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Abstract. The sign-constrained Stiefel manifold in Rn×r is a segment of the Stiefel manifold with
fixed signs (nonnegative or nonpositive) for some entries of the matrices. It includes the nonnegative
Stiefel manifold as a special case. We present global and local error bounds that provide an inequality
with easily computable residual functions and explicit coefficients to bound the distance from matrices
in Rn×r to the sign-constrained Stiefel manifold. Moreover, we show that the error bounds cannot be
improved except for the multiplicative constants under some mild conditions, which explains why two
square-root terms are necessary in the bounds when 1 < r < n and why the ℓ1 norm can be used in
the bounds when r = n or r = 1 for the sign constraints and orthogonality, respectively. The error
bounds are applied to derive exact penalty methods for minimizing a Lipschitz continuous function
with orthogonality and sign constraints.
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1 Introduction Let n and r be two integers such that 1 ≤ r ≤ n, and

Sn,r := {X ∈ Rn×r : XTX = Ir} be the Stiefel manifold, where Ir is the r× r identity
matrix. Given two disjoint subsets P and N of {j : 1 ≤ j ≤ r}, denote

Rn×r
S

:=
{
X ∈ Rn×r : Xi,j ≥ 0 for j ∈ P and Xi,j ≤ 0 for j ∈ N , 1 ≤ i ≤ n

}
,

which is a subset of Rn×r with column-wise nonnegative or nonpositive constraints on
some columns.

In this paper, we consider the sign-constrained Stiefel manifold defined as

Sn,rS
:= Sn,r∩ Rn×r

S .

When P = {j : 1 ≤ j ≤ r}, Rn×r
S reduces to the nonnegative orthant Rn×r

+ , and Sn,rS

reduces to the nonnegative Stiefel manifold Sn,r+ := {X ∈ Sn,r : X ≥ 0}.
If we define the sign matrix S ∈ Rn×r as the matrix with

(1.1) Si,j =


1, if j ∈ P,

−1, if j ∈ N ,

0, otherwise,

1 ≤ i ≤ n,

then Sn,rS can be formulated as

Sn,rS = {X ∈ Rn×r : S ◦X ≥ 0, XTX = Ir},
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where ◦ signifies the Hadamard product. We will investigate error bounds

dist(X, Sn,rS ) ≤ ν∥(S ◦X)−∥qF for X ∈ Sn,r,(1.2)

dist(X, Sn,rS ) ≤ ν∥XTX − Ir∥qF for X ∈ Rn×r
S ,(1.3)

dist(X, Sn,rS ) ≤ ν(∥(S ◦X)−∥qF + ∥XTX − Ir∥qF) for X ∈ Rn×r,(1.4)

where ν and q are positive constants, and Y− := max{−Y, 0} stands for the entry-wise
nonnegative part of −Y for any matrix Y . The bounds (1.2)–(1.4) are global error
bounds for Sn,rS relative to Sn,r, Rn×r

S , and Rn×r, respectively, with the first two being
special cases of the last one.

According to the error bound of Luo-Pang presented in [19, Theorem 2.2], there
exist ν > 0 and q > 0 such that the inequalities in (1.2)–(1.4) hold for all X in a
compact subset of Rn×r. Moreover, due to the error bound for polynomial systems
given in [14, Corollary 3.8], for all X in a compact subset of Rn×r, there exists a ν
such that the inequalities in (1.2)–(1.4) hold with a dimension-dependent value of q
that is less than 6−2nr. However, to the best of our knowledge, the explicit value
of ν and the value of q that is independent of the dimension in (1.2)–(1.4) are still
unknown even in the special case of Sn,rS = Sn,r+ , and it is also unknown whether the
error bounds hold in an unbounded set.

