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Abstract. Recurrent Neural Networks (RNNs) are widely used to model sequential data in a4
wide range of areas, such as natural language processing, speech recognition, machine translation,5
and time series analysis. In this paper, we model the training process of RNNs with the ReLU acti-6
vation function as a constrained optimization problem with a smooth nonconvex objective function7
and piecewise smooth nonconvex constraints. We prove that any feasible point of the optimiza-8
tion problem satisfies the no nonzero abnormal multiplier constraint qualification (NNAMCQ), and9
any local minimizer is a Karush-Kuhn-Tucker (KKT) point of the problem. Moreover, we propose10
an augmented Lagrangian method (ALM) and design an efficient block coordinate descent (BCD)11
method to solve the subproblems of the ALM. The update of each block of the BCD method has a12
closed-form solution. The stop criterion for the inner loop is easy to check and can be stopped in13
finite steps. Moreover, we show that the BCD method can generate a directional stationary point14
of the subproblem. Furthermore, we establish the global convergence of the ALM to a KKT point15
of the constrained optimization problem. Compared with the state-of-the-art algorithms, numerical16
results demonstrate the efficiency and effectiveness of the ALM for training RNNs.17

Key words. recurrent neural network, nonsmooth nonconvex optimization, augmented La-18
grangian method, block coordinate descent19

MSC codes. 65K05, 90B10, 90C26, 90C3020

1. Introduction. Recurrent Neural Networks (RNNs) have been applied in a21

wide range of areas, such as speech recognition [15, 27], natural language processing22

[22, 28] and nonlinear time series forecasting [1, 23]. In this paper, we focus on the23

Elman RNN architecture [13], one of the earliest and most fundamental RNNs, and24

use Elman RNNs to deal with the regression task with the least squares loss function.25

Given input data xt ∈ Rn and output data yt ∈ Rm, t = 1, . . . , T , a widely used26

minimization problem for training RNNs is represented as (see [14, pp. 381])27

(1.1) min
A,W,V,b,c

1

T

T∑
t=1

∥∥∥∥yt − (Aσ(W (...σ(V x1 + b)...
)
+ V xt + b

)
+ c

)∥∥∥∥2 ,28

whereW ∈ Rr×r, V ∈ Rr×n and A ∈ Rm×r are unknown weight matrices, b ∈ Rr and29

c ∈ Rm are unknown bias vectors, and σ : R → R is a nonsmooth activation function30

that is applied component-wise on vectors and transforms the previous information31

and the input data xt into the hidden layer at time t. The training process by (1.1)32

can be interpreted as looking for proper weight matrices A, W, V, and bias vectors b,33

c in RNNs to minimize the difference between the true value yt and the output from34

RNNs across all time steps. It is worth mentioning that the Elman RNNs in (1.1)35

shares the same weight matrices and bias vectors at different time steps [14, pp. 374].36
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2 YUE WANG, CHAO ZHANG, AND XIAOJUN CHEN

When the traditional backpropagation through time (BPTT) method is used to37

train RNNs, the highly nonlinear and nonsmooth composition function presented38

in (1.1) poses significant challenges. Gradient descent methods (GDs), as well as39

stochastic gradient descent-based methods (SGDs), are widely used to train RNNs in40

practice [8, 30], but the “gradient” of the loss function associated with the weighted41

matrices via the “chain rule” is calculated even if the “chain rule” does not hold. The42

“gradients” might exponentially increase to a very large value or shrink to zero as time43

t increases, which makes RNNs training with large time length T very challenging44

[4]. To overcome this shortcoming, various techniques have been developed, such45

as gradient clipping [22], gradient descent with Nesterov momentum [3], initialization46

with small values [24], adding sparse regularization [2], and so on. Because the essence47

of the above methods is to restrict the initial values of weighted matrices or gradients,48

they are sensitive to the choice of initial values [18]. Moreover, GDs and SGDs for49

training RNNs lack rigorous convergence analysis.50

The objective function in (1.1) is nonsmooth nonconvex and has a highly com-51

posite structure. In this paper, we equivalently reformulate (1.1) as a constrained52

optimization problem with a simple smooth objective function by utilizing auxiliary53

variables to represent the composition structures and treating these representations54

as constraints. Moreover, we propose an augmented Lagrangian method (ALM) for55

the constrained optimization problem with ℓ2-norm regularization, and design a block56

coordinate descent (BCD) method to solve the subproblem of the ALM at every iter-57

ation. The solution of the subproblems of the BCD method is very easy to compute58

with a closed-form. Utilizing auxiliary variables to reformulate highly nonlinear com-59

posite structured problems as constrained optimization problems has been adopted60

for training Deep Neural Networks (DNNs) [7, 12, 19, 20, 31]. However, these algo-61

rithms for DNNs cannot be used for RNNs directly because of the difference between62

their architectures. In fact, RNNs share the same weighted matrices and bias vec-63

tors across different layers, whereas DNNs have distinct weighted matrices and bias64

vectors in different layers. In DNNs, the weighted matrices and bias vectors can be65

updated layer by layer, allowing for the separation of the gradient calculation across66

different layers. However, in RNNs, the weighted matrices and bias vectors need to67

be updated simultaneously. Therefore, it is necessary to establish effective algorithms68

tailored to the characteristics of RNNs. To the best of our knowledge, the proposed69

ALM in this paper is the first first-order optimization method for training RNNs with70

solid convergence results.71

Recently, several augmented Lagrangian-based methods have been proposed for72

nonconvex nonsmooth problems with composite structures. In [9], Chen et al. pro-73

posed an ALM for non-Lipschitz nonconvex programming, which requires the con-74

straints to be smooth. Hallak and Teboulle in [16] transformed a comprehensive75

class of optimization problems into constrained problems with smooth constraints76

and nonsmooth nonconvex objective functions, and proposed a novel adaptive aug-77

mented Lagrangian-based method to solve the constrained problem. The assumption78

on the smoothness of constraints in [9, 16] is not satisfied for the optimization prob-79

lem arising in training RNNs with nonsmooth activation functions considered in this80

paper.81

Our contributions are summarized as follows:82

• We prove that the solution set of the constrained problem with ℓ2 regulariza-83

tion is nonempty and compact. Furthermore, we prove that any feasible point84

of the constrained optimization problem satisfies the no nonzero abnormal85

multiplier constraint qualification (NNAMCQ), which immediately guaran-86
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tees any local minimizer of the constrained problems is a Karush-Kuhn-Tucker87

(KKT) point.88

• We show that any accumulation point of the sequence generated by the BCD89

method is a directional stationary point of the subproblem. Moreover, we90

show that in the k-th iteration of the ALM, the stopping criterion of the BCD91

method for solving the subproblem can be satisfied within O
(
1/(ϵk−1)

2
)
finite92

steps for any ϵk−1 > 0.93

• We show that there exists an accumulation point of the sequence generated by94

the ALM for solving the constrained optimization problem with regularization95

and any accumulation point of the sequence is a KKT point.96

• We compare the performance of the ALM with several state-of-the-art meth-97

ods for both synthetic and real datasets. The numerical results verify that98

our ALM outperforms other algorithms in terms of forecasting accuracy for99

both the training sets and the test sets.100

The rest of the paper is organized as follows. In section 2, we equivalently refor-101

mulate problem (1.1) as a nonsmooth nonconvex constrained minimization problem102

with a simple smooth objective function. Then we show that the solution set of the103

constrained problem with regularization is nonempty and bounded, and give the first-104

order necessary optimality conditions for the constrained problem and the regularized105

problem. We propose the ALM for the constrained problem with regularization, as106

well as the BCD method for the subproblems of the ALM in section 3. We estab-107

lish the convergence results of the BCD method, and the ALM in section 4. Finally,108

we conduct numerical experiments on both the synthetic and real data in section 5,109

which demonstrate the effectiveness and efficiency of the ALM for the reformulated110

optimization problem.111

Notation and terminology. Let N+ denote the set of positive integers. For col-112

umn vectors π1, π2, . . . , πl, let us denote by π := (π1;π2; . . . ;πl) = (π⊤
1 , π

⊤
2 , . . . , π

⊤
l )

⊤113

a column vector. For a given matrix D ∈ Rk×l, we denote by D.j the j-th column114

of D and use vec(D) = (D.1;D.2; . . . ;D.l) ∈ Rkl to represent a column vector. For a115

given vector g, we use diag(g) to represent the diagonal matrix, whose (i, i)-entry is116

the i-th component gi of g. We use el to represent the vector of all ones in Rl. For117

ν ∈ R, ⌈ν⌉ refers to the smallest integer that is greater than ν. For a given N ∈ N+,118

we denote [N ] := {1, 2, . . . , N}. We use ∥ · ∥ and ∥ · ∥∞ to denote the ℓ2-norm and119

infinity norm of a vector or a matrix, respectively. We denote by ∥ · ∥F the Frobenius120

norm of a matrix.121

Let f : Rn1 → R be a proper lower semicontinuous function defined on Rn1 . The122

notation xk
f→ x̄ means that xk → x̄ and f(xk) → f(x̄). The Fréchet subdifferential123

∂̂f(x) and the limiting subdifferential ∂f(x) of f at x̄ ∈ Rn1 are defined as124

∂̂f(x̄) :=

{
g ∈ Rn1 : lim inf

x→x̄,x ̸=x̄

f(x)− f(x̄)− ⟨g, x− x̄⟩
∥x− x̄∥

≥ 0

}
,125

∂f(x̄) :=
{
g ∈ Rn1 : ∃xk f→ x̄, gk → g with gk ∈ ∂̂f(xk), ∀k

}
,126

by [17, Definition 1.1] and [26, Definition 8.3, pp. 301], respectively. A point x̄ is127

said to be a Fréchet stationary point of min f(x) if 0 ∈ ∂̂f(x̄), and x̄ is said to be a128

limiting stationary point of min f(x) if 0 ∈ ∂f(x̄). By [11, pp. 30], the usual (one-side)129

directional derivative of f at x in the direction d ∈ Rn1 is130

f ′(x; d) := lim
λ↓0

f(x+ λd)− f(x)

λ
,131
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4 YUE WANG, CHAO ZHANG, AND XIAOJUN CHEN

when the limit exists. According to [25, Definition 2.1], we say that a point x̄ ∈ Rn1

is a d(irectional)-stationary point of min f(x) if

f ′(x̄; d) ≥ 0, ∀d ∈ Rn1 .

2. Problem reformulation and optimality conditions. For simplicity, we132

focus on the activation function σ : R → R as the ReLU function, i.e.,133

σ(u) = max{u, 0} = (u)+.(2.1)134

Our model, algorithms and theoretical analysis developed in this paper can be gener-135

alized to the leaky ReLU and the ELU activation functions. Detailed analysis for the136

extensions will be given in section 4.3.137

2.1. Problem reformulation. We utilize auxiliary variables h, u and denote138

vectors w,a, z, s as139

h = (h1;h2; ...;hT ) ∈ RrT , u = (u1;u2; ...;uT ) ∈ RrT ,140

w = (vec(W ); vec(V ); b) ∈ RNw , a = (vec(A); c) ∈ RNa ,141

z = (w;a) ∈ RNw+Na , s = (z;h;u) ∈ RNw+Na+2rT ,142

where Nw = r2 + rn+ r and Na = mr +m.143

We reformulate problem (1.1) as the following constrained optimization problem:144

145

min
s

1

T

T∑
t=1

∥yt − (Aht + c)∥2

s.t. ut =Wht−1 + V xt + b,

h0 = 0, ht = (ut)+, t = 1, 2, ..., T.

(2.2)146

Problems (1.1) and (2.2) are equivalent in the sense that if (A∗,W ∗, V ∗, b∗, c∗) is147

a global solution of (1.1), then s∗ = (z∗;h∗;u∗) is a global solution of (2.2) where148

z∗ is defined by (A∗,W ∗, V ∗, b∗, c∗) and h∗,u∗ satisfy the constraints of (2.2) with149

W ∗, V ∗, b∗. Conversely, if s∗ is a global solution of (2.2), then z∗ is a global solution150

of (1.1).151

Let us denote the mappings Φ : Rr 7→ Rm×Na and Ψ : RrT 7→ RrT×Nw as152

Φ(ht) =
[
h⊤t ⊗ Im Im

]
, Ψ(h) =


0⊤r ⊗ Ir x⊤1 ⊗ Ir Ir
h⊤1 ⊗ Ir x⊤2 ⊗ Ir Ir

...
...

