗ uniformly as k → ∞, then (x∗, y∗) is a classic solution of394

(1.1)-(1.2) over [0, T̂0].395

Let ŷµk(t, x(t)) denote the unique optimal solution of problem (3.1) with any396

µk > 0, t ∈ R+ and x(t) ∈ Rn. Then by yµk(t) = ŷµk(t, xµk(t)), yµk → y∗ uniformly397

as k →∞, and the continuity of ŷµk , we know that limk→∞ ‖ŷµk(t, x∗(t))−y∗(t)‖ = 0.398

Since (x∗, y∗) is a classic solution of (1.1)-(1.2), we obtain that y∗(t) ∈ S(t, x∗(t)) and399

then y∗(t) is the unique least-norm element of S(t, x∗(t)) by (3.2).400

When there exists a constant %̃ > 0 such that for any y1, y2 ∈ Rm and τ ∈ (0, 1),401

E[g(t,x, (1− τ)y1 + τy2, ξ)] ≤(1− τ)E[g(t,x,y1, ξ)] + τE[g(t,x,y2, ξ)]

− 1

2
%̃τ(1− τ)‖y1 − y2‖2

402

holds for any fixed t ∈ R+ and x ∈ Rn, the objective function of optimization problem403

(1.2) is strongly convex w.r.t. y, and (1.2) admits a unique optimal solution y∗ which404

is continuous w.r.t. t for any x ∈ C0([0, σ]) by Theorem 2.5. Fix some x ∈ C0([0, σ])405

and let zµ(t) ∈ ∂y(t)E[g(t, x(t), yµ(t), ξ)] and z∗(t) ∈ ∂y(t)E[g(t, x(t), y∗(t), ξ)]. Then406

we have407

(y∗(t)− yµ(t))>(zµ(t) + µyµ(t)) ≥ 0 and (yµ(t)− y∗(t))>z∗(t) ≥ 0.(3.6)408

In this case, by the strong monotonicity of ∂y(t)E[g(t, x(t), ·, ξ)] and (3.6) and (3.2),409

we have410

%̃‖yµ(t)− y∗(t)‖2 ≤ (yµ(t)− y∗(t))>(zµ(t)− z∗(t)) ≤ (yµ(t)− y∗(t))>zµ(t)

≤ µ(y∗(t)− yµ(t))>yµ(t) ≤ µ‖y∗(t)− yµ(t)‖‖yµ(t)‖
≤ µ‖y∗(t)− yµ(t)‖‖y∗(t)‖.

411

We then obtain that the pointwise convergence of yµ to y∗ as µ ↓ 0, which means412

that yµ → y∗ w.r.t. ‖ · ‖L2 as µ ↓ 0 and the uniform convergence by the continuity of413

yµ and y∗.414

4. Sample average approximation. We apply the sample average approxi-415

mation (SAA) approach to solve problem (1.1)-(1.2). We consider an independent416

identically distributed (i.i.d) sample of ξ(ω), which is denoted by {ξ1, · · ·, ξν}, and use417
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the following SAA problem to approximate problem (1.1)-(1.2):418

ẋ(t) =
1

ν

ν∑
`=1

f(t, x(t), y(t), ξ`), x(0) = x0,(4.1)419

y(t) ∈ arg min
y∈Rm

1

ν

ν∑
`=1

g(t, x(t),y, ξ`)

s.t. y ∈ Kν(t, x(t)),

(4.2)420

where421

Kν(t, x(t)) ,

{
y ∈ Rm :

1

ν

ν∑
`=1

(A(ξ`)x(t) +B(ξ`)y +Q(t, ξ`)) ≤ 0

}
.422

In this paper, by saying a property holds with probability 1 (w.p.1) for sufficiently423

large ν, we mean that there exists a set Ω0 ⊂ Ω of P-measure zero such that for all424

ω ∈ Ω\Ω0 there exists a positive integer ν∗(ω) such that the property holds for all425

ν ≥ ν∗(ω).426

Theorem 4.1. Suppose that Assumption 2.4 holds and intK(0, x0) 6= ∅. Then427

there exists T ∗ > 0 such that problem (4.1)-(4.2) has a solution (xν , yν) ∈ C1([0, T ∗])×428

C0([0, T ∗]) w.p.1 for sufficiently large ν. Moreover, there exists ρ∗ > 0 such that429

(4.3) ‖yν(t)‖ ≤ ρ∗(1 + |t|+ ‖xν(t)‖), for t ∈ [0, T ∗]430

w.p.1 for sufficiently large ν.431

Proof. By intK(0, x0) 6= ∅ and the strong Law of Large Number, we can conclude432

intKν(0, x0) 6= ∅ w.p.1 for sufficiently large ν.433

Similar with the proof of Theorem 2.3, we can also conclude that there are σ1 > 0434

and δ1 > 0 such that intKν(t, x(t)) 6= ∅ for any (t, x(t)) ∈ [0, σ1]×B(x0, δ1) w.p.1 for435

sufficiently large ν.436

Assumption 2.4 implies that 1
ν

∑ν
`=1 g(t, x(t), ·, ξ`) is strongly convex w.p.1 for437

sufficiently large ν. Similar with the proof of Theorem 2.5, we obtain our results.438

