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ABSTRACT. This paper proposes an extra gradient Anderson-accelerated algorithm for
solving pseudomonotone variational inequalities, which uses the extra gradient scheme
with line search to guarantee the global convergence and Anderson acceleration to have
fast convergent rate. We prove that the sequence generated by the proposed algorithm
from any initial point converges to a solution of the pseudomonotone variational inequal-
ity problem without assuming the Lipschitz continuity and contractive condition, which
are used for convergence analysis of the extra gradient method and Anderson-accelerated
method, respectively in existing literatures. Numerical experiments, particular emphasis
on Harker-Pang problems, fractional programming problems, nonlinear complementarity
problems, PDE problems with free boundary and linear complementarity problems, are
conducted to validate the effectiveness and good performance of the proposed algorithm
comparing with the extra gradient method and Anderson-accelerated method.

1. INTRODUCTION4

In this paper, we consider the following variational inequality (VI) problem: find an5

x∗ ∈ Ω such that6

(1.1) ⟨H(x∗),x− x∗⟩ ≥ 0, ∀x ∈ Ω,

where Ω is a closed convex set of Rn and H : Rn →Rn is a continuous function, and pseu-7

domonotone on Ω, but not necessarily smooth or even Lipschitz continuous. Through-8

out this paper, we denote problem (1.1) by VI(Ω,H) and the solution set of (1.1) by9

SOL(Ω,H), and assume SOL(Ω,H) ̸= /0.10

Variational inequalities (VIs) provide a unified framework for representing various im-11

portant concepts in applied mathematics such as nonlinear equation systems, complemen-12

tarity problems, optimality conditions for optimization problems and network equilibrium13

problems. Thus, VIs have a wide range of applications in physics, economics, engineer-14

ing sciences and so on [6, 16, 25, 39, 45]. One of the most interesting topics in VIs is to15

develop efficient and fast iterative algorithms to find solutions.16

As a class of effective numerical methods for solving VIs, projection methods have re-17

ceived a lot of attention from many researchers. The earliest projection method for solving18

VI(Ω,H) is the gradient projection (PG) method [22]19

(1.2) xk+1 = PΩ(xk − tH(xk)),

where PΩ denotes the projection onto the set Ω and t > 0. To guarantee the convergence of20

the PG method, it is usually assumed that either H is strongly monotone and L-Lipschitz21
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continuous on Ω
1, or H is cocoercive. In order to weaken the strong monotonicity of22

H, many projection methods have been proposed to solve monotone VIs [1, 11, 18, 12,23

34, 35, 47, 48, 49]. These methods include using some acceleration techniques to solve24

monotone VIs. For example, an adaptive golden ratio algorithm was proposed in [1] for25

solving VIs where the operator is monotone and locally Lipschitz continuous. Specifically,26

when the feasible set is Rn, the monotonicity assumption of the operator in [1] can be27

replaced by the existence of a weak Minty solution to VIs. Under these assumptions,28

convergence rates were provided for both the gap function and the residual function. In29

[18], the authors introduced an inertial projection and contraction algorithm and proved30

that, under the conditions that the operator is monotone and Lipschitz continuous, the31

sequence generated by the algorithm weakly converges to a solution of VIs in a Hilbert32

space.33

Very recently, developing algorithms for different nonmonotone VIs has attracted great34

attention due to applications in machine learning [10, 32, 42, 43, 46, 52]. In this pa-35

per, we focus on solving VI(Ω,H) with a pseudomonotone H, which is a widely used36

class of nonmonotone VIs. A most commonly used algorithm in the literatures for solv-37

ing pseudomonotone VIs is the Korpelevich’s extra gradient (EG) method [31]. The EG38

method was originally used to solve VI(Ω,H) with a monotone and L-Lipschitz continu-39

ous H, and was later extended by Pang and Facchinei [19] to solve the pseudomonotone40

VIs. After that, the EG method has been intensively studied and extended in various ways41

[10, 11, 12, 17, 23, 27, 32, 33, 35, 42, 43, 46, 49, 50]. It is worth pointing out that besides42

the L-Lipschitz continuity of H on Ω, some other conditions on H are often required to43

guarantee the convergence of the EG method and its variants, such as Minty condition,44

quasimonotonicity, pseudomonotonicity and weak monotonicity.45

To the best of our knowledge, current research on the Minty condition cannot simulta-46

neously provide an analysis of both sequence convergence and convergence rates. One of47

the main objectives of this paper is to design an algorithm that ensures both the sequence48

convergence and a fast convergence rate under the pseudomonotonicity of H on Ω. In49

subsection 1.1, we will review and summarize the development of EG methods for non-50

monotone VIs in recent years in detail. A summary of some main comparisons is provided51

in Table 1.52

It is known that VI(Ω,H) is equivalent to the following fixed point problem [19]:53

(1.3) x = G(x) := PΩ(x− tH(x)),

where t > 0. Thus, the study of PG method in (1.2), which is a fixed point method, can54

help to improve the performance of the algorithms for solving VIs. Anderson accelera-55

tion is efficient to improve the convergence rate of fixed point methods, but the existing56

convergence analysis of Anderson acceleration requires the fixed point mapping G to be57

contractive and piecewise smooth. However, due to the nonmonotonicity of H, the map-58

ping G is not contractive, and may be even expansive, which means that we cannot directly59

use Anderson acceleration to solve the corresponding fixed point problem of VI(Ω,H) in60

(1.3). Moreover, G is nonsmooth, because of the projection operator PΩ. In this paper,61

we introduce Anderson acceleration technique into the EG method to ensure the global se-62

quence convergence of the algorithm and improve the convergence rate of the EG method.63

We will review the recent development of Anderson acceleration for fixed point problems64

in subsection 1.2.65

1H is called L-Lipschitz continuous on Ω if ∥H(x)−H(y)∥ ≤ L∥x− y∥ for any x,y ∈ Ω.
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1.1. EG methods for solving nonmonotone VIs. The structure of the EG method pro-66

ceeds as follows:67 {
xk+0.5 := PΩ(xk − tH(xk))

xk+1 := PΩ(xk − tH(xk+0.5))

with t > 0. It is important to note that the convergence results for the EG method require68

H to be L-Lipschitz continuous on Ω and the stepsize t to satisfy tL < 1 [31]. Iusem [2]69

proposed a modified EG method with an updated stepsize to guarantee the efficiency of70

the proposed algorithm for VI(Ω,H), in which H is monotone and continuous. Recently,71

similar extensions have been developed not only for monotone operators but also for pseu-72

domonotone operators [10, 42, 43]. However, the convergence rates are not mentioned in73

these works. Most results on convergence rates of EG methods for VIs are established74

based on the L-Lipschitz continuity of H, resulting in a sublinear rate of convergence for75

the best-iterate of the residual term. In particular, when H is monotone and L-Lipschitz76

continuous, we known that the EG method converges to a solution of VI(Ω,H) in terms77

of min0≤k≤N ∥xk − xk+0.5∥ with a rate of O(1/
√

N) [40], which has been extended to the78

EG method for solving VI(Ω,H) with a pseudomonotone and L-Lipschitz continuous H in79

[19, Lemma 12.1.10].80

Furthermore, research on nonmonotone VIs under Minty condition has been conducted.81

We say VI(Ω,H) satisfies the Minty condition if there exists an x∗ ∈ Ω such that82

(1.4) ⟨H(x),x− x∗⟩ ≥ 0, ∀x ∈ Ω.

