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Abstract

In this paper, we focus on a class of convexly constrained nonsmooth convex-
concave saddle point problems with cardinality penalties. Although such nons-
mooth nonconvex-nonconcave and discontinuous min-max problems may not have
a saddle point, we show that they have a local saddle point and a global minimax
point, and some local saddle points have the lower bound properties. We define a
class of strong local saddle points based on the lower bound properties for stabil-
ity of variable selection. Moreover we give a framework to construct continuous
relaxations of the discontinuous min-max problems based on convolution, such
that they have the same saddle points with the original problem. We also estab-
lish the relations between the continuous relaxation problems and the original
problems regarding local saddle points, global minimax points, local minimax
points and stationary points. Finally, we illustrate our results with distribution-
ally robust sparse convex regression, sparse robust bond portfolio construction
and sparse convex-concave logistic regression saddle point problems.

Keywords: nonsmooth min-max problem, nonconvex-nonconcave, local saddle point,
sparse optimization, cardinality functions, smoothing method
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1 Introduction

Let c : Rn × Rm → R be a Lipschitz continuous function with c(x,y) convex in
x ∈ Rn for y ∈ Rm and concave in y ∈ Rm for x ∈ Rn, g : Rn → Rn̂ and h :
Rm → Rm̂ be continuously differentiable functions. For a vector a ∈ Rk, ∥a+∥0 is the
cardinality function for the positive elements in a, that is, ∥a+∥0 = ∥max{a,0}∥0 =
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∑k
i=1(max{ai, 0})0 with 00 = 0. In this paper, we consider the saddle point problems

with cardinality penalties in the following form

min
x∈X

max
y∈Y

f(x,y) := c(x,y) + λ1∥g(x)+∥0 − λ2∥h(y)+∥0, (1.1)

where the feasible sets X ⊂ Rn and Y ⊂ Rm are convex and compact, and the penalty
parameters λ1, λ2 ∈ R are positive.

In the last few years, many interesting applications of the min-max problems have
been found in machine learning and data science, especially the generative adversarial
network (GAN) [23, 24, 31] and adversarial training [8]. Problem (1.1) is a discontin-
uous and nonconvex-nonconcave min-max problem, i.e. f is discontinuous in X × Y,
f(·,y) is not convex for some fixed y ∈ Y and f(x, ·) is not concave for some fixed
x ∈ X . A special case of (1.1) is

min
x∈X

max
y∈Y

c(x,y)+λ1∥(x−a)+∥0+λ1∥(a−x)+∥0−λ2∥(y−b)+∥0−λ2∥(b−y)+∥0, (1.2)

where a, a ∈ Rn and b, b ∈ Rm. In particular, if a = a = b = b = 0, then (1.2)
reduces to the convex-concave saddle point problem with ℓ0 penalties as follows

min
x∈X

max
y∈Y

c(x,y) + λ1∥x∥0 − λ2∥y∥0. (1.3)

In 1928, von Neumann [37] proved that when c is a bilinear function, and X , Y
are two finite dimensional simplices,

min
x∈X

max
y∈Y

c(x,y) (1.4)

has a saddle point and it holds

min
x∈X

max
y∈Y

c(x,y) = max
y∈Y

min
x∈X

c(x,y). (1.5)

This pioneering work has inspired a number of seminal contributions in the existence
theory of saddle points of min-max problems in economics and engineering [19–21, 38,
43–46]. In 1949, Shiffman [45] gave a new proof of von Neumann’s minimax theorem
with a generalization to continuous convex-concave functions. Based on Brouwer’s
fixed point theorem, Nikaido [38] proved (1.5) for a continuous and quasi-convex-
concave function c. Here, we call c is quasi-convex-concave if c(x,y) is quasi-convex
in x ∈ Rn for y ∈ Rm and quasi-concave in y ∈ Rm for x ∈ Rn. In 1958, Sion [46]
generalized von Neumann’s result, and showed that if c is quasi-convex-concave and
lower semicontinuous-upper semicontinuous, then (1.4) has a nonempty saddle point
set whose closedness and convexity were pointed out in [43]. Moreover, we know from
[20, Theorem 1.4.1] that

min
x∈X

max
y∈Y

f(x,y) = max
y∈Y

min
x∈X

f(x,y) (1.6)
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is a necessary and sufficient condition for the existence of a saddle point of f over
X × Y.

When f is not convex-concave, (1.6) fails in general. The concept of local saddle
points is defined by considering (1.6) locally at a point in X × Y. However, a local
saddle point also may not exist for a nonconvex-nonconcave min-max problem. In
[33], Jin, Netrapalli and Jordan gave the definitions of global minimax points and
local minimax points by considering the min-max problem as a two-player sequential
game. Necessary and sufficient conditions for the local minimax points were studied
in [18, 26, 31, 33]. Recently, Chen and Kelley [12] showed that a min-max problem
for robust linear least squares problems does not have a saddle point, a local saddle
point and a local minimax point, while it has infinitely first order stationary points
and finite global minimax points. However, the set of first order stationary points and
the set of global minimax points do not have a common point.

The cardinality functions in problem (1.1) play important roles to ensure the
sparsity of the desirable solutions and improve the estimation accuracy by selecting
important feature parameters. In the last decades, sparse minimization models with
cardinality penalties have been widely used for sparse signal recovery, sparse vari-
able selection, compressed sensing and statistical learning [2, 3, 7, 16, 47]. Advanced
mathematical and statistical theory and efficient algorithms have been developed for
sparse minimization [3, 9, 13, 32]. Recently, He et al. [28] systematically compared the
solutions of a special quadratic minimization problem with ℓ0 penalty, ℓ1 penalty and
capped-ℓ1 penalty.

Inspired by the wide applications of saddle point problems and sparse optimization,
we consider the sparse min-max problems modeled by (1.1). In section 6, we will use
three applications to explain the motivation behind our research on this model and
the importance of cardinality penalties in the model. To the best of our knowledge,
mathematical theory and numerical algorithms on sparse saddle point problems with
cardinality penalties have not been systematically studied.

Approximating cardinality functions by continuous or smooth functions is a
promising approach in studying this class of problems. Many continuous relaxations
to the cardinality function have been brought forward, such as the ℓ1 norm [9], SCAD
[22], hard thresholding [22], ℓp norm (0 < p < 1) [13], MCP [50], capped-ℓ1 [40], CEL0
[47], etc. In this paper, we construct continuous approximations to the cardinality
functions in (1.1) based on convolution [10, 11], which include most popular relaxation
functions to the cardinality function.

The main contributions of this paper have four parts.
• We prove the existence of a local saddle point and a global minimax point of
(1.1), and define a class of strong local saddle points that have some desirable
sparse properties.

• Based on convolution, we introduce two classes of density functions to provide a
unified method for constructing the continuous relaxations with different smooth-
ness to the cardinality function, which induce many popular continuous penalties
in sparse optimization. Moreover, we propose the continuous relaxation problem
of (1.1), which has both the local saddle points and global minimax points.
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• We establish the relations between (1.1) and its continuous relaxations regarding
the saddle points, local saddle points, local minimax points and global minimax
points. Moreover, we define the first order and second order stationary points
of the continuous relaxation problem. We show that both the first and second
order stationary points of the continuous relaxation problems are not only the
strong local saddle points of (1.1), but also have some promising computational
tractability.

• We show the gradient consistency of a class of smoothing convex-concave func-
tions to nonsmooth functions c. Moreover we prove that any accumulation point
of weak d(irectional)-stationary points of the smoothing relaxation problem is a
weak d-stationary point of the nonsmooth relaxation problem as the smoothing
parameter goes to zero.

The rest of this paper is organized as follows. In Section 2, we prove the existence
of local saddle points and global minimax points of (1.1). In Section 3, we construct
the continuous relaxations to (1.1). In Section 4, we establish the relations between
(1.1) and its continuous relaxation problems. The smoothing functions of nonsmooth
function c are studied at the end of this section. In Section 5, we study the first
order and second order stationary points of the continuous relaxation problems for a
particular class of (1.1) and their relations with the strong local saddle points of (1.1).
In Section 6, we show the applications of problem (1.1).

Notation Let R+ = [0,+∞), R++ = (0,+∞) and [n] = {1, 2, . . . , n} for a positive
integer n. For a matrix A ∈ Rn×m, Aij means the element of A at the ith row and jth
column. Let ei be the vector with 1 at the ith element and 0 for the others and e be the
vector with 1 for all elements. For a Lipschitz continuous function c : Rn × Rm → R,
∂xc(x̄, ȳ) and ∂yc(x̄, ȳ) mean the Clarke subgradients of c with respect to x and y
at point (x̄, ȳ), respectively. When c is Lipschitz continuously differentiable, ∂2c(x̄, ȳ)
means the Clarke generalized Hessian of c at point (x̄, ȳ), ∂2xxc(x̄, ȳ) and ∂2yyc(x̄, ȳ)
mean the Clarke generalized Hessian of c(x,y) with respect to x and y at point (x̄, ȳ),
respectively. For x ∈ Rn and δ > 0, B(x, δ) means the closed ball centered at x
with radius δ, A+(x) = {l ∈ [n̂] : gl(x) > 0}, A−(x) = {l ∈ [n̂] : gl(x) < 0} and
A+

δ (x) = {l ∈ [n̂] : 0 < gl(x) < δ}. Similarly, denote B+(y) = {k ∈ [m̂] : hk(y) > 0},
B−(y) = {k ∈ [m̂] : hk(y) < 0} and B+

δ (y) = {k ∈ [m̂] : 0 < hk(y) < δ}. For
a set S ⊆ Rn and i ∈ [n], Si = {xi : x ∈ S}, ∥S∥∞ = sup{∥x∥∞ : x ∈ S} and
co{S} = {λx1 + (1 − λ)x2 : x1,x2 ∈ S, λ ∈ [0, 1]}. For sets S, S̄ ⊆ Rn, S + S̄ =
{x1 + x2 : x1 ∈ S,x2 ∈ S̄}. For a closed convex subset Ω ⊆ Rn and x ∈ Ω, NΩ(x)
means the normal cone to Ω at x.

2 Existence of local saddle points of problem (1.1)

In this section, we prove the existence of local saddle points and global minimax points
of problem (1.1). We also define a class of strong local saddle points of (1.1) and
provide its relation with saddle points of problem (1.4) in a certain subset of X × Y.
First of all, we give some necessary definitions.
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Definition 2.1. A point (x∗,y∗) ∈ X ×Y is called a saddle point of problem (1.1),
if for all (x,y) ∈ X × Y, it holds

f(x∗,y) ≤ f(x∗,y∗) ≤ f(x,y∗). (2.1)

We call (x∗,y∗) ∈ X × Y a local saddle point of problem (1.1), if there exists a
δ > 0 such that (2.1) holds for all x ∈ X ∩B(x∗, δ) and y ∈ Y ∩B(y∗, δ).
Definition 2.2. A point (x∗,y∗) ∈ X × Y is called a global minimax point of
(1.1), if for all (x,y) ∈ X × Y, we have

f(x∗,y) ≤ f(x∗,y∗) ≤ max
y′∈Y

f(x,y′).

We call (x∗,y∗) ∈ X ×Y a local minimax point of (1.1), if there exist a δ0 > 0 and
a function π : R+ → R+ satisfying π(δ) → 0 as δ → 0 such that for any δ ∈ (0, δ0],
x ∈ X ∩B(x∗, δ) and y ∈ Y ∩B(y∗, δ), it holds

f(x∗,y) ≤ f(x∗,y∗) ≤ max
y′∈Y∩B(y∗,π(δ))

f(x,y′). (2.2)

A local saddle point is a local minimax point, but a global minimax point is not
necessarily a local minimax point. The two inequalities in (2.1) for x ∈ X and y ∈ Y
can be equivalently expressed by

x∗ ∈ argmin
x∈X

f(x,y∗) and y∗ ∈ argmax
y∈Y

f(x∗,y), (2.3)

respectively. Since X and Y are compact, the lower semicontinuity of ((·)+)0 guar-
antees the existence of the solutions to the two optimization problems in (2.3), but
(x∗,y∗) may not be able to solve both the minimization and maximization simulta-
neously. This means that the saddle point set of problem (1.1) may be empty and
minx∈X maxy∈Y f(x,y) ̸= maxy∈Y minx∈X f(x,y) (see Example 2.1).

Note that a nonconvex-nonconcave function may not have a saddle point, a local
saddle point, or even a local minimax point. Fortunately, we can prove the existence
of global minimax points, local saddle points and local minimax points of problem
(1.1) without any additional assumption.
Proposition 2.1. Min-max problem (1.1) always has a global minimax point.

Proof. By the compactness of Y, we can define ψ(x) = maxy∈Y f(x,y). Since function
f(·,y) in (1.1) is lower semicontinuous for any fixed y ∈ Rm and X is compact, ψ
is lower semicontinuous on X . Then, there exists a global solution to minx∈X ψ(x),
denoted by x∗, i.e.

max
y′∈Y

f(x∗,y′) ≤ max
y′∈Y

f(x,y′), ∀x ∈ X . (2.4)
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The upper semicontinuity of f(x∗, ·) and the compactness of Y ensure the existence
of the solution to maxy′∈Y f(x

∗,y′), denoted by y∗, which implies

f(x∗,y∗) = max
y′∈Y

f(x∗,y′) ≥ f(x∗,y), ∀y ∈ Y. (2.5)

Therefore, (2.4) together with (2.5) implies that (x∗,y∗) is a global minimax point of
(1.1).

Proposition 2.2. Min-max problem (1.1) has a local saddle point and any saddle
point of (1.4) is a local saddle point of (1.1).

Proof. By Sion’s minimax theorem [46], (1.4) has a saddle point (x∗,y∗) ∈ X × Y
such that

c(x∗,y) ≤ c(x∗,y∗) ≤ c(x,y∗), ∀x ∈ X , y ∈ Y. (2.6)

By the continuity of functions gl and hk, there exists a δ > 0 such that

gl(x) > 0, ∀l ∈ A+(x∗), x ∈ B(x∗, δ) ∩ X ,
hk(y) > 0, ∀k ∈ B+(y∗), y ∈ B(y∗, δ) ∩ Y,

which implies A+(x∗) ⊆ A+(x) and B+(y∗) ⊆ B+(y) in the above neighborhood of
(x∗,y∗). On one hand,

c(x∗,y∗) = f(x∗,y∗)− λ1
∑

l∈A+(x∗)

1 + λ2
∑

k∈B+(y∗)

1.

On the other hand, for x ∈ B(x∗, δ) ∩ X and y ∈ B(y∗, δ) ∩ Y, it has

c(x,y∗) = f(x,y∗)−λ1
∑

l∈A+(x)

1+λ2
∑

k∈B+(y∗)

1 ≤ f(x,y∗)−λ1
∑

l∈A+(x∗)

1+λ2
∑

k∈B+(y∗)

1,

and

c(x∗,y) = f(x∗,y)−λ1
∑

l∈A+(x∗)

1+λ2
∑

k∈B+(y)

1 ≥ f(x∗,y)−λ1
∑

l∈A+(x∗)

1+λ2
∑

k∈B+(y∗)

1.