Theorem 4.2. Suppose that Assumption 2.4 holds and intK(0, x0) 6= ∅. Let439

(xν , yν) ∈ C1([0, T ∗]) × C0([0, T ∗]) be a solution of problem (4.1)-(4.2). Then there440

are T̄ with T ∗ ≥ T̄ > 0 and a sequence {νk}∞k=1 with νk →∞ such that xνk → x∗ as441

k → ∞ w.p.1 uniformly over [0, T̄ ] and yνk → y∗ w.p.1 as k → ∞ w.r.t. ‖ · ‖L2 in442

YT̄ , where (x∗, y∗) is a weak solution of (1.1)-(1.2) over [0, T̄ ].443

Proof. Since (xν , yν) ∈ C1([0, T ∗]) × C0([0, T ∗]) is a solution of problem (4.1)-444

(4.2), by the linear growth condition (4.3), we obtain that there exists ρ̂f > 0 such445

that446

‖xν(t)‖ ≤ ‖x0‖+ ρ̂f

∫ t

0

(1 + ‖xν(τ)‖)dτ447

holds w.p.1 for sufficiently large ν, which implies that ‖xν‖s ≤ (1+‖x0‖) exp(ρ̂fT
∗)−1448

w.p.1 for sufficiently large ν. Hence, we obtain that {xν} is uniformly bounded w.p.1449

for sufficiently large ν and then so is {ẋν}, which means that {xν} is equicontinuous450

over [0, T ∗] w.p.1 for sufficiently large ν. By Arzelá-Ascoli theorem, there exists a451

sequence {νk} such that {xνk} is convergent to a point x∗ ∈ XT∗ as νk → ∞ w.p.1452

uniformly over [0, T ∗].453
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Let ŷ(t, x(t)) and ŷν(t, x(t)) denote the optimal solutions of optimization problems454

(1.2) and (4.2) with t and x(t), respectively. Theorems 2.5 and 4.1 imply that there are455

σ̃ > 0 and δ̃ > 0 such that ŷ and ŷν are bounded and intK(t, x(t)) 6= ∅ over (t, x(t)) ∈456

[0, σ̃]×B(x0, δ̃). It implies that there exists a compact set C ⊆ Rm such that ŷ(t, x(t)) ∈457

C and ŷν(t, x(t)) ∈ C w.p.1 for sufficiently large ν. Following from [25, Theorem 7.53],458

we obtain that for any given t ∈ R+ and x(t) ∈ Rn, 1
ν

∑ν
`=1 g(t, x(t),y, ξ`) converges459

to E[g(t, x(t),y, ξ)] w.p.1 uniformly on y ∈ C as ν → ∞. In addition, following from460

the strong Large Law of Number, we can obtain that D(Kν(t, x(t)),K(t, x(t))) → 0461

w.p.1 as ν → ∞ for any t ∈ R+ and x(t) ∈ Rn, which means that for any fixed t462

and x(t) if yν ∈ Kν(t, x(t)) and yν converges w.p.1 to a point y, then y ∈ K(t, x(t)).463

According to [25, Remark 8], we conclude that there exists a sequence {yν(t, x(t))}464

with yν(t, x(t)) ∈ Kν(t, x(t)) such that yν(t, x(t)) → ŷ(t, x(t)) w.p.1 as ν → ∞ since465

intK(t, x(t)) 6= ∅ for any (t, x(t)) ∈ [0, σ̃] × B(x0, δ̃). Therefore, following from [25,466

Theorem 5.5], we can obtain that ŷν(t, x(t)) converges to ŷ(t, x(t)) w.p.1 as ν →∞ on467

(t, x(t)) ∈ [0, σ̃]×B(x0, δ̃). According to Lebesgue Dominated Convergence Theorem468

and (4.3), we then conclude that there exists T̃ > 0 such that ŷν(·, x) converges to469

ŷ(·, x) w.p.1 w.r.t. ‖ · ‖L2 as ν → ∞, where x is continuously differentiable over470

t ∈ [0, T̃ ].471

Let T̄ = min{T ∗, T̃}. It is clear that yν(t) = ŷν(t, xν(t)) and ŷνk(·, xνk) converges472

to ŷ(·, x∗) w.p.1 w.r.t. ‖ · ‖L2 as k → ∞, following from the continuity of ŷν and ŷ.473