...
h⊤T−1 ⊗ Ir x⊤T ⊗ Ir Ir

 ,(2.3)153

where ⊗ represents the Kronecker product, Ir and Im are the identity matrices with154

dimensions r and m respectively, and 0r is the zero vector with dimension r. Thus,155

the objective function and constraints in problem (2.2) can be represented as156

(2.4)
ℓ(s) :=

1

T

T∑
t=1

∥yt − Φ(ht)a∥2 ,

C1(s) := u−Ψ(h)w = 0, C2(s) := h− (u)+ = 0.

157
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To mitigate the overfitting, we further add a regularization term158

P (s) := λ1∥A∥2F + λ2∥W∥2F + λ3∥V ∥2F + λ4∥b∥2 + λ5∥c∥2 + λ6∥u∥2(2.5)159

with λi > 0, i = 1, 2, . . . , 6 in the objective of problem (2.2), and consider the following160

problem:161

(2.6)
min R(s) := ℓ(s) + P (s)

s.t. s ∈ F := {s : C1(s) = 0, C2(s) = 0}.
162

2.2. Optimality conditions. Problem (2.2) and problem (2.6) have the same163

feasible set F . The constraint function C1 is continuously differentiable, while the other164

constraint function C2 is linear in h and piecewise linear in u. We denote by JC1(s)165

the Jacobian matrix of the function C1 at s, and by JzC1(s), JhC1(s), JuC1(s) the166

Jacobian matrix of function C1 at s with respect to the block z, h and u, respectively.167

Similarly, we use JhC2(s) to represent the Jacobian matrix of C2 at s with respect to168

h. Moreover, for a fixed vector ζ ∈ RrT , we use ∂
(
ζ⊤C2(s)

)
to denote the limiting169

subdifferential of ζ⊤C2 at s and ∂u
(
ζ⊤C2(s)

)
to denote the limiting subdifferential of170

ζ⊤C2 at s with respect to u.171

The following lemma shows that the NNAMCQ [29, Definition 4.2, pp. 1451]172

holds at any feasible point s ∈ F . The proofs of all lemmas are given in Appendix A.173

Lemma 2.1. The NNAMCQ holds at any s ∈ F , i.e., there exist no nonzero174

vectors ξ = (ξ1; ξ2; ...; ξT ) ∈ RrT and ζ = (ζ1; ζ2; ...; ζT ) ∈ RrT such that175

0 ∈ JC1(s)⊤ξ + ∂
(
ζ⊤C2(s)

)
.(2.7)176

Definition 2.2. We say that s ∈ F is a KKT point of problem (2.2) if there
exist ξ ∈ RrT and ζ ∈ RrT such that

0 ∈ ∇ℓ(s) + JC1(s)⊤ξ + ∂
(
ζ⊤C2(s)

)
.

We say that s ∈ F is a KKT point of problem (2.6) if there exist ξ ∈ RrT and ζ ∈ RrT

such that
0 ∈ ∇R(s) + JC1(s)⊤ξ + ∂

(
ζ⊤C2(s)

)
.

Now we can establish the first order necessary conditions for problem (2.2) and177

problem (2.6).178

Theorem 2.3. (i) If s̄ is a local solution of problem (2.2), then s̄ is a KKT point179

of problem (2.2). (ii) If s̄ is a local solution of problem (2.6), then s̄ is a KKT point180

of problem (2.6).181

Proof. Note that the objective functions of problem (2.2) and problem (2.6) are182

continuously differentiable. The constraint functions C1 is continuously differentiable,183

and C2 is Lipschitz continuous at any feasible point s ∈ F . By Lemma 2.1, NNAMCQ184

holds at any s̄ ∈ F . Therefore, the conclusions of this theorem hold according to [29,185

Remark 2 and Theorem 5.2].186

2.3. Nonempty and compact solution set of (2.6). Let S1 be the solution187

set of problem (2.6), and denote the level set188

DR(ρ) := {s ∈ F : R(s) ≤ ρ}(2.8)189

with a nonnegative scalar ρ.190

Lemma 2.4. For any ρ > R(0), the level set DR(ρ) is nonempty and compact.191

Moreover, the solution set S1 of (2.6) is nonempty and compact.192
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6 YUE WANG, CHAO ZHANG, AND XIAOJUN CHEN

3. ALM with BCD method for (2.6). To solve the regularized constrained193

problem (2.6), we develop in this section an ALM. The subproblems of ALM are194

approximately solved by a BCD method whose update of each block owns a closed-195

form expression. This is not an easy task due to the nonsmooth nonconvex constraints.196

The framework of the ALM is given in Algorithm 3.1, in which the updating schemes197

for Lagrangian multipliers and penalty parameters are motivated by [9]. It is worth198

mentioning that in [9], the constraints are smooth. In problem (2.6), the constraints199

are nonsmooth nonconvex. For solving the subproblems in the ALM, we design the200

BCD method in Algorithm 3.2 and provide the closed-form expression for the update201

of each block in the BCD. Due to the nonsmooth nonconvex constraints in (2.6), the202

convergence analysis is complex, which will be given in section 4.203

The augmented Lagrangian (AL) function of problem (2.6) is204

L(s, ξ, ζ, γ)(3.1)205

:= R(s) + ⟨ξ,u−Ψ(h)w⟩+ ⟨ζ,h− (u)+⟩+ γ
2 ∥u−Ψ(h)w∥2 + γ

2 ∥h− (u)+∥2206

= R(s) +
γ

2

∥∥∥∥u−Ψ(h)w +
ξ

γ

∥∥∥∥2 + γ

2

∥∥∥∥h− (u)+ +
ζ

γ

∥∥∥∥2 − ∥ξ∥2

2γ
− ∥ζ∥2

2γ
,207

where ξ = (ξ1; ξ2; ...; ξT ) ∈ RrT and ζ = (ζ1; ζ2; ...; ζT ) ∈ RrT are the Lagrangian mul-208

tipliers, and γ > 0 is the penalty parameter for the two quadratic penalty terms209

of constraints u = Ψ(h)w and h = (u)+. For convenience, we will also write210

L(z,h,u, ξ, ζ, γ) to represent L(s, ξ, ζ, γ) when the blocks of s are emphasized.211

We develop some basic results in the following two lemmas relating to the AL212

function L. The explicit formulas for the gradients of L with respect to z and h in213

Lemma 3.1 (iii) and (iv) will be used for obtaining the closed-form updates for the z214

and h blocks in the BCD method, respectively. The Lipschitz constants L1(ξ, ζ, γ, r̂)215

and L2(ξ, ζ, γ, r̂) in Lemma 3.2 are essential to design a practical stopping condition216

(3.17) of the BCD method in Algorithm 3.2. The results will also be used for the217

convergence results of the BCD method in Theorems 4.3 and 4.4.218

Lemma 3.1. For any fixed γ, ξ and ζ, the following statements hold.219

(i) The AL function L is lower bounded that satisfies220

L(s, ξ, ζ, γ) ≥ −∥ξ∥2

2γ
− ∥ζ∥2

2γ
for all s.221

(ii) For any ŝ and Γ̂ ≥ r̂ := L(ŝ, ξ, ζ, γ), the level set222

ΩL(Γ̂) := {s : L(s, ξ, ζ, γ) ≤ Γ̂}223

is nonempty and compact.224

(iii) The AL function L is continuously differentiable with respect to z, and the225

gradient with respect to z is226

∇zL(z,h,u, ξ, ζ, γ) =
[
Q̂1(s, ξ, ζ, γ)w + q̂1(s, ξ, ζ, γ)

Q̂2(s, ξ, ζ, γ)a+ q̂2(s, ξ, ζ, γ)

]
,227

where228

Q̂1(s, ξ, ζ, γ) = γΨ(h)⊤Ψ(h) + 2Λ1, q̂1(s, ξ, ζ, γ) = −Ψ(h)⊤(ξ + γu)229

Q̂2(s, ξ, ζ, γ) =
2

T

T∑
t=1

Φ(ht)
⊤Φ(ht) + 2Λ2, q̂2(s, ξ, ζ, γ) = − 2

T

T∑
t=1

Φ(ht)
⊤yt230

Λ1 = diag
((
λ2er2 ;λ3ern;λ4er

))
, Λ2 = diag

((
λ1erm;λ5em

))
.231
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(iv) The AL function L is continuously differentiable with respect to h, and the232

gradient with respect to h is233

∇hL(z,h,u, ξ, ζ, γ)234

=
(
∇h1

L(z,h,u, ξ, ζ, γ);∇h2
L(z,h,u, ξ, ζ, γ); . . . ;∇hT

L(z,h,u, ξ, ζ, γ)
)
,235

where236

∇ht
L(z,h,u, ξ, ζ, γ) =

{
D1(s, ξ, ζ, γ)ht − d1t(s, ξ, ζ, γ), if t ∈ [T − 1],
D2(s, ξ, ζ, γ)hT − d2T (s, ξ, ζ, γ), if t = T,

237

D1(s, ξ, ζ, γ) = γW⊤W + 2
T A

⊤A+ γIr,238

D2(s, ξ, ζ, γ) =
2
T A

⊤A+ γIr,239

d1t(s, ξ, ζ, γ) =W⊤ (ξt+1 + γ(ut+1 − V xt+1 − b)) + γ(ut)+ − ζt +
2
T A

⊤(yt − c),240

d2T (s, ξ, ζ, γ) = γ(uT )+ − ζT + 2
T A

⊤(yT − c).241

Lemma 3.2. For any z,h,u,h′,u′ in the level set ΩL(r̂), we have242

∥∇zL(z,h′,u′, ξ, ζ, γ)−∇zL(z,h,u, ξ, ζ, γ)∥ ≤ L1(ξ, ζ, γ, r̂)

∥∥∥∥ h′ − h
u′ − u

∥∥∥∥ ,(3.2)243

∥∇hL(z,h,u′, ξ, ζ, γ)−∇hL(z,h,u, ξ, ζ, γ)∥ ≤ L2(ξ, ζ, γ, r̂) ∥u′ − u∥ ,(3.3)244

where245

L1(ξ, ζ, γ, r̂) =
√
2max{γδ1, δ2 + δ3 + δ4}, L2(ξ, ζ, γ, r̂) = γδ5,(3.4)246

with X := (x1;x2; ...;xT ) ∈ RnT ,247

δ = r̂ +
∥ξ∥2

2γ
+

∥ζ∥2

2γ
, δ0 =

√
2δ

γ
+

√
δ

λ6
+

∥ζ∥
γ
, δ1 =

√
r(δ2 + ∥X∥2 + T ),248

δ2 = 2γδ1

√
rδ

min{λ2, λ3, λ4}
, δ3 =

√
r∥ξ∥+ γ

√
rδ

λ6
,249

δ4 =
2
√
m√
T

(
2
√
m(δ20 + 1)

√
δ

min{λ1, λ5}
+ max

1≤t≤T
∥yt∥

)
, δ5 =

√
δ(T − 1)

λ2
+
√
T .250

3.1. ALM for the regularized RNNs. To solve the regularized constrained251

problem (2.6), we propose the ALM in Algorithm 3.1. The ALM first approximately252

solves (3.5) that aims to minimize the AL function with the fixed Lagrange multi-253

pliers ξk−1 and ζk−1, and the fixed penalty parameter γk−1 for the quadratic terms,254

until sk satisfies the approximate first-order optimality necessary condition (3.6) with255

tolerance ϵk−1. Then the Lagrange multipliers are updated, and the tolerance ϵk256

is reduced so that in the next iteration the subproblem is solved more accurately.257

Moreover, the penalty parameter γk is unchanged if the feasibility of sk is sufficiently258

improved compared to that of sk−1, otherwise, γk is increased.259

Remark 3.3. The main operation of Algorithm 3.1 is to approximately solve the260

subproblem (3.5). Furthermore, to show that Algorithm 3.1 is well-defined requires261

that the algorithm for solving the subproblem (3.5) can be terminated within finite262

steps to meet the stopping condition in (3.6).263

In section 3.2, we will design a BCD method to solve the subproblem (3.5). The264

update of each block of the BCD method owns a closed-form formula, which makes265

the BCD method efficient. Moreover, the stopping condition (3.6) can be replaced by266

a simpler condition (3.17) as will be shown in Theorem 4.3.267
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Algorithm 3.1 The augmented Lagrangian method (ALM) for (2.6)

1: Set an initial penalty parameter γ0 > 0, parameters η1, η2, η4 ∈ (0, 1) and η3 > 1,
an initial tolerance ϵ0 > 0, vectors of Lagrangian multipliers ξ0, ζ0, and a feasible
initial point s0 = (z0, ĥ, û) where ĥ0 = 0, ût = Wĥt−1 + V xt + b and ĥt = (ût)+
for t ∈ [T ].