Under the Minty condition, Ye and He in [52] introduced a double projection algorithm83

(DPA) with global convergence on the sequence, which requires computing the projection84

onto the intersection of a finite number of halfspaces and the closed convex set Ω. Sub-85

sequently, Lei and He in [32] proposed a new extra gradient method (NEG) that does not86

involve adding halfspaces during the projection computation for solving this class of VIs87

under the same assumptions as in [52]. Then a new extra gradient type projection algo-88

rithm (NEGTP) was presented in [46] to solve a class of continuous quasimonotone VIs89

satisfying H(x) ̸= 0,∀x ∈ Ω. All the algorithms in [32, 46, 52] have the global sequence90

convergence, but do not have the estimation on the convergence rate. Ye [51] proved the91

global convergence of the sequence for the proposed algorithm under the Minty condition.92

However, in each iteration, the algorithm in [51] requires selecting the half-space that has93

the largest distance from xk to some generated half-spaces. As k increases, more informa-94

tion needs to be computed and stored. Approximation-based Regularized Extra-gradient95

method (ARE), a pth-order (p ≥ 1) algorithm, was proposed in [27] for solving monotone96

VIs with a convergence rate of O(1/N
p+1

2 ) on the gap function. In [28], it was stated that97

ARE also can solve the nonmonotone VIs satisfying the Minty condition with the con-98

vergence rate of O(1/
√

N) for the residual function and O(1/N
p
2 ) for the gap function.99

However, the algorithms in [27, 28] need the Lipschitz continuity of H and do not have the100

sequence convergence on the iterates.101

1.2. Anderson acceleration for fixed point problems. Anderson acceleration was first102

proposed by Anderson in 1965 in the context of integral equations [4]. This technique103

aims to improve the convergence rate of fixed point iteration by utilizing the history of104

search directions. It is not necessary to compute the Jacobian of G, which allows it to105

perform effectively in various fields, including electronic structure computations [4, 13],106

machine learning [26], radiation diffusion and nuclear physics [3]. Anderson acceleration107

is formally described in the following algorithm, commonly referred to as Anderson(m).108
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Methods Assumptions Sequence convergence Convergence rate
(residual function)

EG [19] pseudomonotone
√

O( 1√
N
)

Lipschitz continuous

ARE [28] Minty condition × O( 1√
N
)

(the order p = 1) Lipschitz continuous

DPA [52] Minty condition
√

×
continuous

NEG [32] Minty condition
√

×
continuous

NEGTP [46] Minty condition
√

×
quasimonotone

continuous
H(x) ̸= 0,∀x ∈ Ω

EG-Anderson(1) pseudomonotone
√

O( 1√
N
)

[This paper] continuous (locally Lipschitz continuous)

TABLE 1. Summary of results on algorithms with global convergence to non-
monotone VIs

Algorithm: Anderson(m)

1 Choose x0 ∈ Rn and a positive integer m. Set x1 = G(x0) and F0 = G(x0)− x0.
2 for k = 1,2, . . ., do
3 set Fk = G(xk)− xk;
4 choose mk = min{m,k};
5 solve

min

∥∥∥∥∥ mk

∑
j=0

θ jFk−mk+ j

∥∥∥∥∥ s.t.
mk

∑
j=0

θ j = 1(1.5)

to find a solution {θ k
j : j = 0, . . . ,mk}, and set

xk+1 =
mk

∑
j=0

θ
k
j G(xk−mk+ j).

6 end for

Even after a long period of use and attention, the first mathematical convergence result109

for Anderson acceleration had not been given until 2015 by Toth and Kelley [44]. They110

showed that when G is Lipschitz continuously differentiable and contractive, Anderson(m)111

has local r-linear convergence with r-factor ĉ∈ (c,1), and Anderson(1) has q-linear conver-112

gence with q-factor c, where c is the contraction coefficient of the fixed point mapping. In113

2019, Chen and Kelley [13] weakened the condition of G, proving that this conclusion can114

be obtained as long as G is a continuously differentiable operator. Additionally, Bian, Chen115

and Kelley [8] demonstrated the q-linear convergence of Anderson(1) for general non-116

smooth fixed point problems in a Hilbert space, and r-linear convergence of Anderson(m)117

for a special nonsmooth operator. Then, Bian and Chen [7] proved that Anderson(1) is118
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q-linear convergent for the composite max fixed point problem with a smaller q-factor than119

the existing q-factors. Zhang et al. [53] introduced a variant of Anderson acceleration that120

guaranteed global convergence for nonsmooth fixed point problems, but did not provide a121

convergence rate. Ouyang et al. [37] established a globalization strategy for Anderson ac-122

celeration incorporating a nonmonotone trust-region framework. They demonstrated that123

the algorithm has global convergence for a class of nonexpansive mappings and showed124

a local r-linear convergence for contractive mappings. Moreover, the local properties of125

Anderson acceleration with restarting were investigated in [36] in terms of function values126

when applied to a basic gradient scheme.127

In this paper, we will utilize the Anderson method to accelerate the convergence of the128

EG method while ensuring the global convergence of the sequence. The contributions of129

this paper include the following two aspects.130

(1) We propose a new algorithm to solve pseudomonotone VI(Ω,H) by combining131

Anderson(1) with the EG method. We prove that the sequence generated by the132

proposed algorithm converges to a solution of VI(Ω,H) without assuming the133

Lipschitz continuity and contractive condition of G.134

(2) Under the condition that H is locally Lipschitz continuous, the convergence rate of135

the proposed algorithm on the residual function is not worse than the EG method.136

This condition is weaker than the requirement of the EG method that H is Lipschitz137

continuous. Moreover, in numerical experiments, the proposed algorithm has been138

found to outperform Anderson(1) and the EG methods.139

This paper is organized as follows. In Section 2, we briefly review some related con-140

cepts and recall some preliminary results used in this paper. In Section 3, we use the idea141

of Anderson(1) to develop an extra gradient Anderson-accelerated algorithm to solve the142

continuous VI(Ω,H). Furthermore, the sequence convergence of the algorithm is ana-143

lyzed and the convergence rate is provided. Finally, we use five numerical experiments to144

illustrate the good performance of the proposed algorithm in Section 4.145

2. PRELIMINARIES146

Let ∥ · ∥ denote Euclidean norm in Rn. For a matrix A ∈ Rm×n, ∥A∥ represents its 2-147

norm. We begin by introducing two operators, which play a crucial role in the proposed148

algorithm. Additionally, we present some definitions and lemmas that will be used for the149

convergence analysis of the proposed algorithm.150

Define the following operators

Gt(x) := PΩ(x− tH(x)) and G̃t(x) := PΩ(x− tH(Gt(x))),

where t > 0. Let
Ft(x) := Gt(x)− x and F̃t(x) := G̃t(x)− x.

Definition 2.1. [30] The mapping H : Rn → Rn is said to be pseudomonotone on Ω, if for
any x,y ∈ Ω it holds

⟨H(x),y− x⟩ ≥ 0 ⇒ ⟨H(y),y− x⟩ ≥ 0.

Lemma 2.2. [21] For any x ∈ Rn, the following statements hold.151

(i) ∥PΩ(x)−PΩ(y)∥2 ≤ ⟨PΩ(x)−PΩ(y),x− y⟩, ∀y ∈ Rn;152

153

(ii) ⟨x−PΩ(x),y−PΩ(x)⟩ ≤ 0, ∀y ∈ Ω.154
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Lemma 2.3. [17] For any x ∈ Rn and t1 ≥ t2 > 0, the following inequalities hold:

∥x−PΩ(x− t1H(x))∥
t1

≤ ∥x−PΩ(x− t2H(x))∥
t2

,

∥x−PΩ(x− t2H(x))∥ ≤ ∥x−PΩ(x− t1H(x))∥.