Thus, we can conclude that

f(x∗,y) ≤ f(x∗,y∗) ≤ f(x,y∗), ∀x ∈ B(x∗, δ) ∩ X , y ∈ B(y∗, δ) ∩ Y,

which implies that (x∗,y∗) is a local saddle point of (1.1).

Moreover, by [46], (1.1) also has a local saddle point if c is a continuous quasi-
convex-concave function.

The following example shows that the parameters λ1 and λ2 play an important
role for the existence of saddle points, local saddle points, global minimax points and
local minimax points of min-max problem (1.1).
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Example 2.1. Consider the following min-max problem

min
x∈X

max
y∈Y

f(x,y) := (x− 1)(y − 1) + λ1∥x∥0 − λ2∥y∥0, (2.7)

where X = Y = [−2, 2] and λ1, λ2 > 0. It is clear that c(x,y) = (x−1)(y−1) is convex-
concave on X × Y and (1, 1) is the unique saddle point of minx∈X maxy∈Y c(x,y).

Case 1 (has no saddle point): Let λ1 = 3 and λ2 = 1. By simple calculation, we find

max
y∈Y

f(x,y) =

{
max{5− 3x,x+ 1, 4− x} if x ̸= 0

2 if x = 0

and

min
x∈X

f(x,y) =

{
min{−3y + 5,−y,y + 1} if y ̸= 0

1 if y = 0.

Hence, we have

min
x∈X

max
y∈Y

f(x,y) = f(0,−2) = 2 and max
y∈Y

min
x∈X

f(x,y) = f(0, 0) = 1.

Thus, (1.6) fails in this case. By [20, Theorem 1.4.1], there is no saddle point to
problem (2.7) with λ1 = 3 and λ2 = 1. On the other hand, it has four local saddle
points: (0, 0), (1, 1), (0,−2) and (2, 0).

Case 2 (has a saddle point): Let λ1 = λ2 = 3. The similar calculation gives

max
y∈Y

f(x,y) =

{
max{x− 1, 4− x,−3x+ 3} if x ̸= 0

1 if x = 0

and

min
x∈X

f(x,y) =

{
min{−2− y, 3− 3y,y − 1} if y ̸= 0

1 if y = 0.

Then, minx∈X maxy∈Y f(x,y) = maxy∈Y minx∈X f(x,y) = 1. By [20, Theorem
1.4.1], there exists a saddle point to problem (2.7) with λ1 = λ2 = 3, and (0, 0) is the
unique saddle point.

Case 3 (any global minimax point is not a local minimax point): Let λ1 = λ2 = 1.
We have

ψ(x) = max
y∈Y

f(x,y) =

{
max{3− 3x, 2− x,x− 1} if x ̸= 0

2 if x = 0.

Then, x∗ = argminx∈X ψ(x) = {3/2} and argmaxy∈Y f(x
∗,y) = {0, 2}. Thus,

the set of global minimax points of (2.7) with λ1 = λ2 = 1 contains only two
points (3/2, 0) and (3/2, 2), and f(3/2, 0) = f(3/2, 2) = 1/2. Moreover, around
x∗ = 3/2, for any 0 < δ < 1/2, maxy′∈{y∈Y:|y|≤δ} f(x,y

′) = f(x, 0) = 2 − x and
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maxy′∈{y∈Y:|y−2|≤δ} f(x,y
′) = f(x, 2) = x− 1, which means that neither (3/2, 0) nor

(3/2, 2) is a local minimax point of (2.7) with λ1 = λ2 = 1.
To study sparse saddle points, we introduce a class of strong local saddle points of

(1.1).
Definition 2.3. For a given ν > 0, we call (x∗,y∗) ∈ X ×Y a ν-strong local saddle
point of problem (1.1), if it is a local saddle point of (1.1) and satisfies the lower
bound property as follows

gl(x
∗) ̸∈ (0, ν), ∀l ∈ [n̂] and hk(y

∗) ̸∈ (0, ν), ∀k ∈ [m̂]. (2.8)

On one hand, for any local saddle point (x∗,y∗) of (1.1), there exists a ν > 0
such that (2.8) holds, where we can set ν = min{1, gl(x∗), hk(y

∗) : l ∈ A+(x∗), k ∈
B+(y∗)}. Hence, (1.1) has a ν-strong local saddle point with a certain value of ν. On
the other hand, for a given ν > 0, not all local saddle points of (1.1) satisfy (2.8) (see
Example 2.2). In particular, if (x∗,y∗) is a ν-strong local saddle point of (1.3), then

|x∗
i | ̸∈ (0, ν) and |y∗

j | ̸∈ (0, ν), ∀i ∈ [n], j ∈ [m],

which not only helps us distinguish the zero and nonzero elements efficiently, but also
provides a solution with certain stability [3, 13]. Therefore, the study on ν-strong local
saddle points of (1.1) is interesting and important in sparse problems.
Example 2.2. Consider the following min-max problem

min
x∈X

max
y∈Y

f(x,y) := |x1 + x2 − 1|(y + 1) + ∥x∥0 − 3∥y∥0 (2.9)

with X = [−1, 1]2 and Y = [−1, 1]. By simple calculation, we can find that (2.9) has
three saddle points, i.e. (0, 0, 0)⊤, (1, 0, 0)⊤ and (0, 1, 0)⊤ with

min
x∈X

max
y∈Y

f(x,y) = max
y∈Y

min
x∈X

f(x,y) = 1.

The local saddle point set of (2.9) is

SL := {(x1, 1− x1,y)
⊤ : x1 ∈ [−1, 1],y ∈ [−1, 1]} ∪ {(0, 0, 0)⊤, (0, 0, 1)⊤},

while the ν-strong local saddle point set of (2.9) with 0 < ν < 1 is

SL ∩ {(x1,x2,y)
⊤ : |x1| ̸∈ (0, ν), |x2| ̸∈ (0, ν) and |y| ̸∈ (0, ν)}.

Notice that the ν-strong local saddle point set of (2.9) is a proper subset of its local
saddle point set, and contains all saddle points of (2.9).

For a given δ > 0, by [20, Theorem 1.4.1], we know that (x̄, ȳ) is a saddle point of
problem (1.1) on (X ∩B(x̄, δ))× (Y ∩B(ȳ, δ)) if and only if

max
y∈Y∩B(ȳ,δ)

min
x∈X∩B(x̄,δ)

f(x,y) = f(x̄, ȳ) = min
x∈X∩B(x̄,δ)

max
y∈Y∩B(ȳ,δ)

f(x,y). (2.10)
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Hence (x̄, ȳ) ∈ X × Y is a local saddle point of (1.1) if and only if there is a δ > 0
such that (2.10) holds. In what follows, we provide the relation between ν-strong local
saddle points of (1.1) and local saddle points of c restricted to a certain set.
Theorem 2.1. For ν > 0 and (x̄, ȳ) ∈ X × Y, let X̂ (x̄) = {x ∈ X : gl(x) ≤ 0, ∀l ̸∈
A+(x̄)} and Ŷ(ȳ) = {y ∈ Y : hk(y) ≤ 0, ∀k ̸∈ B+(ȳ)}. Then the following statements
are equivalent.
(i) (x̄, ȳ) is a ν-strong local saddle point of (1.1);
(ii) (x̄, ȳ) is a local saddle point of c on X̂ (x̄)× Ŷ(ȳ) and satisfies (2.8).

Proof. (i)⇒(ii). Suppose (x̄, ȳ) is a ν-strong local saddle point of (1.1), then there
exists a δ > 0 such that

f(x̄,y) ≤ f(x̄, ȳ) ≤ f(x, ȳ), ∀x ∈ X ∩B(x̄, δ), y ∈ Y ∩B(ȳ, δ). (2.11)

For any x ∈ X̂ (x̄), it holds that ∥g(x)+∥0 ≤ ∥g(x̄)+∥0. Rearranging the second
inequality in (2.11) gives

c(x̄, ȳ) + λ1∥g(x̄)+∥0 ≤ c(x, ȳ) + λ1∥g(x)+∥0, ∀x ∈ X ∩B(x̄, δ).

Thus, x̄ is a local minimizer of c(·, ȳ) on X̂ (x̄). Following the same way, the first
inequality in (2.11) gives that ȳ is a local maximizer of c(x̄, ·) on Ŷ(ȳ). Thus, (ii) holds.

(ii)⇒(i). Since x̄ is a local minimizer of c(·, ȳ) on X̂ (x̄) and satisfies (2.8), there
exists a δ1 > 0 such that

c(x̄, ȳ) ≤ c(x, ȳ), ∀x ∈ X̂ (x̄) ∩B(x̄, δ1)

and
gl(x̄) ̸∈ (0, ν), ∀l ∈ [n̂]. (2.12)

Based on (2.12), there exists a δ2 ∈ (0, δ1] such that gl(x) > 0, ∀x ∈ B(x̄, δ2), l ∈
A+(x̄), which implies

∥g(x̄)+∥0 ≤ ∥g(x)+∥0, ∀x ∈ B(x̄, δ2). (2.13)

Then,
f(x̄, ȳ) ≤ f(x, ȳ), ∀x ∈ X̂ (x̄) ∩B(x̄, δ2). (2.14)

Due to the continuity of c(·, ȳ), there is a δ3 ∈ (0, δ2] such that

c(x̄, ȳ) ≤ c(x, ȳ) + λ1, ∀x ∈ B(x̄, δ3). (2.15)

When x ∈ X ∩B(x̄, δ3) but x ̸∈ X̂ (x̄), there exists an l̂ ̸∈ A+(x̄) such that gl̂(x) > 0,
which together with (2.13) further gives

∥g(x̄)+∥0 + 1 ≤ ∥g(x)+∥0. (2.16)

Thanks to (2.14)-(2.16), we have

f(x̄, ȳ) ≤ f(x, ȳ), ∀x ∈ X ∩B(x̄, δ3). (2.17)

9



We can ensure f(x̄,y) ≤ f(x̄, ȳ), ∀y ∈ Y ∩B(ȳ, δ4) with δ4 > 0 in the same way.
Thus, (x̄, ȳ) is a ν-strong local saddle point of (1.1).

For problem (1.3), X̂ (x̄) = {x ∈ X : xi ≥ 0,∀i ̸∈ A−(x̄) and xi ≤ 0,∀i ̸∈ A+(x̄)}
and Ŷ(ȳ) = {yj ≥ 0, ∀j ̸∈ B−(ȳ) and yj ≤ 0, ∀j ̸∈ B+(ȳ)}. Thus, together the formu-

lations of X̂ (x̄) and Ŷ(ȳ) with the local optimality conditions, we obtain that (x̄, ȳ) is
a local saddle point of (1.3) if and only if (x̄, ȳ) is a saddle point of c on X 0(x̄)×Y0(ȳ)
with X 0(x̄) = {x ∈ X : xi = 0 if x̄i = 0} and Y0(ȳ) = {y ∈ Y : yj = 0 if ȳj = 0}, i.e.
the subspace corresponding to nonzero components of (x̄, ȳ).

By “pull-down” the discontinuity of the objective at an x̄ ∈ X to the constraints,
the authors in [16] brought forward the notion of “pseudo stationary” problem and
the corresponding pseudo local minimizer for the minimization problem with ((·)+)0
in the objective and constraints. By [16, Proposition 4], the special structure of f(x, ȳ)
with ȳ ∈ Y and the Lipschitz continuity of gl, we find that x̄ is a local minimizer
of minx∈X f(x, ȳ) if and only if it is a pseudo local minimizer of it, i.e. x̄ is a local
minimizer of minx∈X̂ (x̄) c(x, ȳ) with X̂ (x̄) = {x ∈ X : gl(x) ≤ 0, ∀l ̸∈ A+(x̄)}. It is

stated in [27] that a pseudo B-stationary solution is necessary to be a pseudo local
minimizer, where we call x̄ a pseudo B-stationary solution of minx∈X f(x, ȳ), if it is
a B-stationary solution of minx∈X̂ (x̄) c(x, ȳ) [16]. Similar ideas are also employed in

[27, 34]. Combining Theorem 2.1 with [16, Proposition 4], (x̄, ȳ) is a ν-strong local
saddle point of (1.1), if and only if x̄ is a pseudo local minimizer of minx∈X f(x, ȳ), ȳ
is a pseudo local minimizer of miny∈Y −f(x̄,y) and (x̄, ȳ) satisfies the lower bounds
in (2.8). In general, a pseudo B-stationary solution to the min-max problem (1.1)
defined by a similar way is not necessary to be a local saddle point. However, when c
is convex-concave, and gl, ∀l ∈ [n̂], hk, ∀k ∈ [m̂] are convex, by Theorem 2.1, (x̄, ȳ)
is local saddle point of (1.1), if and only if x̄ is a pseudo B-stationary solution of
minx∈X f(x, ȳ) and ȳ is a pseudo B-stationary solution of miny∈Y −f(x̄,y).

3 Continuous relaxations

In this section, we propose a class of continuous relaxations to the cardinality function
in min-max problem (1.1) based on convolution [10], which include the capped-ℓp
function [40], SCAD function [22], MCP function [50] and hard thresholding penalty
function [22] as special cases. Then, we show the existence of local saddle points to
the continuous relaxations of (1.1).

3.1 Density functions

Let ρ : R → R+ be a piecewise continuous density function satisfying

ρ(s) = 0, ∀s ̸∈ [0, α] (3.1)
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with a positive number α, which means that
∫ α

0
ρ(s)ds = 1. Then, for any fixed µ > 0,

r(t, µ) :=

∫ +∞

−∞
((t− µs)+)

0ρ(s)ds

=

∫ t
µ

−∞
ρ(s)ds = (t+)

0 +

{
0 if t ≤ 0

−
∫ +∞

t
µ

ρ(s)ds if t > 0

(3.2)

is well-defined, and when r(·, µ) is Lipschitz continuous around t, it holds

∂tr(t, µ) = co

{
lim

ρ(ti/µ)

µ
: ti → t, ρ is continuous at ti/µ

}
. (3.3)

The continuous relaxation in (3.2) is inspired by the smoothing function to t+ in
[11, 41, 44]. We can use formulation (3.2) to construct a continuous relaxation r by a
density function ρ.

By (3.2), for any µ > 0, we have

r(t, µ) = (t+)
0, ∀ t ̸∈ (0, αµ), (3.4)

r(t, µ)− (t+)
0 ≤ 0, ∀ t ∈ R, (3.5)

limµ↓0 r(t, µ) = (t+)
0, ∀ t ∈ R, (3.6)

lima→t,µ↓0 r(a, µ) = (t+)
0, ∀ t ̸= 0. (3.7)

For any t ∈ R, we see from (3.5) and (3.6) that r(t, µ) approximates (t+)
0 from below

as µ tends to 0. In what follows, we give four examples of the function r with ρ
satisfying (3.1).
Example 3.1. Choose a density function with α = 1 and 0 < p ≤ 1 as

ρ(s) =

{
psp−1 if 0 < s < 1

0 otherwise
⇒ r(t, µ) =


0 if t ≤ 0

tp

µp
if 0 < t ≤ µ

1 if t > µ.