2: Set k := 1.
3: Step 1: Solve

min
s

L(s, ξk−1, ζk−1, γk−1)(3.5)

to obtain sk satisfying the following condition

dist
(
0, ∂L(sk, ξk−1, ζk−1, γk−1)

)
≤ ϵk−1.(3.6)

4: Step 2: Update ϵk = η4ϵk−1, ξ
k−1 and ζk−1 as

ξk = ξk−1 + γk−1

(
uk −Ψ(hk)wk

)
, ζk = ζk−1 + γk−1

(
hk − (uk)+

)
.(3.7)

5: Step 3: Set γk = γk−1, if the following condition is satisfied

max
{
∥C1(sk)∥, ∥C2(sk)∥

}
≤ η1 max

{
∥C1(sk−1)∥, ∥C2(sk−1)∥

}
.(3.8)

6: Otherwise, set

γk = max
{
γk−1/η2,

∥∥ξk∥∥1+η3
,
∥∥ζk∥∥1+η3

}
.(3.9)

7: Let k − 1 := k and go to Step 1.

3.2. BCD method for subproblem. To solve the nonsmooth nonconvex prob-268

lem (3.5) in Step 1 of Algorithm 3.1, we propose a BCD method in Algorithm 3.2 to269

solve the subproblem at the k-th iteration in the ALM by alternatively updating the270

blocks in the order of z, h, and u in s, respectively. Let us choose a constant Γ such271

that272

Γ ≥ L
(
s0, ξ0, ζ0, γ0

)
.(3.10)273

Because at the k-th iteration of the ALM, ξk−1, ζk−1, γk−1 are fixed, we just274

write ξ, ζ, γ in the BCD method for brevity. Furthermore, for the BCD solving the275

subproblem appeared at the k-th iteration of the ALM, we define276

sk−1,j
z := (zk−1,j ;hk−1,j−1;uk−1,j−1), sk−1,j

h := (zk−1,j ;hk−1,j ;uk−1,j−1)(3.11)277

to denote the point obtained after updating the z block, and updating the h block at278

the j-th iteration of the BCD method, and we use279

sk−1,j = (zk−1,j ;hk−1,j ;uk−1,j)(3.12)280

to represent the point obtained at the j-th iteration of the BCD method after updating281

the u block.282
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Algorithm 3.2 Block Coordinate Descent (BCD) method for (3.5)

1: Set the initial point of BCD algorithm as

sk−1,0 =

{
sk−1, if k > 1 and L

(
sk−1, ξ, ζ, γ

)
≤ Γ,

s0, otherwise.
(3.13)

Compute r̂k−1 = L(sk−1,0, ξ, ζ, γ), L1,k−1 = L1(ξ, ζ, γ, r̂k−1) and L2,k−1 =
L2(ξ, ζ, γ, r̂k−1) by formula (3.4).

2: Set j := 1.
3: while the stop criterion is not met do
4: Step 1: Update blocks zk−1,j , hk−1,j and uk−1,j separately as

zk−1,j = argmin
z

L
(
z,hk−1,j−1,uk−1,j−1, ξ, ζ, γ

)
,(3.14)

hk−1,j = argmin
h

L
(
zk−1,j ,h,uk−1,j−1, ξ, ζ, γ

)
,(3.15)

uk−1,j ∈ argmin
u

L
(
zk−1,j ,hk−1,j ,u, ξ, ζ, γ

)
+ µ

2

∥∥u− uk−1,j−1
∥∥2 .(3.16)

Then set sk−1,j = (zk−1,j ;hk−1,j ;uk−1,j).
5: Step 2: If the stop criterion∥∥sk−1,j − sk−1,j−1

∥∥ ≤ ϵk−1

max{L1,k−1, L2,k−1, µ}
,(3.17)

is not satisfied, then set j := j + 1 and go to Step 1.
6: end while
7: return sk = sk−1,j .

Condition (3.6) is satisfied when (3.17) holds, which will be proved in Theorem283

4.3. The closed-form solutions of problems (3.14), (3.15) and (3.16) are provided284

below.285

Update zk−1,j: Problem (3.14) is an unconstrained optimization problem with286

smooth and strongly convex objective function. By employing Lemma 3.1 (iii) and287

solving288

∇zL(sk−1,j
z , ξ, ζ, γ) = 0,289

the unique global minimizer zk−1,j = (wk−1,j ;ak−1,j) can be computed as290

wk−1,j = −Q̂1(s
k−1,j
z , ξ, ζ, γ)

−1
q̂1(s

k−1,j
z ; ξ, ζ, γ),291

ak−1,j = −Q̂2(s
k−1,j
z , ξ, ζ, γ)

−1
q̂2(s

k−1,j
z , ξ, ζ, γ).292

Update hk−1,j: The objective function of (3.15) is also strongly convex and293

smooth. By employing Lemma 3.1 (iv) and solving ∇hL(sk−1,j
h , ξ, ζ, γ) = 0, we get294

its unique global minimizer, given by295

hk−1,j
t =

{
D1(s

k−1,j
h , ξ, ζ, γ)

−1
d1t(s

k−1,j
h , ξ, ζ, γ), if t ∈ [T − 1],

D2(s
k−1,j
h , ξ, ζ, γ)

−1
d2T (s

k−1,j
h , ξ, ζ, γ), if t = T.

(3.18)296

Update uk−1,j: Although problem (3.16) is nonsmooth nonconvex, one of its297

global solutions is accessible, because the objective function of problem (3.16) can be298
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separated into rT one-dimensional functions with the same structure. Thus, we aim299

to solve the following one-dimensional problem:300

(3.19) min
u∈R

φ(u) := γ
2 (u− θ1)

2 + γ
2 (θ2 − (u)+)

2 + µ
2 (u− θ3)

2 + λ6u
2,301

where θ1, θ2, θ3 ∈ R are known real numbers. Denote302

u+ := argmin
u∈R+

φ(u) and u− := argmin
u∈R−

φ(u).(3.20)303

By direct computation,304

u+ =


γθ1 + γθ2 + µθ3
2γ + 2λ6 + µ

, if γθ1 + γθ2 + µθ3 > 0,

0, otherwise,
(3.21)305

and306

u− =


γθ1 + µθ3
γ + 2λ6 + µ

, if γθ1 + µθ3 < 0,

0, otherwise.
(3.22)307

Then a solution of (3.19) can be given as308

u∗ =

{
u+, if φ(u+) ≤ φ(u−),
u−, otherwise.

309

By setting310

θ1 = (Ψ(hk−1,j)wk−1,j)i −
ξi
γ
, θ2 = hk−1,j

i +
ζi
γ
, θ3 = uk−1,j−1

i ,311

uk−1,j
i = u∗, ui

+ = u+, ui
− = u−,312

we obtain a closed-form solution of problem (3.16) as313

uk−1,j
i =

{
u+
i , if φ(u+

i ) ≤ φ(u−
i ),

u−
i , otherwise, i = 1, . . . , rT.

314

Remark 3.4. It is important to mention that the solution set of problem (3.16)315

may not be a singleton. To ensure the selected solution is unique, we set uk−1,j
i = u+

i316

when φ(u+
i ) = φ(u−

i ) for every i ∈ [rT ].317

4. Convergence analysis. In this section, we show the convergence results of318

both the BCD method for the subproblem of the ALM, as well as the ALM for (2.6).319

4.1. Convergence analysis of Algorithm 3.2. It is clear that320

L(s, ξ, ζ, γ) = g(s, ξ, γ) + q(s, ζ, γ),(4.1)321

where322

g(s, ξ, γ) = R(s) +
γ

2

∥∥∥∥u−Ψ(h)w +
ξ

γ

∥∥∥∥2 − ∥ξ∥2

2γ
,(4.2)323

q(s, ζ, γ) =
γ

2

∥∥∥∥h− (u)+ +
ζ

γ

∥∥∥∥2 − ∥ζ∥2

2γ
.(4.3)324
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The function g is smooth but nonconvex, because it contains the bilinear structure325

Ψ(h)w. The function q is nonsmooth nonconvex.326

For the convergence analysis below, we further use s
(j)
z and s

(j)
h to represent327

sk−1,j
z and sk−1,j

h in (3.11), and use s(j) to represent sk−1,j in (3.12) for brevity. We328

emphasize that the point sk is generated by the ALM in Algorithm 3.1, while the point329

s(j) is generated by the BCD method in Algorithm 3.2 for solving the subproblem in330

the ALM at the k-th iteration.331

The following two lemmas will be used in proving the convergence results of the332

BCD method.333

Lemma 4.1. Let {s(j)} represent the sequence generated by Algorithm 3.2. Then334

{s(j)} belongs to the level set ΩL(Γ), which is compact.335

Lemma 4.2. The AL function L is locally Lipschitz continuous and directionally336

differentiable on ΩL(Γ).337

We can now show that the stop criterion (3.17) in Algorithm 3.2 can be stopped338

in finite steps, and condition (3.6) in Algorithm 3.1 is satisfied when (3.17) holds.339

These results guarantee that the ALM in Algorithm 3.1 is well-defined, when the340

subproblems are solved by the BCD method in Algorithm 3.2.341

Theorem 4.3. At the k-th iteration of ALM in Algorithm 3.1, the BCD method342

in Algorithm 3.2 for the subproblem (3.5) can be stopped within finite steps to satisfy343

the stop criterion in (3.17), which is of order O(1/(ϵk−1)
2). Moreover, condition (3.6)344

of the ALM in Algorithm 3.1 is satisfied at the output sk of Algorithm 3.2.345

Proof. Since L is strongly convex with respect to the blocks z and h, respectively,346

from (3.14) and (3.15), we obtain347

L(s(j−1), ξ, ζ, γ)− L(s(j)z , ξ, ζ, γ) ≥ α1

2 ∥z(j−1) − z(j)∥2,(4.4)348

L(s(j)z , ξ, ζ, γ)− L(s(j)h , ξ, ζ, γ) ≥ α2

2 ∥h(j−1) − h(j)∥2,(4.5)349

where α1 and α2 are the minimum eigenvalues of the Hessian matrices ∇2
zL(s, ξ, ζ, γ)350

and ∇2
hL(s, ξ, ζ, γ) for all s in the compact set ΩL(Γ), respectively. Furthermore, by351

(3.16), we have352

L(s(j)h , ξ, ζ, γ)− L(s(j), ξ, ζ, γ) ≥ µ
2

∥∥∥u(j) − u(j−1)
∥∥∥2 .(4.6)353

It follows that354

L(s(j−1), ξ, ζ, γ)− L(s(j), ξ, ζ, γ)355

=
(
L(s(j−1), ξ, ζ, γ)− L(s(j)z , ξ, ζ, γ)

)
+
(
L(s(j)z , ξ, ζ, γ)− L(s(j)h , ξ, ζ, γ)

)
356

+
(
L(s(j)h , ξ, ζ, γ)− L(s(j), ξ, ζ, γ)

)
357

≥ α1

2 ∥z(j) − z(j−1)∥2 + α2

2 ∥h(j) − h(j−1)∥2 + µ
2 ∥u

(j) − u(j−1)∥2358

≥ max{α1

2 ,
α2

2 ,
µ
2 }∥s

(j) − s(j−1)∥2.359

Summing up L(s(j−1), ξ, ζ, γ) − L(s(j), ξ, ζ, γ) from j = 1 to J , we have360

L(s(0), ξ, ζ, γ)− L(s(J), ξ, ζ, γ) ≥ max{α1

2 ,
α2

2 ,
µ
2 }

J∑
j=1

∥s(j) − s(j−1)∥2(4.7)361

≥ J max{α1

2 ,
α2

2 ,
µ
2 }min

j∈[J]
{∥s(j) − s(j−1)∥2}.362
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This, together with Lemma 3.1 (i), yields that363

min
j∈[J]