Being a fundamental concept in optimization, error bound plays a crucial role
in both theory and methods for solving systems of equations and optimization prob-
lems [19, 22]. One of its applications is to develop penalty methods for constrained
optimization problems. Let F : Rn×r → R be a continuous function. The minimization
problem

(1.5) min {F (X) : X ∈ Sn,rS }

can be found in a wide range of optimization models in data science, including non-
negative principal component analysis [15, 30], nonnegative Laplacian embedding [18],
discriminative nonnegative spectral clustering [28], orthogonal nonnegative matrix
factorization [23, 29], and some K-indicators models for data clustering [3, 26].

Even in the special case of Sn,rS = Sn,r+ , the constraints of problem (1.5) are
challenging to handle due to their combinatorial nature (note that, for example, Sn,n+

equals the set of all permutation matrices on Rn). To deal with these difficult constraints,
the penalty problems

min {F (X) + µ∥(S ◦X)−∥qF : X ∈ Sn,r} ,(1.6)

min
{
F (X) + µ∥XTX − Ir∥qF : X ∈ Rn×r

S

}
,(1.7)

min
{
F (X) + µ(∥(S ◦X)−∥qF + ∥XTX − Ir∥qF) : X ∈ Rn×r

}
,(1.8)

have been widely used for solving (1.5) with Sn,rS = Sn,r+ , where µ is the penalty
parameter. See for example [1, 24, 28, 30] and the references therein. However, the
exactness of problems (1.6)–(1.8) regarding global minimizers and local minimizers of
problem (1.5) is not well understood.

The main contribution of this paper is to establish the error bounds (1.2)–(1.4)

with ν = 15r
3
4 and q = 1/2 without any additional restriction on X. Moreover, we

demonstrate that the error bounds cannot hold for q > 1/2 under mild conditions
when 1 < r < n and Sn,rS = Sn,r+ . In addition, we show that the error bounds (1.2)–(1.4)
hold with q = 1 and ν = 7

√
r when |P|+ |N | = 1, and hold with q = 1 and ν = 9n

when |P| + |N | = n, but they cannot hold with q > 1. As an application of error



TIGHT ERROR BOUNDS FOR THE SIGN-CONSTRAINED STIEFEL MANIFOLD 3

bounds (1.2)–(1.4) with ν = 15r
3
4 and q = 1/2, we show the exactness of the penalty

problems (1.6) and (1.7) under the assumption that F is Lipschitz continuous, tak-
ing Sn,rS = Sn,r+ as an example. Moreover, we show the existence of Lipschitz continuous
functions such that penalty problems (1.6) and (1.7) with q > 1/2 are not exact for
global and local minimizers of the corresponding constrained problems. The values of
q in error bounds (1.2)–(1.4) for some special sign matrices S ∈ Rn×r defined in (1.1)
by P and N are summarized in Table 1.

S hold fail

|P| = r or |N | = r, 1 < r < n q = 1/2 q > 1/2

|P| = 1 or |N | = 1, 1 ≤ r ≤ n q = 1 q > 1

|P|+ |N | = n, r = n q = 1 q > 1

Table 1:
Error bounds (1.2)–(1.4) hold or fail for some special sign matrices S ∈ Rn×r

Very recently, our error bounds and matrix inequalities have been used to study
constant modulus optimization and optimal orthogonal channel selection [2, 16, 17],
which have a wide variety of applications in signal processing, communications, and
data science.

The rest of the paper is organized as follows. In Section 2, we introduce some
notations and preliminaries. Section 3 derives the error bounds (1.2)–(1.4) in the
special case of Sn,rS = Sn,r+ . Section 4 extends these bounds to the general case. Section 5
investigates the exactness of the penalty problems (1.6)–(1.8) using the new error
bounds. Section 6 considers applications of the theoretical results established in this
paper. We conclude the paper in Section 7.

2 Notation and preliminaries For any matrix X ∈ Rn×r, X+ := max{X, 0}
= X +X− is the projection of X onto Rn×r

+ . In addition, the singular value vector
of X is denoted by σ(X) ∈ Rr, the entries of which are in the descent order. Mean-
while, Σ(X) ∈ Rn×r is the matrix such that X = UΣ(X)V T is the singular value
decomposition of X, the diagonal of Σ(X) being σ(X). We use 1 to denote the vector
with all entries being one, and its dimension will be clear from the context.

