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1. Introduction. The utility theory has been widely adopted to describe the23

behavior of individual consumers in economics and finance, since the seminal work24

on games and economic behavior by Von Neumann and Morgenstern [36]. In a pure25

characteristics demand model, utility functions of consumers are functions of prod-26

uct characteristics including the price, which are used to obtain the market share27

equations [3]. Such utility functions are discontinuous and lead to computationally28

intractable estimation of the demand model. To overcome the computational diffi-29

culty, in [29], Pang et al. gave a novel and constructive reformulation, in which the30

consumers’ purchase decision problems were formulated by a system of linear com-31

plementarity constraints. Such formulation allows us to estimate the consumers’ pure32

characteristics demand model by a quadratic program with linear complementarity33

constraints, which is numerically tractable by using some existing methodology [33].34

Motivated by the work in [29], Chen et al. considered in [4] a regularized sample aver-35

age approximation (SAA) of a class of optimization problems involving set-valued sto-36

chastic equilibrium constraints that includes the estimation problem with exogenous37

price proposed in [29], and established graphical convergence results. Recently, Jiang38
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2 J. JIANG, H. SUN, AND X. CHEN

and Chen employed the distributionally robust approach to estimate the parameters39

in a pure characteristics demand model with the fixed price when the probability40

distribution is uncertain in [21]. It is worth pointing out that the aforementioned41

works [4, 21, 29] estimated the parameters in utility functions of pure characteristics42

demand models when the characteristics of products are given.43

The price is an important factor for consumers when they determine their pur-44

chase decisions. When the parameters in the pure characteristics demand model are45

known, multiproduct pricing models are established based on the pure characteris-46

tics demand model and the observed product characteristics to obtain the optimal47

prices in [29, 34]. It is noteworthy that a set of finite numbers of random samples48

was used in [29], while continuous random variables and a regularized SAA approach49

were employed in [34] under the assumption that the true probability distribution of50

random parameters in the model is known. However, in practical applications, the51

true probability distribution cannot be detected exactly. In this paper, we consider52

the multipruduct pricing problem when the true probability distribution of the con-53

sumers’ preference random parameter is unknown. We will apply the distributionally54

robust optimization (DRO) approach (see, e.g., [7, 10, 28]) to deal with the unknown55

information by accessing a set of probability distributions that includes the true one.56

To present our DRO approach, we first introduce some basic settings. Consider57

a market with T (T > 1) firms and m (m > 1) products indexed by t = 1, . . . , T58

and j = 1, . . . ,m respectively, where each product can only been produced by one59

firm. The target firm is the first firm which produces products 1, . . . ,K with K < m.60

We assume that the target firm will produce product i rather than product j for61

any 1 ≤ i < j ≤ K when products i and j have the same net profit. Namely, these62

products are indexed in rank order according to the firm’s individual preference. Each63

product j is characterized by a vector of observed characteristics xj ∈ R` and price64

pj > 0. Suppose that the consumers in the market are heterogenous. The Rs-valued65

random vector ξ with support set being Ξ ⊆ Rs is used to estimate heterogeneous66

consumers’ preferences or tastes over the observed product characteristics and price67

in the differentiated product setting.68

For fixed product characteristics, we use uj(pj , ξ) to denote a consumer’s utility69

with preference ξ purchasing product j at price pj for j = 1, . . . ,K. In [29], the utility70

for a consumer purchasing product j with preference ξ is given by71

(1.1) uj(pj , ξ) = βj(ξ)
>xj − αj(ξ)pj + ηj(ξ), j = 1, . . . ,K,72

where βj(ξ) ∈ R`+ and αj(ξ) ∈ R+ model the consumer’s preference regarding the
observed product j’s characteristics xj and price pj , respectively, and ηj(ξ) ∈ R is the
product characteristic or demand shock that is observed by the firms and consumers
but is not available in the data. We use uj(ξ) to denote a consumer’s utility with
preference ξ purchasing product j at fixed price pj for j = K + 1, . . . ,m. Let P be a
convex and compact set in RK++. We assume that the utility function u : P×Ξ→ Rm
with

u(p, ξ) := (u1(p1, ξ), . . . , uK(pK , ξ), uK+1(ξ), . . . , um(ξ))>

is continuous with respect to (w.r.t.) the tuple (p, ξ).73

To estimate the consumer’s purchasing strategies with preference ξ, Pang et al.74

[29, (7)] proposed to maximize the consumer’s utility with preference ξ by the following75

maximization problem76

(1.2)
max
y

y>u(p, ξ)

s.t. e>y ≤ 1, y ≥ 0,
77
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where y is an m-dimensional decision variable with the ith (1 ≤ i ≤ m) component
denoting the purchase weight of product i and e ∈ Rm is a vector with each element
being one. The KKT condition of the linear program (1.2) is necessary and sufficient
for the optimality, that is, y∗ is a solution of (1.2) if and only if there is γ∗ ∈ R+ such
that

0 ≤
(
y∗

γ∗

)
⊥
(

0 e
−e> 0

)(
y∗

γ∗

)
+

(
−u(p, ξ)

1

)
≥ 0.

Pang et al. in [29] formulated the target firm’s pricing problem as a mathematical
program with linear complementarity constraints (see monographs [6, 9, 27]):

max
p∈P

E
[
y[K](ξ)

>(p− c)
]

s.t. 0 ≤
(
y(ξ)
γ(ξ)

)
⊥
(

0 e
−e> 0

)(
y(ξ)
γ(ξ)

)
+

(
−u(p, ξ)

1

)
≥ 0,

where c ∈ RK+ is a vector whose entry cj denotes the marginal cost of product j for78

j = 1, . . . ,K, y[K](ξ) is a K-dimensional vector consisting of the first K components79

of y(ξ) such that the objective function is well-defined.80

For fixed (p, ξ), let S(p, ξ) be the optimal solution set of problem (1.2). The target81

firm’s pricing problem can be equivalently written as follows (see [29, (23)] and [34,82

(2) and (4)]):83

(1.3)
max
p∈P

E
[
y[K](ξ)

>(p− c)
]

s.t. y(ξ) ∈ S(p, ξ),
84

where y(ξ) is a measurable selection selected from S(p, ξ) that makes the objective85

function E
[
y[K](ξ)

>(p− c)
]

achieve a maximum. S(p, ξ) is generally set-valued and86

we cannot find a continuous single-valued function y(p, ξ) ∈ S(p, ξ) w.r.t. p for almost87

every ξ. Consider a simple example as in [4]: u(p, ξ) := (ξ1 − p, ξ2) ∈ R2, where88

ξ = (ξ1, ξ2)> with ξ1 ∈ R and ξ2 > 0. Then the solution set has the form:89

S(p, ξ) =


(1, 0)>, p < ξ1 − ξ2;{

(α, 1− α)> : α ∈ [0, 1]
}
, p = ξ1 − ξ2;

(0, 1)>, p > ξ1 − ξ2,
90

and we can not find a continuous single-valued function y(p, ξ) ∈ S(p, ξ) w.r.t. p. The91

standard optimization method and SAA scheme in the literature become intractable92

for solving problem (1.3).93

We consider the following extended multiproduct pricing problem as a two-stage94

stochastic optimization problem:95

(1.4) max
p∈P

E [Q(p, ξ)] ,96

where Q(p, ξ) := H(p, ξ) − h(p, ξ), and H(p, ξ) is the second stage optimal value97

function, i.e.,98

(1.5)
H(p, ξ) := max

y(ξ)
g
(
y[K](ξ)

>(p− c)
)

s.t. y(ξ) ∈ S(p, ξ).
99

Here g : R→ R is a strictly increasing and continuous function, which can be viewed100

as a utility function of the profit, and h : RK × Ξ → R+ is continuous w.r.t. p for101
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4 J. JIANG, H. SUN, AND X. CHEN

almost every ξ ∈ Ξ and measurable w.r.t. ξ for all p ∈ RK . This term h(p, ξ) can102

be viewed as a regularization term or a budget term, which is used to ensure some103

additional properties of the pricing model, such as boundedness, sparsity, etc. When104

h(p, ξ) ≡ 0 and g
(
y[K](ξ)

>(p− c)
)

= y[K](ξ)
>(p − c), problem (1.4) is equivalent to105

problem (1.3). Also, from the viewpoint of two-stage stochastic optimization, the106

term −E[h(p, ξ)] can be viewed as a first stage profit. When S(p, ξ) is not a singleton,107

problem (1.5) tacitly assumes that the firm will take the best selection of a vector from108

S(p, ξ) to achieve its goal. In fact, such selection determines an optimistic attitude of109

the firm. Therefore, it can be viewed as an optimistic version. Correspondingly, the110

pessimistic type can be defined.111

In practice, it is usually argued that the true probability distribution of ξ in (1.4)112

cannot be captured exactly. To obtain the true probability distribution, it requires113

that the size of the empirical data tends to infinity, which is usually impracticable114

and costly. In most real applications, only limiting finite empirical data (i.e., partial115

information) are available. DRO is a popular approach to settle this dilemma (see116

[7, 28]). In view of this, we further consider the distributionally robust counterpart117

of the extended multiproduct pricing problem (1.4) as follows:118

(P) max
p∈P

inf
F∈F

EF [Q(p, ξ)] ,119

where F is the ambiguity set.120

The main contributions of this paper are summarized as follows.121

• We establish interesting properties of the extended multiproduct pricing prob-122

lem (1.4) and its distributionally robust counterpart (P) in a hierarchical form123

on the measurability and semicontinuity of the second stage optimal value124

function with a closed form sparse solution. We prove the existence of so-125

lutions of the discontinuous and nonconvex optimization problems (1.4) and126

(P).127

• Problem (P) is analyzed from a data-driven viewpoint when the ambiguity128

set is given by a general moment-based form. We derive convergence re-129

sults when the data-driven moment information converges almost surely to130

the true one as data size tends to infinity. It is worth pointing out that131

our data-driven analysis differs from the existing ones [7, 28] regarding the132

ambiguity sets. Additionally, we give a quantitative statistical robustness133

assertion under moderate conditions when the data-driven moment informa-134

tion is contaminated. The data-driven analysis ensures that the data-driven135

model is reliable when the data size is sufficiently large or even if the data136

are contaminated slightly.137

• We reformulate problem (P) with a general moment ambiguity set as a math-138

ematical program with complementarity constraints (MPCC) by using the139

Lagrange duality. We propose a numerical procedure to find a global solution140

for problem (P) with finite elements in Ξ. This procedure is based on the141

MPCC reformulation and the closed-form expression of the second stage op-142

timal value function. We report some numerical results using this procedure,143

which preliminarily illustrate the necessariness of the distributionally robust144

approach and data-driven analysis for multiproduct pricing problems.145

The reminder of the paper is organized as follows. In Section 2, we present146

some useful properties, including measurability, semicontinuity, etc. In Section 3, the147

data-driven analysis is studied. In Section 4, the equivalent MPCC reformulation148

of problem (P) is discussed. In Section 5, numerical procedures are given and some149
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numerical results are reported. Finally, we give concluding remarks in Section 6.150