Here, r(·, µ) with p = 1 is the capped-ℓ1 function φcap
1 on R+.

Example 3.2. For any α > 1, choose a density function as

ρ(s) =


2

α+ 1
if 0 ≤ s ≤ 1

2α− 2s

(α− 1)(α+ 1)
if 1 < s ≤ α

0 otherwise

⇒ r(t, µ) =



0 if t ≤ 0

2t

(α+ 1)µ
if 0 < t ≤ µ

2αµt− t2 − µ2

(α− 1)(α+ 1)µ2
if µ < t ≤ αµ

1 if t > αµ.

1capped-ℓ1 function: φcap(t) = min{1, |t|/µ}.
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Here, r(·, µ) is a scaled SCAD function φSCAD
2 on R+, i.e. r(t, µ) =

2
(α+1)µφSCAD(t),

∀t ≥ 0.
Example 3.3. For any α > 0, choose a density function as

ρ(s) =


2

α
− 2s

α2
if 0 ≤ s ≤ α

0 otherwise
⇒ r(t, µ) =


0 if t ≤ 0

2t

αµ
− t2

α2µ2
if 0 < t ≤ αµ

1 if t > αµ.

Here, r(·, µ) is a scaled MCP function φMCP
3 on R+, i.e. r(t, µ) =

2
αµφMCP(t), ∀t ≥ 0.

Example 3.4. Choose a density function with α = 1 as

ρ(s) =

{
2(1− s) if 0 < s < 1

0 otherwise
⇒ r(t, µ) =


0 if t ≤ 0

1− (1− t/µ)2 if 0 < t ≤ µ

1 if t > µ.

Here, r(·, µ) is the hard thresholding penalty function φhard
4 on R+.

For further analysis, we bring forward two assumptions on density function ρ.
Assumption 3.1. There exists a positive number ρ such that the density function
ρ : R → R+ satisfies

ρ(s) ≥ ρ, ∀s ∈ (0, α).

Assumption 3.2. The density function ρ is Lipschitz continuous on R++ and there
exist ρ

2
> 0 and ρ̌2 > 0 such that for any s ∈ (0, α),

either ρ(s) ≥ ρ
2

or sup{a : a ∈ ∂ρ(s)} ≤ −ρ̌2.

Notice that if ρ is Lipschitz continuous on R++ and ρ(s) = 0, ∀s ̸∈ [0, α], then
Assumption 3.1 fails. Thus, ρ can not satisfy Assumption 3.1 and Assumption 3.2 at
the same time.

When the density function ρ satisfies Assumption 3.1 and r(·, µ) is Lipschitz
continuous around t, we have

inf{ξ : ξ ∈ ∂tr(t, µ)} ≥ ρ/µ, ∀ t ∈ (0, αµ). (3.8)

2SCAD function: φSCAD(t) =



t if t ≤ µ

2αµt − t2 − µ2

2(α − 1)µ
if µ < t ≤ αµ

(α + 1)µ

2
if t > αµ.

3MCP function: φMCP(t) =


αµ

2
if t ≥ αµ

t −
t2

2αµ
if t < αµ.

4hard thresholding penalty function: φhard(t) = 1 − (1 − t/µ)2+.
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When the density function ρ satisfies Assumption 3.2, inspired by (3.3), we have
that for any µ > 0, r(·, µ) is Lipschitz continuously differentiable on R++ and satisfies

∂2t r(t, µ) = ∂ρ(t/µ)/µ2, ∀ t > 0, (3.9)

which implies for any t ∈ (0, αµ) such that sup{a : a ∈ ∂ρ(t/µ)} ≤ −ρ̌2, it holds

sup{ξ : ξ ∈ ∂2t r(t, µ)} ≤ −ρ̌2/µ2.

Since all the four density functions ρ in Examples 3.1-3.4 satisfy (3.1), r(t, µ) in
these examples satisfy (3.4)-(3.6). To end this subsection, we use Table 1 to conclude
the different properties of the density functions and the corresponding continuous
functions r in these four examples.

Example differentiability of r(·, µ) Assumption 3.1 Assumption 3.2
3.1 not at 0, µ ρ = p ×
3.2 not at 0 × ρ

2
= 2

α+1
, ρ̌2 = 2

(α+1)(α−1)

3.3 not at 0 × ρ
2
> 0, ρ̌2 = 2

α2

3.4 not at 0 × ρ
2
> 0, ρ̌2 = 2

Table 1: Properties of the density functions ρ and corresponding functions r in Exam-
ples 3.1-3.4

3.2 Continuous relaxation models to (1.1)

In what follows, we will use the continuous function r defined in (3.2) to approximate
the cardinality function in (1.1). For l ∈ [n̂] and k ∈ [m̂], denote

ϕl(x) = (gl(x)+)
0 and ψk(y) = (hk(y)+)

0,

and define their continuous relaxations by

ϕRl (x, µ) = r(gl(x), µ) and ψR
k (y, µ) = r(hk(y), µ). (3.10)

For any µ > 0, l ∈ [n̂] and k ∈ [m̂], by (3.5), we have

ϕRl (x, µ) ≤ ϕl(x) and ψR
k (y, µ) ≤ ψk(y), ∀x ∈ X , y ∈ Y. (3.11)

We propose the continuous relaxation of (1.1) as follows

min
x∈X

max
y∈Y

fR(x,y, µ) := c(x,y) + λ1
∑
l∈[n̂]

ϕRl (x, µ)− λ2
∑
k∈[m̂]

ψR
k (y, µ), (3.12)

where µ is a given positive number. Here, fR(·, ·, µ) in (3.12) is continuous on X ×Y,
and it is clear by (3.6) that, limµ↓0 f

R(x,y, µ) = f(x,y) for any x ∈ X and y ∈ Y.
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Notice that (3.12) is a nonconvex-nonconcave min-max problem and may not have
a saddle point. However, similar to Proposition 2.2, we can have the existence results
for the local saddle points of (3.12).
Proposition 3.1. There exists a µ̃ > 0 such that (3.12) has a local saddle point for
any µ ∈ (0, µ̃).

Proof. Let (x∗,y∗) be a saddle point of minx∈X maxy∈Y c(x,y), i.e. (2.6) holds. Denote
ϑ = min{1, gl(x∗), hk(y

∗) : l ∈ A+(x∗), k ∈ B+(y∗)} and set µ̃ = ϑ/2α, then gl(x
∗) ≥

2αµ̃, hk(y
∗) ≥ 2αµ̃, ∀l ∈ A+(x∗), k ∈ B+(y∗). Choose µ ∈ (0, µ̃). By the continuity of

g and h, there exists a δ > 0 such that for any l ∈ A+(x∗), k ∈ B+(y∗), x ∈ B(x∗, δ)
and y ∈ B(y∗, δ), it holds gl(x) ≥ αµ and hk(y) ≥ αµ, by (3.4), which further implies

ϕRl (x, µ) = 1 and ψR
k (y, µ) = 1.

This means that, for any x ∈ B(x∗, δ) and y ∈ B(y∗, δ),∑
l∈[n̂]

ϕRl (x
∗, µ) ≤

∑
l∈[n̂]

ϕRl (x, µ) and
∑
k∈[m̂]

ψR
k (y

∗, µ) ≤
∑
k∈[m̂]

ψR
k (y, µ). (3.13)

Together (3.13) with (2.6), we obtain

fR(x∗,y, µ) ≤ fR(x∗,y∗, µ) ≤ fR(x,y∗, µ), x ∈ B(x∗, δ) ∩ X , y ∈ B(y∗, δ) ∩ Y,

which means that (x∗,y∗) a local saddle point of (3.12).

From the compactness of X and Y, (3.12) has a global minimax point for any µ > 0.

4 Theoretical analysis on exact continuous
relaxations

In this section, we will consider the consistence of problem (1.1) and its continu-
ous relaxation problem (3.12) with the density function ρ satisfying (3.1). Moreover,
the smoothing approximation to a nonsmooth function c is defined and discussed in
subsection 4.3.

4.1 Relations on saddle points

To proceed the discussion on the saddle points and local saddle points between problem
(1.1) and its continuous relaxation model (3.12), we need the following Assumption
4.1, which will be discussed and verified in Section 5.
Assumption 4.1. For a given µ > 0, the following conditions hold.
(i) For any ȳ ∈ Y, if x∗ is a local minimizer of fR(x, ȳ, µ) on X , then

gl(x
∗) ̸∈ (0, αµ), ∀l ∈ [n̂]. (4.1)
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(ii) For any x̄ ∈ X , if y∗ is a local maximizer of fR(x̄,y, µ) on Y, then

hk(y
∗) ̸∈ (0, αµ), ∀k ∈ [m̂]. (4.2)

If Assumption 4.1 holds for µ̂, then it holds for any µ ∈ (0, µ̂]. Assumption 4.1 is
to put the lower bound properties on the local solutions of fR(x,y, µ) with respect
to x and y, respectively. If (x∗,y∗) satisfies the lower bounds in (4.1) and (4.2), by
(3.4), then

ϕRl (x
∗, µ) = ϕl(x

∗), ∀l ∈ [n̂] and ψR
k (y

∗, µ) = ψk(y
∗), ∀k ∈ [m̂]. (4.3)

Together this with the definition of (local) saddle points, we can find that the values of
function f(·, µ) and its continuous relaxation function fR(·, ·, µ) coincide at all (local)
saddle points of (3.12), which is the main idea behind assuming the two lower bounds
in Assumption 4.1 and the key motivation behind defining the continuous relaxation
function as in (3.2). In Section 5, we will consider two ways to guarantee these two
central properties in (4.1) and (4.2), one based on a first order necessary optimal-
ity condition and another based on a second order necessary optimality condition of
(3.12). In what follows, we first derive the relations on the saddle points and local
saddle points between problems (1.1) and (3.12) based on Assumption 4.1.
Theorem 4.1. Suppose problem (3.12) satisfies Assumption 4.1, then
(i) (x∗,y∗) is a saddle point of (1.1) if and only if it is a saddle point of (3.12);
(ii) (x∗,y∗) is a local saddle point of (1.1), if it is a local saddle point of (3.12).

Proof. Suppose (x∗,y∗) is a global (local) saddle point of problem (3.12). By the
relations in (3.11) and (4.3), it holds fR(x∗,y∗, µ) = f(x∗,y∗), fR(x∗,y, µ) ≥ f(x∗,y)
and fR(x,y∗, µ) ≤ f(x,y∗). Then, (x∗,y∗) is a global (local) saddle point of problem
(1.1). Thus we only need to prove that if (x∗,y∗) is a saddle point of problem (1.1),
then it is a saddle point of (3.12).

Assume on contradiction that (x∗,y∗) is a saddle point of problem (1.1), but it is
not a saddle point of (3.12). Then

x∗ ∈ argmin
x∈X

f(x,y∗) and y∗ ∈ argmax
y∈Y

f(x∗,y), (4.4)

but either x∗ is not a global minimizer of fR(x,y∗, µ) on X or y∗ is not a global
maximizer of fR(x∗,y, µ) on Y. As a possible situation, if x∗ is not a global minimizer
of fR(x,y∗, µ) on X , then there exists x̄ ∈ argminx∈X f

R(x,y∗, µ) such that

fR(x̄,y∗, µ) < fR(x∗,y∗, µ). (4.5)

By (4.1) in Assumption 4.1, either gl(x̄) ≥ αµ or gl(x̄) ≤ 0, which means ϕRl (x̄, µ) =
ϕl(x̄), ∀l ∈ [n̂], and then

fR(x̄,y∗, µ) = f(x̄,y∗)− λ2
∑
k∈[m̂]

ψR
k (y

∗, µ) + λ2
∑
k∈[m̂]

ψk(y
∗). (4.6)
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While by ϕRl (x
∗, µ) ≤ ϕl(x

∗), ∀l ∈ [n̂], we obtain

fR(x∗,y∗, µ) ≤ f(x∗,y∗)− λ2
∑
k∈[m̂]

ψR
k (y

∗, µ) + λ2
∑
k∈[m̂]

ψk(y
∗). (4.7)

Combining (4.5)-(4.7), we find that f(x̄,y∗) < f(x∗,y∗), which contradicts to the
first relation in (4.4). Thus, x∗ is a global minimizer of fR(x,y∗, µ) on X . And we can
verify that y∗ is a global maximizer of fR(x∗,y, µ) on Y by a similar way. Therefore,
(x∗,y∗) is a saddle point of problem (3.12).

Remark 4.1. Following the proof of Theorem 4.1, besides the lower bound properties
assumed in Assumption 4.1, we see that the property of continuous relaxation function
r that r(t, µ) ≤ (t+)

0, ∀t ∈ R and µ > 0, is used to guarantee the equivalence between
the saddle points of (1.1) and (3.12) from sufficiency and necessity. Moreover, under
Assumption 4.1, we confirm by Theorem 4.1 that any saddle point (x∗,y∗) of (1.1),
if it exists, satisfies the lower bounds in (4.1) and (4.2).

4.2 Relations on minimax points

To establish the equivalent relation on global minimax points between problem (1.1)
and problem (3.12), we need the following assumption, which will be discussed and
verified in Section 5.
Assumption 4.2. For a given µ > 0, the following conditions hold.
(i) If x∗ is a global minimizer of maxy∈Y f

R(x,y, µ) on X , then (4.1) holds.
(ii) For any x̄ ∈ X , if y∗ is a global maximizer of fR(x̄,y, µ) on Y, then (4.2) holds.

Assumption 4.2 implies that any global minimax point (x∗,y∗) of (3.12) satisfies
the lower bounds in (4.1) and (4.2), and subsequentially the function values of f(·, ·)
and its continuous relaxation function fR(·, ·, µ) coincide at all global minimax points
of (3.12). Then, we can establish the following relations on the global minimax points
between problems (1.1) and (3.12).
Theorem 4.2. Under Assumption 4.2, (x∗,y∗) is a global minimax point of problem
(3.12) if and only if it is a global minimax point of problem (1.1).