Unless otherwise specified, ∥ · ∥ stands for a general vector norm. For any con-
stant p ∈ [1,+∞), we use ∥ · ∥p to represent either the ℓp-norm of vectors or the
operator norm induced by this vector norm for matrices. In addition, we use ∥ · ∥ℓp
to denote the entry-wise ℓp-norm of a matrix, namely the ℓp-norm of the vector that
contains all the entries of the matrix. Note that ∥ · ∥ℓ2 is the Frobenius norm, which is
also denoted by ∥·∥F. When Rn×r is equipped with the Frobenius norm, we use B(X, δ)
to represent the open ball in Rn×r centered at a point X ∈ Rn×r with a radius δ > 0,
and dist(X, T ) to denote the distance from a point X ∈ Rn×r to a set T ⊂ Rn×r.
Finally, given a minimization problem, we use Argmin to denote the set of global
minimizers.

Lemma 2.1 is fundamental for the analysis of distances between matrices. This
lemma is stated for unitarily invariant norms (see [10, Section 3.5] for this concept),
although we are most interested in the case with the Frobenius norm.

Lemma 2.1 (Mirsky). For any matrices X ∈ Rn×r and Y ∈ Rn×r, we have

(2.1) ∥Σ(X)− Σ(Y )∥ ≤ ∥X − Y ∥
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for any unitarily invariant norm ∥ · ∥ on Rn×r. When ∥ · ∥ is the Frobenius norm,
the equality holds in (2.1) if and only if there exist orthogonal matrices U ∈ Rn×n

and V ∈ Rr×r such that X = UΣ(X)V T and Y = UΣ(Y )V T.

The square case (i.e., n = r) of inequality (2.1) is due to Mirsky [20, Theorem 5],
and the general case can be found in [11, Theorem 7.4.9.1]. A direct corollary of
Lemma 2.1 is the following Hoffman-Wielandt [9] type bound for singular values,
which is equivalent to the von Neumann trace inequality [25, Theorem I] (see also [13,
Theorem 2.1]).

Lemma 2.2 (von Neumann). For any matrices X ∈ Rn×r and Y ∈ Rn×r, we have

∥σ(X)− σ(Y )∥2 ≤ ∥X − Y ∥F,

and equivalently, tr(XTY ) ≤ σ(X)Tσ(Y ).

The following lemma is another consequence of Lemma 2.1. For this result, recall
that each matrix X ∈ Rn×r has a polar decomposition in the form of X = UP ,
where U belongs to Sn,r and P = (XTX)

1
2 , with U being called a unitary polar factor

of X. The square case of this lemma is due to Fan and Hoffman [7, Theorem 1]. For
the general case, see [8, Theorem 8.4], which details a proof based on Lemma 2.1.

Lemma 2.3 (Fan-Hoffman). If U ∈ Rn×r is a unitary polar factor of a ma-
trix X ∈ Rn×r, then

∥X − U∥ = min{∥X − V ∥ : V ∈ Sn,r}

for any unitarily invariant norm ∥ · ∥ on Rn×r.

Lemma 2.4 collects a few basic facts on the distance from a matrix in Rn×r to Sn,r.
Lemma 2.4. For any matrix X ∈ Rn×r, we have

dist(X, Sn,r) = ∥σ(X)− 1∥2 ≤ min
{
∥XTX − Ir∥F, r

1
4 ∥XTX − Ir∥

1
2

F

}
.

In addition, ∥XTX − Ir∥F ≤ (∥X∥2 + 1)∥σ(X)− 1∥2.
Proof. Let U ∈ Sn,r be a unitary polar factor of X. By Lemma 2.3,

dist(X, Sn,r) = ∥X − U∥F = ∥UT(X − U)∥F = ∥(XTX)
1
2 − Ir∥F = ∥σ(X)− 1∥2.