Lemma 2.4. [38] [Opial’s Lemma] Let S be a nonempty subset of Rn, and {xk} a sequence155

of elements in Rn. Assume that156

(i) every sequential cluster point of {xk}, as k → ∞, belongs to S;157

158

(ii) for every z ∈ S, limk→∞ ∥xk − z∥ exists.159

Then the sequence {xk} converges as k → ∞ to a point in S.160

Lemma 2.5. [19, Proposition 1.5.8, Exercise 1.8.29] x∗ ∈ SOL(Ω,H) if and only if it is161

a fixed point of Gt , and if and only if it is a fixed point of G̃t , where t can be any positive162

number.163

Lemma 2.6. [23] Suppose that the mapping H : Rn → Rn is continuous. Then, for all164

bounded sequences {xk}, {yk} ⊆ Rn satisfying limk→∞ ∥xk − yk∥= 0, it holds that limk→∞165

∥H(xk)−H(yk)∥= 0.166

Lemma 2.7. [5] Let {ak} and {εk} be real sequences. Assume that {ak} is bounded from
below, ∑

∞
k=1 εk < ∞ and

ak+1 −ak ≤ εk

for every k. Then limk→∞ ak exists.167

3. PROPOSED ALGORITHM AND ITS CONVERGENCE ANALYSIS168

In this section, based on Anderson acceleration and the EG methods, we propose the169

EG-Anderson(1) algorithm for solving VI(Ω,H). In addition, we give the convergence170

analysis of this algorithm.171

3.1. Proposed algorithm. The proposed algorithm is presented in Algorithm 1, where the172

line search framework in [10] is used in Step 2.173

From the notations and definitions for yk+0.5 and yk+1 in the EG-Anderson(1) algorithm,174

we find that175

yk+0.5 = Gtk(xk) and yk+1 = G̃tk(xk);
176

yk+0.5 − xk = Ftk(xk) and yk+1 − xk = F̃tk(xk).

3.2. Convergence analysis. In this subsection, we will analyze the convergence proper-177

ties of the EG-Anderson(1) algorithm, including the global convergence of the sequence178

and the convergence rate evaluated by the residual function. In order to categorize the179

iteration counts, we divide them into two subsets:180

KAA = {k0,k1, · · ·} and KEG = {l0, l1, · · ·},

where KAA consists of iterations setting by (3.3) and KEG includes the remaining iterations181

setting by (3.4).182

If the EG-Anderson(1) algorithm is terminated in finite times, then the final output183

point is a solution of VI(Ω,H). Therefore, in the following analysis we assume that the184

EG-Anderson(1) algorithm loops infinitely.185



AN EXTRA GRADIENT ANDERSON-ACCELERATED ALGORITHM FOR PSEUDOMONOTONE VIs 7

Algorithm 1: EG-Anderson(1)

1 Initialization: Choose x0 ∈ Ω, ω ≥ 0,γ > 0, τ > 1
2 , ρ,µ ∈ (0,1) and σ0 = 1. Give

a sufficiently large M > 0.
2 for k = 0,1,2, . . ., do
3 Step 1: Compute Fγ(xk) = PΩ(xk − γH(xk))− xk.
4 If Fγ(xk) = 0, then stop.
5 Otherwise, let tk = γ and go to Step 2.
6 Step 2: Compute yk+0.5 = PΩ(xk − tkH(xk)) and yk+1 = PΩ(xk − tkH(yk+0.5)).
7 If

(3.1)
tk⟨H(yk+0.5)−H(xk),yk+0.5 − yk+1⟩

≤ µ

2
(
∥xk − yk+0.5∥2 +∥yk+0.5 − yk+1∥2) ,

8 go to Step 3.
9 Otherwise, set tk = ρtk and repeat Step 2.

10 Step 3: Compute Ftk(xk) = yk+0.5 − xk and F̃tk(xk) = yk+1 − xk.
11 If ∥F̃tk(xk)∥< min{∥Ftk(xk)∥,ωσ

−τ

k }, set

(3.2) αk =
⟨F̃tk(xk), F̃tk(xk)−Ftk(xk)⟩

∥F̃tk(xk)−Ftk(xk)∥2 ,

12 Otherwise, set αk = M+1.
13 Step 4: If |αk| ≤ M, set

xk+1 = αkxk +(1−αk)yk+1, σk+1 = σk +1.(3.3)

14 Otherwise, set

(3.4) xk+1 = yk+1, σk+1 = σk.

15 end for

Remark 3.1. For ki ∈KAA, note that ∥F̃tki
(xki)−Ftki

(xki)∥ ≠ 0 due to ∥F̃tki
(xki)∥< ∥Ftki

(xki)∥,
thus αki is well-defined. Moreover, αki is the optimal solution of

min
∥∥∥αFtki

(xki)+(1−α)F̃tki
(xki)

∥∥∥ .
We start the convergence analysis of the EG-Anderson(1) algorithm by proving that186

(3.1) terminates after a finite number of loops.187

Lemma 3.2. The EG-Anderson(1) algorithm is well-defined.188

Proof We will show that the EG-Anderson(1) algorithm is well-defined by proving189

that for every k there exists tk satisfying (3.1) when xk /∈ SOL(Ω,H).190

From the updated form of tk in the EG-Anderson(1) algorithm, it can be reformulated191

as tk = γρmk , where mk is the smallest nonnegative integer m satisfying192

(3.5)
γρ

m
〈

H
(

y(m)
k+0.5

)
−H (xk) ,y

(m)
k+0.5 − y(m)

k+1

〉
≤ µ

2

(∥∥∥xk − y(m)
k+0.5

∥∥∥2
+
∥∥∥y(m)

k+0.5 − y(m)
k+1

∥∥∥2
)
,

where y(m)
k+0.5 := PΩ (xk − γρmH (xk)) and y(m)

k+1 := PΩ

(
xk − γρmH

(
y(m)

k+0.5

))
.193
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If there exists a nonnegative integer m̄ such that y(m̄)
k+0.5 = y(m̄)

k+1, then there must exist an194

integer mk between 0 and m̄ such that (3.5) holds. We consider the situation y(m)
k+0.5 ̸= y(m)

k+1195

for any nonnegative integer m and assume the contrary that for all m we have196

(3.6)

γρ
m
〈

H
(

y(m)
k+0.5

)
−H(xk),y

(m)
k+0.5 − y(m)

k+1

〉
>

µ

2

(∥∥∥xk − y(m)
k+0.5

∥∥∥2
+
∥∥∥y(m)

k+0.5 − y(m)
k+1

∥∥∥2
)
.

On one hand, by Cauchy–Schwarz inequality, we obtain197

(3.7)
γρ

m
〈

H
(

y(m)
k+0.5

)
−H (xk) ,y

(m)
k+0.5 − y(m)

k+1

〉
≤ γρ

m
∥∥∥H

(
y(m)

k+0.5

)
−H(xk)

∥∥∥∥∥∥y(m)
k+0.5 − y(m)

k+1

∥∥∥ .
On the other hand, we also find198

(3.8)
∥∥∥xk − y(m)

k+0.5

∥∥∥2
+
∥∥∥y(m)

k+0.5 − y(m)
k+1

∥∥∥2
≥ 2

∥∥∥xk − y(m)
k+0.5

∥∥∥∥∥∥y(m)
k+0.5 − y(m)

k+1

∥∥∥ .
Combining (3.6) with (3.7) and (3.8), we deduce that199

(3.9)

∥∥∥xk − y(m)
k+0.5

∥∥∥
γρm ≤ 1

µ

∥∥∥H
(

y(m)
k+0.5

)
−H(xk)

∥∥∥ .
Since xk /∈ SOL(Ω,H), we discuss the following two cases.200

(i) If xk ∈ Ω, from the definition of y(m)
k+0.5 and the continuity of PΩ, we have

lim
m→∞

∥∥∥xk − y(m)
k+0.5

∥∥∥= 0.

In view of the continuity of H, we get limm→∞

∥∥∥H(xk)−H
(

y(m)
k+0.5

)∥∥∥ = 0. This together201

with (3.9) yields202

(3.10) lim
m→∞

∥∥∥xk − y(m)
k+0.5

∥∥∥
γρm = 0.

By the definition of y(m)
k+0.5 and using Lemma 2.2-(ii), we get〈
y(m)

k+0.5 − xk + γρ
mH(xk),x− y(m)

k+0.5

〉
≥ 0,∀x ∈ Ω,

which implies203

(3.11)

〈
y(m)

k+0.5 − xk

γρm +H(xk),x− y(m)
k+0.5

〉
≥ 0,∀x ∈ Ω.