Proof. Let (x∗,y∗) be a global minimax point of problem (3.12), i.e.

fR(x∗,y, µ) ≤ fR(x∗,y∗, µ) ≤ max
y′∈Y

fR(x,y′, µ), ∀x ∈ X , y ∈ Y, (4.8)

which implies fR(x∗,y∗, µ) = maxy′∈Y f
R(x∗,y′, µ) ≤ maxy′∈Y f

R(x,y′, µ). Then,
Assumption 4.2 gives ϕl(x

∗) = ϕRl (x
∗, µ) and ψk(y

∗) = ψR
k (y

∗, µ), and we further
have

fR(x∗,y∗, µ) = f(x∗,y∗). (4.9)

Invoking (3.11), we have

f(x∗,y) = c(x∗,y)+λ1
∑
l∈[n̂]

ϕl(x
∗)−λ2

∑
k∈[m̂]

ψk(y) ≤ fR(x∗,y, µ), ∀y ∈ Y. (4.10)
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For any x ∈ X , denote yx a maximizer of fR(x,y, µ) on Y. Recalling Assumption 4.2,
we have that yx satisfies the lower bound property in (4.2) and ψk(yx) = ψR

k (yx, µ).
Together it with (3.11), we have that

max
y′∈Y

fR(x,y′, µ) =c(x,yx) + λ1
∑
l∈[n̂]

ϕRl (x, µ)− λ2
∑
k∈[m̂]

ψR
k (yx, µ)

≤c(x,yx) + λ1
∑
l∈[n̂]

ϕl(x)− λ2
∑
k∈[m̂]

ψk(yx) ≤ max
y′∈Y

f(x,y′).
(4.11)

Thus, (x∗,y∗) is a global minimax point of problem (1.1) by (4.8)-(4.11).
Conversely, let (x∗,y∗) be a global minimax point of problem (1.1), i.e.

f(x∗,y) ≤ f(x∗,y∗) ≤ max
y′∈Y

f(x,y′), ∀x ∈ X , y ∈ Y. (4.12)

By the first inequality in (4.12), similar to the proof of Theorem 4.1, we have

fR(x∗,y, µ) ≤ fR(x∗,y∗, µ), ∀y ∈ Y. (4.13)

Next, recalling Assumption 4.2, y∗ ∈ argmaxy′∈Y f
R(x∗,y′, µ) implies

ψk(y
∗) = ψR

k (y
∗, µ), ∀ k ∈ [m̂], (4.14)

which together with ϕRl (x
∗, µ) ≤ ϕl(x

∗), ∀l ∈ [n̂] gives

fR(x∗,y∗, µ) ≤ f(x∗,y∗). (4.15)

Denote (x̄, ȳ) a global minimax point of (3.12), then

fR(x̄,y, µ) ≤ fR(x̄, ȳ, µ) ≤ max
y′∈Y

fR(x,y′, µ), ∀x ∈ X , y ∈ Y, (4.16)

by the first part of this theorem, which implies

f(x̄,y) ≤ f(x̄, ȳ) ≤ max
y′∈Y

f(x,y′), ∀x ∈ X , y ∈ Y. (4.17)

By Assumption 4.2, we further have

ϕRl (x̄, µ) = ϕl(x̄), ∀l ∈ [n̂], ψR
k (ȳ, µ) = ψk(ȳ), ∀k ∈ [m̂] and fR(x̄, ȳ, µ) = f(x̄, ȳ).

(4.18)
Letting x = x̄ in the second inequality of (4.12), we have

f(x∗,y∗) ≤ max
y′∈Y

f(x̄,y′). (4.19)
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The first inequality in (4.17) gives maxy′∈Y f(x̄,y
′) = f(x̄, ȳ), which together with

(4.19) implies f(x∗,y∗) ≤ f(x̄, ȳ). This together with (4.15) and the third equality of
(4.18) gives

fR(x∗,y∗, µ) ≤ fR(x̄, ȳ, µ). (4.20)

By virtue of (4.20) and the second inequality in (4.16), we have

fR(x∗,y∗, µ) ≤ max
y′∈Y

fR(x,y′, µ), ∀x ∈ X ,

which together with (4.13) guarantees that (x∗,y∗) is a global minimax point of
problem (3.12).

4.3 Smoothing functions to a nonsmooth convex-concave
function c

If the function c in problem (3.12) is nonsmooth, the smoothing approximation of
it is often needed in the algorithms [6, 11]. In what follows, we introduce a class of
smoothing functions of c defined in [11].
Definition 4.1. We call c̃ : X ×Y × (0, 1] → R a smoothing function of a nonsmooth
function c on X × Y, if c̃(·, ·, ε) is continuously differentiable on X × Y for any fixed
ε ∈ (0, 1] and for any (x̄, ȳ) ∈ X × Y, it satisfies

limx→x̄,y→ȳ,ε↓0 c̃(x,y, ε) = c(x̄, ȳ). (4.21)

The gradient consistence between the Clarke subgradient of the nonsmooth func-
tion and the gradients associated with its smoothing function sequence is important
for the efficiency of the smoothing method, i.e. for any x̄ ∈ X and ȳ ∈ Y,

{limx→x̄,y→ȳ,ε↓0 ∇c̃(x,y, ε)} ⊆ ∂c(x̄, ȳ). (4.22)

The partial gradient consistences with respect to the update of two variables are often
necessary for the algorithm analysis of the min-max problems, i.e. for any x̄ ∈ X and
ȳ ∈ Y,

{limx→x̄,y→ȳ,ε↓0 ∇xc̃(x,y, ε)} ⊆ ∂xc(x̄, ȳ), (4.23)

{limx→x̄,y→ȳ,ε↓0 ∇yc̃(x,y, ε)} ⊆ ∂yc(x̄, ȳ). (4.24)

However, neither ∂c(x,y) nor ∂xc(x,y) × ∂yc(x,y) are contained in each other
generally. See [14, Example 2.5.2]. When c is Clarke regular with respect to (x,y), by
[14, Proposition 2.3.15], it holds

∂c(x,y) ⊆ ∂xc(x,y)× ∂yc(x,y). (4.25)

In what follows, we will show that (4.25) holds for any convex-concave function c,
though the convexity-concavity of c cannot give the regularity of it. For example,
c(x,y) = |x|−|y| is convex-concave on R×R, but not Clarke regular in (x,y) at (1, 0).
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Proposition 4.1. For any convex-concave function c, (4.25) holds for any x ∈ Rn

and y ∈ Rm.

Proof. Let (ξ, η) ∈ ∂c(x,y). We will prove that ξ ∈ ∂xc(x,y) and η ∈ ∂yc(x,y).
Since c(·,y) is convex on Rn for any y, by [14, Proposition 2.5.3], it has ξ ∈

∂xc(x,y). Inspired by the result in [14, Proposition 2.3.1], (−ξ,−η) ∈ ∂(−c(x,y)).
Using the concavity of c(x, ·) on Rm for any x ∈ Rn, −c(x,y) is convex with respect
to y and then −η ∈ ∂y(−c(x,y)) = −∂yc(x,y), which uses [14, Proposition 2.5.3]
again. Thus, η ∈ ∂yc(x,y).

For a nonsmooth function c, we can construct a smoothing function of c by
convolution [11, 41, 44] as follows

c̃(z, ε) =

∫
Rn+m

c(z− u)ψε(u)du, (4.26)

where z := (x,y), ψε : Rn+m → R+ is a sequence of bounded, measurable functions
satisfying

∫
Rn+m ψε(u)du = 1 and limε↓0B

ε = {0} with Bε := {u : ψε(u) > 0}.
Proposition 4.2. Let c̃ : Rn × Rm × (0, 1] → R be defined as in (4.26). Then c̃ is a
smoothing function of c on X × Y and satisfies the following properties:
(i) for any x̄ ∈ X and ȳ ∈ Y, (4.22) and (4.23)-(4.24) hold;
(ii) for any ε > 0, c̃(x,y, ε) is convex in x ∈ Rn and concave in y ∈ Rm.

Proof. From [44, Theorem 9.67], c̃ in (4.26) is a smoothing function of c on X ×Y and
satisfies {limx→x̄,y→ȳ,ε↓0 ∇c̃(x,y, ε)} ⊆ ∂c(x̄, ȳ) for any x̄ ∈ X and ȳ ∈ Y. Recalling
the convexity-concavity of c, by Proposition 4.1, (4.23)-(4.24) hold.

In what follows, we first verify that c̃(x,y, ε) is convex in x ∈ Rn for any y ∈ Rm

and ε > 0. For any x̄, x̂ ∈ X and η ∈ [0, 1], observe that

c̃(ηx̄+ (1− η)x̂,y, ε) =

∫
Rn+m

c(ηx̄+ (1− η)x̂− v,y −w)ψε(u)du

≤η
∫
Rn+m

c(x̄− v,y −w)ψε(u)du+ (1− η)

∫
Rn+m

c(x̂− v,y −w)ψε(u)du

=ηc̃(x̄,y, ε) + (1− η)c̃(x̂,y, ε),

where u = (v,w) ∈ Rn+m, the inequality uses the convexity of c(·,y) and the nonneg-
ativity of ψε on Rn+m. Thus, c̃(x,y, ε) is convex in x ∈ Rn for any y ∈ Rm and ε > 0.
By similar calculation, c̃(x,y, ε) is concave in y ∈ Rm for any x ∈ Rn and ε > 0.

Then, denote the smoothing model of (3.12) by

min
x∈X

max
y∈Y

f̃R(x,y, µ, ε) := c̃(x,y, ε) + λ1
∑
l∈[n̂]

ϕRl (x, µ)− λ2
∑
k∈[m̂]

ψR
k (y, µ), (4.27)

where c̃(x,y, ε) is a smoothing function of c. Since c̃(·, ·, ε) is a convex-concave function,
it always has a saddle point over X × Y. Following the results in previous sections,

19



problem (4.27) with an ε > 0 has a local saddle point and a global minimax point for
some µ > 0.

5 A particular case of problem (1.1)

In Section 4, we showed the consistency on the saddle point sets and the inclusion
on the local saddle point sets of problems (1.1) and (3.12) under Assumption 4.1,
and the consistence on their global minimax point sets under Assumption 4.2. In this
section, we verify that Assumptions 4.1 and 4.2 hold for the continuous relaxation of
a particular case of problem (1.1). Moreover, with the specific structure of r under
Assumption 3.1 or Assumption 3.2, we establish the relations between the first order or
second order stationary points of (3.12) and the local saddle points for the particular
case of (1.1).

Denote

Ni := {l ∈ [n̂] : gl(x) := gl(xi), ∀x ∈ Rn}, for i ∈ [n],

Mj := {k ∈ [m̂] : hk(y) := hk(yj), ∀y ∈ Rm}, for j ∈ [m],

and suppose⋃
i∈[n]

Ni = [n̂], Nĩ ∩Nî = ∅,∀ĩ ̸= î;
⋃

j∈[m]

Mj = [m̂], Mj̃ ∩Mĵ = ∅,∀j̃ ̸= ĵ,

which means that for any l ∈ [n̂], there is an i ∈ [n] such that gl is only dependent on
xi, and for any k ∈ [m̂], there is a j ∈ [m] such that hk is only dependent on yj . In
this section, we consider a case of (1.1) as follows

min
x∈X

max
y∈Y

f(x,y) := c(x,y) + λ1
∑
i∈[n]

∑
l∈Ni

(gl(xi)+)
0 − λ2

∑
j∈[m]

∑
k∈Mj

(hk(yj)+)
0. (5.1)

Moreover, we assume that X and Y satisfy Slater’s condition, i.e.

int(X ) ̸= ∅, int(Y) ̸= ∅, (5.2)

and have the following structures

X := X̃ ∩ X̄ , Y := Ỹ ∩ Ȳ, (5.3)

where
X̃ = {x ∈ Rn : u ≤ x ≤ u}, Ỹ = {y ∈ Rm : v ≤ y ≤ v} (5.4)

with u, u ∈ Rn, v, v ∈ Rm, u < u, v < v, and

X̄ = {x ∈ Rn : ut(x) ≤ 0, t ∈ [n̄]}, Ȳ = {y ∈ Rm : vs(y) ≤ 0, s ∈ [m̄]} (5.5)

with Lipschitz continuous convex functions ut : Rn → R for t ∈ [n̄] and vs : Rm → R
for s ∈ [m̄].
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Denote

T0(x) = {t ∈ [n̄] : ut(x) = 0}, S0(y) = {s ∈ [m̄] : vs(y) = 0}.

Since int(X̄ ) ⊇ int(X ) ̸= ∅, by [20, Theorems 6.8.2 and 6.8.3] and [29, Proposition
5.3.1 and Remark 5.3.2],

NX̄ (x) =
∑

t∈T0(x)
[0,+∞)∂ut(x), ∀x ∈ X̄ . (5.6)

Using int(X ) ̸= ∅ again, we have

NX (x) = NX̃ (x) +NX̄ (x). (5.7)

Similar calculation can be put forward to Y.
For any i ∈ [n] and j ∈ [m], denote

ϕi(xi) =
∑
l∈Ni

(gl(xi)+)
0, ψj(yj) =

∑
k∈Mj

(hk(yj)+)
0

and define their continuous relaxations by

ϕRi (xi, µ) =
∑
l∈Ni

r(gl(xi), µ), ψR
j (yj , µ) =

∑
k∈Mj

r(hk(yj), µ) (5.8)

with r in (3.2) and µ > 0. We consider the continuous relaxation of (5.1) as follows

min
x∈X

max
y∈Y

fR(x,y, µ) := c(x,y) + λ1
∑
i∈[n]

ϕRi (xi, µ)− λ2
∑
j∈[m]

ψR
j (yj , µ). (5.9)

We impose the following assumption on functions g and h related to the sets X̃
and X̄ in (5.4)-(5.5).
Assumption 5.1. There exist positive numbers τ and σ such that the following
conditions hold.
(i) For any x ∈ X , if there exist î ∈ [n] and l̂ ∈ Nî such that gl̂(xî) ∈ (0, τ), then

|g′
l̂
(xî)| ≥ σ, xî ∈ int(X̃î), (5.10)

gl(xî) ̸∈ [0, τ ], ∀l ∈ Nî, l ̸= l̂, (5.11)

ξt
î
(x)g′

l̂
(xî) ≥ 0, ∀ξt(x) ∈ ∂ut(x), t ∈ T0(x). (5.12)

(ii) For any y ∈ Y, if there exist ĵ ∈ [m] and k̂ ∈ Mĵ such that hk̂(yĵ) ∈ (0, τ), then

|h′
k̂
(yĵ)| ≥ σ, yĵ ∈ int(Ỹĵ), (5.13)

hk(yĵ) ̸∈ [0, τ ], ∀k ∈ Mĵ , k ̸= k̂, (5.14)
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ηs
ĵ
(y)h′

k̂
(yĵ) ≥ 0, ∀ηs(y) ∈ ∂vs(y), s ∈ S0(y). (5.15)

When αµ < τ, (5.11) is used to guarantee that for any x ∈ X and i ∈ [n], there
is at most one l ∈ Ni such that r(gl(xi), µ) ̸= (gl(xi)+)

0. If there exist î ∈ [n] and

l̂ ∈ Nî such that r(gl̂(xî), µ) ̸= (gl̂(xî)+)
0, by (5.10) and Assumption 3.1, if r(·, µ) is

Lipschitz continuous around gl̂(xî), we obtain

inf{ξ : ξ ∈ ∂xî
r(gl̂(xî), µ)} ≥ ρσ/µ, (5.16)

and by (5.6), (5.7) and (5.10), [NX (x)]̂i = 0 or [NX (x)]̂i = [NX̄ (x)]̂i =
[
∑

t∈T0(x)
[0,+∞)∂ut(x)]̂i, which together with (5.12) implies that

ξî(x)g
′
l̂
(xî) ≥ 0, ∀ ξ(x) ∈ NX (x). (5.17)

In particular, if Ni = {i} and Mj = {j} for all i ∈ [n] and j ∈ [m], then (5.1)
reduces to

min
x∈X

max
y∈Y

f(x,y) := c(x,y) + λ1

n∑
i=1

(gi(xi)+)
0 − λ2

m∑
j=1

(hj(yj)+)
0. (5.18)

Remark 5.1. Consider

f(x,y) := c(x,y)+λ1∥(x−a)+∥0 +λ1∥(a−x)+∥0 −λ2∥(y−b)+∥0 −λ2∥(b−y)+∥0,
(5.19)

with a, a ∈ Rn and b, b ∈ Rm. Then (5.19) is a special case of problem (5.1) with

gi(xi) = xi−ai, gn+i(xi) = ai−xi, i ∈ [n]; hj(yj) = yj−bj , hm+j(yj) = bj−yj , j ∈ [m].