Notations. For some integer n ≥ 1, Rn+ denotes the nonnegative part of Rn,151

and Rn++ denotes the set of positive vectors (in the componentwise sense) in Rn. ‖·‖152

and ‖·‖∞ denote the Euclidean norm and the infinity norm, respectively. (·)+ :=153

max{0, ·}. For x ∈ Rn and X,Y ⊆ Rn, d(x, Y ) := infy∈Y ‖x− y‖ and d(X,Y ) :=154

supx∈X infy∈Y ‖x− y‖. We use D with some subscripts to denote probability metrics,155

such as DG(·, ·) denotes the ζ-structure probability metric induced by a set of measur-156

able functions G, DTV (·, ·) denotes the total variational metric, DW (·, ·) denotes the157

Kantorovich metric, etc. B denotes the closed unit ball in the corresponding space.158

2. Properties. In this section, we will explore several useful properties of our159

models. Specifically, we will investigate the semicontinuity of the second stage optimal160

value function H(p, ξ), as well as the existence of solutions for problem (1.4) and161

problem (P). We first establish the measurability of these problems. To this end, we162

first recall some concepts, which can be found in [31, Definitions 14.1 and 14.27]. Let163

(Ξ,A) be a measurable space with Ξ being the nonempty support set of ξ and A being164

some σ-field of subsets of Ξ. A mapping ϕ : Ξ→ Rn is measurable if for every open set165

O ⊆ Rn the set ϕ−1(O) := {ξ ∈ Ξ : ϕ(ξ) ∈ O} ∈ A. A set-valued mapping S : Ξ ⇒ Rn166

is measurable if for every open set O ⊆ Rn the set S−1(O) := {ξ ∈ Ξ : S(ξ) ∩ O 6=167

∅} ∈ A. A function f : Rn×Ξ→ R := {R∪{±∞}} is called a normal integrand if its168

epigraphical mapping Sf : Ξ ⇒ Rn×R, i.e. Sf (ξ) := {(x, α) ∈ Rn×R : f(x, ξ) ≤ α},169

is closed-valued and measurable.170

Proposition 2.1. For any fixed p ∈ P, the optimal solution set S(p, ·) of problem171

(1.2) is closed-valued and measurable.172

Proof. Consider Y := {y ∈ Rm+ : e>y ≤ 1} and `(y, ξ) := −y>u(p, ξ) + δY (y),
where δY (·) is the indicator function regarding to Y , i.e., δY (y) = 0 for y ∈ Y and
δY (y) = +∞ otherwise. Then we have

S(p, ξ) = arg min
y

`(y, ξ).

Since Y is a closed set, it is not difficult to verify that δY (y) is lower semicon-173

tinuous (lsc) (see [31, Definition 1.5]) on Rm. Due to the continuity of u, we know174

that `(y, ξ) is lsc w.r.t. (y, ξ). Then, we have that S(p, ·) is closed-valued. Further,175

we know from [31, Example 14.31] that `(y, ξ) is a normal integrand. Finally, based176

on [31, Theorem 14.37], we have that S(p, ·) is measurable.177

Proposition 2.2. For any fixed p ∈ P, Q(p, ·) in problem (1.4) is finite and178

measurable.179

Proof. Due to the nonemptiness and boundedness of S(p, ξ), Q(p, ·) is finite ob-180

viously. In what follows, we focus on the measurability of Q(p, ·).181

Consider problem (1.5). Since g is continuous and strictly increasing, we know182

from [31, Example 14.51] and Proposition 2.1 that H(p, ·) is measurable. Moreover,183

since h is continuous, we have that Q(p, ξ) = H(p, ξ)− h(p, ξ) is also measurable.184

For given p, denote the inner infimum of problem (P) by ϑ(p), i.e.,185

(2.1) ϑ(p) := inf
F∈F

EF [Q(p, ξ)]186

and for given p and ξ, denote the index set

I(p, ξ) :=
{
s : us(ps, ξ) = ‖(u(p, ξ))+‖∞ , s ∈ {1, . . . ,K}

}
.
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6 J. JIANG, H. SUN, AND X. CHEN

To investigate the semicontinuity of Q, we need the following concept named the187

sparse solution.188

Definition 2.3 (the sparse solution, [34, Definition 2]). For given p ∈ P and189

ξ ∈ Ξ, the sparse solution of problem (1.5) denoted by y(p, ξ), is defined as190

(i) if I(p, ξ) 6= ∅, then ys(p, ξ) = 1 and yi(p, ξ) = 0 for i = 1, . . . ,m and i 6= s,191

where s := min{j : (p− c)j = maxi∈I(p,ξ)(p− c)i};192

(ii) if I(p, ξ) = ∅ and ‖(u(p, ξ))+‖∞ > 0, then ys(p, ξ) = 1 and yi(p, ξ) = 0 for193

i = 1, . . . ,m and i 6= s, where s := min{j : uj(pj , ξ) = ‖u(p, ξ)‖∞};194

(iii) if I(p, ξ) = ∅ and ‖(u(p, ξ))+‖∞ = 0, then y(p, ξ) = 0.195

Based on Definition 2.3, we know that for any given p ∈ P and ξ ∈ Ξ, there always196

exists a unique corresponding sparse solution y(p, ξ). To facilitate understanding of197

the sparse solution, we provide the following example.198

Example 2.4. Assume that there are three products in the market, indexed by199

1, 2, 3, two firms with the target firm producing the products 1 and 2 and the rival200

firm producing product 3, two kinds of consumers’ tastes, i.e., Ξ = {ξ1, ξ2}. Let c =201

(0.5, 2.5)> and P = [1, 3]× [2, 4]. Further, let u1(p1, ξ1) = 3−p1, u1(p1, ξ2) = 6−2p1,202

u2(p2, ξ1) = 3− 2p2, u2(p2, ξ2) = 7− p2, u3(ξ1) = 3 and u3(ξ2) = 2. Now consider the203

sparse solution for p = (1, 3)> ∈ P and ξ = ξ1, ξ2.204

As for consumers with taste ξ1, we have

u1(p1, ξ1) = 2 < 3 = u3(ξ1) and u2(p2, ξ1) = −3 < 3 = u3(ξ1),

which implies that the consumers with taste ξ1 would prefer to product 3.205

As for consumers with taste ξ2, we have

u1(p1, ξ2) = u2(p2, ξ2) = 4 > 2 = u3(ξ2).

Based on Definition 2.3, we have that the sparse solutions for p = (1, 3)> and206

ξ = ξ1, ξ2 are y(p, ξ1) = (0, 0, 1)> and y(p, ξ2) = (1, 0, 0)>, respectively.207

Note that products 1, 2, 3 are indexed in rank order according to the target firm’s208

individual preference. The sparse solution implies not only the preference of con-209

sumers, but also the preference of the target firm. That is, both the target firm and210

consumers with taste ξ2 would like to choose the sparse solution y(p, ξ2) = (1, 0, 0)>.211

With the aid of the sparse solution, we can give the closed-form expression of H.212

Proposition 2.5. For given p ∈ P and ξ ∈ Ξ, H(p, ξ) = g
(
y[K](p, ξ)

>(p− c)
)
,213

where y[K](p, ξ) is the first K components of the sparse solution y(p, ξ).214

Proof. We give the proof by considering the following two cases.215

Case 1: I(p, ξ) 6= ∅. In this case, there exists some i ∈ {1, . . . ,K} such that
ui(pi, ξ) = ‖(u(p, ξ))+‖∞. Let y(p, ξ) be the sparse solution and s be the smallest
index such that (p− c)s = maxi∈I(p,ξ)(p− c)i. Then s ∈ {1, . . . ,K}, ys(p, ξ) = 1 and
yi(p, ξ) = 0 for all i 6= s. Obviously, y(p, ξ) ∈ S(p, ξ) with

S(p, ξ) =
{
y : e>y ≤ 1, y ≥ 0, and yi = 0 if ui(pi, ξ) < ‖(u(p, ξ))+‖∞

}
.

Since (p− c)s is one of the largest component of p− c, y[K](p, ξ)
>(p− c) ≥ ȳ>[K](p− c)216

for all ȳ ∈ S(p, ξ), where ȳ[K] is the first K components of ȳ. Due to the monotonicity217

of g, we have g(y[K](p, ξ)
>(p − c)) ≥ g(ȳ>[K](p − c)), which verifies that H(p, ξ) =218

g(y[K](p, ξ)
>(p− c)).219

This manuscript is for review purposes only.