{∥s(j) − s(j−1)∥2} ≤
L(s(0), ξ, ζ, γ) + ∥ξ∥2

2γ + ∥ζ∥2

2γ

J max{α1

2 ,
α2

2 ,
µ
2 }

.364

It follows that the stop criterion (3.17) holds, as long as365

J ≥ Ĵ :=


(
L(s(0), ξ, ζ, γ) + ∥ξ∥2

2γ + ∥ζ∥2

2γ

)
(max{L1,k−1, L2,k−1, µ})2

max{α1

2 ,
α2

2 ,
µ
2 }(ϵk−1)2

 .(4.8)366

Therefore, at the k-th iteration of the ALM in Algorithm 3.1, the BCD method in367

Algorithm 3.2 can be stopped in at most Ĵ iterations defined in (4.8) and output sk,368

which is of order O(1/(ϵk−1)
2).369

Once condition (3.17) is satisfied, condition (3.6) in Algorithm 3.1 also holds,370

which will be proved in the following. By Step 1 in Algorithm 3.2, the first order371

optimality condition of the three blocked subproblems (3.14), (3.15) and (3.16) are372

0 = ∇zL(s(j)z , ξ, ζ, γ), 0 = ∇hL(s(j)h , ξ, ζ, γ),373

0 ∈ ∇ug(s
(j), ξ, γ) + ∂uq(s

(j), ζ, γ) + µ(u(j) − u(j−1)).374

Furthermore, the limiting subdifferential of the function L at s(j) can be written as375

∂L(s(j), ξ, ζ, γ) =
(
∇zL(s(j), ξ, ζ, γ);∇hL(s(j), ξ, ζ, γ);∇ug(s

(j), ξ) + ∂uq(s
(j), ζ)

)
.376

Hence377  ∇zL(s(j), ξ, ζ, γ)−∇zL(s(j)z , ξ, ζ, γ)

∇hL(s(j), ξ, ζ, γ)−∇hL(s(j)h , ξ, ζ, γ)
−µ(u(j) − u(j−1))

 ∈ ∂L(s(j), ξ, ζ, γ).378

By Lemma 3.2, we obtain379

dist
(
0, ∂L(s(j), ξ, ζ, γ)

)
≤

∥∥∥∥∥∥∥
∇zL(s(j), ξ, ζ, γ)−∇zL(s(j)z , ξ, ζ, γ)

∇hL(s(j), ξ, ζ, γ)−∇hL(s(j)h , ξ, ζ, γ)
−µ(u(j) − u(j−1))

∥∥∥∥∥∥∥380

≤ max{L1,k−1, L2,k−1, µ}∥s(j) − s(j−1)∥.381

Thus condition (3.17) that ∥s(j) − s(j−1)∥ ≤ ϵk−1/max{L1,k−1, L2,k−1, µ}, together382

with sk = s(j), implies dist(0, ∂L(s(k), ξ, ζ, γ)) ≤ ϵk−1 in condition (3.6).383

Theorem 4.3 above guarantees that the BCD method in Algorithm 3.2 terminates384

within finite steps to meet the stop criterion (3.17) for a fixed ϵk−1 > 0. In the rest385

of this subsection, we discuss the convergence of Algorithm 3.2 for the case ϵk−1 = 0,386

i.e., we replace the stop criterion (3.17) by387

(4.9)
∥∥sk−1,j − sk−1,j−1

∥∥ = 0.388

We will show in Theorem 4.6 that the BCD method converges to a d-stationary point389

if ϵk−1 = 0. For this purpose, we first show the following theorem that provides the390

convergence of the sequences of the function values L with respect to the three blocks,391

as well as the convergence of the subsequences of the iterative points with respect to392

the three blocks.393
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Theorem 4.4. Suppose that (3.17) is replaced by (4.9) in Algorithm 3.2. If there394

is j̄ such that (4.9) holds, then395

(4.10) L(s(j̄)z , ξ, ζ, γ) = L(s(j̄)h , ξ, ζ, γ) = L(s(j̄), ξ, ζ, γ) and s(j̄)z = s
(j̄)
h = s(j̄).396

Otherwise, Algorithm 3.2 generates infinite sequences {s(j)z }, {s(j)h } and {s(j)}, and397

the following statements hold.398

(i) The sequences {L(s(j)z , ξ, ζ, γ)}, {L(s(j)h , ξ, ζ, γ)} and {L(s(j), ξ, ζ, γ)} all con-399

verge to a constant L∗.400

(ii) There exists a subsequence {ji} ⊆ {j} such that {s(ji)z }, {s(ji)h } and {s(ji)}401

converging to the same point.402

Proof. If there is j̄ such that (4.9) holds, then (4.10) is derived directly from403

sk−1,j̄ = sk−1,j̄−1 and (3.14)-(3.16).404

If there is no j̄ such that (4.9) holds, then Algorithm 3.2 generates infinite se-405

quences {s(j)z }, {s(j)h } and {s(j)}.406

(i) By Lemma 4.1, there exists an infinite subsequence {ji} ⊆ {j} such that407

s(ji) → s̄ as ji → ∞. Let L∗ = L(s̄). We can easily deduce that statement (i)408

holds, by the descent inequality (A.14) and the lower boundedness of {L(s(j), ξ, ζ, γ)}409

according to Lemma 3.1 (i).410

(ii) To further prove that {s(ji)z } and {s(ji)h } also converge to s̄, it is sufficient to411

prove412

lim
i→∞

∥s(ji) − s(ji)z ∥ = 0, lim
i→∞

∥s(ji) − s
(ji)
h ∥ = 0.(4.11)413

Letting J go to infinity and replacing (j) in (4.7) by (ji), it is easy to have that414 ∑∞
i=1 ∥s(ji) − s(ji−1)∥2 <∞. Hence,415

lim
i→∞

∥s(ji) − s(ji−1)∥ = 0,(4.12)416

which together with417

∥s(ji) − s(ji)z ∥ ≤ ∥h(ji) − h(ji−1)∥+ ∥u(ji) − u(ji−1)∥,418

∥s(ji) − s
(ji)
h ∥ ≤ ∥u(ji) − u(ji−1)∥,419

implies the validity of (4.11).420

Now we turn to show that Algorithm 3.2 generates a d-stationary point of problem421

(3.5). For convenience, when considering the directional derivative of a function with422

respect to a direction and we want to emphasize the blocks of the direction, we adopt423

a simple expression. For example, if d = (dz; dh; du), we also write L′(s, ξ, ζ, γ; d) =424

L′(s, ξ, ζ, γ; (dz, dh, du)) instead of L′(s, ξ, ζ, γ; (dz; dh; du)).425

Lemma 4.5. If the directional derivatives of L at s̄ ∈ ΩL(Γ) satisfy426

L′(s̄, ξ, ζ, γ; (dz, 0, 0)) ≥ 0, L′(s̄, ξ, ζ, γ; (0, dh, 0)) ≥ 0, L′(s̄, ξ, ζ, γ; (0, 0, du)) ≥ 0,427

along any dz ∈ RNw+Na , dh ∈ RrT and du ∈ RrT , then428

L′(s̄, ξ, ζ, γ; d) ≥ 0, ∀ d ∈ RNw+Na+2rT .429
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As problem (3.5) is nonsmooth nonconvex, there are many kinds of stationary430

points for it, such as a Fréchet stationary point, a limiting stationary point, and a d-431

stationary point. It is known that a Fréchet stationary point is a limiting stationary432

point, and a d-stationary point is a limiting stationary point, but not vise versa433

[19]. The theorem below guarantees that either the BCD method terminates at a434

d-stationary point of problem (3.5) in finite steps, or any accumulation point of the435

sequence generated by the BCD method is a d-stationary point of problem (3.5).436

Theorem 4.6. Suppose that (3.17) is replaced by (4.9) in Algorithm 3.2. If there437

is j̄ such that (4.9) holds, then s(j̄) is a d-stationary point of problem (3.5). Otherwise,438

Algorithm 3.2 generates an infinite sequence {s(j)} and any accumulation point of439

{s(j)} is a d-stationary point of problem (3.5).440

Proof. If there is j̄ such that (4.9) holds, then sk−1,j̄ = sk−1,j̄−1, i.e., s(j̄) = s(j̄−1).441

This, combined with (4.10) of Theorem 4.4, yields that s
(j̄)
z = s

(j̄)
h = s(j̄) = s(j̄−1).442

Thus by (3.14)-(3.16) in Algorithm 3.2, we have for any λ > 0 and any dz ∈ RNw+Na ,443

dh ∈ RrT , du ∈ RrT ,444

L(s(j̄), ξ, ζ, γ) ≤ L
(
s(j̄) + λ(dz, 0, 0), ξ, ζ, γ

)
,445

L(s(j̄), ξ, ζ, γ) ≤ L
(
s(j̄) + λ(0, dh, 0), ξ, ζ, γ

)
,446

L(s(j̄), ξ, ζ, γ) ≤ L
(
s(j̄) + λ(0, 0, du), ξ, ζ, γ

)
.447

By Lemma 4.2 and the definition of the directional derivative, we get for any dz, dh,448

du,449

L′(s(j̄), ξ, ζ, γ; (dz, 0, 0)) ≥ 0, L′(s(j̄), ξ, ζ, γ; (0, dh, 0)) ≥ 0,450

L′(s(j̄), ξ, ζ, γ; (0, 0, du)) ≥ 0.451

The above inequalities, along with Lemma 4.5, yields that L′(s(j̄), ξ, ζ, γ; d) ≥ 0 for452

any d ∈ RNw+Na+2rT . Hence, s(j̄) is a d-stationary point of problem (3.5).453

If there is no j̄ such that (4.9) holds, then Algorithm 3.2 generates an infinite454

sequence {s(j)}. By (3.16), we have455

L(s(j), ξ, ζ, γ) ≤ L(s(j), ξ, ζ, γ) + µ

2
∥u(j) − u(j−1)∥2 ≤ L(s(j)h , ξ, ζ, γ).456

Letting j → ∞ in the above inequalities and using Theorem 4.4 (i), we have457

lim
j→∞

∥u(j) − u(j−1)∥ = 0.458

By Theorem 4.4 (ii), let {s(ji)z }, {s(ji)h } and {s(ji)} be any convergent subsequences459

with limit s̄. Furthermore, by (3.14)-(3.16) in Algorithm 3.2, we have for any λ > 0460

and any dz ∈ RNw+Na , dh ∈ RrT , du ∈ RrT ,461

L(s(ji)z , ξ, ζ, γ) ≤ L
(
s(ji)z + λ(dz, 0, 0), ξ, ζ, γ

)
,462

L
(
s
(ji)
h , ξ, ζ, γ

)
≤ L

(
s
(ji)
h + λ(0, dh, 0), ξ, ζ, γ

)
,463

L(s(ji), ξ, ζ, γ) ≤ L
(
s(ji) + λ(0, 0, du), ξ, ζ, γ

)
+ µ

2 ∥u
(ji) + λdu − u(ji−1)∥2.464

As i → ∞, the above equality and inequalities imply that for any λ > 0 and any dz,465

dh, du,466

L(s̄, ξ, ζ, γ) ≤ L
(
s̄+ λ(dz, 0, 0), ξ, ζ, γ

)
, L(s̄, ξ, ζ, γ) ≤ L

(
s̄+ λ(0, dh, 0), ξ, ζ, γ

)
,

L(s̄, ξ, ζ, γ) ≤ L
(
s̄+ λ(0, 0,du), ξ, ζ, γ

)
+ µ

2λ
2∥du∥2.