In particular, the following three cases satisfy Assumption 5.1-(i), while the
judgment on Assumption 5.1-(ii) is the same.

• Case 1: Let X = {x ∈ Rn : u ≤ x ≤ u} and f be defined as in (5.19) with
a, a ∈ X . Then, Assumption 5.1-(i) holds with

σ = 1 and τ = min{τx,1, τx,2}, (5.20)

where

τx,1 = min{1,ui − ai,ai − ui : ui > ai,ai > ui, i ∈ [n]},
τx,2 = min{1, |ai − ai|/2 : ai ̸= ai, i ∈ [n]}.

• Case 2: Let f be defined as in (5.19) with a ≥ 0, a ≤ 0, b ≥ 0, b ≤ 0, X̃ = {x ∈
Rn : u ≤ x ≤ u} and X̄ be

X̄ = {x : ∥x∥2 ≤ δ} or X̄ = {x : ∥x∥1 ≤ δ}

with δ > 0. Then Assumption 5.1-(i) also holds with σ and τ in (5.20).
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• Case 3: Let X̃ = {x ∈ Rn : u ≤ x ≤ u}, X̄ = {x : Ax ≤ c} with A ∈ Rr1×n
+ ,

c ∈ Rr1 and f be specialized to

f(x,y) := c(x,y) + λ1∥(x− a)+∥0 − λ2∥(y − b)+∥0

with ai ∈ [ui,ui) and bj ∈ [vj ,vj) for i ∈ [n] and j ∈ [m]. Then Assumption
5.1-(i) also holds with σ = 1 and τ = min{1,ui − ai : ui > ai, i ∈ [n]}.

In particular, case 2 in Remark 5.1 indicates that problem (1.3) with X = {x :
u ≤ x ≤ u, ∥x∥1 ≤ 1} and Y = {y : v ≤ x ≤ v, ∥y∥1 ≤ 1} satisfies Assumption 5.1,
and the problems in case 3 satisfying Assumption 5.1 include

min
x∈X

max
y∈Y

f(x,y) := c(x,y) + λ1∥x+∥0 − λ2∥y+∥0

with X = {x : ∥x∥∞ ≤ 1, e⊤x ≤ 1} and Y = {y : ∥y∥∞ ≤ 1, e⊤y ≤ 1} as a special
case. Moreover, (5.1) satisfying Assumption 5.1 is not limited to problem (5.19). For
example, the following problem

min
x∈X

max
y∈Y

f(x,y) := c(x,y) + λ1∥x+∥0 − λ2
∑

j∈[m]
((sin(4yj))+)

0

with X = {x : ∥x∥∞ ≤ 5} and Y = {y : ∥y∥∞ ≤ 5} also satisfies Assumption 5.1 with
τ = 1

2 and σ = 1.

5.1 Density function ρ under Assumption 3.1

In this subsection, we will show that when problem (5.1) satisfies Assumption 5.1
and density function ρ satisfies Assumption 3.1, Assumptions 4.1 and 4.2 hold for the
continuous relaxation of (5.1) formulated by (5.9). Moreover, we need assume that ρ
has an upper bound on its support set, i.e. there exists ρ̄ > 0 such that

ρ(s) ≤ ρ̄, ∀s ∈ (0, α). (5.21)

Here, the density function ρ in Example 3.1 with p = 1 satisfies this condition with
ρ̄ = 1. In this situation, r(·, µ) is Lipschitz continuous on R, which implies fR(·, ·, µ)
is Lipschitz continuous on Rn × Rm for any fixed µ > 0. Moreover, when the density
function ρ is as in Example 3.1 with p = 1, we will give more discussion on the weak-d
stationary points of (5.9) and its smoothing version in (4.27).

5.1.1 Relations on saddle points and minimax points

From the boundedness of X and Y, there exists a positive constant Lc,1 such that for
all x ∈ X and y ∈ Y, it holds

∥∂xc(x,y)∥∞ ≤ Lc,1 and ∥∂yc(x,y)∥∞ ≤ Lc,1. (5.22)
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For a given µ ∈ R++ and ȳ ∈ Y, if x∗ is a local solution of minx∈X f
R(x, ȳ, µ), then

0 ∈ ∂xf
R(x∗, ȳ, µ) +NX (x∗). (5.23)

Similarly, for x̄ ∈ X , if y∗ is a local solution of maxy∈Y f
R(x̄,y, µ), then

0 ∈ −∂yfR(x̄,y∗, µ) +NY(y
∗). (5.24)

For i ∈ [n] and j ∈ [m], by [14, Proposition 2.3.9], we have

∂xi
ϕRi (xi, µ) ⊆ ∂̃xi

ϕRi (xi, µ) :=
∑

l∈Ni

∂tr(t, µ)t=gl(xi)g
′
l(xi),

∂yjψ
R
j (yj , µ) ⊆ ∂̃yjψ

R
j (yj , µ) :=

∑
k∈Mj

∂tr(t, µ)t=hk(yj)h
′
k(yj).

(5.25)

By [14, Corollary 2] and recalling (5.25), one has

∂xf
R(x∗, ȳ, µ) ⊆ ∂̃xf

R(x∗, ȳ, µ) := ∂xc(x
∗, ȳ) + λ1

∑n
i=1 ∂̃xiϕ

R
i (x

∗
i , µ)ei, (5.26)

∂yf
R(x̄,y∗, µ) ⊆ ∂̃yf

R(x̄,y∗, µ) := ∂yc(x̄,y
∗)− λ2

∑m
j=1 ∂̃yj

ψR
j (y

∗
j , µ)ej .(5.27)

Combining (5.23) with (5.26), and (5.24) with (5.27), we obtain that
• if x∗ is a local solution of minx∈X f

R(x, ȳ, µ), then

0 ∈ ∂̃xf
R(x∗, ȳ, µ) +NX (x∗); (5.28)

• if y∗ is a local solution of maxy∈Y f
R(x̄,y, µ), then

0 ∈ −∂̃yfR(x̄,y∗, µ) +NY(y
∗). (5.29)

If (x∗,y∗) ∈ X × Y is a local saddle point of (5.9), then (5.28) and (5.29) hold at
x̄ = x∗ and ȳ = y∗.

In the rest of this paper, we denote λ = min{λ1, λ2} and set

µ̄1 = min

{
τ

α
,
λσρ

Lc,1

}
(5.30)

with τ , σ in Assumption 5.1, α in (3.1), ρ in Assumption 3.1, and Lc,1 a constant
satisfying the two inequalities in (5.22). Here, 0 < µ < µ̄1 ≤ τ/α gives µα < τ , which
together with (3.4) implies

if gl(xi) ̸∈ (0, τ), then r(gl(xi), µ) = (gl(xi)+)
0, ∀l ∈ Ni, i ∈ [n];

if hk(yj) ̸∈ (0, τ), then r(hk(yj), µ) = (hk(yj)+)
0, ∀k ∈ Mj , j ∈ [m].

Next, we will derive the lower bounds in (4.1) and (4.2) based on (5.28) and (5.29),
respectively.
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Proposition 5.1. Suppose problem (5.1) satisfies Assumption 5.1. When density
function ρ satisfies Assumption 3.1 and 0 < µ < µ̄1 with µ̄1 defined in (5.30), then
the continuous relaxation model in (5.9) owns the following properties:

if (5.28) holds at (x∗, ȳ) ∈ X × Y, then gl(x
∗
i ) ̸∈ (0, αµ), ∀l ∈ Ni, i ∈ [n], (5.31)

if (5.29) holds at (x̄,y∗) ∈ X × Y, then hk(y
∗
j ) ̸∈ (0, αµ), ∀k ∈ Mj, j ∈ [m]. (5.32)

Proof. We argue the above statements by contradiction.
If there exist ĩ ∈ [n] and l̃ ∈ Nĩ such that 0 < gl̃(x

∗
ĩ
) < αµ, by αµ < αµ̄1 ≤ τ ,

Assumption 5.1, (5.25) and (5.26), we obtain x∗
ĩ
∈ int(X̃ĩ), and

[∂̃xf
R(x∗, ȳ, µ)]̃i = [∂xc(x

∗, ȳ)]̃i + λ1∂xĩ
r(gl̃(x

∗
ĩ
), µ).

From Assumption 5.1-(i), (5.16), (5.17) and (5.28), we further have that

λ1σρ/µ ≤ Lc,1, (5.33)

which contradicts µ < µ̄1 ≤ λ1σρ/Lc,1. Thus, (5.31) holds. Similar analysis can be
derived to (5.32).

Thus, under the conditions in Proposition 5.1, Assumption 4.1 holds naturally for
any µ ∈ (0, µ̄1) with µ̄1 defined in (5.30). In what follows, we will verify Assumption
4.2 in this situation.
Proposition 5.2. Suppose problem (5.1) satisfies Assumption 5.1. Then Assumption
4.2 holds for (5.9) when density function ρ satisfies Assumption 3.1 and 0 < µ < µ̄1

with µ̄1 in (5.30). Moreover, all global minimax points of (5.9) satisfy the lower bounds
in (4.1) and (4.2).

Proof. For x̄ ∈ X , if y∗ is a global maximizer of fR(x̄,y, µ) on Y, then (5.29) holds.
By Proposition 5.1, we have hk(y

∗
j ) ̸∈ (0, αµ), ∀ k ∈ Mj , j ∈ [m], which means

Assumption 4.2-(ii) holds. Now we prove Assumption 4.2-(i) holds. Denote

fR1 (x,y, µ) := c(x,y)− λ2
∑
j∈[m]

ψR
j (yj , µ), ϑ(x, µ) := max

y′∈Y
fR1 (x,y′, µ).

For an x ∈ X , let yx be a maximizer of fR1 (x,y, µ) on Y, then it is also a maximizer
of fR(x,y, µ) on Y. For any x̃, x̂ ∈ X , if ϑ(x̃, µ) ≥ ϑ(x̂, µ), then

ϑ(x̃, µ)− ϑ(x̂, µ) ≤ fR1 (x̃,yx̃, µ)− fR1 (x̂,yx̃, µ) ≤ Lc,1∥x̃− x̂∥.

Similarly, if ϑ(x̃, µ) < ϑ(x̂, µ),

ϑ(x̂, µ)− ϑ(x̃, µ) ≤ fR1 (x̂,yx̂, µ)− fR1 (x̃,yx̂, µ) ≤ Lc,1∥x̃− x̂∥.

Thus, ϑ(·, µ) is Lipschitz continuous on X with constant Lc,1.
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Let x∗ be a global minimizer of ϑ(x, µ) + λ1
∑

i∈[n] ϕ
R
i (xi, µ) =

maxy′∈Y f
R(x,y′, µ) on X . The first order necessary optimality condition gives

0 ∈ [∂xϑ(x
∗, µ)]i + λ1∂xi

ϕRi (x
∗
i , µ) + [NX (x∗)]i, ∀i ∈ [n]. (5.34)

Assume there exist ĩ ∈ [n] and l̂ ∈ Nĩ such that 0 < gl̂(x
∗
ĩ
) < αµ. Similar to the

derivation in Proposition 5.1, we also obtain (5.33) and a contradiction to the value
of µ. Thus, for all i ∈ [n] and l ∈ Ni, gl(x

∗
i ) ̸∈ (0, αµ), which together with the above

analysis gives that any gloabl minimax point of (5.9) satisfies the lower bounds in
(4.1) and (4.2). Hence Assumption 4.2-(i) holds.

Similar to the proof of Proposition 5.2, we can show that all local minimax points
of (5.9) satisfy the lower bounds in (4.1) and (4.2). Moreover, similar to the proof of
Theorem 4.2, we can have the relation on the local minimax points between problems
(5.1) and (5.9). Combining this with the above discussion, we conclude the relations
on (5.1) and (5.9) in the following theorem.
Theorem 5.1. Suppose problem (5.1) satisfies Assumption 5.1, density function ρ
satisfies Assumption 3.1 and 0 < µ < µ̄1 with µ̄1 defined in (5.30), then the following
statements hold:
(i) (x∗,y∗) is a saddle point (global minimax point) of problem (5.1) if and only if

it is a saddle point (global minimax point) of (5.9);
(ii) (x∗,y∗) is an αµ-strong local saddle point of (5.1), if it is a local saddle point of

problem (5.9);
(iii) (x∗,y∗) is a local minimax point of (5.1), if it is a local minimax point of problem

(5.9).

5.1.2 Stationary points of (5.9) with ρ in Example 3.1 with p = 1

In this subsection, we focus on the relations of (5.1) and (5.9) when the density
function ρ is defined as in Example 3.1 with p = 1, which makes the corresponding
function r satisfy Assumption 3.1 with α = ρ = 1 and (5.21) with ρ = 1. Theorem 5.1
has established the relations on the (local) saddle points and global minimax points
between problems (5.1) and (5.9). In this subsection, we suppose problem (5.1) satisfies
Assumption 5.1, and functions gl, hk in (5.1) are convex for all l ∈ Ni, i ∈ [n] and
k ∈ Mj , j ∈ [m]. We will study the relations on a class of stationary points of (5.9)
with the µ-strong local saddle points of (5.1) in what follows.

For a locally Lipschitz continuous function φ : Rn → R, the generalized (Clarke)
directional derivative [14] of φ at point x in direction v is well-defined, i.e.

φ◦(x,v) = lim sup
z→x,t↓0

φ(z+ tv)− φ(z)

t
.
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Function φ is said to be Bouligand-differentiable (B-differentiable) at x, if φ is locally
Lipschitz continuous around x and directionally differentiable at x, i.e. for any v ∈ Rn,

φ′(x,v) = lim sup
t↓0

φ(x+ tv)− φ(x)

t
exists.

It is well-known that φ◦(x,v) ≥ φ′(x,v) in general and these two directional deriva-
tives are the same if function φ is (Clarke) regular [14]. However, most nonconvex
functions are not regular and a nonsmooth nonconvex function is not always direc-
tionally differentiable. Notice that convex functions and differentiable functions are
directionally differentiable, then a DC (difference-of-convex) function is directionally
differentiable [44], where we call function φ a DC function, if it can be formulated by
the difference of two convex functions. This promotes some kinds of stationary points
for the DC programming [39], such as the d(irectional)-stationary point and the weak
d-stationary point, both of which are generally stronger than the Clarke stationary
point.