DISTRIBUTIONALLY ROBUST MULTIPRODUCT PRICING 7

Case 2: I(p, ξ) = ∅. In this case, by the definition of S(p, ξ) and y(p, ξ), for all220

y ∈ S(p, ξ), yt = 0, t = 1, . . . ,K and thus H(p, ξ) = g(0) = g(y[K](p, ξ)
>(p− c)).221

By summarizing the above two cases, the proof is complete.222

In general, H is not continuous. To see this, we give a simple example as follows.223

Example 2.6. Assume that there are products 1, 2 in the market. The target224

firm produces product 1 and the rival produces product 2. Let g(t) = t, h ≡ 0,225

u1(p, ξ) = ξ1 − ξ2p and u2(ξ) = ξ3, where ξi ∼ U(0, 1) for i = 1, 2, 3 are independent226

with each other. Let ξ = (ξ1, ξ2, ξ3)>. In this case, we have227

H(p, ξ) =

{
0, ξ1 − ξ2p < ξ3,

p− c, ξ1 − ξ2p ≥ ξ3,
228

which is discontinuous w.r.t. p for given ξ in general.229

Despite the discontinuity of H(·, ξ), we have the following upper semicontinuity230

property.231

Proposition 2.7. For fixed ξ ∈ Ξ, H(·, ξ) is upper semicontinuous over P, i.e.,232

(2.2) lim sup
p′→p

H(p′, ξ) ≤ H(p, ξ)233

for any p ∈ P. Moreover, ϑ(·), defined in (2.1), is also upper semicontinuous.234

Proof. We prove the upper semicontinuity of H(·, ξ) by considering two cases.235

Case 1: I(p, ξ) 6= ∅. Based on the definition of sparse solution y(p, ξ), we know236

that there exists an s ∈ {1, . . . ,K} such that the sth component of y(p, ξ) equals to 1,237

i.e., ys(p, ξ) = 1. Moreover, for any index i ∈ {1, . . . ,K}, we have one of the following238

three cases holds:239

(1) ui(pi, ξ) = us(ps, ξ) and (p− c)s > (p− c)i for i 6= s;240

(2) ui(pi, ξ) < us(ps, ξ) for i 6= s;241

(3) ui(pi, ξ) = us(ps, ξ) and (p− c)s = (p− c)i for i ≥ s.242

We use notations I1, I2 and I3 to represent the sets of indexes satisfying above
three cases, respectively. Obviously, we have

∪3
i=1Ii = {1, . . . ,K} and Ik ∩ Ij = ∅ for k 6= j and k, j = 1, 2, 3.

Consider p′ := (p′1, . . . , p
′
K)> ∈ RK that is sufficiently closed to p.243

For i ∈ I1, there are two possible cases: (1a) ui(p
′
i, ξ) = ‖(u(p′, ξ))+‖∞; (1b)244

ui(p
′
i, ξ) < ‖(u(p′, ξ))+‖∞. If case (1a) holds, we know from (p − c)s > (p − c)i that245

yi(p
′, ξ)(p′ − c)i = 0 or 0 < yi(p

′, ξ)(p′ − c)i ≤ ys(p, ξ)(p − c)s; if case (1b) holds, we246

have yi(p
′, ξ) = 0 and thus yi(p

′, ξ)(p′ − c)i = 0.247

For i ∈ I2, we know from the continuity of u(·, ·) that ui(p
′
i, ξ) < us(p

′
s, ξ), and248

then yi(p
′, ξ) = 0. Thus, yi(p

′, ξ)(p′ − c)i = 0 for i ∈ I2.249

For i ∈ I3 and any sequence {pk}k≥1 with pk → p as k →∞, we have that either250

yi(p
k, ξ) = 0 (and thus yi(p

k, ξ)(p′ − c)i = 0) or yi(p
k, ξ)(pk − c)i → ys(p, ξ)(p − c)s251

as k →∞.252

To summarize the above three cases, we obtain that253

lim sup
p′→p

H(p′, ξ) = lim sup
p′→p

(
g
(
y[K](p

′, ξ)>(p′ − c)
))

= lim
k→∞

g
(
y[K](p

k, ξ)>(pk − c)
)

254

= lim
k→∞

g
(
ysk(pk, ξ)(pk − c)sk

)
≤ g

(
y[K](p, ξ)

>(p− c)
)

= H(p, ξ),255
256
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where {pk}k≥1 is a sequence such that pk → p as k →∞ and

lim sup
p′→p

g
(
y[K](p

′, ξ)>(p′ − c)
)

= lim
k→∞

g
(
y[K](p

k, ξ)>(pk − c)
)
,

sk is the index with ysk(pk, ξ) = 1, if I(pk, ξ) 6= ∅; sk is any index in {1, . . . ,K}, if257

I(pk, ξ) = ∅.258

Case 2: I(p, ξ) = ∅. We have y[K](p, ξ) = 0 ∈ RK and max1≤i≤K ui(pi, ξ) <259

‖(u(p, ξ))+‖∞ . According to the continuity of u(·, ·), for p′ being sufficiently closed to260

p, we know that max1≤i≤K ui(p
′
i, ξ) < ‖(u(p′, ξ))+‖∞ , which indicates y[K](p

′, ξ) =261

0 ∈ RK , and thus H(p′, ξ) = H(p, ξ) = 0, which indicates that lim supp′→pH(p′, ξ) =262

0 = H(p, ξ). To sum up, we verified (2.2).263

Next, we focus on the upper semicontinuity of ϑ(·) on the basis of (2.2). By using264

Fatou’s lemma, we have, for any F ∈ F , that265

(2.3)
lim sup
p′→p

EF [H(p′, ξ)] = lim sup
p′→p

∫
Ξ

H(p′, ξ)F (dξ) ≤
∫

Ξ

lim sup
p′→p

H(p′, ξ)F (dξ)

≤ EF [H(p, ξ)],

266

where the last inequality follows from the upper semicontinuity of H(·, ξ) for each267

fixed ξ. Note that268

lim sup
p′→p

ϑ(p′) = lim sup
p′→p

inf
F∈F

EF [H(p′, ξ) + h(p′, ξ)]269

≤ inf
F∈F

lim sup
p′→p

EF [H(p′, ξ) + h(p′, ξ)]270

≤ inf
F∈F

EF [H(p, ξ) + h(p, ξ)]271

= ϑ(p),272273

where the last inequality follows from (2.3).274

The upper semicontinuity of ϑ(·) is an important property for a maximization275

problem. Immediately, we have the following proposition.276

Proposition 2.8. Problem (P) has an optimal solution p∗ ∈ P with an optimal277

solution of the second stage problem (1.5) being the corresponding sparse solution.278

Proof. By Proposition 2.7 (i.e., the upper semicontinuity of ϑ(·)) and the com-279

pactness of P, we know that an optimal p∗ is attained for problem (P). Plugging p∗280

into problem (1.5), we can always select the sparse solution y(p∗, ·) such that problem281

(1.5) attains the maximum (Proposition 2.5). According to Proposition 2.2, Q(p∗, ·) is282

measurable. Therefore, p∗ is a solution of problem (P) with the corresponding second283

stage sparse solution y(p∗, ·).284

3. Data-driven analysis. To proceed the study in this section, we need to285

define the ambiguity set F in the distributionally robust multiproduct pricing problem286

(P). Generally speaking, there are mainly two types of ambiguity sets. One is the287

moment-based type (see e.g. [7]); the other one is the distance-based type (see e.g.288

[28]). Of particular interest of this paper, we consider the general moment-based289

ambiguity set, which can be written as290

(3.1) F(η) = {F ∈M(Ξ) : EF [Ψ(η, ξ)] ∈ K} ,291

where M(Ξ) denotes the collection of all probability measures supported on Ξ, Ψ is292

a mapping consisting of vectors and/or matrices with measurable components, η is293
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some nominal moment information, the mathematical expectation of Ψ is taken w.r.t.294

each component of Ψ and K is a closed convex cone in the Cartesian product of some295

finite dimensional vector and/or matrix spaces.296

We give two examples to validate the general moment ambiguity set (3.1).297

Example 3.1 (Delage and Ye [7]). Consider the following ambiguity set with the298

first- and second-order moment information:299

(3.2) F =

{
F ∈M(Ξ) :

(EF [ξ]− µ)>Σ−1(EF [ξ]− µ) ≤ γ1

EF
[
(ξ − µ)(ξ − µ)>

]
� γ2Σ

}
,300

where µ ∈ Rs and Σ ∈ Rs×s denote the perceived mean vector and positive definite
covariance matrix of the nominal probability distribution, respectively, and γ1 > 0
and γ2 ≥ 1 are two constants quantifying decision-maker’s confidence in µ and Σ. By
using the well-known Schur complement, we can rewrite (3.2) as (3.1) with

Ψ(η, ξ) =

 [
−Σ µ− ξ

(µ− ξ)> −γ1

]
(ξ − µ)(ξ − µ)> − γ2Σ

 and K = Ss+1
− × Ss−,

where η = (µ,Σ) and Ss+1
− and Ss− denote the cones of (s + 1) × (s + 1) and s × s301

negative semidefinite symmetric matrices, respectively.302

Example 3.2 (Guo et al. [13]). The second example of (3.1) is the so-called
piecewise uniform approximation of ambiguity set based on moment condition. Let
Ψ be a continuous vector-valued function. Consider, for example, that

Ψ(η, ξ) :=

(
ξ − µ− γ1e

(ξ − µ)>Σ−1(ξ − µ)− γ2

)
and K = Rs+1

− ,

where η = (µ,Σ), µ and Σ denote the perceived mean vector and positive definite303

covariance matrix of the nominal probability distribution respectively, and γ1 and γ2304

are corresponding confidence parameters.305

To measure the distance between two probability measures, we give the definition306

of a class of probability metrics, which is known as ζ-structure probability metrics.307

Definition 3.3 (ζ-structure probability metrics). Let G be a set of measurable
functions from Ξ to R. For F ′, F ∈M(Ξ), we say

DG(F ′, F ) := sup
~∈G
|EF ′ [~(ξ)]− EF [~(ξ)]|

a ζ-structure metric between F ′ and F induced by G.308

In what follows, for F ∈M(Ξ) and F1,F2 ⊆M(Ξ), we use the following notations309

(3.3) DG(F,F1) := inf
F ′∈F1

DG(F, F ′), DG(F1,F2) := sup
F∈F1

inf
F ′∈F2

DG(F, F ′)310

and311

(3.4) HG(F1,F2) := max {DG(F1,F2),DG(F2,F1)}312

to denote the distance between F and F1, the deviation between F1 and F2, the313

Hausdorff distance between F1 and F2 induced by DG , respectively.314
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Since the ζ-structure metric DG(·, ·) is defined by G, G is also called the generator315

of DG(·, ·). With different generators, probability metrics with ζ-structure include316

many commonly-used probability metrics, such as Fortet-Mourier metric, total vari-317

ation metric and Kantorovich metric, etc [30]. Specifically, we give definitions of the318

total variation metric and the Kantorovich metric.319

Let

GTV :=

{
~ : Ξ→ R : ~ is measurable and sup

ξ∈Ξ
|~(ξ)| ≤ 1

}
.

The total variation metric between F ′, F ∈M(Ξ) is defined as

DTV (F ′, F ) := sup
~∈GTV

|EF ′ [~(ξ)]− EF [~(ξ)]| .