Taking the limit m → ∞ in (3.11) and using (3.10) and limm→∞ y(m)
k+0.5 = xk, we obtain204

⟨H(xk),x− xk⟩ ≥ 0,∀x ∈ Ω. It can be deduced that xk ∈ SOL(Ω,H) and this leads to a205

contraction.206

(ii) If xk /∈ Ω, we can conclude that207

(3.12) lim
m→∞

∥∥∥xk − y(m)
k+0.5

∥∥∥= ∥xk −PΩ(xk)∥> 0,

and208

(3.13) lim
m→∞

γρ
m
∥∥∥H

(
y(m)

k+0.5

)
−H(xk)

∥∥∥= 0.

Rearranging the terms in (3.9), we find∥∥∥xk − y(m)
k+0.5

∥∥∥≤ 1
µ

γρ
m
(∥∥∥H

(
y(m)

k+0.5

)
−H(xk)

∥∥∥) .
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209

Taking the limit m → ∞ in the above inequality, we can find a contradiction with (3.12) and210

(3.13). Hence, the proof is fully established. □211

The next two lemmas are instrumental in establishing the key findings of this section.212

Lemma 3.3. Let {xk} be the sequence generated by the EG-Anderson(1) algorithm. Then
we have (

1−
√

µ

2−µ

)
∥Ftk(xk)∥ ≤ ∥F̃tk(xk)∥ ≤

(
1+

√
µ

2−µ

)
∥Ftk(xk)∥.

Proof For any k, by the condition of tk in (3.1) and Lemma 2.2-(i), we obtain213

∥yk+0.5 − yk+1∥2 = ∥PΩ(xk − tkH(xk))−PΩ(xk − tkH(yk+0.5))∥2

≤ ⟨yk+0.5 − yk+1, tk (H(yk+0.5)−H(xk))⟩

≤ µ

2
∥xk − yk+0.5∥2 +

µ

2
∥yk+0.5 − yk+1∥2,

which implies214

(3.14) ∥yk+1 − yk+0.5∥2 ≤ µ

2−µ
∥xk − yk+0.5∥2.

Since µ ∈ (0,1), then µ

2−µ
∈ (0,1). From the triangle inequality and (3.14), we have215

∥F̃tk(xk)∥= ∥yk+1 − xk∥ ≥ ∥yk+0.5 − xk∥−∥yk+1 − yk+0.5∥

≥ ∥yk+0.5 − xk∥−
√

µ

2−µ
∥yk+0.5 − xk∥

=

(
1−

√
µ

2−µ

)
∥Ftk(xk)∥

and216

∥F̃tk(xk)∥= ∥yk+1 − xk∥ ≤ ∥yk+0.5 − xk∥+∥yk+1 − yk+0.5∥

≤
(

1+
√

µ

2−µ

)
∥Ftk(xk)∥.

The proof is completed. □217

Lemma 3.4. Let {xk} be the sequence generated by the EG-Anderson(1) algorithm and218

x∗ ∈ SOL(Ω,H). For every k, it holds that219

∥yk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − (1−µ)∥yk+0.5 − xk∥2 − (1−µ)∥yk+1 − yk+0.5∥2.

Proof In view of the pseudomonotonicity of H and x∗ ∈ SOL(Ω,H), we deduce that220

⟨tkH(yk+0.5),x∗− yk+0.5⟩ ≤ 0, which gives221

⟨tkH(yk+0.5),x∗− yk+1⟩ ≤ ⟨tkH(yk+0.5),yk+0.5 − yk+1⟩.(3.15)

By the definition of yk+0.5, Lemma 2.2-(ii) and (3.1), we obtain222

⟨xk − tkH(yk+0.5)− yk+0.5,yk+1 − yk+0.5⟩
= ⟨xk − tkH(xk)− yk+0.5,yk+1 − yk+0.5⟩+ tk⟨H(xk)−H(yk+0.5),yk+1 − yk+0.5⟩

(3.1)
≤ ⟨xk − tkH(xk)−PΩ(xk − tkH(xk)),yk+1 −PΩ(xk − tkH(xk))⟩

+
µ

2
∥xk − yk+0.5∥2 +

µ

2
∥yk+0.5 − yk+1∥2

≤ µ

2
∥xk − yk+0.5∥2 +

µ

2
∥yk+0.5 − yk+1∥2.

(3.16)
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Based on the definition of yk+1, Lemma 2.2-(ii), (3.15) and (3.16), and using the same idea223

as in [10, Lemma 3.3 ], we conclude that224

∥yk+1 − x∗∥2 ≤ ∥xk − x∗∥2 −∥xk − yk+1∥2 +2⟨tkH(yk+0.5),x∗− yk+1⟩
(3.15)
≤ ∥xk − x∗∥2 −∥xk − yk+1∥2 +2⟨tkH(yk+0.5),yk+0.5 − yk+1⟩

= ∥xk − x∗∥2 −∥xk − yk+0.5∥2 −∥yk+0.5 − yk+1∥2

+2⟨xk − tkH(yk+0.5)− yk+0.5,yk+1 − yk+0.5⟩
(3.16)
≤ ∥xk − x∗∥2 − (1−µ)∥xk − yk+0.5∥2 − (1−µ)∥yk+0.5 − yk+1∥2.

□225

Now, utilizing the Opial’s Lemma, we can state and prove our main convergence result226

in what follows.227

Theorem 3.5. Let {xk} be the sequence generated by the EG-Anderson(1) algorithm. Then228

the sequence {xk} converges to a solution of VI(Ω,H).229

Proof We will prove this theorem from three steps.230

Step 1: {xk} is bounded.231

Let x∗ be a solution of problem VI(Ω,H). If ki ∈ KAA, let βki := 1−αki and by the232

definition of xki+1 in (3.3), we know that233

∥xki+1 − x∗∥2 = ∥αkixki +βkiyki+1 − x∗∥2

= α
2
ki
∥xki − x∗∥2 +β

2
ki
∥yki+1 − x∗∥2 +2αkiβki⟨xki − x∗,yki+1 − x∗⟩

= α
2
ki
∥xki − x∗∥2 +β

2
ki
∥yki+1 − x∗∥2

+2αkiβki

(
1
2
∥xki − x∗∥2 +

1
2
∥yki+1 − x∗∥2 − 1

2
∥xki − yki+1∥2

)
= αki∥xki − x∗∥2 +βki∥yki+1 − x∗∥2 −αkiβki∥xki − yki+1∥2.

(3.17)

From Lemma 3.4, we can obtain234

(3.18) ∥yki+1 − x∗∥2 ≤ ∥xki − x∗∥2 − (1−µ)∥yki+0.5 − xki∥
2 − (1−µ)∥yki+1 − yki+0.5∥2.

Since ∥F̃tki
(xki)∥< ∥Ftki

(xki)∥ when ki ∈ KAA, then

⟨Ftki
(xki), F̃tki

(xki)⟩< ∥Ftki
(xki)∥

2,

which implies

⟨F̃tki
(xki), F̃tki

(xki)−Ftki
(xki)⟩< ∥F̃tki

(xki)−Ftki
(xki)∥

2.

By (3.2), we have αki < 1. Thus βki = 1−αki > 0.235

Introducing (3.18) into (3.17), we deduce that236

∥xki+1 − x∗∥2 ≤ ∥xki − x∗∥2 − (1−µ)βki∥yki+0.5 − xki∥
2

− (1−µ)βki∥yki+0.5 − yki+1∥2 −αkiβki∥xki − yki+1∥2.
(3.19)

In view of |αki | ≤ M and βki = 1−αki , we get |βki | ≤ M + 1. This together with (3.19),237

µ ∈ (0,1), βki > 0 and ∥xki − yki+1∥ = ∥F̃tki
(xki)∥ ≤ ωσ

−τ

ki
= ω(σ0 + i)−τ = ω(1+ i)−τ ,238

we deduce that239

∥xki+1 − x∗∥2 ≤ ∥xki − x∗∥2 + |αki ||βki |∥F̃tki
(xki)∥

2

≤ ∥xki − x∗∥2 + εki ,
(3.20)
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where εki := M(M+1)ω2(1+ i)−2τ .240

If l j ∈ KEG, by Lemma 3.4 and µ ∈ (0,1), we conclude that241

∥xl j+1 − x∗∥2 = ∥yl j+1 − x∗∥2

≤ ∥xl j − x∗∥2 − (1−µ)∥yl j+0.5 − xl j∥
2 − (1−µ)∥yl j+1 − yl j+0.5∥2

≤ ∥xl j − x∗∥2.