Note that r(t, µ) in Example 3.1 with p = 1 can be expressed by the following DC
function

r(t, µ) = t+/µ− (t− µ)+/µ. (5.35)

From the definitions of ϕRi and ψR
j in (5.8), the objective function in (5.9) has the

formulation of

fR(x,y, µ) = c(x,y)+λ1
∑
i∈[n]

∑
l∈Ni

(gl(xi)+/µ− (gl(xi)− µ)+/µ)

−λ2
∑
j∈[m]

∑
k∈Mj

(hk(yj)+/µ− (hk(yj)− µ)+/µ) .
(5.36)

For fixed x∗ ∈ X , y∗ ∈ Y and µ ∈ R++, denote

fRy∗,µ(x) ≜ fR(x,y∗, µ), fRx∗,µ(y) ≜ fR(x∗,y, µ),

and consider the following two optimization problems

min
x∈X

fRy∗,µ(x) and max
y∈Y

fRx∗,µ(y). (5.37)

By (5.36) and the convexity-concavity of c, the two objective functions in (5.37) are
DC functions with respect to x and y, and then they are B-differentiable on X and
Y, respectively. For the sake of completeness, we recall the definition of d-stationary
point in DC programming. We call x∗ ∈ X a d-stationary point [17, Definition 6.1.1]
of the minimization problem in (5.37), if

(fRy∗,µ)
′(x∗;x− x∗) ≥ 0, ∀x ∈ X , (5.38)

which is a necessary optimality condition to the minimization program in (5.37).

27



Define
ϖ1(t) = t, ϖ2(t) = 0, ϖ(t) = max{ϖ1(t), ϖ2(t)}

and D(t) = {d ∈ {1, 2} : ϖ(t) = ϖd(t)}.
It is clear that

ϖ′
1(t) = 1, ϖ′

2(t) = 0 and ∂ϖ(t) =


1 if t > 0

[0, 1] if t = 0

0 if t < 0.

(5.38) is equivalent to that, for any q∗l ∈ D(gl(x
∗
i )− µ), it holds

λ1
µ

∑
i∈[n]

∑
l∈Ni

ϖ′
q∗l
(t)t=gl(x∗

i )−µg
′
l(x

∗
i )ei ∈ ∂xc(x

∗,y∗) +
λ1
µ
∂

∑
i∈[n]

∑
l∈Ni

ϖ(gl(x
∗
i ))

+NX (x∗),

(5.39)
in which by [14, Proposition 2.3.10],

∂

∑
i∈[n]

∑
l∈Ni

ϖ(gl(x
∗
i ))

 =
∑
i∈[n]

∑
l∈Ni

∂ϖ(t)t=gl(x∗
i )
g′l(x

∗
i )ei.

Similarly, we call y∗ ∈ Y a d-stationary point of the maximization problem in (5.37), if

(fRx∗,µ)
′(y∗;y − y∗) ≤ 0, ∀y ∈ Y,

which is equivalent to that for any p∗k ∈ D(hk(y
∗
j )− µ), it holds

λ2
µ

∑
j∈[m]

∑
k∈Mj

ϖ′
p∗
k
(t)t=hk(y∗

j )−µh
′
k(y

∗
j )ej

∈ − ∂yc(x
∗,y∗) +

λ2
µ
∂

 ∑
j∈[m]

∑
k∈Mj

ϖ(hk(y
∗
j ))

+NY(y
∗).

(5.40)

Based on the above analysis, we introduce the following definitions to min-max
problem (5.9).
Definition 5.1. For (x∗,y∗) ∈ X × Y,

• if (5.39) and (5.40) hold for all q∗l ∈ D(gl(x
∗
i )− µ) and p∗k ∈ D(hk(y

∗
j )− µ) with

i ∈ [n], l ∈ Ni and j ∈ [m], k ∈ Mj, we call (x∗,y∗) a d-stationary point of
min-max problem (5.9);

• if there exist a couple of sequences q∗l ∈ D(gl(x
∗
i ) − µ) and p∗k ∈ D(hk(y

∗
j ) − µ)

for i ∈ [n], l ∈ Ni and j ∈ [m], k ∈ Mj, such that (5.39) and (5.40) hold, we call
(x∗,y∗) a weak d-stationary point of min-max problem (5.9).

On one hand, if (x∗,y∗) is a local saddle point of problem (5.9), then it is a
(weak) d-stationary point of (5.9). On the other hand, if (x∗,y∗) ∈ X × Y is a weak
d-stationary point of (5.9), then it satisfies (5.28) and (5.29).
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Proposition 5.3. Let density function ρ be defined as in Example 3.1 with p = 1 and
0 < µ < µ̄1 with µ̄1 defined in (5.30). If (x∗,y∗) is a weak d-stationary point of (5.9),
then the following statements hold.
(i) gl(x

∗
i ) ̸∈ (0, µ), ∀l ∈ Ni, i ∈ [n] and hk(y

∗
j ) ̸∈ (0, µ), ∀k ∈ Mj, j ∈ [m];

(ii) if gl̃(x
∗
ĩ
) = µ for some ĩ ∈ [n] and l̃ ∈ Nĩ, then the q∗

l̃
∈ D(gl̃(x

∗
ĩ
)− µ) satisfying

(5.39) is unique and q∗
l̃
= 1;

(iii) if hk̃(y
∗
j̃
) = µ for some j̃ ∈ [m] and k̃ ∈ Mj̃, then the p∗

k̃
∈ D(hk̃(y

∗
j̃
) − µ)

satisfying (5.40) is unique and p∗
k̃
= 1.

Proof. From Proposition 5.1, (i) holds naturally. Next, we argue (ii) by contradiction
and (iii) can be proved similarly. For item (ii), suppose there exist ĩ ∈ [n] and l̃ ∈ Nĩ

such that gl̃(x
∗
ĩ
) = µ and (5.39) holds with q∗

l̃
= 2. For any l ∈ Nĩ and l ̸= l̃, by

Assumption 5.1 and µ < µ̄1 ≤ τ , we have x∗
ĩ
∈ int(X̃ĩ) and gl(x

∗
ĩ
) ̸∈ [0, τ ], which

implies q∗l ∈ D(gl(x
∗
ĩ
)−µ) is unique and ϖ′

q∗l
(t)t=gl(x∗

ĩ
)−µ = ϖ′(t)t=gl(x∗

ĩ
). Then, (5.39)

gives

0 ∈ [∂xc(x
∗,y∗)]̃i +

λ1
µ
g′
l̃
(x∗

ĩ
) + [NX (x∗)]̃i. (5.41)

Using Assumption 5.1, (5.7) and (5.17), we confirm that λ1σ
µ ≤ Lc,1, which

contradicts to the supposition on the value of µ and gives the result in (ii).

For t ∈ R, denote A0
i (t) = {l ∈ Ni : gl(t) = 0} and B0

j (t) = {k ∈ Mj : hk(t) = 0}.
For given (x∗,y∗) ∈ X × Y and µ ∈ R++, consider the following two functions

Wx∗,y∗,µ(x) = c(x,y∗) +
λ1
µ

∑n

i=1

∑
l∈A0

i (x
∗
i )
gl(xi)+, (5.42)

Vx∗,y∗,µ(y) = −c(x∗,y) +
λ2
µ

∑m

j=1

∑
k∈B0

j (y
∗
j )
hk(yj)+. (5.43)

If gl is convex for any l ∈ [n̂], by the convexity of c(·,y∗), function Wx∗,y∗,µ is
convex on X , which gives that x∗ is a minimizer of Wx∗,y∗,µ on X if and only if

0 ∈∂Wx∗,y∗,µ(x
∗) +NX (x∗)

=∂xc(x
∗,y∗) +

λ1
µ

∑n

i=1

(∑
l∈A0

i (x
∗
i )
[0, 1]g′l(x

∗
i )

)
ei +NX (x∗).

(5.44)

Similarly, if hk is convex for any k ∈ [m̂], Vx∗,y∗,µ is convex on Y and y∗ ∈ Y is a
minimizer of Vx∗,y∗,µ on Y if and only if

0 ∈ ∂Vx∗,y∗,µ(y
∗) +NY(y

∗).

In what follows, we will verify that all weak d-stationary points of (5.9) are µ-strong
local saddle points of (5.1).
Theorem 5.2. Under conditions of Proposition 5.3, if (x∗,y∗) ∈ X × Y is a weak
d-stationary point of (5.9), then it is a µ-strong local saddle point of problem (5.1).
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Proof. Since (x∗,y∗) is a weak d-stationary point of (5.9), putting forward the results
in Proposition 5.3 to (5.39), we have (5.44), which means that x∗ is a global minimizer
of Wx∗,y∗,µ on X , i.e.

c(x∗,y∗) ≤ c(x,y∗) +
λ1
µ

∑n

i=1

∑
l∈A0

i (x
∗
i )
gl(xi)+, ∀x ∈ X . (5.45)

Then, (5.45) means that for any x ∈ {x ∈ X : gl(xi) ≤ 0 if gl(x
∗
i ) ≤

0 for l ∈ Ni and i ∈ [n]}, it holds c(x∗,y∗) ≤ c(x,y∗). Similarly, Proposition 5.3
together with (5.43) implies that y∗ is a global minimizer of Vx∗,y∗,µ on Y and we
further have that y∗ is a maximizer of c(x∗, ·) on {y ∈ Y : hk(y) ≤ 0 if hk(y

∗
j ) ≤

0 for k ∈ Mj and j ∈ [m]}. Thus, from Theorem 2.1 and recalling Proposition 5.3-(i),
(x∗,y∗) is a µ-strong local saddle point of (5.1).

Remark 5.2. Following the proof of Proposition 5.3, when 0 < µ < µ̄1, if x
∗ and y∗

satisfy
x∗ ∈ argmin

x∈X
Wx∗,y∗,µ(x) and y∗ ∈ argmin

y∈Y
Vx∗,y∗,µ(y),

then (x∗,y∗) is a µ-strong local saddle point of (5.1).
By [33, Proposition 17], any local saddle point is a local minimax point. Then, by

Theorem 5.2, any weak d-stationary point of problem (5.9) is also a local minimax
point of problem (5.1).

Since the continuous relaxation functions to the cardinality functions in (5.9) are
DC functions and variable separated, the proximal operator of its subtracted convex
function can be calculated directly in most cases. Moreover, to solve problem (5.9)
with a nonsmooth function c efficiently, we can use a smoothing approximation of
(5.9) as follows

min
x∈X

max
y∈Y

fR(x,y, µ, ε) := c̃(x,y, ε) + λ1

n∑
i=1

ϕRi (xi, µ)− λ2

m∑
j=1

ψR
j (yj , µ), (5.46)

where c̃ is a smoothing function of c defined by (4.26). Similar to the expression in
(5.36) and by Proposition 4.2-(ii), for fixed µ > 0 and ε > 0, f̃R(x,y, µ, ε) in (5.46)
is a DC function with respect to x and y, respectively. Thus, the d-stationary point
and weak d-stationary point to (5.46) can be defined according to Definition 5.1. By
using the gradient consistency (4.23)-(4.24), we have the following result.
Proposition 5.4. Let c̃ : Rn×Rm×(0, 1] → R be defined as in (4.26). If {(xk,yk)} is a
sequence of weak d-stationary points of (5.46) with ε := εk ↓ 0, then any accumulation
point of {(xk,yk)} is a weak d-stationary point of (5.9).

5.2 Density function ρ under Assumption 3.2

Section 5.1 focuses on the study of (5.1) with a density function ρ satisfying Assump-
tion 3.1. From Table 1, we find that the other three density functions satisfy
Assumption 3.2 and the corresponding continuous relaxation function r(·, µ) owns
the continuous differentiability on R++, which may bring some convenience to its
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algorithm research when c is smooth. Thus, in this subsection, we pay attention to
the results of the continuous relaxation to (5.1) with density function ρ satisfying
Assumption 3.2 and consider (5.1) under the following conditions:
(i) functions c, gl, l ∈ [n̂] and hk, k ∈ [m̂] are Lipschitz continuously differentiable;
(ii) the feasible regions are defined by the box constraints, i.e.

X := X̃ = {x ∈ Rn : u ≤ x ≤ u}, Y := Ỹ = {y ∈ Rm : v ≤ y ≤ v},

where u, u, v and v are defined as in (5.4);
(iii) Assumption 5.1 holds, in which the conditions of (5.12) and (5.15) can be ignored;
(iv) under Assumption 3.2, there exist ρ̄2 > 0 and ρ0 > 0 such that

ρ(s) ≤ ρ̄2, ∀s ∈ (0, α) and limt↓0 ρ(t) = ρ0. (5.47)

In this case, (5.2) holds naturally and we will consider the second order necessary
optimality condition of (5.1).

To proceed, we first introduce some notations on the existing parameters.
• By virtue of the Lipschitz continuous differentiability of c on X ×Y, there exists
Lc,2 such that for any x ∈ X , y ∈ Y, it holds

sup{|Hii|, |Mjj | : H ∈ ∂2xxc(x,y),M ∈ ∂2yyc(x,y), i ∈ [n], j ∈ [m]} ≤ Lc,2.

• Since gl : R → R is Lipschitz continuous differentiable on Xi for l ∈ Ni, and Xi

is compact, there exists Lg,2 such that

sup{|ξ| : ξ ∈ ∂2gl(xi),xi ∈ Xi, i ∈ [n], l ∈ Ni} ≤ Lg,2.

Similarly, there exists Lh,2 such that

sup{|η| : η ∈ ∂2hk(yj),yj ∈ Yj , j ∈ [m], k ∈ Mj} ≤ Lh,2.

• For t ∈ R, i ∈ [n], j ∈ [m] and δ > 0, denote

A+
δ,i(t) = {l ∈ Ni : 0 < gl(t) < δ}, B+

δ,j(t) = {k ∈ Mj : 0 < hk(t) < δ}.

Proceed to the next step, and let

µ̄2 = min

{
τ

α
,
λσρ

2

Lc,1
,

λ1ρ̌2σ
2

τLc,2/α+ λ1ρ̄2Lg,2
,

λ2ρ̌2σ
2

τLc,2/α+ λ2ρ̄2Lh,2

}
(5.48)

with λ = min{λ1, λ2}. In particular, when gl, hk are linear functions and c(·, ·) is also
linear with respect to x and y, respectively, then µ̄2 =

{
τ
α ,

λσρ
2

Lc,1

}
. If we further choose

ρ as in Example 3.3 or Example 3.4, then, µ̄2 = τ
α .