Similar to (3.3) and (3.4), for F ∈M(Ξ) and F1,F2 ⊆M(Ξ), let

DTV (F,F1) := inf
F ′∈F1

DTV (F, F ′), DTV (F1,F2) := sup
F∈F1

inf
F ′∈F2

DTV (F, F ′)

and the Hausdorff distance HTV (F1,F2) := max {DTV (F1,F2),DTV (F2,F1)} .320

Let GW := {~ : Ξ→ R : |~(ξ)− ~(ξ′)| ≤ ‖ξ − ξ′‖} . The Kantorovich metric be-321

tween F ′, F ∈ M(Ξ) is defined as DW (F, F ′) = sup~∈GW |EF [~(ξ)]− EF ′ [~(ξ)]| . It is322

worth pointing out that the Kantorovich metric is also known as the first Wasserstein323

metric (see [35, Theorem 5.10]), which is defined as324

DW (F ′, F ) = inf
π∈Π(F ′,F )

∫
Ξ×Ξ

‖ξ′ − ξ‖ dπ(ξ′, ξ),325

where Π(F ′, F ) denotes the set of all probability distributions supported on Ξ × Ξ326

with marginal distributions being F ′ and F , respectively.327

In practice, it is more likely that the decision maker can only have in hand some328

data, which can be used to deduce the information of η, for example, N independent329

identically distributed (iid) samples of ξ. Based on these data, we can then construct330

the data-driven counterpart of η, denoted by η̂N . Thus, the data-driven counterpart331

of the general moment-based ambiguity set (3.1) reads332

F(η̂N ) := {F ∈M(Ξ) : EF [Ψ(η̂N , ξ)] ∈ K} .(3.5)333334

In what follows, to simplify the notation, without any confusion, we use F and335

F̂N to represent F(η) and F(η̂N ), respectively.336

On the basis of the data-driven ambiguity set (3.5), we obtain the following data-337

driven counterpart of the DRO problem (P) as follows:338

(3.6) max
p∈P

inf
F∈F̂N

EF [Q(p, ξ)] .339

Analogous to ϑ(p) in (2.1), we denote ϑ̂N (p) := infF∈F̂N EF [Q(p, ξ)] . Then, in this340

section, we will concentrate on the relationship between the following two problems:341

(3.7) max
p∈P

ϑ(p)342

and343

(3.8) max
p∈P

ϑ̂N (p),344
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which, in fact, are problems (P) and (3.6), respectively.345

To facilitate the forthcoming discussion, we denote optimal values and optimal346

solution sets of problems (3.7) and (3.8) by v∗, P∗ and v̂N , P̂N , respectively.347

In what follows, we focus on discussing the relationship between problems (3.7)348

and (3.8). First, we assume that the data-driven moment information η̂N → η with349

probability 1 (w.p.1) as N → ∞, and the convergence assertions are established as350

the data size N tends to infinity. After that, in view of the fact that the driven data351

may contain noises, we investigate the statistical robustness quantitatively.352

3.1. Convergence analysis. First, we have the following lemma in which an353

upper bound of the discrepancy between optimal values of problems (3.7) and (3.8)354

is given on the basis of the total variation metric.355

Lemma 3.4. Assume that there exists an L > 0 such that |Q(p, ξ)| ≤ L for any
p ∈ P and ξ ∈ Ξ. Then

|v̂N − v∗| ≤ LHTV (F̂N ,F).

Proof. Note the following derivation:356

v̂N − v∗ = max
p∈P

ϑ̂N (p)−max
p∈P

ϑ(p) ≤ max
p∈P

(
ϑ̂N (p)− ϑ(p)

)
357

= max
p∈P

(
inf

F ′∈F̂N
EF ′ [Q(p, ξ)]− inf

F∈F
EF [Q(p, ξ)]

)
358

= max
p∈P

(
inf

F ′∈F̂N
sup
F∈F

(EF ′ [Q(p, ξ)]− EF [Q(p, ξ)])

)
359

≤ max
p∈P

inf
F ′∈F̂N

sup
F∈F
|EF ′ [Q(p, ξ)]− EF [Q(p, ξ)]|360

(a)

≤ L inf
F ′∈F̂N

sup
F∈F

DTV (F ′, F )361

= LDTV (F̂N ,F),362363

where (a) follows from the boundedness property |Q(p, ξ)| ≤ L, the measurability of364

Q(p, ·) (see Proposition 2.2) and the definition of the total variation metric.365

A similar procedure can be applied to the case v∗ − v̂N , and we can obtain that366

v∗ − v̂N ≤ LDTV (F , F̂N ). Thus, we obtain |v̂N − v∗| ≤ LHTV (F̂N ,F).367

Remark 3.5. In Lemma 3.4, the uniform boundedness of |Q(p, ξ)| over P × Ξ is368

required. This assumption can be satisfied trivially under certain specific conditions.369

For instance, if Ξ is bounded, we know from the boundedness of P and the continuity370

of g and h in (1.5) that the uniform boundedness property holds.371

To derive the convergence assertion, we investigate the convergence HTV (F̂N ,F)372

to zero as N tends to infinity. Then we make the following standard assumption.373

Assumption 3.6 (Slater condition). There exist an F0 ∈ M(Ξ) and a positive374

constant γ > 0 such that EF0
[Ψ(η, ξ)] + γB ⊆ K holds.375

We give the following lemma which can be found in [26, Corollary 6].376

Lemma 3.7. Let Assumption 3.6 hold and F(η) be defined in (3.1). Suppose: (i)
there exist a λ0 > 0 and a measurable function κ(ξ) such that ‖Ψ(η1, ξ)−Ψ(η2, ξ)‖ ≤
κ(ξ) ‖η1 − η2‖ for all η1, η2 with ‖ηi‖ ≤ λ0, i = 1, 2; (ii) there exists a C > 0 such
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that EF [κ(ξ)] ≤ C for all F ∈ ∪η̄∈{η′:‖η′‖≤λ0}F(η̄). Then

HG(F(η1),F(η2)) ≤ 2C∆

γ
‖η1 − η2‖

for all η1, η2 with ‖ηi‖ ≤ λ0, i = 1, 2, where ∆ := maxF∈M(Ξ) DG(F, F0) and the377

generator G, γ and F0 are defined in Assumption 3.6.378

Then we are ready to present the main result of this subsection.379

Theorem 3.8. Let Assumption 3.6 hold and F(η) be defined in (3.1). Suppose380

that: (i) there exists an L > 0 such that |Q(p, ξ)| ≤ L for any p ∈ P and ξ ∈ Ξ; (ii)381

there exist a λ0 > 0 and a measurable function κ(ξ) such that ‖Ψ(η1, ξ)−Ψ(η1, ξ)‖ ≤382

κ(ξ) ‖η1 − η2‖ for all η1, η2 with ‖ηi − η‖ ≤ λ0, i = 1, 2; (iii) there exists a C > 0 such383

that EF [κ(ξ)] ≤ C for all F ∈ ∪η̄∈{η′:‖η′−η‖≤λ0}F(η̄). If η̂N → η w.p.1 as N → ∞,384

then we have v̂N → v∗ w.p.1 as N → ∞. Furthermore, d(P̂N ,P∗) → 0 w.p.1 as385

N →∞.386

Proof. By invoking Lemma 3.7, we know from maxF∈M(Ξ) DTV (F, F0) ≤ 2 (based
on the definition of the total variational metric) that: for any η1, η2 with ‖ηi − η‖ ≤ λ0

for i = 1, 2, HTV (F(η1),F(η2)) ≤ 4C ‖η1 − η2‖ /γ. Since η̂N → η w.p.1 as N → ∞,
we obtain ‖η̂N − η‖ ≤ λ0 w.p.1 for sufficiently large N . Thus,

HTV (F̂N ,F) ≤ 4C

γ
‖η̂N − η‖

holds w.p.1 for sufficiently large N . According to Lemma 3.4, we obtain

lim sup
N→∞

|v̂N − v∗| ≤ L lim sup
N→∞

HTV (F̂N ,F) ≤ 4LC

γ
lim sup
N→∞

‖η̂N − η‖ → 0

w.p.1, which implies that v̂N → v∗ w.p.1 as N →∞.387

Note from the proof procedure of Lemma 3.4 that

sup
p∈P

∣∣∣ϑ̂N (p)− ϑ(p)
∣∣∣ ≤ LHTV (F̂N ,F)→ 0 w.p.1 as N →∞.

With this observation, by using Proposition 2.7 and [20, Lemma C.1], we know that

d(P̂N ,P∗)→ 0 w.p.1 as N →∞.

The proof is complete.388

Remark 3.9. All assumptions in Lemma 3.7 are routine. Specifically, the conver-389

gence η̂N → η w.p.1 as N →∞ can be ensured by the celebrated law of large numbers390

(LLN) if the driven data ξ1, . . . , ξN are iid samples of ξ. The other assumptions can391

also be found in [26].392

3.2. Quantitative statistical robustness. The concept of statistical robust-393

ness aims at allowing for arbitrarily small variation of the concentrated statistical394

estimator when a sufficiently small perturbation is introduced into the underlying395

empirical probability distribution. This idea primarily stems from the pioneering396

work of Hampel [15], and a comprehensive summary of statistical robustness is pro-397

vided by Huber in [18]. Significant research has been conducted on both qualitative398

statistical robustness [5, 23, 24, 25] and quantitative statistical robustness [12, 37, 14].399
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In this subsection, we consider the quantitative statistical robustness of the data-400

driven problem (3.6). To this end, we assume that the driven data are perturbed or401

contaminated, denoted by ξ̃1, . . . , ξ̃N , which follow from another probability distribu-402

tion, denoted by F̃ . The moment information of the contaminated data ξ̃1, . . . , ξ̃N403

is denoted by η̃N . Analogously, we denote the following contaminated data-driven404

ambiguity set405

F(η̃N ) := {F ∈M(Ξ) : EF [Ψ(η̃N , ξ)] ∈ K} ,406

which is simply written as F̃N . Then we obtain the following contaminated data-407

driven problem408

(3.9) max
p∈P

inf
F∈F̃N

EF [Q(p, ξ)] .409

Denote ϑ̃N (p) := infF∈F̃N EF [Q(p, ξ)] and thus problem (3.9) can be recast as410