Denote y∗(t) = ŷ(t, x∗(t)). Then taking {νk} with νk → ∞, for any t ∈ [0, T̄ ], we474

have475 ∥∥∥∥∥
∫ t

0

1

νk

νk∑
`=1

f(τ, xνk(τ), yνk(τ), ξ`)dτ −
∫ t

0

E[f(τ, x∗(τ), y∗(τ), ξ)]dτ

∥∥∥∥∥
≤ 1

νk

νk∑
`=1

κf (ξ`)
(
T̄‖xνk − x∗‖s +

√
T̄‖yνk − y∗‖L2

)
+ LT̄ ,

476

where477

LT̄ = T̄

∥∥∥∥∥ 1

νk

νk∑
`=1

f(·, x∗, y∗, ξ`)− E[f(·, x∗, y∗, ξ)]

∥∥∥∥∥
s

.478

Similarly, by [25, Theorem 7.53], we obtain that 1
ν

∑ν
`=1 f(t, x∗(t), y∗(t), ξ`) converges479

to E[f(t, x∗(t), y∗(t), ξ)] w.p.1 uniformly on t ∈ [0, T̄ ] as ν → ∞. Therefore, we can480

conclude that481

x∗(t) = x0 +

∫ t

0

E[f(τ, x∗(τ), y∗(τ), ξ)]dτ482

by xνk(t) = x0 +
∫ t

0
1
νk

∑νk
`=1 f(τ, xνk(τ), yνk(τ), ξ)dτ. By x∗ ∈ XT̄ , we obtain y∗ ∈ YT̄ ,483

which means that (x∗, y∗) is a weak solution of problem (1.1)-(1.2) over [0, T̄ ].484

For the case that E[g(t,x, ·, ξ)] is convex, we can choose a measurable function485

%̂ : Ξ→ R++ with 0 < E[ρ̃(ξ)] <∞ and consider the regularized function486

g̃(t, x(t), y(t), ξ) = g(t, x(t), y(t), ξ) +
µ

2
ρ̃(ξ)‖y(t)‖2.487

Then Assumption 2.4 holds for g̃ with µρ̃ and µ > 0. We apply SAA method to488

(1.1)-(1.2) with g̃ and obtain489

(4.4) yνµ(t) = arg min
y∈Kν(t,x(t))

1

ν

ν∑
`=1

g(t, x(t),y, ξ`) +
µ

2ν

ν∑
`=1

ρ̃(ξ`)‖y‖2.490
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According to Theorems 3.4 and 4.2, we can obtain the following result.491

Theorem 4.3. Suppose that Assumption 2.2 holds. Let (xνµ, y
ν
µ) be a solution492

of problem (4.1) with (4.4) for some µ > 0 and ν > 0. Then there are Ť > 0,493

(x∗, y∗) ∈ C1([0, Ť ]) × C0([0, Ť ]), a sequence {µk}∞k=1 with µk ↓ 0 and a sequence494

{νk}∞k=1 with νk →∞ such that495

lim
µk↓0

lim
νk→∞

‖xνkµk − x
∗‖s = 0, w.p.1496

and yνkµk → y∗ weakly w.p.1 in YŤ by the order of µk ↓ 0 and νk →∞. If497

lim
µk↓0

lim
νk→∞

‖yνkµk − y
∗‖L2 = 0, w.p.1498

then (x∗, y∗) is a weak solution of (1.1)-(1.2) over [0, Ť ].499

5. Time-stepping method. We now adopt the time-stepping method for solv-500

ing problem (4.1)-(4.2) with a fixed sample {ξ1, . . . , ξν}, which uses a finite-difference501

formula to approximate the time derivative ẋ. For a fixed T̄ in Theorem 4.2, it begins502

with the division of the time interval [0, T̄ ] into N subintervals for a fixed step size503

h = T̄ /N = ti+1−ti where i = 0, ···, N−1. Inspired by the DVI-specific time-stepping504

approach in [22], we propose to solve the optimization problem (4.2) independently505

of the first equation (4.1). This method is different with the time-stepping method506

which is usually adopted in [7, 20, 21]. Therefore, starting from xν0 = x0, we compute507

two finite sets of vectors {xν1 ,xν2 , · · ·,xνN} ⊂ Rn and {yν1 ,yν2 , · · ·,yνN} ⊂ Rm in the508

following manner for i = 0, · · ·, N − 1:509

xνi+1 = xνi +
h

ν

ν∑
`=1

f(ti+1,x
ν
i+1,y

ν
i+1, ξ`),(5.1)510

yνi+1 = arg min
y∈Rm

1

ν

ν∑
`=1

g(ti+1,x
ν
i ,y, ξ`)

s.t. y ∈ Kν(ti+1,x
ν
i ).