In what follows, suppose that ρ satisfies Assumption 3.2 and 0 < µ < µ̄2 with
µ̄2 defined in (5.48). By the Lipschitz continuity of ρ on R++, r(gl(t), µ) is Lipschitz
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continuous differentiable on {t : gl(t) > 0}, ∀l ∈ [n̂]. When gl(t) > 0, by (3.9), the
second order generalized derivative of r(gl(t), µ) with respect to t satisfies

∂2ttr(gl(t), µ) ⊆ ∂̃2ttr(gl(t), µ) :=
∂ρ(s)s=gl(t)/µ

µ2
(g′l(t))

2 +
ρ(gl(t)/µ)

µ
∂2gl(t), (5.49)

where ρ(gl(t)/µ) = 0 if gl(t) ̸∈ [0, τ). Then, ∂̃2ttr(gl(t), µ) = {0} when gl(t) ̸∈ [0, τ).
Thus, if x∗ is a local solution of minx∈X fR(x,y∗, µ) and A+

τ,i(x
∗
i ) ̸= ∅ for i ∈ [n], by

Assumption 5.1 and the second order necessary optimality condition [30], then{
there exists a unique l̂ ∈ Ni such that 0 < gl̂(x

∗
i ) < τ and

there exists a ωi ∈ [∂2xxc(x
∗,y∗)]ii + λ1∂̃

2
ttr(gl̂(t), µ)t=x∗

i
such that ωi ≥ 0,

(5.50)

which implies x∗
i ∈ int(Xi). Similarly, if y∗ is a local solution of maxy∈Y fR(x∗,y, µ)

and B+
τ,j(y

∗
j ) ̸= ∅ for j ∈ [m], then{

there exists a unique k̂ ∈ Mj such that 0 < hk̂(y
∗
j ) < τ and

there exists a ϖj ∈ −[∂2yyc(x
∗,y∗)]jj + λ2∂̃

2
ttr(hk̂(t), µ)t=y∗

j
such that ϖj ≥ 0.

(5.51)
Thus, inspired by the first and second order necessary optimality conditions to

x∗ ∈ argmin
x∈X

fR(x,y∗, µ) and y∗ ∈ argmax
y∈Y

fR(x∗,y, µ), (5.52)

we introduce the following definition.
Definition 5.2. We call (x∗,y∗) ∈ X ×Y a weak second order stationary point
of problem (5.9), if

0 ∈ ∂̃xf
R(x∗,y∗, µ) +NX (x∗) and 0 ∈ −∂̃yfR(x∗,y∗, µ) +NY(y

∗), (5.53)

where ∂̃xf
R(x∗,y∗, µ) and ∂̃yf

R(x∗,y∗, µ) are defined in (5.26) and (5.27), and for
any i ∈ [n] with A+

τ,i(x
∗
i ) ̸= ∅ and j ∈ [m] with B+

τ,j(y
∗
j ) ̸= ∅, (5.50) and (5.51) hold,

respectively.
It is clear that (5.53) and (5.50)-(5.51) are weaker than the general first and sec-

ond order necessary optimality conditions to (5.9), respectively, so we call it “weak”
stationary point.
Theorem 5.3. Suppose problem (5.1) satisfies Assumption 5.1, density function ρ
satisfies Assumption 3.2 and 0 < µ < µ̄2 with µ̄2 defined in (5.48). Then, the following
statements hold.
(i) If (x∗,y∗) is a weak second order stationary point of (5.9), then

gl(x
∗
i ) ̸∈ (0, αµ), ∀l ∈ Ni, i ∈ [n]; hk(y

∗
j ) ̸∈ (0, αµ), ∀k ∈ Mj , j ∈ [m]. (5.54)

(ii) (x∗,y∗) is a saddle point of problem (5.1) if and only if it is a saddle point of
(5.9).
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(iii) (x∗,y∗) is an αµ-strong local saddle point of (5.1) if it is a local saddle point of
(5.9).

(iv) When functions gl, hk are convex for all l ∈ [n̂] and k ∈ [m̂], (x∗,y∗) is an αµ-
strong local saddle point of (5.1) if it is a weak second order stationary point of
(5.9).

Proof. To prove (i), we argue the results in (5.54) by contradiction. Suppose there
exist ĩ ∈ [n] and l̃ ∈ Nĩ such that 0 < gl̃(x

∗
ĩ
) < αµ.

By Assumption 5.1, since αµ < τ , then x∗
ĩ
∈ int(Xĩ), and for any l ∈ Nĩ, l ̸= l̃,

gl(x
∗
ĩ
) ̸∈ [0, τ ], which together with (3.4) implies that

∇tr(t, µ)t=gl(x∗
ĩ
) = 0 and ∇2

t r(t, µ)t=gl(x∗
ĩ
) = 0.

Next, we obtain the contradiction to 0 < gl̃(x
∗
ĩ
) < αµ from two cases.

Case 1: sup{a : a ∈ ∂ρ(gl̃(x
∗
ĩ
)/µ)} > −ρ̌2. By Assumption 3.2, it means that

ρ(gl̃(x
∗
ĩ
)/µ) ≥ ρ

2
. Similar to the discussion in Proposition 5.1, by µ < µ̄2 ≤

λ1σρ2/Lc,1, it brings a contradiction.
Case 2: sup{a : a ∈ ∂ρ(gl̃(x

∗
ĩ
)/µ)} ≤ −ρ̌2. By (5.49) and (5.50), there exist ξĩ ∈

[∂2xxc(x
∗,y∗)]̃ĩi, ηĩ ∈ ∂ρ(t)t=gl̃(x

∗
ĩ
)/µ and ζĩ ∈ ∂2gl̃(t)t=xĩ∗

such that

ξĩ + λ1
ηĩ
µ2

(g′
l̃
(x∗

ĩ
))2 + λ1

ρ(gl̃(x
∗
ĩ
)/µ)

µ
ζĩ ≥ 0. (5.55)

Recalling Assumption 3.2 and by µ < τ
α , an estimation on the left side of (5.55)

gives

0 ≤ Lc,2τ

α
− λ1ρ̌2σ

2/µ+ λ1ρ̄2Lg,2, (5.56)

which contradicts to µ < µ̄2 ≤ λ1ρ̌2σ
2

τLc,2/α+λ1ρ̄2Lg,2
given in (5.48). Therefore, gl(x

∗
i ) ̸∈

(0, αµ), ∀l ∈ Ni, i ∈ [n]. Similarly, hk(y
∗
j ) ̸∈ (0, αµ), ∀k ∈ Mj , j ∈ [m]. Thus, (i)

holds. Moreover, (i) implies Assumption 4.1. By Theorem 4.1, we can obtain (ii) and
(iii).

(iv) Suppose (x∗,y∗) is a weak second order stationary point of (5.9). To proceed
the proof, we use a slight modification of functions in (5.42) and (5.43) as follows

Wx∗,y∗,µ(x) = c(x,y∗) +
λ1ρ0
µ

∑n

i=1

∑
l∈A0

i (x
∗
i )
gl(xi)+, (5.57)

Vx∗,y∗,µ(y) = −c(x∗,y) +
λ2ρ0
µ

∑m

j=1

∑
k∈B0

j (y
∗
j )
hk(yj)+, (5.58)

which are convex on X and Y, respectively. By Assumption 3.2 and (3.3), if gl(x
∗
i ) ≥

αµ or gl(x
∗
i ) < 0 for some i ∈ [n] and l ∈ Ni, then ∂tr(t, µ)t=gl(x∗

i )
g′l(x

∗
i ) = 0. From

(i), (x∗,y∗) satisfies (5.54). Thus, using (3.3) again and by (5.53), we have

0 ∈ ∇xc(x
∗,y∗) +

λ1ρ0
µ

∑n

i=1

(∑
l∈A0

i (x
∗
i )
[0, 1]g′l(x

∗
i )

)
ei +NX (x∗), (5.59)
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which implies 0 ∈ ∂xWx∗,y∗,µ(x
∗) + NX (x∗). Thus, x∗ is a global minimizer of

Wx∗,y∗,µ(x) on X . In what follows, similar to the analysis in Theorem 5.2, we get that
(x∗,y∗) is an αµ-strong local saddle point of (5.1).

5.3 Continuous relaxations defined by different density
functions

In this subsection, we use three examples to explain the different properties of the
continuous relaxation problems constructed by the density functions that satisfy
Assumption 3.1 or 3.2. In particular, we use the density functions in Examples 3.1 and
3.3 to construct two different continuous relaxation problems, which have different
relations with min-max problem (1.1) regarding local saddle points and strong local
saddle points.

• In Example 5.1, we show that we can provide a possible larger lower bound to
the saddle points of (5.1) by the analysis on the continuous relaxation models
with different density functions.

• It is interesting to see in Example 5.2 that the bounds in (4.1) and (4.2) with
0 < µ < µ̄1, µ̄1 in (5.30) and α = 1 (given in subsection 5.1 by the continuous
relation model with a density function in Example 3.1 and p = 1) is satisfied by
the global minimax points of this example, but these bounds with 0 < µ < µ̄2,
µ̄2 in (5.48), and α in Assumption 3.2 (given in subsection 5.2 by the continuous
relation model with a density function satisfying Assumption 3.2) may not hold
to the global minimax points.

• Note that all the functions r(·, µ) in Examples 3.1-3.4 can be expressed by DC
functions and continuously differentiable on (0, αµ), where p = 1 in Example 3.1.
Then, when c is continuously differentiable, both the weak d-stationary point and
weak second order stationary point to these continuous relaxation models are
well-defined. In Example 5.3, we will show that a weak second order stationary
point is not necessary to be a weak d-stationary point of the continuous relaxation
problem with a density function in Example 3.1 and p = 1. Moreover, a weak d-
stationary points is also not necessary to be a weak second order stationary point
of the continuous relaxation problem with a density function in Example 3.3.

Example 5.1. Consider

min
x∈[−2,2]

max
y∈[−2,2]

f(x,y) := (x− 1)(y − 1) + 3∥x∥0 − 3∥y∥0. (5.60)

In Example 2.1, we have verified that (0, 0) is the unique saddle point of (5.60).
Assumption 5.1 holds with σ = 1, τ = 2, Lc,1 = 3 and Lc,2 = Lg,2 = Lh,2 = 0.

Case 1: Choose the density function ρ in Example 3.1 with p = 1 to build up its
continuous relaxation. Then, α = 1, ρ = 1 and then µ̄1 = 1 in (5.30). Since we can
choose any µ in (0, µ̄1), by Theorem 5.1, it gives that the saddle points and global
minimax points of (5.60) satisfy the lower bounds that

either x = 0 or |x| ≥ ν and either y = 0 or |y| ≥ ν (5.61)

with ν = 1.
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Case 2: Choose the density function ρ in Example 3.3 with α = 2 to build up
its continuous relaxation. Then, the analysis in subsection 5.2 gives that µ̄2 = 1. By
Theorem 5.3, we have that any saddle point of (5.60) satisfies the lower bound in
(5.61) with ν = 2.
Example 5.2. Consider

min
x∈[−2,2]

max
y∈[−2,2]

f(x,y) := (x− 1)(y − 1) + ∥x∥0 − ∥y∥0.

Example 2.1 shows that (3/2, 0) and (3/2, 2) are global minimax points of this problem.
By basic calculation, µ̄1 = 1/3 when we define ρ by Example 3.1 with p = 1. Then,

by Theorem 5.1, any global minimax point of this example satisfies (5.61) with any
ν = µ < µ̄1.

However, when we define ρ by Example 3.3 with α = 2, then µ̄2 = 1. It is obvious
that neither of the two global minimax points satisfies (5.61) with ν = αµ when 3/4 <
µ < µ̄2.
Example 5.3. Consider

min
x∈[−2,2]

max
y∈[−2,2]

f(x,y) := (x− 1)(1− y) + ∥x∥0 − ∥y∥0. (5.62)

On one hand, choose the density function ρ in Example 3.1 with p = 1 and µ = 1/4
to build up its continuous relaxation, where 0 < µ < µ̄1 = 1/3. For this case, we
can verify that (−1/4, 1/4) is a weak second order stationary point of its continuous
relaxation model, but it is not a weak d-stationary point of it and is also not a local
saddle point of (5.62).

On the other hand, choose the density function ρ in Example 3.3 with α = 1 and
µ = 1 to build up its continuous relaxation, where 0 < µ < µ̄2 = 2. For this case, we
can easily check that (1, 1) is a weak d-stationary point but not a weak second order
stationary point of this continuous relaxation model, and it is not a local saddle point
of (5.62).

At the end of this subsection, we summarize the relations between min-max prob-
lem (5.1) and its continuous relaxation problem (5.9) in Fig. 1. From Fig. 1, we find
that both weak d-stationary point and weak second order stationary point of (5.9) are
necessary conditions to the saddle points of (5.1) and (5.9), but sufficient conditions
to the ν-strong local saddle points of (5.1). Getting a bound on ν in (2.8) satisfied by
all saddle points of (5.1) would allow us to discard a certain number of local saddle
points which are not saddle points. When problem (5.1) satisfies Assumption 5.1, by
Theorem 5.1 and Theorem 5.2, we can conclude that any saddle point of (5.1) satis-
fies the lower bounds in (2.8) with ν := µ < µ̄1, which is obtained by the continuous
relaxation model with ρ in Example 3.1 and p = 1. For a more special case, we also
obtain from Theorem 5.3 that any saddle point of (5.1) satisfies the lower bounds in
(2.8) with ν := αµ < αµ̄2, which is obtained by the continuous relaxation model with
ρ satisfying Assumption 3.2.
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Fig. 1: Relations between problems (5.1) and (5.9) with different relaxations

6 Applications

In this section, we use three examples to explain the motivation and theoretical results
of this paper. Moreover, we present numerical results for the third example.

6.1 Distributionally robust sparse convex regression

The sparse convex regression problem

min
x∈X

E[φ(x; cξ, dξ)] + λ1∥x∥0

has wide applications in data science, where X = {x ∈ Rn : u ≤ x ≤ u} with u < u,
(cξ, dξ) ∈ Rn × R represents a random data set of interest, φ(·; cξ, dξ) : Rn → R is
a convex loss function and E is the expectation. Widely used convex loss functions
include the censored function (max(c⊤ξ x, 0)−dξ)2 and the ℓ1 function |c⊤ξ x−dξ|, which
are nonsmooth functions. Then, the distributionally robust sparse convex regression
problem can be expressed by

min
x∈X

max
y∈Ŷ

m∑
i=1

yiφi(x) + λ1∥x∥0 (6.1)

with φi(x) := φ(x; ci, di), a set of m samples {ci, di}mi=1 and the approximation of

the ambiguity set Ŷ = {y ∈ Rm : y ≥ 0, e⊤y = 1, ∥Ay − b∥ ≤ δ}. Here (A,b, δ) ∈
Rk×m×Rk×R+ describes the approximated ambiguity set in a general moment form.
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Taking account of the constraint on y, the following penalty form

min
x∈X

max
y∈Y

m∑
i=1

yiφi(x)− βmax{∥Ay − b∥2 − δ2, 0}︸ ︷︷ ︸
c(x,y)

+λ1∥x∥0 (6.2)

for (6.1) is promising, where β > 0 is a penalty parameter and Y = {y ∈ Rm : y ≥
0, e⊤y = 1}. In (6.2), c(x,y) is nonsmooth with respect to both x and y. However,
thanks to the method in subsection 4.3, a smoothing function to c can be easily
constructed with the properties in (4.23) and (4.24). For example, if φi(x) = |c⊤i x−di|,
then we can set

c̃(x,y, ε) =

m∑
i=1

yiθ(c
⊤
i x− di, ε)− βϕ(∥Ay − b∥2 − δ2, ε),

where ϕ(s, ε) is a smoothing function of the plus function s+ and θ(s, ε) is a smoothing
function of the absolute value function |s|. Note that ϕ(s, ε) can be defined by any one
of the following formulations:

ϕ(s, ε) = s+ ε ln(1 + e−
s
ε ), ϕ(s, ε) =

1

2
(s+

√
s2 + 4ε2),

ϕ(s, ε) =


s+ if |s| > ε

(s+ ε)2

4ε
if |s| ≤ ε,

ϕ(s, ε) =

s+
ε

2
e−

s
ε if s > 0

ε

2
e

s
ε if s ≤ 0,

and θ(s, ε) can be given by θ(s, ε) = ϕ(s, ε) + ϕ(−s, ε). From Definition 4.1, it is clear
that c̃ is a smoothing convex-concave function of c. Moreover, by Proposition 4.1, it
satisfies (4.23) and (4.24).