(3.10) max
p∈P

ϑ̃N (p).411

In what follows, we estimate the quantitative relationship between problems (3.8)412

and (3.10). We first give the following Lipschitz continuity property of the optimal413

value function.414

Lemma 3.10. Under the conditions of Lemmas 3.4 and 3.7, there exists a positive
constant C, independent of N , such that∣∣v(η1

N )− v(η2
N )
∣∣ ≤ C ∥∥η1

N − η2
N

∥∥
for any

∥∥ηiN∥∥ ≤ λ0, i = 1, 2, where λ0 > 0 is defined in Lemma 3.7 and v(ηiN ) is the415

optimal value of problem maxp∈P infF∈F(ηiN ) EF [Q(p, ξ)] for i = 1, 2.416

Proof. Similar to Lemma 3.4, we have417

v(η1
N )− v(η2

N ) = max
p∈P

inf
F∈F(η1

N )
EF [Q(p, ξ)]−max

p∈P
inf

F∈F(η2
N )

EF [Q(p, ξ)]418

≤ max
p∈P

(
inf

F∈F(η1
N )

EF [Q(p, ξ)]− inf
F∈F(η2

N )
EF [Q(p, ξ)]

)
419

= max
p∈P

(
inf

F ′∈F(η1
N )

sup
F∈F(η2

N )

(EF ′ [Q(p, ξ)]− EF [Q(p, ξ)])

)
420

≤ max
p∈P

inf
F ′∈F(η1

N )
sup

F∈F(η2
N )

|EF ′ [Q(p, ξ)]− EF [Q(p, ξ)]|421

≤ C1 inf
F ′∈F(η1

N )
sup

F∈F(η2
N )

DTV (F ′, F ) = C1DTV (F(η1
N ),F(η2

N )),422

423

where C1 is some positive constant. The other side v(η2
N )− v(η1

N ) can be estimated424

analogously. Finally, we obtain
∣∣v(η1

N )− v(η2
N )
∣∣ ≤ C1HTV (F(η1

N ),F(η2
N )). Then, by425

using Lemma 3.7 and replacing HG with HTV , we complete the proof.426

We need the following assumption, which specifies how the moment information427

relies on the driven data.428

Assumption 3.11. There exists an L > 0 such that moment information parame-429

ters ηjN from ξ1
j , . . . , ξ

N
j , j = 1, 2 satisfy

∥∥η1
N − η2

N

∥∥ ≤ L
N

∑N
i=1

∥∥ξi1 − ξi2∥∥ .430
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It is noteworthy that some similar assumptions can be found in [12, Lemma 1]431

and [37]. The following example shows Assumption 3.11 holds when Ξ is bounded.432

Example 3.12. Let Ξ be bounded. Assume that the moment information η is
consist of mean vector and covariance matrix (see, e.g., [7]), i.e., η = (µ,Σ). Then,

for j = 1, 2, we have ηjN =
(
µ̄jN ,Σ

j

N

)
, where

µ̄jN =
1

N

N∑
i=1

ξij and Σ
j

N =
1

N

N∑
i=1

(ξij − µ̄
j
N )(ξij − µ̄

j
N )>.

Immediately, we have433

∥∥µ̄1
N − µ̄2

N

∥∥ =

∥∥∥∥∥ 1

N

N∑
i=1

ξi1 −
1

N

N∑
i=1

ξi2

∥∥∥∥∥ ≤ 1

N

N∑
i=1

∥∥ξi1 − ξi2∥∥434

435

and436 ∥∥∥Σ
1

N − Σ
2

N

∥∥∥ =

∥∥∥∥∥ 1

N

N∑
i=1

(ξi1 − µ̄1
N )(ξi1 − µ̄1

N )> − 1

N

N∑
i=1

(ξi2 − µ̄2
N )(ξi2 − µ̄2

N )>

∥∥∥∥∥(3.11)437

≤ 1

N

N∑
i=1

∥∥(ξi1 − µ̄1
N )(ξi1 − µ̄1

N )> − (ξi2 − µ̄2
N )(ξi2 − µ̄2

N )>
∥∥ .438

439

Note that, for i = 1, . . . , N ,440

∥∥(ξi1 − µ̄1
N )(ξi1 − µ̄1

N )> − (ξi2 − µ̄2
N )(ξi2 − µ̄2

N )>
∥∥

(3.12)

441

=
∥∥∥(ξi1 − µ̄1

N )
(
(ξi1 − µ̄1

N )− (ξi2 − µ̄2
N ) + (ξi2 − µ̄2

N )
)> − (ξi2 − µ̄2

N )(ξi2 − µ̄2
N )>

∥∥∥442

=
∥∥∥(ξi1 − µ̄1

N )
(
(ξi1 − µ̄1

N )− (ξi2 − µ̄2
N )
)>

+ (ξi1 − µ̄1
N )(ξi2 − µ̄2

N )> − (ξi2 − µ̄2
N )(ξi2 − µ̄2

N )>
∥∥∥443

=
∥∥∥(ξi1 − µ̄1

N )
(
ξi1 − µ̄1

N − ξi2 + µ̄2
N

)>
+ (ξi1 − µ̄1

N − ξi2 + µ̄2
N )(ξi2 − µ̄2

N )>
∥∥∥444

≤
∥∥ξi1 − µ̄1

N

∥∥∥∥ξi1 − µ̄1
N − ξi2 + µ̄2

N

∥∥+
∥∥ξi1 − µ̄1

N − ξi2 + µ̄2
N

∥∥∥∥ξi2 − µ̄2
N

∥∥445

=
(∥∥ξi1 − µ̄1

N

∥∥+
∥∥ξi2 − µ̄2

N

∥∥) ∥∥ξi1 − µ̄1
N − ξi2 + µ̄2

N

∥∥446

≤
(∥∥ξi1 − µ̄1

N

∥∥+
∥∥ξi2 − µ̄2

N

∥∥) (∥∥ξi1 − ξi2∥∥+
∥∥µ̄1

N − µ̄2
N

∥∥)447

≤ C

∥∥ξi1 − ξi2∥∥+
1

N

N∑
j=1

∥∥∥ξj1 − ξj2∥∥∥
 ,448

449

where C > 0 depends only on the diameter of the support set Ξ. By substituting450

(3.12) into (3.11), we obtain451

∥∥∥Σ
1

N − Σ
2

N

∥∥∥ ≤ C

N

N∑
i=1

∥∥ξi1 − ξi2∥∥+
1

N

N∑
j=1

∥∥∥ξj1 − ξj2∥∥∥
 =

2C

N

N∑
i=1

∥∥ξi1 − ξi2∥∥ .452

453

In this case, by letting L = 2C, we know that Assumption 3.11 holds.454

Finally, we give the following quantitative statistical robustness result.455
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Theorem 3.13. Let Assumption 3.11 hold. Suppose that: (i) conditions in Lem-
mas 3.4 and 3.7 hold; (ii) F, F̃ ∈M1(Ξ) := {F ′ ∈M(Ξ) : EF ′ [‖ξ‖] <∞}. Then

DW
(
F⊗N ◦ v̂−1

N , F̃⊗N ◦ v̂−1
N

)
≤ LDW (F, F̃ ),

for all N ∈ N, where F⊗N ◦ v̂−1
N and F̃⊗N ◦ v̂−1

N are probability distributions over456

R induced by the optimal value v̂N of problem (3.8), F⊗N (or F̃⊗N ) denotes the457

probability distribution over Ξ⊗N with marginal being F (or F̃ ), Ξ⊗N denotes the458

Cartesian product Ξ× . . .× Ξ︸ ︷︷ ︸
N

and L is defined in Assumption 3.11.459

The proof of Theorem 3.13 is similar to that in [12, 22, 37], which is mainly based460

on the definition of Kantorovich metric, and thus we omit it here.461

4. MPEC reformulation. In this section, we consider the reformulation of the462

distributionally robust multiproduct pricing problem (P), which paves the way for463

solving problem (P) numerically.464

For fixed p ∈ P, we consider the inner minimization problem of (P) under the465

ambiguity set (3.1) as follows:466

(4.1)
inf

F∈M(Ξ)
EF [Q(p, ξ)]

s.t. EF [Ψ(ξ)] ∈ K.
467

The Lagrangian function of the minimization problem (4.1) is

L(F,Λ) := EF [Q(p, ξ)] + 〈Λ,EF [Ψ(ξ)]〉 ,

where 〈·, ·〉 denotes the inner product in the space of K, Λ ∈ K∗ and K∗ denotes the468

polar cone of K, i.e., K∗ := {Λ : 〈Λ,Γ〉 ≤ 0, ∀ Γ ∈ K}, which is also a closed convex469

cone since K is a closed convex cone.470

Then the Lagrangian dual problem of (4.1) can be written as471

(4.2) sup
Λ∈K∗

inf
F∈M(Ξ)

L(F,Λ).472

Consider the inner minimization problem of (4.2)

inf
F∈M(Ξ)

(EF [Q(p, ξ)] + 〈Λ,EF [Ψ(ξ)]〉) = inf
F∈M(Ξ)

EF [Q(p, ξ) + 〈Λ,Ψ(ξ)〉] ,

where the equality is due to the definition of inner product in K (in the sense of473

componentwise). Obviously, its optimal value, denoted by ϕ(p,Λ), is474

(4.3) ϕ(p,Λ) := inf
ξ∈Ξ

(Q(p, ξ) + 〈Λ,Ψ(ξ)〉)475

due to the definition of probability distribution, that is, F will take a single point476

probability distribution (or Dirac probability measure) to attain the minimum.477

Therefore, the Lagrangian dual problem (4.2) can be further written as478

(4.4) sup
Λ∈K∗

ϕ(p,Λ).479

Finally, we obtain the reformulation of problem (P) as follows:480

(4.5) max
p∈P,Λ∈K∗

ϕ(p,Λ).481

The following assertions follow from [32, Proposition 3.4], which asserts the dual482

gap between problem (P) and its dual problem (4.5).483
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Proposition 4.1. Let p ∈ P be fixed. If the Slater-type constraint qualification484

(4.6) αB ⊆ −{EF [Ψ(ξ)] : F ∈M(Ξ)}+K485

holds for some α > 0, then there is no dual gap between the primal problem (4.1)486

and the Lagrangian dual problem (4.4) (i.e., the optimal values of problems (4.1) and487