(3.21)

By defining εl j = 0 and combining (3.20) and (3.21), for every k, we find242

(3.22) ∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 + εk,

where ∑
∞
k=0 εk = ∑

∞
i=0 εki < ∞ because of τ > 1

2 . From (3.22), we further have243

∥xk − x∗∥2 ≤ ∥x0 − x∗∥2 +
∞

∑
k=0

εk < ∞.

Hence {xk} is bounded.244

Step 2: any cluster point of {xk} belongs to SOL(Ω,H), i.e. a solution of VI(Ω,H).245

By the boundedness of {xk}, it has at least one cluster point, denoted by x̄ with conver-246

gence subsequence {xp j} satisfying lim j→∞ xp j = x̄. Next, we will prove x̄ ∈ SOL(Ω,H)247

from the following two steps.248

Step 2.1: limk→∞ ∥Ftk(xk)∥= 0.249

We know that KAA ∪KEG is infinite. The following proof is divided into two cases for250

discussion.251

(i) We first consider the case that both KAA and KEG are infinite. Rearranging the terms in252

(3.21) and using µ ∈ (0,1), we infer that253

(3.23) (1−µ)∥Ftl j
(xl j)∥

2 = (1−µ)∥yl j+0.5 − xl j∥
2 ≤ ∥xl j − x∗∥2 −∥xl j+1 − x∗∥2.

Combining (3.20) and (3.23), we deduce that254

(3.24)
∞

∑
j=0

∥Ftl j
(xl j)∥

2 ≤ 1
1−µ

∥x0 − x∗∥2 +
1

1−µ

∞

∑
i=0

εki < ∞.

Moreover, we know ∥F̃tki
(xki)∥ ≤ ω(1+ i)−τ when ki ∈ KAA. Together with Lemma 3.3,

we have

∥Ftki
(xki)∥

2 ≤
(

1−
√

µ

2−µ

)−2

∥F̃tki
(xki)∥

2 ≤
(

1−
√

µ

2−µ

)−2

ω
2(1+ i)−2τ .

Thus255

(3.25)
∞

∑
i=0

∥Ftki
(xki)∥

2 ≤
(

1−
√

µ

2−µ

)−2

ω
2

∞

∑
i=0

(1+ i)−2τ < ∞.

Since τ > 1
2 , there exists a C0 > 0 such that ∑

∞
i=0(1+ i)−2τ ≤ C0. Combining (3.24) and256

(3.25), we deduce that257

(3.26)
∞

∑
k=0

∥Ftk(xk)∥2 =
∞

∑
i=0

∥Ftki
(xki)∥

2 +
∞

∑
j=0

∥Ftl j
(xl j)∥

2 ≤C,

where C :=
((

1−
√

µ

2−µ

)−2
+ 1

1−µ
M(M+1)

)
ω2C0 +

1
1−µ

∥x0 − x∗∥2. Hence we con-258

clude that limk→∞ ∥Ftk(xk)∥= 0.259
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(ii) We then consider the case that either KAA or KEG is finite. In this situation, the proof be-260

comes simpler, as we only need to use either (3.24) or (3.25) to obtain ∑
∞
k=0 ∥Ftk(xk)∥2 <∞.261

Therefore, we have limk→∞ ∥Ftk(xk)∥= 0.262

Step 2.2: limk→∞ ∥Fγ(xk)∥= 0.263

Let ỹk+0.5 := PΩ(xk − tkρ−1H(xk)). Applying Lemma 2.3 and tkρ−1 > tk, we get264

(3.27) ∥xk − ỹk+0.5∥ ≤ ρ
−1∥xk − yk+0.5∥= ρ

−1∥Ftk(xk)∥,

which implies limk→∞ ∥xk − ỹk+0.5∥= 0.265

Below, we will estimate 1
tk
∥xk − ỹk+0.5∥ by dividing it into two cases based on the value266

of tk.267

(i) If tk = γ, we have268

(3.28)
1
tk
∥xk − ỹk+0.5∥=

1
γ
∥xk − ỹk+0.5∥.

269

(ii) If tk < γ , let ỹk+1 := PΩ(xk − tkρ−1H(ỹk+0.5)). From the condition of tk in (3.1), we270

know that tkρ−1 satisfies271

(3.29)
tkρ

−1 ⟨H(ỹk+0.5)−H(xk), ỹk+0.5 − ỹk+1⟩>
µ

2

(
∥xk − ỹk+0.5∥2 +∥ỹk+0.5 − ỹk+1∥2

)
,

which implies ỹk+0.5 ̸= ỹk+1. Then for (3.29), based on a similar estimation as for (3.6), we272

can conclude that273

(3.30)
1
tk
∥xk − ỹk+0.5∥< µ

−1
ρ
−1∥H(xk)−H(ỹk+0.5)∥.

Combining (3.28) and (3.30), we can obtain274

(3.31)
1
tk
∥xk − ỹk+0.5∥ ≤ max

{
1
γ
∥xk − ỹk+0.5∥,µ−1

ρ
−1∥H(xk)−H(ỹk+0.5)∥

}
.

Since {xk} is bounded and limk→∞ ∥xk − ỹk+0.5∥ = 0, we find {ỹk+0.5} is bounded. Com-
bining the continuity of H and Lemma 2.6, we conclude that

lim
k→∞

∥H(xk)−H(ỹk+0.5)∥= 0.

This together with limk→∞ ∥xk − ỹk+0.5∥= 0 and (3.31) yields

lim
k→∞

1
tk
∥xk − ỹk+0.5∥= 0.

Again by Lemma 2.3 and tkρ−1 > tk, we get275

(3.32) ∥xk − ỹk+0.5∥ ≥ ∥xk − yk+0.5∥.

Then, we obtain

lim
k→∞

1
tk
∥xk − yk+0.5∥ ≤ lim

k→∞

1
tk
∥xk − ỹk+0.5∥= 0,

which means limk→∞
1
tk
∥Ftk(xk)∥ = limk→∞

1
tk
∥xk − yk+0.5∥ = 0. Hence, we conclude that276

limk→∞
1
tk
∥Ftk(xk)∥= 0.277

Recalling Lemma 2.3 and tk ≤ γ , we have 1
tk
∥Ftk(xk)∥ ≥ 1

γ
∥Fγ(xk)∥ and ∥Ftk(xk)∥ ≤278

∥Fγ(xk)∥. Then we conclude that279

(3.33) ∥Ftk(xk)∥ ≤ ∥Fγ(xk)∥ ≤
γ

tk
∥Ftk(xk)∥,
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which gives
lim
k→∞

∥Fγ(xk)∥= 0.

Together with lim j→∞ xp j = x̄ and Lemma 2.5, we deduce that x̄ ∈ SOL(Ω,H).280

Step 3: {xk} is convergent to a solution of VI(Ω,H).281

Since ∥xk −x∗∥2 is nonnegative, ∑
∞
k=0 εk < ∞ and (3.22) holds, by applying Lemma 2.7282

with ak = ∥xk −x∗∥2, limk→∞ ∥xk −x∗∥2 exists for any x∗ ∈ SOL(Ω,H). Together this with283

Step 2, the proof is completed by Lemma 2.4. □284

If H is also locally Lipschitz continuous at any solution of VI(Ω,H), we derive the285

following conclusion about the convergence rate on the residual function.286

Theorem 3.6. (Best-iterate convergence rate) Suppose that H is locally Lipschitz con-
tinuous at any solution of VI(Ω,H). Let {xk} be the sequence generated by the EG-
Anderson(1) algorithm. Then there exists a positive integer N0 such that

min
N0+1≤k≤N

∥Fγ(xk)∥2 = O
(

1
N

)
.