6.2 Robust bond portfolio construction

We consider a portfolio of n bonds with quantities x ∈ X ⊆ Rn
+ and time periods

t = 1, . . . , T , where the set X = {x ∈ Rn : u ≤ x ≤ u} gives a range of possible
quantities for each bond. Let αi,t denote the cash flow from bond i in period t, which
includes the coupon payments and the payment of the face value at maturity.

Let p ∈ Rn
+ denote the price of the bonds with

pi =

T∑
t=1

αi,texp(−t(ut + si)), i = 1, . . . , n,

where si ≥ 0 is the spread for bond i and ut is the yield curve at time t. The portfolio
value is given by p⊤x. Let ϕ be a smooth convex nominal function that may include
tracking error against a benchmark, a risk term and a transaction cost term.

Let y = (u⊤, s⊤)⊤ ∈ Rn+T . The set Y = {y ∈ Rn+T : v ≤ y ≤ v} gives a range of
possible values for each point in the yield curve and for each spread.
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A version of the robust bond portfolio construction model in [35] is the following
convex-concave saddle point problem

min
x∈X

max
y∈Y

c(x,y) := ϕ(x)− λ

n∑
i=1

T∑
t=1

xiαi,t exp(−t(yt + yT+i))− β∥Ay − b∥1,

where ∥Ay − b∥1 describes the uncertainties in yield curves and spreads, and c(x,y)
is a nonsmooth function with respect to y. A robust bond portfolio construction with
sparse selection of bonds is as follows

min
x∈X

max
y∈Y

c(x,y) + λ1∥x∥0. (6.3)

Problem (6.3) is a nonsmooth convex-concave saddle point problem with cardinal-
ity penalty ∥x∥0, where X is a convex set with int(X ) ̸= ∅, and Y is a convex set. Note
that the assumption int(Y) ̸= ∅ in (5.2) and Assumption 5.1-(ii) can be removed, since
(6.3) does not have a cardinality function of y. A smoothing function of ∥Ay − b∥1
in the function c can be constructed by θ(s, ε) in subsection 6.1.

6.3 Sparse convex-concave logistic regression saddle point
problems

Motivated by the unconstrained convex-concave logistic regression saddle point
problem in [5], we consider the following saddle point problem

min
x∈X

max
y∈Y

c(x,y) :=

N∑
k=1

log(1 + e−αka
⊤
k x) + x⊤Ay −

N∑
k=1

log(1 + e−βkb
⊤
k y), (6.4)

where X = {x : ∥x∥∞ ≤ 1}, Y = {y : ∥y∥∞ ≤ 1}, ak ∈ {0, 1}n,bk ∈ {0, 1}m,
A ∈ {0, 1}n×m and αk, βk ∈ {−1, 1}, for all k ∈ [N ]. To find a sparse solution, we
consider the following min-max model

min
x∈X

max
y∈Y

c(x,y) + λ1∥x∥0 − λ2∥y∥0 (6.5)

with λ1 > 0 and λ2 > 0. It is clear that c is a smooth convex-concave function and
Assumption 5.1 holds for (6.5) with τ = σ = 1. It has

∇xc(x,y) =

N∑
k=1

−αke
−αka

⊤
k x

1 + e−αka⊤
k x

ak +Ay, ∇yc(x,y) = −
N∑

k=1

−βke−βkb
⊤
k y

1 + e−βkb⊤
k y

bk +A⊤x.

By simple calculation, we can set Lc,1 in (5.22) by

Lc,1 = max
{
∥a∥∞ + ∥A∥∞, ∥b∥∞ + ∥A⊤∥∞, 1

}
, (6.6)

where a = (a1, . . . ,aN ) and b = (b1, . . . ,bN ).
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If we choose the density function in Example 3.1 with p = 1 to construct continuous
relaxation function fR(x,y, µ), then α = ρ = 1. From the weak d-stationary point
defined in Definition 5.1 and by Theorem 5.2, if (x∗,y∗) ∈ X×Y is a weak d-stationary
point of minx∈X maxy∈Y f

R(x,y, µ), then (x∗,y∗) is a µ-strong local saddle point of
(6.5), that is

|x∗
i | ̸∈ (0, µ), |y∗

j | ̸∈ (0, µ), ∀i ∈ [n], j ∈ [m],

0 ∈ [∇xc(x
∗,y∗)]i +NXi(x

∗
i ), for i ∈ [n] satisfying |x∗

i | ≥ µ,

0 ∈ −[∇yc(x
∗,y∗)]j +NYj (y

∗
j ), for j ∈ [m] satisfying |y∗

j | ≥ µ.

(6.7)

There are many interesting algorithms for min-max problems [1, 4, 15, 25, 36, 42,
48, 49]. To illustrate our theoretical results, we solve convex-concave min-max problem
(6.4) by the Proximal Gradient Descent Ascent (PGDA) algorithm proposed in [15]
as follows

xk+1 = argmin
x∈X

Q(x,xk;yk,yk), yk+1 = argmax
y∈Y

Q(xk+1,xk;y,yk),

where

Q(x, x̃;y, ỹ) := ⟨∇xc(x̃, ỹ),x− x̃⟩+ ⟨∇yc(x̃, ỹ),y − ỹ⟩+ 1

2
γ∥x− x̃∥2 − 1

2
γ∥y − ỹ∥2,

and γ ≥ max {∥a∥∞, ∥b∥∞} ≥ maxx∈X ,y∈Y,i∈[n],j∈[m]{|[∇2
xxc(x,y)]ii|, |[∇2

yyc(x,y)]jj |}.
If (xk,yk) generated by PGDA converges to (x̄, ȳ), then

0 ∈ ∇xc(x̄, ȳ) +NX (x̄), 0 ∈ −∇yc(x̄, ȳ) +NY(ȳ),

which implies that (x̄, ȳ) is a saddle point of (6.4) by the convexity-concavity of c.
To find a sparse local saddle point of (6.5), we define the continuous relaxation

Qdx̃,dỹ
(x, x̃;y, ỹ;µ) := Q(x, x̃;y, ỹ) + λ1

n∑
i=1

Φdx̃i (xi, µ)− λ2

m∑
j=1

Φdỹj (yj , µ), (6.8)

where Φds̃(s, µ) =


1

µ
|s| if |s̃| < µ

1 if |s̃| ≥ µ.

Notice that for fixed x̃ ∈ X , ỹ ∈ Y and µ > 0,

Qdx̃,dỹ
(·, x̃; ·, ỹ;µ) is convex-concave.

Combining the PGDA with the alternating index at xk and yk in [3], we propose
the following Alternating Proximal Gradient Descent Ascent (APGDA) algorithm

xk+1 = argmin
x∈X

Qd
xk ,dyk

(x,xk;yk,yk;µ),

yk+1 = argmax
y∈Y

Qd
xk+1 ,dyk

(xk+1,xk;y,yk;µ).
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Although the two steps in APGDA can be considered as a generalization Algo-
rithm 3.1 in [3] for solving two minimization problems: minx∈X f(x,y

k) and
miny∈Y −f(xk+1,y), the convergence analysis of APGDA is not trivial. In what
follows, we give a preliminary result on the convergence of APGDA.
Proposition 6.1. For any initial point (x0,y0) ∈ X × Y, if (xk,yk) generated by

APGDA with µ < min{λ1,λ2}
Lc,1

converges to a point (x̄, ȳ), then it is a µ-strong local

saddle point of (6.5).

Proof. Let Φ1(s, µ) = |s|/µ and Φ2(s, µ) = 1. There is a subsequence of {(xk,yk)}
(also denoted by {(xk,yk)}) and vectors t ∈ Rn, w ∈ Rm with ti, wj ∈ {1, 2} such

that Φ
d
xk
i (s, µ) = Φti(s, µ) and Φ

d
yk
j (s, µ) = Φwj

(s, µ) for any i ∈ [n], j ∈ [m] and
k ∈ N. From APGDA, we have

0 ∈ [∇xc(x
k,yk)]i + γ(xk+1

i − xk
i ) + λ1∇sΦti(x

k+1
i , µ) +NXi(x

k+1
i ), ∀i ∈ [n],

0 ∈ −[∇yc(x
k,yk)]j + γ(yk+1

j − yk
j ) + λ2∇sΦwj

(yk+1
j , µ) +NYj (y

k+1
j ), ∀j ∈ [m].

Letting k → ∞, for any i ∈ [n] and j ∈ [m], we obtain

0 ∈ [∇xc(x̄, ȳ)]i + λ1∇sΦti(x̄i, µ) +NXi
(x̄i),

0 ∈ −[∇yc(x̄, ȳ)]j + λ2∇sΦwj (ȳj , µ) +NYj (ȳj).
(6.9)

If there exists i ∈ [n] such that |x̄i| ∈ (0, µ), then x̄i ∈ int(Xi) and the first inclusion
in (6.9) gives Lc,1 ≤ λ1

µ , which leads a contradiction. Thus, |x̄i| ̸∈ (0, µ), ∀i ∈ [n].

Similarly, |ȳj | ̸∈ (0, µ), ∀j ∈ [m].
If there exists i ∈ [n] such that |x̄i| = µ and ti = 1, then the first inclusion in (6.9)

also brings a contradiction to the value of µ. Putting forward these results into (6.9)
gives

|x̄i| ̸∈ (0, µ), |ȳj | ̸∈ (0, µ), ∀i ∈ [n], j ∈ [m],

0 ∈ [∇xc(x̄, ȳ)]i +NXi
(x̄i), ∀i ∈ [n], x̄i ̸= 0,

0 ∈ [−∇yc(x̄, ȳ)]j +NYj (ȳj), ∀j ∈ [m], ȳj ̸= 0.

Recalling the results in Theorem 2.1, we confirm that (x̄, ȳ) is a µ-strong local saddle
point of (6.5).

For a given point, to determine whether it is a saddle point of (6.4) or a µ-strong
local saddle point of (6.5), by the normal cones of X = {x : ∥x∥∞ ≤ 1} and Y = {y :
∥y∥∞ ≤ 1}, we define the following evaluation functions

Ri(x) =


([∇xc(x,y)]i)+ if xi = 1

(−[∇xc(x,y)]i)+ if xi = −1

|[∇xc(x,y)]i| otherwise,

Sj(y) =


(−[∇yc(x,y)]j)+ if yj = 1

([∇yc(x,y)]j)+ if yj = −1

|[∇yc(x,y)]j | otherwise.

It is clear that Ri(x) ≥ 0, ∀i ∈ [n] and Sj(y) ≥ 0, ∀j ∈ [m]. For x̄ ∈ X and ȳ ∈ Y, it
holds
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• p(x̄) :=
∑n

i=1Ri(x̄) = 0 and q(ȳ) :=
∑m

j=1 Sj(ȳ) = 0 if and only if (x̄, ȳ) is a
saddle point of (6.4).

• p̃(x̄) :=
∑

i:x̄i ̸=0(Ri(x̄) + max{µ − |x̄i|, 0}) = 0 and q̃(ȳ) :=
∑

j:ȳj ̸=0(Sj(ȳ) +

max{µ−|ȳj |, 0}) = 0 if and only if (x̄, ȳ) is a µ-strong local saddle point of (6.5).
Although the sequence convergence of PGDA and APGDA cannot be guaranteed,

we can compare the behaviour of the sequences generated by PGDA and APGDA
from the same initial points. We conduct a simple test experiment with n = 20,
m = 30, N = 50, λ1 = λ2 = 1 in Matlab. We randomly generate a binary matrix
A ∈ {0, 1}n×m, and for k ∈ [N ] randomly generate ak ∈ {0, 1}n, bk ∈ {0, 1}m with
2 nonzero elements, αk, βk ∈ {−1, 1}. We compute the constant Lc,1 as in (6.6) and
obtain µ = 0.0323 < µ̄1, where µ̄1 = min {1, 1/Lc,1} is defined as in (5.30). We choose
an initial point (x0,y0) = 0.2e for running both PGDA and APGDA.

In Fig. 2, (a), (c), (e) plot convergent sequences of xk, yk, p(xk), q(yk) generated by
PGDA and (b), (d), (f) plot convergent sequences of xk, yk, p̃(xk), q̃(yk) generated by
APGDA, where each curve in (a)-(d) represents one component of the corresponding
vectors. From Fig. 2, we find that the limit point of the sequence (xk,yk) generated
by PGDA does not have a zero element and some elements of it do not satisfy the
lower bounds in (6.7). However, more than half elements of the limit point of (xk,yk)
generated by APGDA are zero, and all elements of it satisfy the lower bounds in (6.7).
This is consistent with the theoretical results and shows the superiority of (6.5) in
finding a sparse solution. Moreover, in Fig. 2-(e), from the convergence of p(xk) and
q(yk) on (xk,yk) generated by PGDA, we confirm that the limit point of (xk,yk) is
a saddle point of (6.4), while Fig. 2-(f) shows the convergence of p̃(xk) and q̃(yk) on
(xk,yk) generated by APGDA, which confirms that the limit point of this sequence
is a µ-strong local saddle point of (6.5).

7 Conclusion

In this paper, we prove the existence of local saddle points and global minimax points
of problem (1.1) and define a class of strong local saddle points of it. To construct
interesting continuous relaxations to (1.1) based on convolution, we introduce two
classes of density functions which satisfy Assumptions 3.1 and 3.2, respectively. The
induced continuous relaxations include the capped-ℓp with 0 < p ≤ 1, scaled SCAD,
scaled MCP, hard thresholding functions as special cases. Moreover, we establish the
relations between problem (1.1) and its continuous relaxation (3.12) regarding their
saddle points, local saddle points and global minimax points by using the lower bound
properties of g(x) and h(y) in (4.1)-(4.2) at the local saddle points and global minimax
points of the continuous relaxation problem. Moreover, we define the weak d-stationary
points and weak second order stationary points of problem (5.1), which are necessary
conditions for the local saddle points of its continuous relaxation problem (5.9), while
sufficient conditions for the strong local saddle points of (5.1). In addition, we study
the smoothing approximation of (5.9) by using a smoothing convex-concave function
of nonsmooth c and prove that any accumulation point of weak d-stationary points
of the smoothing approximation problem is a weak d-stationary point of (5.9) as the
smoothing parameter goes to zero.
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(f) p̃(xk) and q̃(yk) by APGDA

Fig. 2: Convergence of xk, yk, p(xk) and q(yk) generated by PGDA and convergence
of xk, yk, p̃(xk) and q̃(yk) generated by APGDA
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