(4.4) are consistent). If, in addition, these optimal values are finite, then the optimal488

solution set of (4.4) is nonempty and bounded.489

Conversely, if the optimal value of problem (4.4) is finite and the optimal solution490

set of problem (4.4) is nonempty and bounded, then Slater-type condition (4.6) holds.491

In general, ϕ(p,Λ) in (4.3) cannot be computed trivially if the support set Ξ492

contains infinite elements. In view of this, we consider its discrete approximation Ξν =493

{ξ1, . . . , ξν}, where samples ξ1, . . . , ξν are obtained by some random or deterministic494

way (see also [29]). It can also be viewed as that all consumers in the market have ν495

preferences or tastes. Then we denote496

ϕν(p,Λ) := inf
ξ∈Ξν

(Q(p, ξ) + 〈Λ,Ψ(ξ)〉) = min
1≤i≤ν

(
Q(p, ξi) +

〈
Λ,Ψ(ξi)

〉)
.497

Thus, we obtain the approximation of problem (4.5) as follows:498

(4.7) max
p∈P,Λ∈K∗

ϕν(p,Λ).499

In fact, based on the definition of Q(p, ξ) in (1.5), problem (4.7) can be recast as500

a large-scale constrained optimization problem as follows:501

(4.8)
max

p∈P,Λ∈K∗
min

1≤i≤ν

(〈
Λ,Ψ(ξi)

〉
− h(p, ξi) + max

yi,γi
g

((
yi[K]

)>
(p− c)

))
s.t. 0 ≤

(
yi

γi

)
⊥
(

0 e
−e> 0

)(
yi

γi

)
+

(
−u(p, ξi)

1

)
≥ 0, 1 ≤ i ≤ ν.

502

In what follows, we will adopt some routine approaches in robust optimization [2] to503

equivalently reformulate problem (4.8).504

For given p ∈ P and Λ ∈ K∗, the inner min-max problem of (4.8), i.e.,505

(4.9)
min

1≤i≤ν

(〈
Λ,Ψ(ξi)

〉
− h(p, ξi) + max

yi,γi
g

((
yi[K]

)>
(p− c)

))
s.t. 0 ≤

(
yi

γi

)
⊥
(

0 e
−e> 0

)(
yi

γi

)
+

(
−u(p, ξi)

1

)
≥ 0, 1 ≤ i ≤ ν

506

is equivalent to a max-min problem as below:507

(4.10)

max
{(yi,γi)}νi=1

min
1≤i≤ν

(〈
Λ,Ψ(ξi)

〉
− h(p, ξi) + g

((
yi[K]

)>
(p− c)

))
s.t. 0 ≤

(
yi

γi

)
⊥
(

0 e
−e> 0

)(
yi

γi

)
+

(
−u(p, ξi)

1

)
≥ 0, 1 ≤ i ≤ ν.

508

In fact, it is known that the optimal value of problem (4.9) is always larger than or509

equal to that of problem (4.10). Then we only need to verify that it holds vice versa.510

For any given 1 ≤ i ≤ ν, denote (yi,∗, γi,∗) an arbitrary optimal solution of the inner511

maximization problem of (4.9). Then {(yi,∗, γi,∗)}νi=1 is a feasible solution of the512

outer maximization problem of (4.10). By letting (yi, γi) = (yi,∗, γi,∗) for i = 1, . . . , ν513
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in problem (4.10), we obtain a lower bound of the optimal value of problem (4.10) as514

below:515

min
1≤i≤ν

〈
Λ,Ψ(ξi)

〉
− h(p, ξi) + g

((
yi,∗[K]

)>
(p− c)

)
,516

which actually equals to the optimal value of problem (4.9). Thus, we have shown517

that the optimal values of problems (4.9) and (4.10) are equal. Then, by using (4.10),518

we can rewrite problem (4.8) as519

(4.11)

max
p∈P,Λ∈K∗,{(yi,γi)}νi=1

(
min

1≤i≤ν

〈
Λ,Ψ(ξi)

〉
− h(p, ξi) + g

((
yi[K]

)>
(p− c)

))
s.t. 0 ≤

(
yi

γi

)
⊥
(

0 e
−e> 0

)(
yi

γi

)
+

(
−u(p, ξi)

1

)
≥ 0, 1 ≤ i ≤ ν.

520

We then summarize the above discussion and obtain the following proposition.521

Proposition 4.2. Suppose that: (i) the support set Ξ = {ξ1, . . . , ξν}; (ii) the522

Slater-type constraint qualification (4.6) holds. Then, the optimal value of problem523

(P) is equal to that of problem (4.11). Moreover, p is an optimal solution of problem524

(P) if and only if there exist Λ, {(yi, γi)}νi=1 such that p together with them is an525

optimal solution of problem (4.11).526

Problem (4.11) is a typical MPCC that has been extensively studied (see mono-527

graph [27]). Numerous papers (e.g., [1, 17, 19, 11]) have contributed to solving (4.11)528

for various types of stationary points. Furthermore, we observe that the objective529

function of problem (4.11) is concave w.r.t. p and Λ. The observation and the closed-530

form expression of the sparse solution y[K] can help us to develop numerical procedures531

to a global optima of problem (P) with a support set Ξ containing a finite number of532

elements.533

5. Numerical experiments. In this section, by employing the MPCC reformu-534

lation (4.11) and the sparse solution (see Definition 2.3), we give numerical procedures535

to find a global optima of problem (P) in some specific cases. Moreover, we illustrate536

our approach by three numerical examples.537

5.1. Numerical procedures for problems (1.4) and (P). In this subsection,538

we consider some numerical procedures for problems (1.4) and (P) when the support539

set is finite. To this end, we assume that the support set Ξ = {ξ1, . . . , ξν} for some540

ν ∈ N and the probability for ξ = ξi is πi for i = 1, . . . , ν. Denote π = (π1, . . . , πν)>.541

Surely, we have π ≥ 0 and e>π = 1.542

First of all, we consider the numerical procedures of problem (1.4), that is,543

(5.1) max
p∈P

∑ν
i=1 πiQ(p, ξi),544

where Q(p, ξi) = H(p, ξi)− h(p, ξi) and545

(5.2)
H(p, ξi) = max

yi
g
(

(yi[K])
>(p− c)

)
s.t. yi ∈ S(p, ξi), i = 1, . . . , ν.

546

Denote Pij := {p ∈ P : yj(p, ξ
i) = 1} for i = 1, . . . , ν and j = 1, . . . ,K, where

yj(p, ξ
i) denotes the value of the jth component of the sparse solution for given p and

This manuscript is for review purposes only.



18 J. JIANG, H. SUN, AND X. CHEN

ξi (see Definition 2.3). For fixed i, denote PiK+1 := P\(∪Kj=1Pij). It is worth pointing

out that Pij might be empty for some i ∈ {1, . . . , ν} and j ∈ {1, . . . ,K}. Furthermore,
if the utility function u(p, ξ) is given by a linear case (i.e., (1.1)) and P is convex,
then Pij is convex for i = 1, . . . , ν and j = 1, . . . ,K. To see this, consider the feasible
set of (1.2) and let Π be the set of vertices of the feasible set. Then for any ŷ ∈ Π,

{u ∈ Rm : ŷ ∈ arg max
y

y>u s.t. e>y ≤ 1, y ≥ 0}

is a convex set formed by the convex combination of edges emanating from this vertex.547

Since affine mappings carry convex sets to convex sets, and P is convex, Pij is also548

convex.549

Let J := {{ji}νi=1 : ji ∈ {1, . . . ,K + 1}, i = 1, . . . , ν}. Since, for each p ∈ P and550

i ∈ {1, . . . , ν}, there exists a ji such that p ∈ Piji , we have P = ∪{ji}νi=1∈J
(
∩νi=1Piji

)
.551

Moreover, due to the uniqueness of the sparse solution, for different {ji}νi=1, {j̃i}νi=1 ∈552

J ,
(
∩νi=1Piji

)
∩
(
∩νi=1Pij̃i

)
= ∅. Then there exists a partition of P induced by J such553

that there exist at most (K+1)ν blocks in the partition and each block corresponding554

to a subproblem as follows:555

(5.3)
max
p

∑ν
i=1 πig

(
y[K](p, ξ

i)>(p− c)
)
−
∑ν
i=1 πih(p, ξi)

s.t. p ∈ ∩νi=1Piji ,
556

where y[K](p, ξ
i) denotes the first K components of the sparse solution of the second557

stage problem (5.2) for given p and ξi. Note that for each p ∈ Piji , yji(p, ξ
i) = 1 and558

yk(p, ξi) = 0 for k 6= ji, which implies H(p, ξi) = g(pji − cji). Therefore, problem559

(5.3) can be further recast as560

(5.4)
max
p

∑ν
i=1 πig (pji − cji)−

∑ν
i=1 πih(p, ξi)

s.t. p ∈ ∩νi=1Piji .
561

Specially, when Piji is convex and closed, g(·) is concave and h(·, ξi) is convex for562

i = 1, . . . , ν, problem (5.4) is convex, which can be solved effectively.563

To summarize the aforementioned statements, we have the following procedures564

to compute a global solution of problem (1.4).565

S1 Compute partitions ∩νi=1Piji , {ji}
ν
i=1 ∈ J .566

S2 For each given {ji}νi=1 with ji ∈ {1, . . . ,K + 1}, i = 1, . . . , ν, calculate a567

global solution of subproblem (5.4).568

S3 Choose one of the largest objectives among these subproblems, and output569

its optimal value and optimal solution.570

Next, we consider problem (P), i.e., the distributionally robust counterpart of571

problem (1.4), as follows:572

(5.5) max
p∈P

inf
π∈F

ν∑
i=1

πiQ(p, ξi),573

where Q(p, ξi) is the same as that in (5.1). By using the dual reformulation in Sec-574

tion 4 and the ν partitions of P in (5.3), (5.5) can be divided into at most (K + 1)ν575

subproblems as follows:576

(5.6)
max
p,Λ∈K∗

(
min

1≤i≤ν

〈
Λ,Ψ(ξi)

〉
− h(p, ξi) + g

(
y[K](p, ξ

i)>(p− c)
))

s.t. p ∈ ∩νi=1Piji ,
577
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where y[K](p, ξ
i) denotes the firstK components of the sparse solution of problem (5.2)578

for given p and ξi. Similarly, problem (5.6) is equivalent to the following problem:579

(5.7)
max
p,Λ∈K∗

(
min

1≤i≤ν

〈
Λ,Ψ(ξi)

〉
− h(p, ξi) + g (pji − cji)

)
s.t. p ∈ ∩νi=1Piji .