467
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By Lemma 4.2 and the definition of directional derivative, it follows that468

L′(s̄, ξ, ζ, γ; (dz, 0, 0)) ≥ 0, L′(s̄, ξ, ζ, γ; (0, dh, 0)) ≥ 0, L′(s̄, ξ, ζ, γ; (0, 0, du)) ≥ 0,469

for any dz, dh and du. The above inequalities, along with Lemma 4.5, yield that s̄ is470

a d-stationary point of problem (3.5).471

4.2. Convergence analysis of Algorithm 3.1. By Theorem 4.3, the ALM in472

Algorithm 3.1 is well-defined, since Step 1 can always be fulfilled in finite steps by the473

BCD method in Algorithm 3.2.474

It is well known that the classical ALM may converge to an infeasible point. In475

contrast, the following theorem guarantees that any accumulation point of the ALM476

in Algorithm 3.1 is a feasible point. The delicate strategy for updating the penalty477

parameter γk in Step 3 of Algorithm 3.1 plays an important role in the proof of the478

theorem.479

Theorem 4.7. Let
{
sk
}
be the sequence generated by Algorithm 3.1. Then the480

following statements hold.481

(i) limk→∞
∥∥uk −Ψ(hk)wk

∥∥ = 0 and limk→∞
∥∥hk − (uk)+

∥∥ = 0.482

(ii) There exists at least one accumulation point of {sk}, and any accumulation483

point is a feasible point of (2.6).484

Proof. (i) Let the index set485

K :=
{
k : γk = max{γk−1/η2, ∥ξk∥1+η3 , ∥ζk∥1+η3}

}
.(4.13)486

If K is a finite set, then there exists K ∈ N+, such that for all k > K,487

max
{
∥C1(sk)∥, ∥C2(sk)∥

}
≤ η1 max

{
∥C1(sk−1)∥, ∥C2(sk−1)∥

}
488

≤ ηk−K
1 max

{
∥C1(sK)∥, ∥C2(sK)∥

}
.(4.14)489

Since η1 ∈ (0, 1), we get limk→∞ max
{
∥uk − Ψ(hk)wk∥, ∥hk − (uk)+∥

}
= 0. The490

statement (i) can thus be proved for this case.491

Otherwise, K is an infinite set. Then for those k − 1 ∈ K,

max

{
∥ξk−1∥
γk−1

,
∥ζk−1∥
γk−1

}
≤ (γk−1)

−η3

1+η3 , max

{
∥ξk−1∥2

γk−1
,
∥ζk−1∥2

γk−1

}
≤ (γk−1)

1−η3

1+η3 .

The above inequalities, together with η3 > 1 yields that492

lim
k→∞,k−1∈K

max

{∥∥ξk−1
∥∥

γk−1

,

∥∥ζk−1
∥∥

γk−1

,

∥∥ξk−1
∥∥2

γk−1

,

∥∥ζk−1
∥∥2

γk−1

}
= 0.(4.15)493

Recalling (3.1), and employing condition (A.15) and Step 1 of Algorithm 3.2, we have494

495

0 ≤
∥∥uk −Ψ(hk)wk + ξk−1

γk−1

∥∥2 + ∥∥hk − (uk)+ + ζk−1

γk−1

∥∥2
≤ 2

γk−1

(
Γ−R(sk)

)
+
(∥ξk−1∥

γk−1

)2
+
(∥ζk−1∥

γk−1

)2
.

(4.16)496

Then by (4.15) and the lower boundedness of
{
R(sk)

}
, we have497

lim
k→∞,k−1∈K

∥uk −Ψ(hk)wk∥ = 0 and lim
k→∞,k−1∈K

∥hk − (uk)+∥ = 0.(4.17)498
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To extend the results in (4.17) to any k > K, let lk denote the largest element in499

K satisfying lk < k. If lk = k−1, the limitations are the same as (4.17). If lk < k−1,500

let us define an index set Ik := {i : lk < i < k}. The updating rule for the penalty501

parameter, as stated in (3.9), implies that γi = γlk . This, combined with the updating502

rules for the Lagrangian multipliers, yields that for all i ∈ Ik, the following holds:503

∥ξi∥
γi

=
∥ξi∥
γi−1

≤ ∥ξi−1∥
γi−1

+
∥∥ui −Ψ(hi)wi

∥∥ ,(4.18)504

∥ζi∥
γi

=
∥ζi∥
γi−1

≤ ∥ζi−1∥
γi−1

+
∥∥hi − (ui)+

∥∥ .(4.19)505

Summing up inequalities (4.18) and (4.19) for every i ∈ Ik, we have506

∥ξk−1∥
γk−1

≤ ∥ξlk∥
γlk

+

k−lk−1∑
i=1

∥∥uk−i −Ψ(hk−i)wk−i
∥∥ ,(4.20)507

∥ζk−1∥
γk−1

≤ ∥ζlk∥
γlk

+

k−lk−1∑
i=1

∥∥hk−i − (uk−i)+
∥∥ .(4.21)508

By the updating rule of γk in (3.8), (4.20) and (4.21), we obtain509

∥ξk−1∥
γk−1

≤ ∥ξlk∥
γlk

+
η1

1− η1
max

{∥∥∥ulk+1 −Ψ(hlk+1)wlk+1
∥∥∥ , ∥∥∥hlk+1 − (ulk+1)+

∥∥∥} ,510

∥ζk−1∥
γk−1

≤ ∥ζlk∥
γlk

+
η1

1− η1
max

{∥∥∥ulk+1 −Ψ(hlk+1)wlk+1
∥∥∥ , ∥∥∥hlk+1 − (ulk+1)+

∥∥∥} .511

This, together with (4.15), (4.17) and η1 ∈ (0, 1), yields that512

lim
k→∞

∥∥ξk−1
∥∥

γk−1

= 0, lim
k→∞

∥∥ζk−1
∥∥

γk−1

= 0.(4.22)513

By the inequality (4.16) and nondecreasing sequence {γk}, we conclude that514

lim
k→∞

∥uk −Ψ(hk)wk∥ = 0, lim
k→∞

∥hk − (uk)+∥ = 0,(4.23)515

using the same manner for showing (4.17).516

(ii) When K is finite, there exists a constant K such that γk−1 = γK for those517

k > K. Then, we turn to consider the boundedness of {ξk−1} and {ζk−1}. Summing518

up (3.7) for those k > K, and using (3.8), we find519

max{{∥ξk−1∥, ∥ζk−1∥}520

≤ max{∥ξK∥, ∥ζK∥}+ η1γK

1− η1
max

{∥∥uK −Ψ(hK)wK
∥∥ ,∥∥hK − (uK)+

∥∥} .521

From the above, the boundedness of {ξk−1} and {ζk−1} are thus proved. Together522

with γk−1 = γK for those k > K, we can further deduce that ∥ξk−1∥2/γk−1 and523

∥ζk−1∥2/γk−1 are bounded for those k ∈ N+.524

When the set K is infinite, by (4.15) we know that ∥ξk−1∥2/γk−1 and ∥ζk−1∥2/γk−1525

are bounded for k − 1 ∈ K. Therefore, no matter K is finite or infinite, ∥ξk−1∥2/γk−1526

and ∥ζk−1∥2/γk−1 are bounded for k − 1 ∈ K.527
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Moreover, we can deduce the following inequality according to the expression of528

Lk−1, condition (A.15), and sk = sk−1,j :529

R(sk) +
γk−1

2

∥∥∥∥uk −Ψ(hk)wk +
ξk−1

γk−1

∥∥∥∥2 + γk−1

2

∥∥∥∥hk − (uk)+ +
ζk−1

γk−1

∥∥∥∥2
≤ Γ +

∥ξk−1∥2

2γk−1

+
∥ζk−1∥2

2γk−1

.

(4.24)530

The above inequality, along with the boundedness of
{
∥ξk−1∥2/γk−1

}
k−1∈K and531 {

∥ζk−1∥2/γk−1

}
k−1∈K, yields the boundedness of {sk}k−1∈K by the same manner532

in Lemma 3.1 (ii). Hence there exists at least one accumulation point of {sk}.533

Any accumulation point is a feasible point of (2.6), which can be derived imme-534

diately by (i), because of the continuity of the functions in the constraints of (2.6).535

Below we show the main convergence result of the ALM.536

Theorem 4.8. Every accumulation point of {sk} generated by Algorithm 3.1 is537

a KKT point of problem (2.6).538

Proof. Let {ski} be a subsequence of {sk} converging to s̄. Then s̄ ∈ F by539

Theorem 4.7. We claim that540

∂L
(
ski , ξki−1, ζki−1, γki−1

)
= ∇R(ski) +∇s

(
⟨ξki−1,uki −Ψ(hki)wki⟩+ γki−1

2

∥∥uki −Ψ(hki)wki
∥∥2)

+ ∂s

(
⟨ζki−1,hki − (uki)+⟩+

γki−1

2

∥∥hki − (uki)+
∥∥2)

= ∇R(ski) + JC1(ski)⊤ξki + ∂
(
(ζki)⊤C2(ski)

)
,

(4.25)541

where C1 and C2 are defined in (2.4).542

First, by employing (3.7) and by direct computation, we have543

∇s

(
⟨ξki−1,uki −Ψ(hki)wki⟩+ γki−1

2

∥∥uki −Ψ(hki)wki
∥∥2)

= JC1(ski)⊤
(
ξki−1 + γki−1(u

ki −Ψ(hki)wki)
)
= JC1(ski)⊤ξki .

(4.26)544

Then, it remains to verify that545

∂s(⟨ζki−1,hki − (uki)+⟩+
γki−1

2 ∥hki − (uki)+∥2) = ∂
(
(ζki)⊤C2(ski)

)
.(4.27)546

To verify (4.27), it can be divided into the subdifferential associated with h and u.547

We first prove that (4.27) is satisfied associated with h. By simple computation,548

∇h

(
⟨ζki−1,hki − (uki)+⟩+

γki−1

2

∥∥hki − (uki)+
∥∥2)

= JhC2(zki ,hki ,uki)⊤
(
ζki−1 + γki−1(h

ki − (uki)+)
)

= JhC2(zki ,hki ,uki)⊤ζki = ∇h

(
⟨ζki ,hki − (uki)+⟩

)
.

(4.28)549

Then we prove that (4.27) is satisfied associated with u, which can be replaced550

by proving rT one dimensional equations with the similar structure as follows:551

∂uj

(
ζki−1
j (hki

j − (uki
j )+) +

γki−1

2 (hki
j − (uki

j )+)
2
)
= ∂uj

(
ζki
j (hki

j − (uki
j )+)

)
,(4.29)552
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where j = 1, 2, ..., rT . When uki
j ̸= 0, equation (4.29) can be easily deduced by the553

same proof method as in (4.28). When uki
j = 0, the validity of (4.29) can be proved554

as follows:555

∂uj

(
ζki−1
j (hki

j − (uki
j )+) +

γki−1

2 (hki
j − (uki

j )+)
2
)

=

{
{0,−ζki−1

j − γki−1(h
ki
j − uki

j )}, if γki−1h
ki
j + ζki−1

j ≥ 0,[
0,−ζki−1

j − γki−1(h
ki
j − uki

j )
]
, if γki−1h

ki
j + ζki−1

j < 0,

=

{
{0,−ζki

j }, if ζki
j ≥ 0,[

0,−ζki
j

]
, if ζki

j < 0,

= ∂uj

(
ζki
j (hki

j − (uki
j )+)

)
.