Proof By Theorem 3.5, the sequence {xk} converges to a solution x∗ of VI(Ω,H) and
limk→∞ ∥xk − ỹk+0.5∥ = 0. Thus, we know that the sequence {ỹk+0.5} also converges to
x∗. From the locally Lipschitz continuity of H, there exist an r ∈ (0,1), an L∗ > 0 and a
positive integer N0 such that for k > N0, we have ∥xk − x∗∥ ≤ r and

∥H(xk)−H(ỹk+0.5)∥ ≤ L∗∥xk − ỹk+0.5∥.

First, we will discuss the relationship between ∥Fγ(xk)∥ and ∥Ftk(xk)∥ in two cases.287

(i) For tk = γ, we have288

(3.34) ∥Fγ(xk)∥= ∥Ftk(xk)∥.

(ii) For tk < γ, combining (3.27), (3.30), (3.32) and (3.33) yields that289

∥Fγ(xk)∥
(3.33)
≤ γ

tk
∥Ftk(xk)∥

(3.32)
≤ γ

tk
∥xk − ỹk+0.5∥

(3.30)
< γρ

−1
µ
−1∥H(xk)−H(ỹk+0.5)∥

≤ γρ
−1

µ
−1L∗∥xk − ỹk+0.5∥

(3.27)
≤ γρ

−2
µ
−1L∗∥Ftk(xk)∥, ∀k > N0.

(3.35)

Combining (3.34) and (3.35), we know that for any k > N0, we have290

(3.36) ∥Fγ(xk)∥ ≤ max{γρ
−2

µ
−1L∗,1}∥Ftk(xk)∥.

Next, we will prove that ∑
∞
k=N0+1 ∥Ftk(xk)∥2 is finite. We only consider the case that both291

KAA and KEG are infinite, as the analysis is similar or simpler when either of them is finite.292

For the aforementioned N0, there exist i0 and j0 such that {ki : i ≥ i0}∪{l j : j ≥ j0}= {k :293

k ≥ N0 +1}. Then we know294

(3.37)
∞

∑
k=N0+1

∥Ftk(xk)∥2 =
∞

∑
i=i0

∥Ftki
(xki)∥

2 +
∞

∑
j= j0

∥Ftl j
(xl j)∥

2.
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From (3.20) and (3.23), we get295

(3.38) 0 ≤
∞

∑
i=i0

(
∥xki − x∗∥2 −∥xki+1 − x∗∥2)+ ∞

∑
i=i0

εki

and296

(3.39) (1−µ)
∞

∑
j= j0

∥Ftl j
(xl j)∥

2 ≤
∞

∑
j= j0

(
∥xl j − x∗∥2 −∥xl j+1 − x∗∥2

)
,

respectively.297

Adding (3.38) and (3.39), and using ∥xN0+1 − x∗∥ ≤ r < 1, we obtain298

∞

∑
j= j0

∥Ftl j
(xl j)∥

2 ≤ 1
1−µ

∥xN0+1 − x∗∥2 +
1

1−µ

∞

∑
i=0

εki

≤ 1
1−µ

+
1

1−µ
M(M+1)ω2C0.

(3.40)

By (3.25), (3.37) and (3.40), we conclude that299

∞

∑
k=N0+1

∥Ftk(xk)∥2 ≤ C̃,

where C̃ :=
((

1−
√

µ

2−µ

)−2
+ 1

1−µ
M(M+1)

)
ω2C0 +

1
1−µ

.300

This together with (3.36) yields301

∞

∑
k=N0+1

∥Fγ(xk)∥2 ≤ max{γρ
−2

µ
−1L∗,1}2

∞

∑
k=N0+1

∥Ftk(xk)∥2 ≤C∗

with C∗ := max{γρ−2µ−1L∗,1}2C̃. Hence we conclude that

min
N0+1≤k≤N

∥Fγ(xk)∥2 ≤ 1
N −N0

N

∑
k=N0+1

∥Fγ(xk)∥2 ≤ 1
N −N0

C∗.

□302

Remark 3.7. If the pseudomonotone operator H is L-Lipschitz continuous, we will no303

longer need the line search step (3.1) in the EG-Anderson(1) algorithm, in which case we304

can take tk to be the constant t > 0 satisfying tL < 1. At this situation, let {xk} be the305

sequence generated by the EG-Anderson(1) algorithm, then the following statements hold.306

(i) (Sequence convergence) The sequence {xk} converges to a solution of VI(Ω,H);307

308

(ii) (Best-iterate convergence rate) min0≤k≤N ∥Ft(xk)∥2 = O
( 1

N

)
.309

It can be seen that the EG-Anderson(1) algorithm can guarantee the sequence convergence310

as well as the EG method under the condition tL < 1, and we will show that it is faster than311

the EG method by numerical experiments.312

4. NUMERICAL EXPERIMENTS313

In this section, we perform some numerical examples to compare the EG-Anderson(1)314

with Anderson(1) [7] and the EG method [31]. All the codes were written in Matlab315

(R2023b) and run on a MacBook Air (16.00GB of RAM).316
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In the following numerical experiments, the stopping rule for Examples 4.1-4.4 is set
by

∥r(xk)∥ := ∥F1(xk)∥= ∥xk −PΩ(xk −H(xk))∥< 10−8

or the maximum iteration exceeds 104 times. The parameters in the EG-Anderson(1) are
set as follows

ω = 30,M = 5000,τ = 0.6,ρ = 0.8,µ = 0.5.
In the figures and tables of this section, ’Sec.’ represents the CPU time in seconds and ’Iter.’317

represents the number of iterations. Specifically, the numbers in parentheses represent318

the number of Anderson step (3.3) executed. Moreover, ’\’ indicates that the number of319

iterations exceeds 104, and the corresponding CPU time is not counted, represented by –.320

Furthermore, the best performing algorithm in terms of the average number of iterations321

and CPU time is highlighted in bold for each combination of dimension n and parameter322

γ .323

Example 4.1. [24] Consider the Harker-Pang problem with linear mapping H(x) :=Wx+
w0, where w0 ∈ Rn and

W := ATA+S+D.

Here, A is an n×n matrix, S is an n×n skew-symmetric matrix and D is an n×n diagonal324

matrix with nonnegative diagonal entries. Therefore, it follows that W is positive semidef-325

inite. Let the feasible set be Ω := {x ∈ Rn : 0 ≤ x ≤ 20l}, where l = (1,1, . . . ,1)T ∈ Rn. It326

is clear that H is monotone and Lipschitz continuous.327

We can easily obtain that the Lipschitz constant of H is L = ∥W∥. Applying the EG-328

Anderson(1) to this example, instead of using line search, we can do experiment with a329

constant stepsize t that satisfies tL < 1.330

In the following experiments, we let t = 0.7
L , and every entry of the skew-symmetric331

matrix S is uniformly generated from (−5,5), and every diagonal entry of D is uniformly332

generated from (0,2), and A,w0 are randomly generated.333

Figure 1 compares the decreasing on the residual function by the EG-Anderson(1), An-334

derson(1) and the EG algorithms at the same random initial point for Example 4.1 with335

n = 500 and n = 2000, respectively. For different dimension n, Table 2 illustrates the av-336

erage number of iterations and CPU time of the corresponding experiments at ten random337

initial points, where we see that the superiorities of the EG-Anderson(1) over Anderson(1)338

and the EG algorithms gradually emerges as the dimension increases.339

Example 4.2. [41] Consider the quadratic fractional programming problem340

min ϕ(x) := xT Qx+aT x+a0
bT x+b0

s.t. x ∈ Ω := {x ∈ Rn : 2l ≤ x ≤ 10l}
with

Q := QT
0 Q0 + I,a := l + c,b := l +d,a0 := 1+ c0,b0 := 1+d0,

where I ∈ Rn×n is the identity matrix, l represents the vector that was defined in Example341

4.1 and Q0 ∈ Rn×n, c,d ∈ Rn, c0,d0 ∈ R are randomly generated from a uniform distribu-342

tion.343

It is easily verified that Ω ⊆ {x ∈ Rn : bT x+ b0 > 0} and Q is positive definite, and
consequently ϕ is pseudoconvex on Ω. Thus, H(x) := ∇ϕ(x) in VI(Ω,H) can be written
in the following explicit form:

H(x) =
(bT x+b0)(2Qx+a)−b(xT Qx+aT x+a0)

(bT x+b0)2 .
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FIGURE 1. Comparisons of the convergence behaviours of the EG-
Anderson(1), Anderson(1) and the EG algorithms for Example 4.1

Sec.(avr)
Iter.(avr) EG-Anderson(1) Anderson(1) EG

n = 100 0.0038 0.0028 0.0040
97.8 (96.6) 226.4 501.7

n = 500 0.0233 0.0243 0.1171
169 (166.4) 402.6 1103.8

n = 1000 0.0972 0.1172 0.5764
197.5 (195.6) 545.8 1417.8

n = 2000 0.3462 0.4789 2.2768
214.5 (211.6) 595.4 1465.2

n = 5000 2.2158 2.7644 14.1645
244 (240.6) 600.9 1538

n = 10000 9.6154 10.5268 63.4244
260.3 (256.7) 563.4 1685

TABLE 2. Comparisons of the three algorithms for Example 4.1

Let γ = 0.6. Starting from the same random initial point, Figure 2 shows the compar-344

isons of the results obtained by the EG-Anderson(1), Anderson(1) and the EG algorithms345

for Example 4.2 with n = 500 and n = 2000. Table 3 presents the average number of itera-346

tions and CPU time for the experiments with more cases on n, conducted with ten different347

random initial points. Thus, the results indicate that the EG-Anderson(1) outperforms both348

Anderson(1) and the EG algorithms across various dimensions in terms of iterations and349

CPU time.350

Example 4.3. [9] Consider the following nonlinear complementarity problem (NCP)351

(4.1) H(x)≥ 0, x ≥ 0, xTH(x) = 0,
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FIGURE 2. Comparisons of the convergence behaviours of the EG-
Anderson(1), Anderson(1) and the EG algorithms for Example 4.2

Sec.(avr)
Iter.(avr) EG-Anderson(1) Anderson(1) EG

n = 100 0.0051 0.0044 0.0105
99 (99) 299.7 609

n = 500 0.0439 0.0446 0.1819
93.2 (91.4) 238.5 531

n = 1000 0.1631 0.1937 0.7851
102.6 (101.3) 285.2 588.8

n = 2000 0.6839 0.8337 3.4400
101.2 (99.9) 285.3 576

n = 5000 5.5632 6.9468 27.9809
95.3 (93.7) 276 538

n = 10000 18.7886 20.7397 89.8027
102.3 (100.9) 262 556

TABLE 3. Comparisons of the three algorithms for Example 4.2

where H : Rn → Rn is defined by

H(x) = (e−xT Ux +κ)(Px+ ι).

Here U is an n×n positive definite matrix, P is an n×n positive semidefinite matrix, ι ∈Rn
352

and κ > 0. It is also shown that H is pseudomonotone [9]. Furthermore, the NCP in (4.1)353

can be equivalently formulated as VI(Ω,H) with Ω := {x ∈ Rn : x ≥ 0}.354

In numerical tests, we take κ = 0.01,P = PT
0 P0,U = UT

0 U0, where matrices P0,U0 ∈
Rn×n and vector ι ∈ Rn are randomly generated as follows with an input integer n:

P0 = randn(n,n);U0 = randn(n,n); x̂ = max(0, randn(n,1)) ;
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FIGURE 3. Comparisons of the convergence behaviours of the EG-
Anderson(1), Anderson(1) and the EG algorithms for Example 4.3

ι = (−P∗ x̂).∗ (x̂ > 0)+(−P∗ x̂+ rand(n,1)).∗ (x̂ == 0).

From the above generation, we know that x̂ is a solution of (4.1).355

In Figure 3, we present a comparative analysis of the outcomes achieved by applying the356

EG-Anderson(1), Anderson(1) and the EG algorithms to Example 4.3. All three methods357

in Figure 3 are initialized with the same random initial point. Table 4 summarizes the358

average number of iterations and CPU time for each method, where the corresponding359

experiments are repeated ten times with different random initial points.360

In all dimensions, the average number of iterations and CPU time of the EG-Anderson(1)361

are significantly less than those of Anderson(1) and the EG algorithms. The advantages of362

the EG-Anderson(1) become more pronounced as the dimension increases. For instance,363

in the case of n = 10000, the EG-Anderson(1) achieves an average number of iterations of364

552.2 and an average CPU time of 31.5962 seconds, significantly outperforming Ander-365

son(1) and the EG algorithms.366

Example 4.4. Consider the following partial differential equation (PDE) problem with367

free boundary368

−△u+
9

(1− p)2 up +δe−u = c(ξ ,ς) in Λ+

u = 0 in Λ0

u = |∇u|= 0 on Γ

u = v(ξ ,ς) on ∂Λ,

(4.2)

where p∈ (0,1), δ ≥ 0, Λ=(0,1)×(0,1), Λ+ = {(ξ ,ς)∈Λ : u(ξ ,ς)> 0}, Λ0 = {(ξ ,ς)∈369

Λ : u(ξ ,ς) = 0} and Γ = ∂Λ0 = ∂Λ+∩Λ are unknown. Let r2 = ξ 2 + ς2. We choose370

c(ξ ,ς) = D(r, p)R(r, p)+δe−R(r,p)

and
v(ξ ,ς) = R(r, p),
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Sec.(avr)
Iter.(avr) EG-Anderson(1) Anderson(1) EG

n = 100
γ = 0.27

0.0041 0.0027 0.0090
128.2 (125.4) 256.7 710.3

n = 500
γ = 0.03

0.0405 0.0424 0.2523
253.2 (249) 566.2 1754.4

n = 1000
γ = 0.02

0.1802 0.1823 1.0553
232.9 (228.8) 504 1513.1

n = 2000
γ = 0.008

0.9466 0.9478 6.1649
321.2 (316.6) 622.3 2122.6

n = 5000
γ = 0.002

7.3880 8.3522 63.3128
485.2 (478.6) 1097 4146.3

n = 10000
γ = 0.0009

31.5962 33.8899 287.9682
552.2 (544.5) 1173.7 4836.6

TABLE 4. Comparisons of the three algorithms for Example 4.3

where

D(r, p) :=−3(3− p) [(3r−1)(1− p)+6r]
r(1− p)2(3r−1)2 +

27
2(1− p)2

(
2
3

)p(3r−1
2

)p−3

and R(r, p) :=
( 3r−1

2

) 2
1−p max

(
0,r− 1

3

)
.371

Then problem (4.2) has a solution as follows

u(ξ ,ς) = R(r, p) =
(

3r−1
2

) 2
1−p

max
(

0,r− 1
3

)
.

Dividing the interval (0,1) into N subintervals of equal width h provides mesh points (ξi,ς j)
where

ξi = ih, i = 0,1, . . . ,N

ς j = jh, j = 0,1, . . . ,N.

Using the five point finite difference method for the problem (4.2) at grid (ξi,ς j) gives372

−ui, j+1 −ui, j−1 +4ui, j −ui+1, j −ui−1, j +
9h2

(1− p)2 up
i, j +h2

δe−ui, j = h2ci, j, (ξi,ς j) ∈ Λ+

and
ui, j = vi, j, (ξi,ς j) ∈ ∂Λ.