580

To solve problem (5.5), we only need to replace S2 by S2′ as follows.581

S2′ For each given {ji}νi=1 with ji ∈ {1, . . . ,K+1}, i = 1, . . . , ν, compute a global582

solution of (5.7).583

Since J induces a partition of P, we have the following assertions.584

Proposition 5.1. Procedures S1, S2 and S3 output the globally optimal value585

and a globally optimal solution of problem (5.1). Procedures S1, S2′ and S3 output586

the globally optimal value and a globally optimal solution of problem (5.5).587

5.2. Numerical results. In this subsection, we provide three numerical exam-588

ples to illustrate our models and approaches. First, we consider the stress test (see,589

e.g., [8, 16]) using a simple example where the random vector has three possible real-590

izations. The second example is performed with one pricing product and some larger591

sample sizes. Based on the second example, the last example considers a general case592

with multiple pricing products and larger sample sizes. All codes were implemented593

in MATLAB R2018b on a laptop with the 13th Gen Intel(R) Core(TM) i9-13900H594

(2.60 GHz) and 32GB RAM.595

First of all, we do the stress test, which shows the reasonability and necessariness596

of the distributionally robust multiproduct pricing problem (P).597

Example 5.2. Let K = 2 and m = 4, i.e., there are total four products in the598

market and the target firm produces two products. The utility of a consumer with599

preference ξ = (ξ1, ξ2, ξ3)> for purchasing product j (j = 1, 2, 3, 4) is defined as600

uj(pj , ξ) = ξ1 + ξ2xj − ξ3pj . Set x = (x1, x2, x3, x4)> = (5, 2, 3, 1)>, p3 = 3, p4 = 0.5601

and c = (c1, c2)> with c1 = 5, c2 = 3. Then, the target firm aims to determine the602

price p = (p1, p2)>.603

Let the probability distribution of random vector ξ be604

(5.8) ξ =


ξ1 = (3, 3, 1)> with probability π1 = 3

4 ,

ξ2 = (2, 2, 1)> with probability π2 = 1
8 ,

ξ3 = (1, 1, 2)> with probability π3 = 1
8 .

605

Set P = [1, 9] × [1, 9], g
(
y[K](ξ)

>(p− c)
)

= y[K](ξ)
>(p − c) and h(p, ξ) = ‖p−p̄‖2

64 ,606

where p̄ = (5, 4)> is a predetermined price vector.607

It is highly probable that the estimated probability distribution of the random
vector ξ is not the true distribution. To account for this uncertainty, we construct an
ambiguity set defined as

F :=
{
π = (π1, π2, π3)> ∈ R3

+ : π1ξ
1 + π2ξ

2 + π3ξ
3 − µ− 0.5e ≤ 0, e>π = 1

}
,

where µ is the nominal mean vector of ξ, e ∈ R3 be a vector with all elements equal608

to 1, and F includes the discrete probability distribution in (5.8).609

Analysis of Example 5.2: Immediately, an ambiguity-neutral target firm will make610

a decision according to the stochastic programming problem (1.4), that is611

(5.9) max
p∈P

3∑
i=1

πi
(
yi1(p)(p1 − c1) + yi2(p)(p2 − c2)

)
− ‖p− p̄‖

2

64
612
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where π1, π2, π3 are defined in (5.8) and yi(p) = (yi1(p), yi2(p), yi3(p), yi4(p))> is the613

sparse solution of the corresponding second stage problem with price p and ξi for614

i = 1, 2, 3.615

An ambiguity-averse target firm hedges against the possibility, and would like to616

make a decision according to problem (P), that is the following DRO problem617

(5.10) max
p∈P

inf
π∈F

3∑
i=1

πi
(
yi1(p)(p1 − c1) + yi2(p)(p2 − c2)

)
− ‖p− p̄‖

2

64
.618

To solve problem (5.9), we employ procedures S1, S2 and S3 to find an optimal619

solution. Note that in this case, i = 1, 2, 3 and ji ∈ {1, 2, 3}. Then we can find620

the partition ∩νi=1Piji , {ji}
ν
i=1 ∈ J of P as in S1 as follows: P1

1 = [1, 9] × [1, 9],621

P2
1 = [1, 7] × [1, 9], P2

3 = [7, 9] × [1, 9], P3
1 = [1, 2.5] × [1, 9], P3

3 = [2.5, 9] × [1, 9]622

and Piji = ∅ for the rest (i, ji). The corresponding sparse solution reads: y1
[2](p) =623

(1, 0)>, p ∈ [1, 9]× [1, 9],624

y2
[2](p) =

{
(1, 0)> p ∈ [1, 7]× [1, 9]

(0, 0)> otherwise,
and y3

[2](p) =

{
(1, 0)>, p ∈ [1, 2.5]× [1, 9],

(0, 0)>, otherwise.
625

Therefore, by procedure S2, problem (5.9) can be solved via the following three626

subproblems:627

(5.11) max
p∈P1

1∩P2
1∩P3

1

3

4
(p1 − 5) +

1

8
(p1 − 5) +

1

8
(p1 − 5)− ‖p− p̄‖

2

64
,628

629

(5.12) max
p∈P1

1∩P2
1∩P3

3

3

4
(p1 − 5) +

1

8
(p1 − 5)− ‖p− p̄‖

2

64
,630

631

(5.13) max
p∈P1

1∩P2
3∩P3

3

3

4
(p1 − 5)− ‖p− p̄‖

2

64
.632

The optimal solutions for problems (5.11), (5.12), and (5.13) are (2.5, 4)>, (7, 4)>,633

and (9, 4)>, with optimal values of − 665
256 , 27

16 , and 11
4 , respectively. Therefore, (9, 4)>634

and 11
4 are the optimal solution and optimal value of problem (5.9), respectively.635

In what follows, we calculate an optimal solution and the optimal value of problem636

(5.10). According to (5.6), we consider the following problem637

(5.14) max
p∈P1

j1
∩P2

j2
∩P3

j3
,Λ∈K∗

(
min

1≤i≤ν

(〈
Λ,Ψ(ξi)

〉
+ yi[K](p)

>(p− c)
)
− ‖p− p̄‖

2

64

)
638

with (j1, j2, j3) = (1, 1, 1), (1, 1, 3) or (1, 3, 3), where Ψ(ξ) = ξ−µ−0.5e and K∗ = R3
+.639

It is noteworthy that for different {ji}3i=1, yi[K](p), i = 1, 2, 3, are given above, then640

problem (5.14) is convex w.r.t. (p,Λ), which can be solved effectively.641

When we take µ = (2.2, 2.2, 1)> in the ambiguity set F , the optimal solution of642

problem (5.10) is (p,Λ) = (7, 4, 0, 0, 0)>, achieving an optimal value 15
16 . By setting643

p = (7, 4)> in (5.10), we can obtain the worst-case probability distribution π =644

(0, 0.5, 0.5)> for problem (5.10). Similarly, when µ = (2.625, 2.625, 1.125)> is set in645

This manuscript is for review purposes only.



DISTRIBUTIONALLY ROBUST MULTIPRODUCT PRICING 21

the ambiguity set F , the optimal solution to problem (5.10) is p = (7, 4)>, achieving646

an optimal value of 11
16 . The worst-case probability distribution in this case is π =647

(0, 0.375, 0.625)>.648

To make a stress test, consider contaminations of the discrete probability dis-
tribution in (5.8) with the worst probability distribution from (5.10) under µ =
(2.2, 2.2, 1)> and µ = (2.625, 2.625, 1.125)>, respectively, that is

(1− α)

 0.75
0.125
0.125

+ α

 0
0.5
0.5

 and (1− α)

 0.75
0.125
0.125

+ α

 0
0.375
0.625

 ,

where α ∈ [0, 1] denotes the contamination level. Under different contamination lev-649

els, we plot objectives when p = (9, 4)> (an optimal solution of the ambiguity-neutral650

target firm) and p = (7, 4)> (an optimal solution of the ambiguity-averse target firm)651

in Figure 1. Figure 1 shows that around α = 0.477 (or α = 0.533), the optimal so-652

lution of the ambiguity-averse target firm begins to perform better than the optimal653

solution of the ambiguity-neutral target firm. This means that if the perceptive prob-654

ability distribution in (5.8) is contaminated (e.g., α > 0.477 for µ = (2.2, 2.2, 1)> and655

α > 0.533 for µ = (2.625, 2.625, 1.125)>), the ambiguity-neutral target firm might656

make a worse decision than the ambiguity-averse one. Additionally, the fact that the657

objective value for the ambiguity-neutral target firm changes more steeply than that658

for the ambiguity-averse target firm suggests that the distributionally robust multi-659

product pricing model is more resilient to contaminated data. In practice, it is often660

difficult to know the true distribution exactly, which highlights the reasonableness661

and necessariness of our distributionally robust multiproduct pricing model.
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(a) Stress test for µ = (2.2, 2.2, 1)>.
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(b) Stress test for µ = (2.625, 2.625, 1.125)>.

Fig. 1. Objectives of stochastic and distributionally robust models under different levels of
contamination.