(4.30)556

Combining (4.26) and (4.27) yields the validity of (4.25).557

Up to now, we have verified that equation (4.25) holds. Thus, there exists a558

sequence {ςki} satisfying ∥ςki∥ ≤ ϵki such that559

ςki ∈ ∇R(ski) + JC1(ski)⊤ξki + ∂
(
(ζki)⊤C2(ski)

)
.(4.31)560

However, the boundedness of {ξki} and {ζki} in (4.31) are still not sure. Define ϱi561

= max{∥ξki∥∞, ∥ζki∥∞} and assume that {ϱi} is unbounded. It is trivial to have562

bounded sequences {ξki/ϱi} and {ζki/ϱi} according to the definition of ϱi. Without563

loss of generality, we assume {ξki/ϱi} → ξ̄ and {ζki/ϱi} → ζ̄ as k → ∞ and thus have564

max{∥ξ̄∥∞, ∥ζ̄∥∞} = 1.(4.32)565

Dividing by ϱi on both sides of (4.31) and taking i→ ∞, and using the facts that the566

limiting subdifferential is outer semicontinuous [26, Proposition 8.7], and ςki → 0 as567

i→ ∞, we derive that568

0 ∈ JC1(s̄)⊤ξ̄ + ∂
(
ζ̄⊤C2(s̄)

)
.(4.33)569

Combining (4.33) and Lemma 2.1 yields that ξ̄ = 0 and ζ̄ = 0, which contradicts570

(4.32). Therefore, {ξki} and {ζki} are bounded. Without loss of generality, we assume571

{ξki} → ξ̄ and {ζki} → ζ̄ as i→ ∞. Letting i→ ∞ in (4.31), we obtain572

0 ∈ ∇R(s̄) + JC1(s̄)⊤ξ̄ + ∂
(
ζ̄⊤C2(s̄)

)
.573

Therefore, s̄ is a KKT point of problem (2.6).574

4.3. Extensions to other activation functions. Now we discuss the possible575

extensions of our methods, algorithms and theoretical analysis, using other activation576

functions rather than the ReLU.577

First, we claim that the activation functions are required to be locally Lipschitz578

continuous, because the locally Lipschitz continuity of the ReLU function is used579

in L2(ξ, ζ, γ, r̂) of Lemma 3.2 that depends on the Lipschitz constant of the ReLU580

function on a compact set. Then we find that in the analysis above only the following581

two places make use of the special piecewise linear structure of the ReLU function:582

P1. Explicit formula for uk−1,j in (3.16) of the BCD method in Algorithm 3.2.583

P2. Equations (4.30) for proving (4.29) in the proof of Theorem 4.8.584
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For P1, even if the activation function in (2.1) is replaced by others, the objective585

function in problem (3.16) can still be separated into rT one-dimensional functions,586

which is obtained by substituting the ReLU function (u)+ in (3.19) by a more general587

activation function. For P2, if an arbitrary smooth activation function is considered,588

then (4.29) holds obviously because the limiting subdifferential reduces to the gradient.589

Below we illustrate in detail the leaky ReLU and the ELU activation functions as590

examples for extensions. It is clear that the expression of L2(ξ, ζ, γ, r̂) in Lemma 3.2591

remains unchanged for the two activation functions because they all have Lipschitz592

constant 1, the same as that of the ReLU.593

Extension to the leaky ReLU. Let us replace the ReLU activation function594

σ(u) = (u)+ with the leaky ReLU activation function defined by595

σlRe(u) := max{u,ϖu},596

where ϖ ∈ (0, 1) is a fixed parameter. The leaky ReLU activation function has been597

widely used in recent years. With regard to P1, by direct computation, a closed-form598

global solution of599

(4.34) min
u∈R

φlRe(u) :=
γ
2 (u− θ1)

2 + γ
2 (θ2 − σlRe(u))

2 + µ
2 (u− θ3)

2 + λ6u
2,600

can be obtained similarly using the procedures for ReLU in (3.20)-(3.22), except that601

the expression u− of (3.22) changes to602

u− =


γθ1 + γϖθ2 + µθ3
γ + γϖ2 + 2λ6 + µ

, if γθ1 + µθ3 < 0,

0, otherwise.
(4.35)603

For P2, (4.30) is modified as follows: when uki
j = 0,604

∂uj

(
ζki−1
j (hki

j − σlRe(u
ki
j )) +

γki−1

2 (hki
j − σlRe(u

ki
j ))2

)
=

{
{−ϖζki

j ,−ζ
ki−1
j − γki−1(h

ki
j − uki

j )}, if γki−1h
ki
j + ζki−1

j ≥ 0,[
−ϖζki

j ,−ζ
ki−1
j − γki−1(h

ki
j − uki

j )
]
, if γki−1h

ki
j + ζki−1

j < 0,

=

{
{−ϖζki

j ,−ζ
ki
j }, if ζki

j ≥ 0,[
−ϖζki

j ,−ζ
ki
j

]
, if ζki

j < 0,

= ∂uj

(
ζki
j (hki

j − σlRe(u
ki
j ))
)
.

(4.36)605

Extension to the ELU. Let us replace the ReLU activation function with the606

convex and smooth activation function ELU defined by607

σELU(u) :=

{
u if u ≥ 0,

eu − 1 if u < 0.
608

When u ≥ 0, the ELU activation function is the same as the ReLU function. Thus609

for P1, the solution of (4.34) can be obtained similarly as the ReLU case, except that610

we do not have the explicit formula of u−, which is a global solution of611

min
u∈(−∞,0]

φELU(u) =
γ
2 (u− θ1)

2 + γ
2 (θ2 − (eu − 1))2 + µ

2 (u− θ3)
2 + λ6u

2,(4.37)612
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due to the presence of the exponential function in the ELU activation function.613

Now we illustrate that u− can be obtained numerically through solving several614

one-dimensional minimization problems. First, using the formula of φELU(u) and the615

fact that φELU(u) → +∞ as u → −∞, we can easily find a lower bound u < 0 such616

that (4.37) is equivalent to617

(4.38) min
u∈[u,0]

φELU(u).618

The objective function φELU(u) is smooth on (−∞, 0]. We thus calculate the second-619

order derivative of φELU(u) as620

φ′′
ELU(u) = 2γe2u − γ(θ2 + 1)eu + µ+ γ + 2λ6.(4.39)621

Let z = eu. (4.39) can be represented as622

ψELU(z) := 2γz2 − γ(θ2 + 1)z + µ+ γ + 2λ6,(4.40)623

which is a quadratic function. Hence there are at most two distinct roots of

ψELU(z) = 0,

and consequently at most two distinct roots for φ′′(u) = 0 on [u, 0]. Hence the624

convexity and concavity can only be changed at most three times in [u, 0]. That is,625

we can divide [u, 0] into at most three closed intervals, and in each interval φELU626

is either convex or concave. We minimize the objective function φELU in each of627

those intervals that φELU is convex, and obtain a global solution in each interval628

numerically. Then, we select a point among those solutions, 0, and u that has the629

minimal objective value. This point is a global solution of (4.37).630

5. Numerical experiments. We employ a real world dataset, Volatility of631

S&P index, and synthetic datasets to evaluate the effectiveness of our reformulation632

(2.6) and Algorithm 3.1 with Algorithm 3.2. To be specific, we first use RNNs with633

unknown weighted matrices to model these sequential datasets, and then utilize the634

ALM with the BCD method to train RNNs. After the training process, we can predict635

future values of these sequential datasets using the trained RNNs.636

The numerical experiments consist of two components. The first part involves637

assessing whether the outputs generated by the ALM adhere to the constraints in (2.6).638

The second part is to compare the training and forecasting performance of the ALM639

with state-of-the-art gradient descent-based algorithms (GDs). All the numerical640

experiments were conducted using Python 3.9.8. For the datasets, Synthetic dataset641

(T = 10) and Volatility of S&P index, experiments were carried out on a desktop642

(Windows 10 with 2.90 GHz Inter Core i7-10700 CPU and 32GB RAM). Additionally,643

experiments for Synthetic dataset (T = 500) were implemented on a server (2 Intel644

Xeon Gold 6248R CPUs and 768GB RAM) at the high-performance servers of the645

Department of Applied Mathematics, the Hong Kong Polytechnic University.646

5.1. Datasets. The process of generating synthetic datasets is as follows. We647

randomly generate the weighted matrices Â, Ŵ , V̂ , the bias vectors b̂, ĉ, and the noises648

ẽt, t = 1, 2, ..., T , and the input data X with some distributions. Then we calculate649

the output data Y = (y1; . . . ; yt) by yt = (Â(Ŵ (...(V̂ x1+ b̂)+...)+ V̂ xt+ b̂)++ ĉ)+ ẽt650

for t ∈ [T ]. In the numerical experiments, we generate two synthetic datasets with651

T = 10 and T = 500. The detailed information of the two synthetic datasets is listed652
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Table 1: Synthetic datasets

T n m r
Distributions

weight matrices the noise the input data

10 5 3 4 N (0, 0.8) N (0, 10−3) U(−1, 1)

500 80 30 100 N (0, 0.05) N (0, 10−5) U(−1, 1)

in Table 1. Moreover, the ratio of splitting for the training and test sets is about 9 : 1.653

654

The dataset, Volatility of S&P index, consists of the monthly realized volatility655

of the S&P index and 11 corresponding exogenous variables from February 1973 to656

June 2009, totaling 437 time steps, i.e., T = 437, n = 11 and m = 1. The dataset was657

collected in strict adherence to the guidelines in [6] and contains no missing values. In658

the dataset, the monthly realized volatility of S&P index is appointed as the output659

variable, while 11 exogenous variables are input variables. For training the RNNs, we660

first standardize the dataset as zero mean and unit variance, and then allocate 90%661

of the dataset, consisting of 393 time steps, as the training set, while the remaining662

44 time steps are the test set. Moreover, we have r = 20 for the real dataset.663

5.2. Evaluations. We define FeasVio := max{∥u − Ψ(h)w∥, ∥h − (u)+∥} to664

evaluate the feasibility violation for constraints u = Ψ(h)w and h = (u)+. Moreover,665

the training and test errors are used to evaluate the forecasting accuracy of RNNs in666

training and test sets denoted as667

TrainErr :=
1

T1

T1∑
t=1

∥yt − (A(W (...(V x1 + b)+...) + V xt + b)+ + c∥2,668

TestErr :=
1

T2

T1+T2∑
t=T1+1

∥yt − (A(W (...(V x1 + b)+...) + V xt + b)+ + c)∥2,669

where T1 and T2 are the time lengths of the training set and test set, and A, W , V ,670

b and c are the output solutions from ALM.671

5.3. Investigating the feasibility. In this subsection, we aim to verify the out-672

puts from the ALM satisfying the constraints of (2.2) through numerical experiments,673

while we have already proved the feasibility of any accumulation point of a sequence674

generated by the ALM in section 4. Initial values of weight matrices A0, W 0, V 0 are675

randomly generated from the standard Gaussian distribution N (0, 0.1). Moreover,676

the bias b0 and c0 are set as 0. For all three datasets, we stop the outer loop (ALM)677

when it reaches 100 iterations, and the inner loop (BCD method) terminates at 500678

iterations. Other parameters are listed in Table 2.679

From Figure 1, we observe that the feasibility violation in each dataset is very680

small at the beginning, which implies that the selected initial point is feasible. As it681

turns to the first iteration, the feasibility violation goes to a large value. After that,682

the value goes to exhibit an oscillatory decrease and tends to zero. This indicates683

that the points generated by the ALM gradually satisfy the constraint conditions as684

the number of iterations increases.685

5.4. Comparisons with state-of-the-art GDs. In this subsection, we com-686

pare the training and forecasting accuracy of RNNs using different methods. Specifi-687
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Table 2: Parameters of the ALM: the parameters for the given datasets are set as
γ0 = 1, ξ0 = 0, ζ0 = 0, ϵ0 = 0.1, Γ = 102, µ = 10−5, λ1 = τ/rm, λ2 = τ/r2,
λ3 = τ/rn, λ4 = τ/r, λ5 = τ/m, λ6 = 10−8.

Datasets Regularization parameters Algorithm parameters

Synthetic dataset (T = 10) τ = 1.2 η1 = 0.99, η2 = 5/6,
η3 = 0.01, η4 = 5/6.Volatility of S&P index τ = 1

Synthetic dataset (T = 500) τ = 500
η1 = 0.90, η2 = 0.90,
η3 = 0.015, η4 = 0.8.

(a) Synthetic dataset (T = 10) (b) Synthetic dataset (T = 500) (c) Volatility of S&P index

Fig. 1: The feasibility violation of the ALM in different datasets

cally, we compare our ALM with the state-of-the-art GDs and SGDs with special tech-688

niques, i.e., gradient descent (GD), gradient descent with gradient clipping (GDC),689

gradient descent with Nesterov momentum (GDNM), Mini-batch SGD and Adam.690

For the initial values of A0, W 0, V 0, we use the following initialization strategies:691

random normal initialization [2] with zero mean and standard deviations of 10−3 and692

10−1, He initialization [32], Glorot initialization [33], and LeCun initialization [34].693

Notably, the initial values of bias, b0 and c0, were both set to 0 according to [14, pp.694

305].695

We search the learning rates for GDs and SGDs over {10−4, 10−3, 10−2, 10−1, 1},696

as well as the clipping norm of GDC over {0.5, 1, 1.5, 2, 3, 4, 5, 6}. We employ the leave-697

P-out cross validation and repeated each method 30 trials with P = 1 in Synthetic698

dataset (T = 10), and P = 10 in Volatility of S&P index and Synthetic dataset699

(T = 500). We then select the learning rates and clipping norm with the best test700

error averaged over 30 trials, which are recorded in Table 4 of Appendix B. The batch701

size for SGDs is set to 2 for Synthetic dataset (T = 10), 50 for Volatility of702

S&P index, and 100 for Synthetic dataset (T = 500). We employ the Keras API703

[10] running on TensorFlow 2 to implement the GDs and SGDs. Additionally, the704

parameters for the ALM are listed in Table 2.705

To evaluate the performance of different methods under various initialization706

strategies, we conducted the following experiments: each method was repeated 10707

times under each initialization strategy. In each repetition, we recorded the final708

test error and the training error. We then calculated their means (TrainErr and709

TestErr) and the corresponding standard deviations, and listed them in Table 3.710

Each row records the results for a certain optimization method from different ini-711

tialization strategies, with the best TrainErr or TestErr highlighted in bold. Each712
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column provides the results of all the optimization methods with the same initial713

values, where the best TrainErr and TestErr are highlighted underline.714

Table 3a and Table 3c demonstrate that for Synthetic dataset (T = 10) and715

Synthetic dataset (T = 500), no matter which initialization strategy is employed,716

our ALM method achieves the best TrainErr and TestErr among all the methods.717

Table 3b illustrates that our ALM achieves the best TrainErr under two types of718

initialization strategies, and obtains the best TestErr under three types of initializa-719

tion strategies for Volatility of S&P index. For any of the three datasets, our ALM720

achieves the best TrainErr and TestErr among all combinations of optimization721

methods and initialization strategies, which we highlight in blue.722

Table 3: Results of training Elman RNNs using different optimization methods and
initialization strategies across multiple trials.