(5.2)511

Theorem 5.1. Suppose that Assumption 2.4 holds and intK(0, x0) 6= ∅. Then512

problem (5.1)-(5.2) has a unique solution {xνi ,yνi }Ni=1 w.p.1 for sufficiently large ν and513

sufficiently small h. Moreover, there exists ρ̂ > 0 such that for any i ∈ {0, · · ·, N −1},514

‖yνi+1‖ ≤ ρ̂(1 + ‖xνi ‖)515

holds w.p.1 for sufficiently large ν and N .516

Proof. For any i ∈ {0, · · ·, N − 1}, yνi+1 is a unique optimal solution of problem517

(5.2) w.p.1 for sufficiently large ν. Similar with the proof of Theorem 2.5 and for a518

fixed ti, there exists ρ̂i > 0 such that519

(5.3) ‖yνi+1‖ ≤ ρ̂i(1 + ‖xνi ‖).520

Following from the Lipschitz property of f(·, ·, ·, ξ) in (1.3), we obtain that for521

any x̃ and x̄ ∈ Rn,522 ∥∥∥∥∥hν
ν∑
`=1

f(ti+1, x̃,y
ν
i+1, ξ`)−

h

ν

ν∑
`=1

f(ti+1, x̄,y
ν
i+1, ξ`)

∥∥∥∥∥523

≤ h

ν

ν∑
`=1

‖f(ti+1, x̃,y
ν
i+1, ξ`)− f(ti+1, x̄,y

ν
i+1, ξ`)‖ ≤ κh‖x̃− x̄‖,524
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where κ ≥ E[κf (ξ)] ≥ 1
ν

∑ν
`=1 κf (ξ`) w.p.1 for sufficiently large ν. Therefore, if525

h < 1
κ , we know that h

ν

∑ν
`=1 f(ti+1, ·,yνi+1, ξ`) is a contractive mapping. Moreover,526

there exists ρ̃f > 0 such that for any i = 0, · · ·, N − 1527

‖xνi+1‖ ≤ ‖xνi ‖+
h

ν

ν∑
`=1

‖f(ti+1,x
ν
i+1,y

ν
i+1, ξ`)‖ ≤ ‖xνi ‖+ hρ̃f (1 + ‖xνi+1‖).528

It implies that there exists 0 < h0 <
1
ρ̃f

such that ‖xνi+1‖ ≤ exp(
ρ̃f T̄

1−h0ρ̃f
)(1+‖x0‖)+1529

for h ∈ (0, h0]. The contraction mapping theorem implies that there exists unique530

xνi+1 such that (5.1) holds with i = 0, · · ·, N−1. We then conclude that problem (5.1)-531

(5.2) has a unique solution {xνi ,yνi }Ni=1 w.p.1 for sufficiently large ν and sufficiently532

small h and the linear growth condition (5.3) holds by ρ̂ = maxi∈{1,···,N}{ρ̂i}.533

Let {xνi ,yνi }Ni=1 be a solution of (5.1)-(5.2). We define a piecewise linear function534

xνh and a piecewise constant function yνh on [0, T̄ ] as below:535

xνh(t) = xνi +
t− ti
h

(xνi+1 − xνi ), yνh(t) = yνi+1, ∀ t ∈ (ti, ti+1].(5.4)536

Theorem 5.2. Suppose that Assumption 2.4 holds and intK(0, x0) 6= ∅. Let537

(xνh, y
ν
h) be defined in (5.4) associated with a solution {xνi ,yνi }Ni=1 of (5.1)-(5.2). Then538

there are sequences {νk} and {hk} with νk →∞ and hk ↓ 0 as k →∞, such that539

lim
νk→∞

lim
hk↓0
‖xνkhk − x

∗‖s = 0, w.p.1540

and541

lim
νk→∞

lim
hk↓0
‖yνkhk − y

∗‖L2 = 0, w.p.1,542

where (x∗, y∗) is a weak solution of (1.1)-(1.2) over [0, T̄ ].543

Proof. According to Theorems 5.1, we get the family of functions {xνh(t)} is uni-544

formly bounded on [0, T̄ ] w.p.1 for sufficiently large ν and sufficiently small h. More-545

over, for any ν > 0,546

‖xνi+1 − xνi ‖ ≤ hρ̃f (1 + ‖xνi+1‖) ≤ hρ̃f
(

2 + exp(
ρ̃f T̄

1− h0ρ̃f
)(1 + ‖x0‖)

)
, hα̂.547

Then for any t ∈ [ti, ti+1], τ ∈ [ti+p, ti+p+1], i ∈ {0, · · ·, N − 1} and p ∈ {−i, 1− i, · ·548

·, N − i− 1}, we have549

‖xνh(τ)− xνh(t)‖ =

∥∥∥∥∥∥(xνh(τ)− xνi+p) +

p−1∑
j=1

(xνi+j+1 − xνi+j) + (xνi+1 − xνh(t))

∥∥∥∥∥∥
≤ (τ − ti+p + (p− 1)h+ ti+1 − t)α̂ = |τ − t|α̂.