662

In the next example, we apply the same methodology to a larger sample size case.663

Example 5.3. Let K = 1 and m = 3. Assume that ξ is a random vector supported664

over R3
+, i.e., ξ = (ξ1, ξ2, ξ3)>; the utility of the consumer with preference ξ purchasing665

product j (j = 1, 2, 3) is defined as uj(pj , ξ) = ξ1+ξ2xj−ξ3pj , where x = (x1, x2, x3) =666

(5, 1, 3), p2 = 2, p3 = 4 and c1 = 2; g is an identity mapping, i.e., g(t) = t, and667

h(p1, ξ) = ‖p1 − 3‖2 /81; the feasible set of the price is P = [1, 9]. The ambiguity set668

F(η) is defined as (see Example 3.2):669

(5.15) F(η) :=

{
F ∈M(Ξ) : EF

[(
ξ − µ− γ1e

(ξ − µ)>Σ−1(ξ − µ)− γ2

)]
∈ R4

−

}
,670
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where η = (µ,Σ) ∈ R3 × R3×3 with Σ being positive definite, γ1, γ2 ∈ R are two671

scalars.672

To generate the discrete samples {ξi}νi=1, we adopt the uniform probability dis-673

tribution over [1, 7]. Specifically, we generate {ξi1}νi=1, {ξi2}νi=1 and {ξi3}νi=1 indepen-674

dently, and each of them are iid and follow the uniform probability distribution over675

[1, 7]. Based on (4.11) and ambiguity set (5.15), the DRO problem can be written as676

(5.16)

max
p1∈P,Λ∈K∗,
{(yi,γi)}ν

i=1

(
min

1≤i≤ν

〈
Λ,Ψ(ξi)

〉
− (p1−3)2

81 + yi1(p1 − c1)

)
s.t. 0 ≤

(
yi

γi

)
⊥
(

0 e
−e> 0

)(
yi

γi

)
+

(
−u(p, ξi)

1

)
≥ 0, 1 ≤ i ≤ ν,

677

where Ψ(ξ) =

(
ξ − µ− γ1e

(ξ − µ)>Σ−1(ξ − µ)− γ2

)
.678

Analysis of Example 5.3: First, for ν = 20, 50, 100, 200, 400, 1000, 2000, 5000, we679

compute the optimal solutions and the optimal values of problem (5.16). In problem680

(5.16), we set γ1 = γ2 = 1, µ = (4, 4, 4)>, and Σ = diag(3, 3, 3). The numerical results681

are presented in Table 1.

Table 1
Optimal solutions and optimal values of (5.16) for ν = 20, 50, 100, 200, 400, 1000, 2000, 5000.

sample size ν 20 50 100 200 400 1000 2000 5000

optimal solutions 6.57 4.13 3.81 3.46 3.41 3.45 3.53 3.39
optimal values 3.53 1.31 0.93 0.86 0.79 0.71 0.68 0.63
CPU times (s) 2.14 4.51 10.10 19.37 38.12 117.18 215.98 836.25

682

Second, we show the convergence tendency of the objective of DRO problem
(5.16) when η is approximated. We set ν = 100, 200, 400, 1000, 2000, 5000 and fix
γ1 = γ2 = 1, η = (µ,Σ) with µ = (4, 4, 4)>, and Σ = diag(3, 3, 3). To perturb η, we
set ηε = (µ + ε1e,Σ + ε2I), where I is an identity matrix with a proper dimension,
ε = (ε1, ε2) are chosen from

{(0.4, 4), (0.3, 3), (0.2, 2), (0.1, 1), (0.05, 0.5), (0.02, 0.2), (0.01, 0.1), (0, 0)}.

For fixed ν, we plot in Figure 2 (a) the objective of the DRO problem (5.16) regarding683

to ε. We can clearly observe from Figure 2 that the objective gradually converges to684

the true one, i.e., ε = (0, 0).685

Moreover, we generate {ωij}Ni=1, j = 1, 2, 3 independently, using the uniform prob-686

ability distribution over [1, 7]. Then we define the data-driven moment information687

of (µ,Σ) by (µ̂N , Σ̂N ) with688

µ̂N =
1

N

(
N∑
i=1

ωi1,

N∑
i=1

ωi2,

N∑
i=1

ωi3

)>
and Σ̂N =

1

N
diag

(
N∑
i=1

τ i1,

N∑
i=1

τ i2,

N∑
i=1

τ i3

)
,689

690

where τ ij = (ωij −
∑N
i=1 ω

i
j)

2. For each sample size N = 10, 50, 100, 500, 1000, we691

generate the data-driven moment information (µ̂N , Σ̂N ) 20 times and compute the692

optimal value of problem (5.16) when ν = 100. The convergence behavior of the693

optimal value as the sample size grows is shown in the boxplot in Figure 2(b).694

In the last example, we consider a multiproduct case with larger sample sizes.695
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Fig. 2. Convergence of the DRO problem (5.16).

Example 5.4. Let m = 11 and K = 10. Similarly, we assume that ξ = (ξ1, ξ2, ξ3)>696

and the utility of the consumer with preference ξ purchasing product j (j = 1, . . . ,m)697

is defined as uj(pj , ξ) = ξ1 + ξ2xj − ξ3pj , where x = (x1, . . . , xm)>, pm and c =698

(c1, . . . , cK)> are given. Again, we assume that g(t) = t and h(p, ξ) = ‖p− c‖2 /81.699

The feasible set of the price p is P = [1, 9]× . . .× [1, 9]︸ ︷︷ ︸
K

. The ambiguity sets F(η) and700

Fν(η) are the same as those in Example 5.3.701

Analysis of Example 5.4: First of all, we randomly generate x = (x1, . . . , xm)>, pm702

and c = (c1, . . . , cK)>. By (4.11), the DRO problem for an ambiguity-averse target703

firm reads704

(5.17)

max
p∈P,Λ∈K∗,{(yi,γi)}νi=1

(
min

1≤i≤ν

〈
Λ,Ψ(ξi)

〉
− ‖p−c‖

2

81 +
(
yi[K]

)>
(p[K] − c[K])

)
s.t. 0 ≤

(
yi

γi

)
⊥
(

0 e
−e> 0

)(
yi

γi

)
+

(
−u(p, ξi)

1

)
≥ 0, 1 ≤ i ≤ ν.

705

Since there are multiple products in this example, using the numerical proce-706

dures in subsection 5.1 directly may lead to the curse of dimensionality. This moti-707

vates us to price each product alternately using an alternate pricing method. Specif-708

ically, we first randomly assign an initial price to the K products, and then, for709

i from 1 to K, we price product i while keeping the prices of the other products710

fixed. We repeat this process until the prices converge. In fact, the pricing prob-711

lem for a single product is the same as that in Example 5.3. To generate samples,712

we set ν = 20, 50, 100, 200, 400, 1000, 2000, 5000, and independently generate {ξi1}νi=1,713

{ξi2}νi=1, and {ξi3}νi=1, each of which are i.i.d. samples according to the uniform prob-714

ability distribution over the interval [1, 7]. We set the parameters in Fν(η) as follows:715

γ1 = 0.5, γ2 = 1, µ = (4, 4, 4)>, and Σ = diag(3, 3, 3).716

The numerical results for problem (5.17) are presented in Table 2 with CPU times,717

which show that the scalability of the solution procedure presented in subsection 5.1718

is acceptable. Furthermore, we show the objectives of problem (5.17) during the719

alternate iteration process in Figure 3. As it can be observed from Figure 3, the720

objective values increase with the number of iterations and eventually become stable,721

which illustrates the effectiveness of the alternate method. In addition, as the sample722
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size increases, the final objective values decrease. This observation is consistent with723

the fact that the ambiguity set Fν(η) in problem (5.17) enlarges as the sample size724

increases. Also, the objective values tend to converge as the sample size increases,725

which indicates the empirical convergence between problems (4.7) and (4.5) as ν tends726

to infinity.727

Table 2
Optimal solutions p∗ of (5.17) for ν = 20, 50, 100, 200, 400, 1000, 2000, 5000.

ν p∗1 p∗2 p∗3 p∗4 p∗5 p∗6 p∗7 p∗8 p∗9 p∗10

20 3.62 2.57 2.09 3.54 2.70 2.27 3.11 3.67 2.54 3.42
50 3.98 2.90 2.40 3.54 2.70 2.58 3.33 3.67 2.54 3.42
100 3.53 2.60 1.98 3.54 2.70 2.19 3.06 3.67 2.54 3.42
200 3.35 2.42 1.91 3.54 2.70 2.08 2.84 3.67 2.54 3.42
400 3.06 2.25 1.79 3.54 2.70 1.95 2.64 3.67 2.54 3.42
1000 3.17 2.32 1.81 3.54 2.70 1.97 2.73 3.67 2.54 3.42
2000 3.08 2.26 1.79 3.54 2.70 1.94 2.65 3.67 2.54 3.42
5000 3.10 2.27 1.81 3.54 2.70 1.95 2.67 3.67 2.54 3.42
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Fig. 3. Numerical results of problem (5.17) for ν = 20, 50, 100, 200, 400, 1000, 2000, 5000.

6. Conclusions. In this paper, we consider the distributionally robust multi-728

product pricing problem (P) in a hierarchical form. We establish measurability and729

semicontinuity by using a sparse solution of the second stage optimization problem730

(1.5) of problem (P). Moreover, we conduct the data-driven analysis of problem (P)731

when the ambiguity set is given by a general moment-based case. Specifically, we732

investigate the convergence properties when the moment information is exactly ap-733

proximated by true data, and the quantitative statistical robustness when the moment734

information is approximated by noisy data. Finally, we propose a numerical procedure735

to compute a solution of the distributionally robust multiproduct pricing problem (P)736

based on a MPCC reformulation (4.11) and the sparse solution of problem (1.5). Pre-737

liminary numerical results are reported to illustrate the effectiveness of our models738

and approaches.739

This manuscript is for review purposes only.



DISTRIBUTIONALLY ROBUST MULTIPRODUCT PRICING 25

Acknowledgments. We would like to thank the associate editor and two referees740

for their very helpful comments.741

REFERENCES742

[1] R. Andreani, L. D. Secchin, and P. J. Silva, Convergence properties of a second order aug-743
mented Lagrangian method for mathematical programs with complementarity constraints,744
SIAM J. Optim., 28 (2018), pp. 2574–2600.745

[2] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski, Robust Optimization, vol. 28, Princeton746
University Press, Princeton, 2009.747

[3] S. Berry and A. Pakes, The pure characteristics demand model, Internat. Econom. Rev., 48748
(2007), pp. 1193–1225.749

[4] X. Chen, H. Sun, and R. J.-B. Wets, Regularized mathematical programs with stochastic750
equilibrium constraints: Estimating structural demand models, SIAM J. Optim., 25 (2015),751
pp. 53–75.752

[5] R. Cont, R. Deguest, and G. Scandolo, Robustness and sensitivity analysis of risk mea-753
surement procedures, Quant. Finance, 10 (2010), pp. 593–606.754

[6] R. W. Cottle, J.-S. Pang, and R. E. Stone, The Linear Complementarity Problem, SIAM,755
Philadelphia, 2009.756

[7] E. Delage and Y. Ye, Distributionally robust optimization under moment uncertainty with757
application to data-driven problems, Oper. Res., 58 (2010), pp. 595–612.758
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