(a) Synthetic dataset (T = 10): For the ALM method, the maximum iteration for
the outer loop is 50 and 10 for the inner loop. For GDs and SGDs, the number of epochs
is set to 500.

He N (0, 10−3) N (0, 10−1) Glorot LeCun

ALM
TrainErr 0.345 ± 0.24 0.113 ± 0.03 0.143 ± 0.04 0.206 ± 0.10 0.279 ± 0.22

TestErr 4.770 ± 1.25 4.437 ± 0.28 4.660 ± 0.35 4.628 ± 1.17 4.650 ± 0.62

GD
TrainErr 4.459 ± 0.77 2.747 ± 1.5e-6 2.768 ± 0.01 1.814 ± 0.27 1.604 ± 0.17

TestErr 6.432 ± 2.15 5.311 ± 9.3e-6 5.057 ± 0.07 4.696 ± 0.90 5.056 ± 1.10

GDC
TrainErr 1.479 ± 0.32 2.769 ± 1.4e-6 2.768 ± 0.01 1.684 ± 0.23 1.502 ± 0.26

TestErr 5.376 ± 0.88 5.079 ± 1.0e-6 5.057 ± 0.07 4.922 ± 1.20 5.266 ± 0.96

GDNM
TrainErr 2.689 ± 0.40 2.769 ± 1.4e-6 2.768 ± 0.01 3.340 ± 0.54 0.801 ± 0.60

TestErr 6.169 ± 2.06 5.079 ± 1.0e-6 5.057 ± 0.07 7.469 ± 2.30 4.844 ± 0.64

SGD
TrainErr 2.224 ± 0.02 2.247 ± 0.02 2.232 ± 0.02 2.238 ± 0.02 2.225 ± 0.02

TestErr 6.455 ± 0.23 6.230 ± 0.23 6.373 ± 0.18 6.543 ± 0.23 6.446 ± 0.18

Adam
TrainErr 2.283 ± 0.07 2.244 ± 0.02 2.237 ± 0.02 2.231 ± 0.01 2.239 ± 0.03

TestErr 6.335 ± 0.61 6.432 ± 0.27 6.411 ± 0.25 6.508 ± 0.14 6.406 ± 0.20

(b) Volatility of S&P index: For the ALM method, the maximum iteration for the outer loop
is 200 and 500 for the inner loop. For GDs and SGDs, the number of epochs is set to 5000.

He N (0, 10−3) N (0, 10−1) Glorot LeCun

ALM
TrainErr 0.058 ± 0.02 0.004 ± 3.6e-5 0.003 ± 1.4e-4 0.009 ± 0.002 0.013 ± 0.002

TestErr 0.229 ± 0.13 0.041 ± 4.7e-4 0.032 ± 0.005 0.064 ± 0.04 0.053 ± 0.03

GD
TrainErr 0.005 ± 0.001 0.015 ± 1.8e-4 0.012 ± 9.2e-4 0.020 ± 0.003 0.025 ± 0.006

TestErr 0.124 ± 0.10 0.077 ± 0.03 0.0429 ± 0.01 0.206 ± 0.20 0.307 ± 0.20

GDC
TrainErr 0.567 ± 0.47 0.015 ± 1.8e-4 0.016 ± 0.009 0.003 ± 5.6e-4 0.011 ± 0.003

TestErr 1.135 ± 0.55 0.077 ± 0.03 0.047 ± 0.02 0.107 ± 0.03 0.041 ± 0.01

GDNM
TrainErr 0.005 ± 0.001 0.015 ± 1.8e-4 0.012 ± 9.2e-4 0.003 ± 5.8e-4 0.004 ± 6.6e-4

TestErr 0.124 ± 0.10 0.077 ± 0.03 0.043 ± 0.01 0.097 ± 0.03 0.102 ± 0.02

SGD
TrainErr 0.005 ± 1.8e-4 0.006 ± 0.002 0.006 ± 0.002 0.006 ± 0.002 0.006 ± 0.002

TestErr 0.072 ± 0.01 0.095 ± 0.02 0.086 ± 0.02 0.085 ± 0.01 0.096 ± 0.01

Adam
TrainErr 0.006 ± 0.001 0.005 ± 7.6e-4 0.006 ± 0.002 0.006 ± 0.001 0.005 ± 7.6e-4

TestErr 0.079 ± 0.01 0.074 ± 0.01 0.084 ± 0.01 0.080 ± 0.02 0.080 ± 0.02
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(c) Synthetic dataset (T = 500): For the ALM method, the maximum iteration for the outer
loop is 100 and 500 for the inner loop. For GDs and SGDs, the number of epochs is set to 1000.

He N (0, 10−3) N (0, 10−1) Glorot LeCun

ALM
TrainErr 4.639± 0.78 3.461± 0.06 3.472± 0.05 3.472± 0.06 3.475± 0.06

TestErr 14.77± 0.93 12.418± 0.16 12.407± 0.27 12.394± 0.22 12.517± 0.16

GD
TrainErr 58.137± 2.42 30.010± 0.003 30.013± 0.008 30.000± 0.008 29.985± 0.007

TestErr 58.314± 2.76 28.644± 0.006 28.641± 0.009 28.630± 0.006 28.626± 0.009

GDC
TrainErr 250.471± 399.70 30.004± 0.003 30.144± 0.001 30.143± 8.8e-4 30.144± 0.001

TestErr 119.007± 66.71 28.640± 0.007 28.723± 0.007 28.730± 0.006 28.725± 0.01

GDNM
TrainErr 58.137± 2.42 30.010± 0.003 30.013± 0.008 30.000± 0.008 29.985± 0.007

TestErr 58.314± 2.76 28.644± 0.006 28.641± 0.009 28.730± 0.006 28.626± 0.009

SGD
TrainErr 30.142± 3.5e-6 30.142± 4.7e-6 30.142± 5.2e-6 30.142± 4.4e-6 30.142± 4.8e-6

TestErr 28.725± 3.2e-5 28.725± 4.4e-5 28.725± 4.7e-5 28.725± 3.9e-5 28.725± 4.1e-5

Adam
TrainErr 30.142± 7.1e-5 30.142± 6.5e-5 30.142± 7.3e-5 30.142± 5.1e-5 30.142± 5.7e-5

TestErr 28.726± 6.1e-4 28.725± 5.0e-4 28.726± 5.9e-4 28.726± 5.0e-4 28.725± 4.8e-4
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(b) Synthetic dataset (T = 500)

Fig. 2: Comparisons of the performance of the ALM, GDs and SGDs across different
datasets.

We plot in Figure 2 the TrainErr and TestErr versus CPU time measured in723

seconds using Volatility of S&P index and Synthetic dataset (T = 500). Each724
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line corresponds to a certain optimization method as indicated in the legend, with725

its most appropriate initialization strategy that leads to the final TestErr in bold726

as outlined in Table 3. For the real world dataset, Volatility of S&P index, the727

ALM achieves the smallest test error among all the methods. For the larger-scale728

Synthetic dataset (T = 500) with Nw = 1.81× 104, Na = 3.03× 103 and r = 500,729

the ALM exhibits superior performance in terms of both training and test errors.730

6. Conclusion. In this paper, the minimization model (1.1) for training RNNs731

is equivalently reformulated as problem (2.2) by using auxiliary variables. We propose732

the ALM in Algorithm 3.1 with Algorithm 3.2 to solve the regularized problem (2.6).733

The BCD method in Algorithm 3.2 is efficient for solving the subproblems of the734

ALM, which has a closed-form solution for each block problem. We establish the solid735

convergence results of the ALM to a KKT point of problem (2.6), as well as the finite736

termination of the BCD method for the subproblem of the ALM at each iteration.737

The efficiency and effectiveness of the ALM for training RNNs are demonstrated by738

numerical results with real world datasets and synthetic data, and comparison with739

state-of-art algorithms. An interesting further study is to extend our algorithm to a740

stochastic algorithm that is potential to deal with problems of huge samples efficiently.741

We believe that it is possible to extend our method and its corresponding analysis742

to other more complex RNN architectures, such as LSTMs, and we will give rigorous743

analysis in the near future.744

Acknowledgments. We are grateful to Prof. M. Mahoney and the anonymous745

referees for valuable comments.746

Appendix A. Proofs of the lemmas.747

A.1. Proof of Lemma 2.1.748

Proof. By direct computation,749

JC1(s)⊤ξ + ∂
(
ζ⊤C2(s)

)
=


JzC1(s)⊤ξ

JhC1(s)⊤ξ + JhC2(s)⊤ζ

JuC1(s)⊤ξ + ∂u
(
ζ⊤C2(s)

)
 ,(A.1)750

where751

JhC1(s)⊤ξ + JhC2(s)⊤ζ =
[
−W⊤ξ2 + ζ1; ...;−W⊤ξT + ζT−1; ζT

]
,(A.2)752

JuC1(s)⊤ξ + ∂u
(
ζ⊤C2(s)

)
= ξ + ∂u(−ζ⊤(u)+).(A.3)753

In order to achieve 0 ∈ JC1(s)⊤ξ+∂
(
ζ⊤C2(s)

)
, it is necessary to require ζT = 0, which754

is located in the last row of JhC1(s)⊤ξ + JhC2(s)⊤ζ. Using ζT = 0 and (A.3), we find755

ξT = 0. Substituting the results into (A.2) and (A.3) recursively and using (A.2) and756

(A.3) equal 0, we can derive that there exist no nonzero vectors ξ and ζ such that757

0 ∈ JC1(s)⊤ξ + ∂
(
ζ⊤C2(s)

)
.758

A.2. Proof of Lemma 2.4.759

Proof. It is clear that 0 ∈ DR(ρ) and consequently DR(ρ) is nonempty. Moreover,760

∥A∥2F ≤ ρ/λ1, ∥W∥2F ≤ ρ/λ2, ∥V ∥2F ≤ ρ/λ3,(A.4)761

∥b∥2 ≤ ρ/λ4, ∥c∥2 ≤ ρ/λ5, ∥u∥2 ≤ ρ/λ6,762
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from R(s) ≤ ρ, ℓ(s) ≥ 0 and P (s) ≥ 0. Hence for s = (z;h;u) ∈ DR(ρ), z and u are763

bounded, and consequently h is also bounded because h = (u)+.764

Up to now, we have obtained the boundedness of DR(ρ). By the continuity of765

R(s), we can assert that DR(ρ) is closed according to [26, Theorem 1.6]. Thus we766

can claim that the level set DR(ρ) is nonempty and compact for any ρ > R(0). Then767

the solution set S1 is nonempty and compact according to [5, Proposition A.8].768

A.3. Proof of Lemma 3.1.769

Proof. Statement (i) can be easily obtained by the expression of L(s, ξ, ζ, γ) in770