550

It implies that the piecewise interpolant xνh is Lipschitz continuous on [0, T̄ ] and551

the Lipschitz constant is independent of h and ν. Hence we obtain that {xνh(t)} is552

equicontinuous. Then according to the Arzelá-Ascoli theorem, there are sequences553

{hk} and {νk} with hk ↓ 0 and νk → ∞ as k → ∞ and an x∗ ∈ XT̄ such that554

limνk→∞ limhk↓0 ‖x
νk
hk
− x∗‖s = 0 w.p.1.555

Let ŷ(t, x(t)) and ŷν(t, x(t)) denote the optimal solutions of optimization problems556

(1.2) and (4.2) with t and x(t), respectively. For any t ∈ (ti, ti+1], it is clear that557
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16 J. LUO AND X. CHEN

ŷν(ti+1,x
ν
i ) = yνi+1 = yνh(t). Denote y∗(t) = ŷ(t, x∗(t)). Then for any t ∈ (ti, ti+1]558

with i ∈ {0, · · ·, N − 1}, we have559

‖yνh(t)− y∗(t)‖ ≤‖ŷν(ti+1,x
ν
i )− ŷ(ti+1,x

ν
i )‖+ ‖ŷ(ti+1,x

ν
i )− ŷ(t, xνh(t))‖

+ ‖ŷ(t, xνh(t))− ŷ(t, x∗(t))‖.
560

From the proof of Theorem 4.2, we obtain that ŷν(t, x(t)) converges to ŷ(t, x(t))561

w.p.1 as ν → ∞ for any t ∈ R+ and x(t) ∈ Rn. When h ↓ 0, t ∈ (ti, ti+1] and562

i ∈ {0, · · ·, N − 1}, it is easy to obtain ‖xνi+1 − xνh(t)‖ → 0 w.p.1 for sufficiently large563

ν from (5.4). Since ŷ is continuous, with hk ↓ 0 and νk → ∞ as k → ∞ such that564

limνk→∞ limhk↓0 ‖x
νk
hk
− x∗‖s = 0 w.p.1, we obtain565

lim
νk→∞

lim
hk↓0
‖yνkhk − y

∗‖L2 = 0, w.p.1.566

Now we show that (x∗, y∗) is a weak solution of problem (1.1)-(1.2) over [0, T̄ ].567

For xνh(0) = x0 and any t ∈ (0, T̄ ] (without loss of generality, we assume t ∈ (ti, ti+1]568

with some i ∈ {0, · · ·, N − 1}), we have569

‖Wν
h(t)‖ ,

∥∥∥∥∥xνh(t)− xνh(0)−
∫ t

0

1

ν

ν∑
`=1

f(τ, xνh(τ), yνh(τ), ξ`)dτ

∥∥∥∥∥
≤ 1

ν

ν∑
`=1

κf (ξ`)

i−1∑
j=0

∫ tj+1

tj

‖xνj+1 − xνh(τ)‖dτ +

∫ t

ti

‖xνi+1 − xνh(τ)‖dτ

+
(i+ 1)h2

2
− (ti+1 − t)2

2

)
≤ h

ν

ν∑
`=1

κf (ξ`)

1

2

i−1∑
j=0

‖xνj+1 − xνj ‖+ ‖xνi+1 − xνi ‖+
T̄

2


≤ h(1 + α̂)T̄

ν

ν∑
`=1

κf (ξ`),

570

where κf (ξ) is the Lipschitz constant of f(·, ·, ξ). Therefore, we conclude that for any571

t ∈ (0, T̄ ] and two sequences {hk} and {νk} with hk ↓ 0 and νk →∞ as k →∞,572

lim
νk→∞

lim
hk↓0
‖Wνk

hk
‖s = 0, w.p.1.573

Obviously,574

sup
t∈[0,T̄ ]

∥∥∥∥x∗(t)− x0 −
∫ t

0

E[f(τ, x∗(τ), y∗(τ), ξ)]dτ

∥∥∥∥
≤ lim
k→∞

(
sup
t∈[0,T̄ ]

∥∥∥∥x∗(t)− x0 −
∫ t

0

E[f(τ, x∗(τ), y∗(τ), ξ)]dτ −Wνk
hk

(t)

∥∥∥∥+ ‖Wνk
hk
‖s

)

≤ lim
k→∞

((
1 +

T̄

νk

νk∑
`=1

κf (ξ`)

)
‖x∗ − xνkhk‖s +

∥∥∥∥∥E[f(·, x∗, y∗, ξ)]− 1

νk

νk∑
`=1

f(·, x∗, y∗, ξ`)