The entry-wise inequalities |σ(X)− 1| ≤ |σ(X)2 − 1| ≤ (∥X∥2 + 1)|σ(X)− 1| imply

(2.2) ∥σ(X)− 1∥2 ≤ ∥σ(X)2 − 1∥2 ≤ (∥X∥2 + 1)∥σ(X)− 1∥2.

Noting that ∥σ(X)2 − 1∥2 = ∥XTX − Ir∥F, we obtain from (2.2) that

∥σ(X)− 1∥2 ≤ ∥XTX − Ir∥F ≤ (∥X∥2 + 1)∥σ(X)− 1∥2.

Finally, since |σ(X)− 1|2 ≤ |σ(X)2 − 1|, we have

∥σ(X)− 1∥22 ≤ ∥σ(X)2 − 1∥1 ≤
√
r∥σ(X)2 − 1∥2 =

√
r∥XTX − Ir∥F.

The proof is complete.

By Lemmas 2.3 and 2.4, dist(X, Sn,r+ ) = ∥σ(X)−1∥2 ifX has a nonnegative unitary

polar factor. It is the case in the following lemma, where this factor is X(XTX)−
1
2 .
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Lemma 2.5. For a matrix X ∈ Rn×r
+ , if XTX is nonsingular and diagonal, then

dist(X, Sn,r+ ) = ∥σ(X)− 1∥2.

Lemma 2.6 is an elementary property of Sn,r+ . We omit the proof.

Lemma 2.6. For a matrix X ∈ Sn,r+ , each row of X has at most one nonzero
entry.

3 Error bounds for the nonnegative Stiefel manifold This section will
establish the error bounds (1.2)–(1.4) in the special case of Sn,rS = Sn,r+ , where S ◦X
reduces to X. Subsection 3.1 demonstrates (1.2)–(1.4) with q = 1 when r = 1 or r = n,
and points out that they cannot hold with q > 1 regardless of r ∈ {1, . . . , n}. In
Subsection 3.2, we derive the bounds (1.2)–(1.4) with q = 1/2 for 1 ≤ r ≤ n, and
Subsection 3.3 elaborates on the tightness of these bounds when 1 < r < n. As an
application of our results, we briefly discuss the linear regularity of Rn×r

+ and Sn,r in
Subsection 3.4.

General discussions on error bounds can be found in [6, Section 6.1]. Here we
focus on error bounds for Sn,r+ defined by two special functions

ρ1(X) := ∥X−∥q1F + ∥σ(X)− 1∥q22 ,

ρ2(X) := ∥X−∥q1F + ∥XTX − Ir∥q2F ,

where q1 and q2 are positive constants. These functions are residual functions for Sn,r+

relative to Rn×r, namely nonnegative-valued functions on Rn×r whose zeros coincide
with the elements of Sn,r+ . The residual function ρ2 is easily computable and it reduces
to the one in (1.4) when q1 = q2 = q.

We say that ρ1 defines a local error bound for Sn,r+ relative to Rn×r if there exist
positive constants ϵ and ν such that

(3.1) dist(X, Sn, r+ ) ≤ νρ1(X)

for all X ∈ Rn×r satisfying ∥X−∥F + ∥XTX − Ir∥F ≤ ϵ, and we say it defines a global
error bound for Sn,r+ relative to Rn×r if (3.1) holds for all X ∈ Rn×r. Likewise, we can
use ρ1 to define error bounds for Sn,r+ relative to any set S ⊂ Rn×r that contains Sn,r+ ,
for example, S = Rn×r

+ , in which case ρ1 reduces to its second term. Similar things
can be said about ρ2. Theorems 3.5 and 3.12 will specify the precise range of q1 and q2
so that ρ1 and ρ2 define local or global error bounds for Sn,r+ relative to Rn×r.