(3.1) and the nonnegativity of R(s) in (2.6).771

For statement (ii), the nonemptyness and closedness of the level set ΩL(Γ̂) are772

obvious. Moreover, we have R(s) and ∥h − (u)+ + ζ
γ ∥ are upper bounded for all s773

in ΩL(Γ̂). The function R(s) is upper bounded implies that w,a,u are bounded.774

Then the boundedness of ∥h − (u)+ + ζ
γ ∥ indicates that h is also bounded. Thus, s775

is bounded and statement (ii) holds.776

Statements (iii) and (iv) can be obtained by direct computation.777

A.4. Proof of Lemma 3.2.778

Proof. Using Lemma 3.1 (iii), we have779

∇zL(z,h′,u′, ξ, ζ, γ)−∇zL(z,h,u, ξ, ζ, γ)(A.5)780

=

 γ∆1w − (Ψ(h′)−Ψ(h))
⊤
ξ − γ∆3

2
T

∑T
t=1 ∆2,ta− 2

T

∑T
t=1 (Φ(h

′
t)− Φ(ht))

⊤
yt

 ,781

where ∆1 = Ψ(h′)⊤Ψ(h′) − Ψ(h)⊤Ψ(h) and ∆2,t = Φ(h′t)
⊤Φ(h′t) − Φ(ht)

⊤Φ(ht) and782

∆3 = Ψ(h′)u′ −Ψ(h)u. It is easy to see that783

∥∆1∥ = ∥Ψ(h′)⊤Ψ(h′)−Ψ(h′)⊤Ψ(h) + Ψ(h′)⊤Ψ(h) −Ψ(h)⊤Ψ(h)∥784

≤ (∥Ψ(h′)∥+ ∥Ψ(h)∥) ∥Ψ(h′)−Ψ(h)∥.(A.6)785

Similarly, we have786

∥∆2,t∥ ≤ (∥Φ(h′t)∥+ ∥Φ(ht)∥) ∥Φ(h′t)− Φ(ht)∥, ∀t ∈ [T ],(A.7)787

∥∆3∥ ≤ ∥Ψ(h′)∥∥u′ − u∥+ ∥u∥∥Ψ(h′)−Ψ(h)∥.(A.8)788

Since s, s′ ∈ ΩL(Γ̂), we know that789

ℓ(s) + P (s) +
γ

2

∥∥∥∥u−Ψ(h)w +
ξ

γ

∥∥∥∥2 + γ

2

∥∥∥∥h− (u)+ +
ζ

γ

∥∥∥∥2 ≤ δ.790

This, together with the expressions of ℓ(s) in (2.6) and P (s) in (2.5), yields791

∥W∥F ≤
√

δ

λ2
, ∥a∥ ≤

√
δ

min{λ1, λ5}
, ∥w∥ ≤

√
δ

min{λ2, λ3, λ4}
, ∥u∥ ≤

√
δ

λ6
.(A.9)792

Moreover, since ∥h∥ − ∥(u)+ − ζ
γ ∥ ≤ ∥h− (u)+ + ζ

γ ∥ ≤
√

2δ
γ , we find793

∥h∥ ≤ δ0.(A.10)794
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Using (2.3), we can easily obtain that795

∥Ψ(h)−Ψ(h′)∥ ≤
√
r∥h′ − h∥, ∥Φ(h′t)− Φ(ht)∥ ≤

√
m∥h′t − ht∥,(A.11)796

∥Ψ(h)∥ =
√
r(∥h∥2 + ∥X∥2 + T ), ∥Φ(ht)∥ =

√
m(∥ht∥2 + 1).(A.12)797

Using the facts that for any ι1, ι1, . . . , ιj ∈ R, any g1, g2, . . . , gj ∈ Rnr , and any798

matrices B1, B2, . . . , Bj ∈ Rnc×nr , ∥B1∥ ≤ ∥B1∥F , and799

∥
(j)∑
i=1

ιjBjgj∥ ≤
j∑

i=1

|ιj |∥Bj∥∥gj∥,
j∑

i=1

∥ιigi∥ ≤ max
1≤i≤j

{|ιi|}
√
j∥(g1; . . . ; gj)∥,(A.13)800

taking the norm of both sides of (A.5), and employing (A.6)-(A.12), we can get (3.2)801

with the expression of L1(ξ, ζ, γ, r̂) in (3.4) as desired.802

Using Lemma 3.1 (iv), we have by direct computation803

∇hL(z,h,u′, ξ, ζ, γ)−∇hL(z,h,u, ξ, ζ, γ)804

= γWT
T−1∑
t=1

(ut+1 − u′t+1) + γ

T∑
t=1

((ut)+ − (u′t)+).805

Taking the norm of both sides of the above system of equations, employing (A.9),806

(A.13), and the facts ∥(ut)+ − (u′t)+∥ ≤ ∥u′t − ut∥ for each t, we can get (3.3) with807

L2(ξ, ζ, γ, r̂) in the form of (3.4) as desired.808

A.5. Proof of Lemma 4.1.809

Proof. By (3.14), (3.15) and (3.16), we know that for any j ∈ N:810

L
(
s(j), ξ, ζ, γ

)
≤ L

(
s
(j)
h , ξ, ζ, γ

)
≤L
(
s(j)z , ξ, ζ, γ

)
≤L
(
s(j−1), ξ, ζ, γ

)
.(A.14)811

By the definition of Γ in Algorithm 3.2 and (A.14), we can deduce that812

L
(
s(j), ξ, ζ, γ

)
≤ Γ, ∀j ∈ N.(A.15)813

By the definition of ΩL(Γ) and Lemma 3.1 (ii), the proof is completed.814

A.6. Proof of Lemma 4.2.815

Proof. It is clear that ΩL(Γ) is compact by Lemma 3.1 (ii). For the smooth part g816

in L, its gradient for those s ∈ ΩL(Γ) is upper bounded. Now, let us turn to consider817

the nonsmooth part q in L. Let s = (z;h;u) and s′ = (z′;h′;u′) be any two points818

in ΩL(Γ). We have819 ∣∣q(s′, ζ, γ)− q(s, ζ, γ)
∣∣820

≤ γ
2

∣∣∣∥∥h′ − (u′)+ + ζ
γ

∥∥2 − ∥∥h− (u)+ + ζ
γ

∥∥2∣∣∣821

≤ γ
2

∥∥h′ − (u′)+ − (h− (u)+)
∥∥∥∥h′ − (u′)+ + h− (u)+ + 2 ζ

γ

∥∥822

≤
(
2γ max

s∈ΩL(Γ)
{∥h∥∞ + ∥u∥∞}+ ∥ζ∥

)
(∥h′ − h∥+ ∥u′ − u∥).823

Up to now, we have proved the Lipschitz continuity of g and q on ΩL(Γ), which implies824

that L is Lipschitz continuous on ΩL(Γ).825

The above result, together with the piecewise smoothness of function L, yields826

that L is directionally differentiable on ΩL(Γ) by [21].827
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A.7. Proof of Lemma 4.5.828

Proof. By (4.1), the directional derivative of L at s̄ along d ∈ RNw+Na+2rT refers829

to L′(s̄, ξ, ζ, γ; d) = g′(s̄, ξ, γ; d) + q′(s̄, ζ, γ; d). It is clear that830

g′(s̄, ξ, γ; d) = ⟨∇zg(s̄, ξ, γ), dz⟩+ ⟨∇hg(s̄, ξ, γ), dh⟩+ ⟨∇ug(s̄, ξ, γ), du⟩.(A.16)831

It remains to consider the directional derivative of nonsmooth part q. The function q832

can be separated into rT one dimensional functions with the same structure, i.e.,833

ϕ(h̄, ū) = (h̄− (ū)+ + ν1)
2 − ν21 ,834

where h̄, ū ∈ R are variables and ν1 ∈ R is a constant. The directional derivative of835

ϕ along the direction (d̄1; d̄2) ∈ R2 can be represented as the sum of the directional836

derivatives of ϕ along (d̄1; 0) and (0; d̄2) by the definition of directional derivative,837

i.e.,838

ϕ′(h̄, ū; (d̄1, d̄2)) = lim
λ↓0

(
h̄+ λd̄1 −

(
ū+ λd̄2

)
+
+ ν1

)2

−
(
h̄−

(
ū
)
+
+ ν1

)2

λ
839

= ϕ′(h̄, ū; (d̄1, 0))+ ϕ′(h̄, ū; (0, d̄2))− lim
λ↓0

2λd̄1
(
(u+ λd̄2)+ − (u)+

)
λ

840

where841

ϕ′
(
h̄, ū; (d̄1, 0)

)
= lim

λ↓0

(
h̄+ λd̄1 − (ū)+ + ν1

)2 − (h̄− (ū)+ + ν1
)2

λ
842

= lim
λ↓0

(h̄+ λd̄1 + ν1)
2 − (h̄+ ν1)

2 − 2(λd̄1)(ū)+
λ

,843

844

ϕ′
(
h̄, ū; (0, d2)

)
= lim

λ↓0

(
h̄+ ν1 − (ū+ λd̄2)+

)2 − (h̄+ ν1 − (ū)+
)2

λ
845

= lim
λ↓0

(ū+ λd̄2)
2
+ − (ū)2+ − 2(h̄+ ν1)

(
(ū+ λd̄2)+ − (ū)+

)
λ

,846

and limλ↓0
2λd̄1((u+λd̄2)+−(u)+)

λ = 0. By setting h̄ = h̄i, ū = ūi, d̄1 = (dh)i, d̄2 = (du)i,847

ν1 = ζi
γ , we have848

q′(s̄, ζ, γ; d̄) =
γ

2

rT∑
i=1

ϕ′
(
h̄i, ūi; ((dh)i, (du)i)

)
849

=
γ

2

rT∑
i=1

ϕ′
(
h̄i, ūi; ((dh)i, 0)

)
+ ϕ′i

(
h̄i, ūi; (0, (du)i)

)
850

= q′
(
s̄, ζ, γ; (0, dh, 0)

)
+ q′

(
s̄, ζ, γ; (0, 0, du)

)
.851

This, along with (A.16), yields that852

L′(s̄, ξ, ζ, γ; d)853

= ⟨∇zg(s̄, ξ, γ), dz⟩+ ⟨∇hg(s̄, ξ, γ), dh⟩+ ⟨∇ug(s̄, ξ, γ), du⟩854

+q′
(
s̄, ζ, γ; (0, dh, 0)

)
+ q′

(
s̄, ζ, γ; (0, 0, du)

)
855

= L′(s̄, ξ, ζ, γ; (dz, 0, 0)) + L′(s̄, ξ, ζ, γ; (0, dh, 0)) + L′(s̄, ξ, ζ, γ; (0, 0, du)).856

Hence Lemma 4.5 holds.857
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Appendix B. Parameters for numerical experiments in section 5.4. The858

final selected learning rates for GDs and SGDs, as well as the clipping norm for GDC,859

are listed in Table 4.860

He N (0, 10−3) N (0, 10−1) Glorot LeCun

GD Synthetic dataset (T = 10) 1e-4 1e-3 1e-4 1 1

Volatility of S&P index 1e-4 0.01 0.01 0.01 0.01

Synthetic dataset (T = 500) 0.01 0.01 0.01 1e-3 1e-3

GDC Synthetic dataset (T = 10) 1 (6) 1e-4 (1) 1e-4 (1) 1 (6) 1 (6)

Volatility of S&P index 1e-4 (3) 0.01 (1) 0.1 (1) 0.1 (4) 0.1 (1)

Synthetic dataset (T = 500) 1e-4 (1) 0.01 (1) 0.01 (4) 0.01 (1.5) 0.1 (0.5)

GDNM Synthetic dataset (T = 10) 1e-3 1e-4 1e-4 1e-4 0.1

Volatility of S&P index 1e-4 0.01 0.01 0.01 0.01

Synthetic dataset (T = 500) 0.01 0.01 0.01 0.01 0.01

SGD Synthetic dataset (T = 10) 0.1 0.1 0.1 0.1 0.1

Volatility of S&P index 0.01 0.01 0.01 0.01 0.01

Synthetic dataset (T = 500) 0.01 1e-3 0.01 0.01 0.01

Adam Synthetic dataset (T = 10) 0.1 0.01 0.01 0.01 0.01

Volatility of S&P index 0.01 0.01 0.01 0.01 0.01

Synthetic dataset (T = 500) 0.01 0.01 0.01 0.01 0.01

Table 4: The learning rates for GDs and SGDs, and the clipping norm value for
GDC (the second number in each cell for parameters) under different initialization
strategies.
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