∥∥∥∥∥
s

+

√
T̄

νk

νk∑
`=1

κf (ξ`)‖yνkhk − y
∗‖L2 + ‖Wνk

hk
‖s

)
= 0,

575

which implies that (x∗, y∗) is a weak solution of (1.1)-(1.2) over [0, T̄ ].576
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For any fixed i ∈ {1, . . . , N}, solving problem (5.1)-(5.2) should address two issues:577

the nonsmooth fixed point problem and nonsmooth convex optimization problem.578

For the nonsmooth convex optimization problem (5.2), we can adopt the well-known579

existing algorithms such as proximal schemes. To solve the nonsmooth fixed point580

problem (5.1), we can adopt the EDIIS algorithm [6, 7] which is a modified Anderson581

acceleration. The Anderson acceleration is designed to solve the fixed point problem582

when computing the Jacobian of the function in the problem is impossible or too costly583

[2]. We have known that h
ν

∑ν
`=1 f(ti+1, ·,yνi+1, ξ`) is a contractive mapping w.p.1 for584

sufficiently large ν and sufficiently small h. Then following from [6, Theorem 2.1], we585

can obtain that the sequence {x(ν,k)
i+1 } generated by the EDIIS algorithm converges to586

the unique solution xνi+1 of (5.1) as the iteration step k →∞.587

6. Numerical experiment. In this section, we verify our theoretical results588

by a numerical example, which is performed in MATLAB 2017b on a Lenovo laptop589

(2.60GHz, 32.0GB RAM).590

Example 6.1. We consider the following problem:591

(6.1)

ẋ(t) = E
[(

ξ1 2
ξ2
1 ξ2

)
x(t) +

(
2x1(t) x2(t) ξ2

2t 0 ξ1x1(t)

)
y(t)

]
,

y(t) ∈ arg min
y∈R3

E[‖M(ξ)y − b(x(t), ξ)‖2 + ‖y‖1]

s.t. y ∈ K(t, x(t)) = {y : E[A(ξ)]x(t) + E[B(ξ)]y + E[Q(t, ξ)] ≤ 0},

592

where x(t) = (x1(t), x2(t))>, x(0) = x0 = (−1,−2)>,593

M(ξ) =

(
2 + ξ1 0 −ξ2

0 ξ1 + ξ2 −1

)
, b(x(t), ξ) =

(
x1(t) + ξ2
ξ1x2(t)

)
,

A(ξ) =

(
−2− ξ1 1
−1 ξ2

)
, B(ξ) =

(
1 ξ2

1 ξ2
ξ2 0 2

)
, Q(t, ξ) =

(
t− ξ1
ξ2

)
.

594

We set the terminal time T = 1, ξ1 ∼ N (1, 0.01) and ξ2 ∼ U(−1, 1). It can be595

verified easily that all functions in this example fulfill our settings in the beginning of596

this paper. It is obvious that the objective function E[g(t, x(t), ·)] in (6.1) is convex597

and E[g(0, x0,y)] ≥ ‖y‖1, which means that E[g(0, x0, ·)] is level-coercive and then is598

level-bounded, following from [24, Corollary 3.27]. We can also obtain that K(0, x0) =599

{(y1,y2,y3) : y1 + 1.01y2 ≤ 0, 2y3 + 1 ≤ 0} and then intK(0, x0) 6= ∅. Hence, we600

know that Assumption 2.2 holds for this example.601

Now we illustrate that this example exists a solution on [0, 1]. Following from602

the proof of Theorem 2.3, the solution existing interval mainly depends on the range603

of (t,x) which is such that intK(t,x) 6= ∅ and E[g(t,x, ·)] is level-bounded. By604

K(t,x) = {(y1,y2,y3) : y1 +1.01y2 ≤ 3x1−x2− t+1, 2y3 ≤ −x1}, we know that for605

any x = (x1,x2) there always holds that intK(t,x) 6= ∅ because two linear constraints606

are independent of each other. For any (t,x), we can also have E[g(t,x,y)] ≥ ‖y‖1,607

which means that E[g(t,x, ·)] is also level-coercive and then is level-bounded. Hence,608

we know that the optimal set S(t,x) of the optimization problem in (6.1) is nonempty609

and bounded for any (t,x), and is upper semicontinuous. It then derives that (6.1)610

has at least a weak solution on [0, 1] from Theorem 2.3.611

We add a regularization term µ‖y‖2 to the objective function in (6.1). For the612

regularization numerical form of (6.1), we use the EDIIS(1) method to solve the613

fixed point problem and the Matlab toolbox CVX to obtain the optimal solution of614

the convex optimization problem. The EDIIS(1) method is used in the numerical615
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example of [7] since the minimization problem in EDIIS has a closed-form solution in616

this case. The stop criterion of EDIIS(1) for each i is ‖x(ν,k+1) − x(ν,k)‖ ≤ 10−6.617