3.1 Tight error bounds with r = 1 or r = n In this subsection, we show
that the error bounds (1.2)–(1.4) hold for q = 1 when r = 1 or r = n. Moreover, we
explain why bounds (1.2)–(1.4) cannot hold for q > 1 in general.

The bound for r = 1 is easy to establish due to the simple fact that

(3.2) dist(x, Sn,1+ ) = dist(x, Sn,1) =
∣∣∥x∥2 − 1

∣∣ for all x ∈ Rn
+.

Indeed, when x = 0, this is trivial; when x ̸= 0, equality (3.2) is true because the
projection of x onto Sn,1+ equals its projection onto Sn,1, which is x/∥x∥2 ≥ 0.

Theorem 3.1. For any vector x ∈ Rn,

dist(x, Sn,1+ ) ≤ 2∥x−∥2 +
∣∣∥x∥2 − 1

∣∣.
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Proof. As observed above, dist(x+, Sn,1+ ) =
∣∣∥x+∥2 − 1

∣∣. Meanwhile,∣∣∥x+∥2 − 1
∣∣− ∣∣∥x∥2 − 1

∣∣ ≤
∣∣∥x+∥2 − ∥x∥2

∣∣ ≤ ∥x+ − x∥2 = ∥x−∥2.

Thus dist(x, Sn,1+ ) ≤ ∥x−∥2 + dist(x+, Sn,1+ ) ≤ 2∥x−∥2 +
∣∣∥x∥2 − 1

∣∣.
To establish the error bounds for r = n, we first prove Proposition 3.2, which is

essentially a weakened version of the observation (3.2) in the current situation. Note
that the matrix Y defined in the proof below is indeed the rounding matrix proposed
in [12, Procedure 3.1].

Proposition 3.2. For any matrix X ∈ Rn×n
+ , if ∥σ(X)− 1∥2 < 1/(4

√
n), then

(3.3) dist(X, Sn,n+ ) ≤ 7
√
n∥σ(X)− 1∥2.

Proof. For each i ∈ {1, . . . , n}, take the smallest integer li ∈ {1, . . . , r} so that

Xi,li = max {Xi,j : j = 1, . . . , r}.

Consider the matrix Y ∈ Rn,r
+ defined by

(3.4) Yi,j =

{
Xi,li if j = li,

0 otherwise.

We will demonstrate (3.3) by establishing bounds for ∥X − Y ∥F and dist(Y, Sn,n+ ).
Consider ∥X − Y ∥F first. Due to the fact that ∥σ(X)− 1∥2 < 1/(4

√
n), all the n

singular values of X are at least 3/4. Since X ≥ 0 and Xi,li = max{Xi,j : j = 1, . . . , n},
we have

Xi,li ≥ 1√
n

(
XXT

) 1
2

i,i
≥ 3

4
√
n

for each i ∈ {1, . . . , n}.

Fix an integer j ∈ {1, . . . , r}. For each l ∈ {1, . . . , r}, define

1(j ̸= l) = 1(l ̸= j) =

{
1 if l ̸= j,

0 if l = j.

With xj and yj denoting the jth columns of X and Y , respectively, we have

9

16n
∥xj − yj∥22 =

9

16n

n∑
i=1

X2
i,j1(j ̸= li)

≤
n∑

i=1

X2
i,liX

2
i,j1(li ̸= j)

≤
n∑

l=1

n∑
i=1

X2
i,lX

2
i,j1(l ̸= j)

≤
n∑

l=1

(
n∑

i=1

Xi,lXi,j

)2

1(l ̸= j)

=

n∑
l=1

(
XTX − In

)2
l,j
1(l ̸= j).
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Hence

∥X − Y ∥F ≤ 4

3

√
n∥XTX − In∥F.

By Lemma 2.4 and the fact that ∥X∥2 ≤ 1 + ∥σ(X)− 1∥2 ≤ 5/4, we have further

(3.5) ∥X − Y ∥F ≤ 4

3

√
n(∥X∥2 + 1)∥σ(X)− 1∥2 ≤ 3

√
n∥σ(X)− 1∥2.