Let x :=(u1,1,u2,1, . . . ,uN−1,1,u1,2, . . . ,uN−1,N−1)
T ∈R(N−1)2

and c̃, ṽ∈R(N−1)2
be the cor-

responding vectors transformed by ci, j and vi, j. Then, we obtain an NCP with

H(x) := Bx+E max(0,x)p +V f (x)+q,

where B is a block tri-diagonal positive definite matrix of dimension (N −1)2 × (N −1)2,373

E and V are both (N−1)2×(N−1)2 dimensional diagonal matrices with the diagonal ele-374

ments being 9h2

(1−p)2 and δh2 respectively, f (x) := (e−u1,1 ,e−u2,1 , . . . ,e−uN−1,N−1)
T ∈R(N−1)2

375
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(c) p = 0.9,n = 900,γ = 0.39

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Iteration (k)

10-8

10-6

10-4

10-2

100

102

104

||r
(x

k
))

||

EG-Anderson(1)
Anderson(1)
EG method

(d) p = 0.8,n = 900,γ = 0.39

FIGURE 4. Comparisons of the convergence behaviours of the EG-
Anderson(1), Anderson(1) and the EG algorithms for Example 4.4

and q = −h2c̃− ṽ ∈ R(N−1)2
. Note that the dimension of the corresponding complemen-376

tarity problem is n = (N − 1)2. Furthermore, the NCP can be equivalently formulated as377

VI(Ω,H) with Ω := {x ∈ Rn : x ≥ 0}.378

In the experiments, let δ = 1. We set p = 0.9 and p = 0.8, respectively. The effec-379

tiveness of the EG-Anderson(1), Anderson(1) and the EG algorithms for Example 4.4 with380

n = 900 and n = 1600 is compared in Figure 4. All three methods are started from the381

same random initial point for each case.382

As can be seen from Table 5, the average number of iterations for the EG-Anderson(1)383

is consistently smaller than that of Anderson(1) and the EG algorithms in all dimensions.384

Additionally, the EG-Anderson(1) has a shorter CPU usage time, highlighting its higher385

computational efficiency. In high-dimensional problems, such as n = 8100 and n = 10000,386

the EG-Anderson(1) outperforms the other two algorithms in terms of the average number387

of iterations and CPU time, demonstrating higher efficiency and performance.388

Similar to Table 5, Table 6 presents the average number of iterations and CPU time389

required for each algorithm in Example 4.4, but with a different value of p (0.8 instead of390

0.9).391
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Sec.(avr)
Iter.(avr) EG-Anderson(1) Anderson(1) EG

n = 100
γ = 0.01

0.0036 0.0056 0.0135
64.7 (47.7) 280 530

n = 900
γ = 0.06

0.0165 0.0158 0.0604
121.1 (73.1) 300.3 656

n = 1600
γ = 0.07

0.0236 0.0246 0.1022
147.2 (79.2) 398.6 964

n = 2500
γ = 0.08

0.0349 0.0412 0.1740
186.9 (97.9) 526.7 1288

n = 4900
γ = 0.09

0.0857 0.1050 0.5587
296.8 (156.8) 771.8 2178

n = 8100
γ = 0.1

0.1693 0.1972 1.0951
421.3 (228.3) 1064.9 3181

n = 10000
γ = 0.1

0.2659 0.3225 1.8438
502.9 (276.9) 1270.7 3899

TABLE 5. Comparisons of the three algorithms for Example 4.4 with
p = 0.9

Sec.(avr)
Iter.(avr) EG-Anderson(1) Anderson(1) EG

n = 100
γ = 0.005

0.0115 0.0088 0.0426
371.2 (371.2) 774 2448.3

n = 900
γ = 0.02

0.0383 0.0683 0.3788
376.4 (376.4) 1478.4 4512.3

n = 1600
γ = 0.03

0.0843 0.1161 0.8202
375.1 (375.1) 1427 5183.8

n = 2500
γ = 0.05

0.0640 0.1019 0.6231
397.9 (397.9) 1417.5 4761.1

n = 4900
γ = 0.06

0.1355 0.2959 1.8412
474.4 (474.4) 2275.9 7554.5

n = 8100
γ = 0.07

0.2472 0.4831 –
639.4 (638.4) 2692.5 \

n = 10000
γ = 0.08

0.3341 0.6177 –
671.7 (669.7) 2660.8 \

TABLE 6. Comparisons of the three algorithms for Example 4.4 with
p = 0.8

Example 4.5. Consider the following linear complementarity problem (LCP)392

(4.3) M̃x+ q̃ ≥ 0, x ≥ 0, xT(M̃x+ q̃) = 0,
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where M̃ is an n × n P-matrix and q̃ ∈ Rn is a vector. Additionally, the LCP in (4.3)393

can be equivalently expressed as a nonmonotone VI(Ω,H), where H(x) = M̃x + q̃ and394

Ω = {x ∈ Rn : x ≥ 0}.395

Note that an n× n matrix M̃ = (mi j) is called a P-matrix if all principal minors of M̃396

are positive. We refer to Example 4.4 from [14] to generate the matrix M̃ and vector q̃.397

First, we randomly generate a dense matrix Ã ∈ Rn×n and a vector q̃ ∈ Rn, with elements398

uniformly distributed in the range (−5,5). By applying the QR decomposition to Ã, we399

obtain an upper triangular matrix Ñ. Next, we replace the diagonal elements of Ñ with400

their absolute values, resulting in a triangular matrix M̃ with positive diagonal entries.401

This ensures that M̃ is a P-matrix.402

Below, we compare the performance of the EG-Anderson(1) algorithm, iPCA from
[18], IPAL from [51] and the semi-smooth Newton algorithm2 from [20] for solving (4.3).
The stopping criterion for the experiments is the same as that for the semi-smooth Newton
algorithm, specifically,

0.5
∥∥sk − xk − (M̃xk + q̃)

∥∥2
< 10−8

or the maximum iteration exceeds 104 times, where sk = ((sk)1,(sk)2, . . .)
T with (sk)i =403 √

(xk)
2
i +(M̃xk + q̃)2

i , i = 1, . . . ,n. Note that for an n-dimensional vector z, (z)i represents404

the i-th component of z.405

We can find that the Lipschitz constant of H is ∥M̃∥. When we run the EG-Anderson(1)406

to this example, rather than employing a line search, we do experiment with a constant step407

size t that meets the condition t∥M̃∥ < 1. In the following experiments, we let t = 0.7
∥M̃∥ .408

In both the iPCA and the IPAL, the step size is taken to be the same as that in the EG-409

Anderson(1) algorithm. In addition, we set the parameter γ = 1.5 in the iPCA.410

Table 7 presents the average number of iterations and CPU time required by the four411

algorithms to meet the stopping criterion for (4.3) across different dimensions, starting412

from ten random initial points. It can be observed that the EG-Anderson(1) algorithm413

consistently outperforms the other three algorithms in terms of CPU time across various414

dimensions.415

5. CONCLUSIONS416

This paper proposes an algorithm, called EG-Anderson(1) algorithm, for solving the417

pseudomonotone variational inequalities VI(Ω,H). This algorithm is based on the EG418

method and Anderson acceleration. Firstly, the global sequence convergence of the EG-419

Anderson(1) algorithm is proven without relying on the Lipschitz continuity and contrac-420

tive condition that are required for the convergence analysis of the EG method and Ander-421

son acceleration in prior research. Moreover, when H is locally Lipschitz continuous, the422

convergence rate of the residual function is analyzed and shown to be no worse than that423

of the EG method. Finally, the effectiveness of the EG-Anderson(1) algorithm has been424

validated through numerical experiments. The results demonstrate that it outperforms both425

Anderson(1) and the EG algorithms in terms of the number of iterations and CPU time,426

especially in the context of solving Harker-Pang problems, fractional programming prob-427

lems, nonlinear complementarity problem, PDE problems with free boundary and linear428

complementarity problems.429

2The solver, developed by Y. Tassa, https://www.mathworks.com/matlabcentral/fileexchange/20952-lcp-mcp-
solver-newton-based
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Sec.(avr)
Iter.(avr) EG-Anderson(1) semi-smooth Newton iPCA IPAL

n = 100 0.0038 0.0237 0.0044 0.0215
64 (63.2) 29.4 149 281.5

n = 500 0.0188 0.3223 0.0464 0.4225
125.2 (124.8) 45.7 286.8 638.7

n = 1000 0.1372 1.3163 0.7139 19.1573
293.6 ( 288.2) 50.8 1221.2 2718.1

n = 2000 0.5563 8.0195 2.3217 32.1018
306.4 (293.8) 68.9 913.1 2048.6

n = 5000 4.3059 17.1193 959.8955 854.2569
408.3 (337.7) 578.4 976.8 4994.4

TABLE 7. Comparisons of the four algorithms for Example 4.5
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