In the numerical experiments, let x̂ = (x̂1, x̂2) be a numerical solution of the ODE618

in (6.1) with regularization parameter µ = 10−5, sample size ν = 5000 and step size619

h = 10−4. For the fixed step size h = 10−4, we carry out tests with the regularization620

parameter µ = 10−4, 0.001, 0.01 and 0.1, and the sample size ν = 3000, 2000, 1000621

and 500. We compute the numerical solution xµ,ν = (xµ,ν1 , xµ,ν2 ) and622

R1 =
1

10000

10000∑
i=1

|x̂1(ih)− xµ,ν1 (ih)|, R2 =
1

10000

10000∑
i=1

|x̂2(ih)− xµ,ν2 (ih)|623

50 times and averages them. The decreasing tendencies of R1 and R2 as ν increases624

and µ decreases are shown in FIG. 1.625
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Fig. 1. The decreasing tendencies of R1 and R2 as ν increases and µ decreases.

7. Application in time-varying parameter estimation for an ODE. In626

this section, we apply (1.1)-(1.2) to estimate the time-varying parameter for an ODE.627

Several strategies can be employed to estimate the time-varying parameters for an628

ODE based on noisy data, such as the local polynomial method [5], the nonlinear629

least squares method [19] and the spline-based method [18]. As a Bayesian approach,630

Gaussian process is also widely used to infer dynamics of ODE (see [32] and the631

references therein). A Gaussian process can be viewed as a distribution over functions,632

while its inference takes place directly in the function space. It is a collection of633

random variables, any finite number of which have a joint Gaussian distribution. It is634

also a non-parametric probabilistic model for function estimation that is widely used635

in tasks such as regression and classification. Therefore, we use Gaussian process to636

infer the dynamics of an ODE based on noisy data in order to estimate its time-varying637

parameter.638

A system of ODE with initial value x(0) = x0 takes the form639

(7.1) ẋ(t) = f1(x(t))y(t) + f2(x(t)), t ∈ [0, T ],640

where f1 : Rn → Rn×m, f2 : Rn → Rn are given functions and y(t) ∈ Rm is un-641

known. It is well known that a Gaussian process is completely characterized by a642

mean function and a covariance or a kernel function.643

We assume that we can observe the values of states and their derivatives at the644

given time points {ti}Ni=1. If the observation data of derivatives is not available, we645

This manuscript is for review purposes only.



DYNAMIC SYSTEMS WITH STOCHASTIC NONSMOOTH CONVEX OPTIMIZATION 19

can estimate the derivatives by the first-order method, that is ẋj(ti) ≈ x(ti+1)−x(ti)
ti+1−ti .646

Let Yi = [Y 1
i , · · ·, Y ni ]> be the measurement of true value of state variable x at time ti,647

that is Y ji = xj(ti) + εj for j = 1, · · ·, n, where εj denotes the measurement error. We648

also let Zji = ẋj(ti) + εdj for given derivatives observation or Zji =
Y ji+1−Y

j
i

ti+1−ti , where εdj649

denotes the measurement error. The errors εj and εdj are assumed to follow a Gaussian650

distribution with zero mean and variance σ2
j and σ̂2

j , respectively.651

We employ the Gaussian processes to obtain the distributions of the state variables652

and their derivatives, denoted as x̂(t, ξ) and ˙̂x(t, ξ), where ξ denotes a random variable.653

It should be noticed that x̂(t, ξ) and ˙̂x(t, ξ) have no closed forms but can obtain their654

values at any given t. By [29], the n-dimensional variable of x̂(t, ξ) and ˙̂x(t, ξ) can be655

obtained by stacking n independent Gaussian processes to model each state and the656

derivative independently.657

Therefore, we can estimate the time-varying coefficients y(t) by solving the fol-658

lowing optimization problem659

(7.2) y(t) ∈ arg min
y∈K

E
[
‖ ˙̂x(t, ξ)− f1(x(t))y − f2(x(t))‖1 + ‖x̂(t, ξ)− x(t)‖1

]
,660

where x(t) fulfills (7.1), and K is a nonempty closed convex set which can be some661

inaccurate information for the coefficients such as upper or lower bounds. Obviously,662

the objective function in (7.2) is nonsmooth and convex in y. Note that the objective663

function is not strongly convex in y, then we introduce the regularization method into664

it. By using the regularization method with parameter µ, SAA with sample size ν665

and time-stepping method with step size h, we obtain the following discrete form of666

(7.1)-(7.2):667

xi+1 = xi + h(f1(xi+1)yi+1 + f2(xi+1)),(7.3)668

yi+1 = arg min
y∈K

1

ν

ν∑
`=1

‖ ˙̂x(ti+1, ξ`)− f1(xi)y − f2(xi)‖1 + µ‖y‖2.(7.4)669

It should be noted that ˙̂x(ti+1, ξ`) does not need any information of xi and xi+1670

in (7.4), as it is obtained by the Gaussian process based on the observation data671

independently. As we mentioned before, we adopt EDIIS algorithm to solve the fixed672

point problem (7.3). For the nonsmooth convex optimization problem (7.4), we use673

the CVX tool box to solve it. At last, we can obtain the approximation solution of674

(7.1)-(7.2) and the estimation of time-varying coefficients.675

Example 6.2. For the following ODE with time-varying coefficients,676

(7.5)
ẋ1(t) = x1(t) + sin(t)x1(t),

ẋ2(t) = x1(t)− 2tx2(t), t ∈ [0, 5],
677

where x1(0) = 1 and x2(0) = 0. Let ti = 0.04i, i = 0, · · ·, 125. Obviously, for any678

given ti, we can obtain the values x(ti) and then ẋ(ti). We estimate the parameters679

(sin(t),−2t) of (7.5) under two cases: (i) both the noisy data of Yi = x(ti) + ε and680

Zi = ẋ(ti) + ε are given, where ε ∼ N (0, 0.4); (ii) only the noisy data Yi is given.681

We estimate the time-varying parameters of (7.5) by solving the problem (7.5)682

with an optimization problem (7.2), where we estimate the parameters with the set683

K = {(y1,y2) : −1 ≤ y1 ≤ 1,−10 ≤ y2 ≤ 0}. When we adopt the regularization ap-684

proach, SAA method and the time-stepping method, we set the regularization param-685

eter µ = 10−4, the sample size ν = 1000 and step size h = 0.001. For problem (7.3),686
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we also adopt EDIIS(1), where the stop criterion for each i is ‖x(k+1)
i −x

(k)
i ‖ ≤ 10−6.687

We obtain the estimation of parameters by averaging 50 independent repetitions.688

The visualization of estimates of parameters (sin(t),−2t) in (7.5) for the two cas-689

es are shown in FIGs. 2 and 3. Let y(t) and ỹ(t) denote the true functions and690

their estimations, respectively. In the figures, the dash lines denote the 95% simul-691

taneous l∞ credible bands, where the radius is estimated by the 95% quantile of692

‖y− ỹ‖s , maxi |y(ti)− ỹ(ti)|. The shaded area denotes the estimation area between693

the 25% and 75% quantiles of 50 independent repetitions.694
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Fig. 2. Visualization of estimates of parameters (sin(t),−2t) in (7.5) under case (i).
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Fig. 3. Visualization of estimates of parameters (sin(t),−2t) in (7.5) under case (ii).

Under the case (i), for the fixed step size h = 0.001, we also carry out tests with695

the regularization parameter µ = 0.001, 0.01, 0.1 and 1, and the sample size ν = 1000,696

500, 100 and 50. We compute the numerical solution xµ,ν = (xµ,ν1 , xµ,ν2 ) and697

R3 =
1

5000

√√√√5000∑
i=1

(x∗1(ih)− xµ,ν1 (ih))2, R4 =
1

5000

√√√√5000∑
i=1

(x∗2(ih)− xµ,ν2 (ih))2698

50 times and averages them, where (x∗1(t), x∗2(t)) is the true solution of problem (7.5)699

x∗1(t) = et−cos(t)+1, x∗2(t) = e1−t2
∫ t

0

e−τ
2−cos(τ)+τdτ.700
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Fig. 4. The decreasing tendencies of R3 and R4 as ν increases and µ decreases for (7.5) under
case (i).

The decreasing tendencies of R3 and R4 as ν increases and µ decreases are shown in701

FIG. 4.702

From FIGs 2 and 3, we can observe that our model (7.1)-(7.2) can be applied to703

approximate the time-varying parameters in an ODE system (7.5), which means the704

potential application of (1.1)-(1.2) in estimating the time-varying parameters in ODE705

system. FIG 4 also verifies the theoretical results for our numerical methods proposed706

by this paper.707

8. Conclusions. In this paper, we show the existence of weak solutions of the708

dynamic system coupled with solutions of stochastic nonsmooth convex optimization709

problem (1.1)-(1.2). By adding a regularization term µ‖y‖2 to the convex objec-710

tive function in (1.2), the convex optimization problem becomes a strongly convex711

problem, which has a unique continuous optimal solution. We show that the unique712

optimal solution of nonsmooth optimization with strong convexity admits a linear713

growth condition and the regularized dynamic system has a classic solution. More-714

over, we prove that the solutions of regularized problem converge to the solutions of715

original problem as the regularization parameter goes to zero. Moreover, we show716

that the unique optimal solution of the regularized optimization problem (3.1) con-717

verges to the least-norm optimal solution of the original problem (1.2). We adopt718

the sample average approximation scheme and implicit Euler method to discretize719

the dynamic system coupled with solutions of stochastic nonsmooth strongly convex720

optimization problem and present the corresponding convergence analysis. We give a721

numerical example to demonstrate our theoretical results. Finally, the effectiveness of722

our model is verified by an example of the estimation of the time-varying parameters723

in ODE.724
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