Now we estimate dist(Y, Sn,n+ ). According to inequality (3.5) and Lemma 2.2,

(3.6) ∥σ(Y )− 1∥2 ≤ ∥X − Y ∥F + ∥σ(X)− 1∥2 ≤ 4
√
n∥σ(X)− 1∥2.

Since ∥σ(X)− 1∥2 < 1/(4
√
n), we have ∥σ(Y )− 1∥2 < 1, which implies that Y TY is

nonsingular. Since Y has at most one nonzero entry in each row, it is clear that Y TY
is diagonal. Thus we can invoke Lemma 2.5 and obtain

dist(Y, Sn,n+ ) = ∥σ(Y )− 1∥2.

Therefore, combining inequalities (3.5) and (3.6), we conclude that (3.3) is true.

Theorem 3.3 presents global and local error bounds for Sn,n+ relative to Rn×n.

Theorem 3.3. For any matrix X∈ Rn×n, we have

(3.7) dist(X, Sn,n+ ) ≤ 9n (∥X−∥F + ∥σ(X)− 1∥2) .

Moreover, if ∥X−∥F + ∥σ(X)− 1∥2 < 1/(4
√
n), then

(3.8) dist(X, Sn,n+ ) ≤ 8
√
n (∥X−∥F + ∥σ(X)− 1∥2) .

Proof. We first prove (3.8), assuming that ∥X−∥F + ∥σ(X)− 1∥2 < 1/(4
√
n). By

Lemma 2.2, this assumption ensures ∥σ(X+)− 1∥2 < 1/(4
√
n). Thus Proposition 3.2

renders

dist(X+, Sn,n+ ) ≤ 7
√
n∥σ(X+)− 1∥2 ≤ 7

√
n (∥X−∥F + ∥σ(X)− 1∥2) ,

which justifies inequality (3.8) since dist(X, Sn,n+ ) ≤ ∥X−∥F + dist(X+, Sn,n+ ).
Now we consider inequality (3.7). If ∥X−∥F + ∥σ(X)− 1∥2 < 1/(4

√
n), then (3.7)

holds due to (3.8). When ∥X−∥F + ∥σ(X) − 1∥2 ≥ 1/(4
√
n), inequality (3.7) is

justified by

dist(X, Sn,n+ ) ≤ dist(X, Sn,n) + 2
√
n

≤ ∥σ(X)− 1∥2 + 8n(∥X−∥F + ∥σ(X)− 1∥2)
≤ 9n (∥X−∥F + ∥σ(X)− 1∥2) ,

where the first inequality holds because the diameter of Sn,n is 2
√
n.

Remark 3.4. Since
∣∣∥x∥2 − 1

∣∣ ≤ ∣∣∥x∥22 − 1
∣∣ and ∥σ(X) − 1∥2 ≤ ∥XTX − In∥F,

Theorems 3.1 and 3.3 imply the error bounds (1.2)–(1.4) with q = 1 for r ∈ {1, n}.
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These bounds cannot be improved except for the multiplicative constants. Indeed, for
any matrix X ∈ Rn×r with r ∈ {1, . . . , n} and ∥X∥2 ≤ 1, we have

dist(X, Sn,r+ ) ≥ max
{
dist(X, Rn×r

+ ), dist(X, Sn,r)
}

≥ 1

2

[
dist(X, Rn×r

+ ) + dist(X, Sn,r)
]

=
1

2
(∥X−∥F + ∥σ(X)− 1∥2)

≥ 1

2
∥X−∥F +

1

4
∥XTX − Ir∥F,

(3.9)

where the last two lines apply Lemma 2.4. This also implies that the bounds (1.2)–(1.4)
cannot hold for any r ∈ {1, . . . , n} with q > 1.

Theorem 3.5 is an extension of Theorems 3.1 and 3.3. It specifies the possible
exponents of ∥X−∥F and ∥σ(X)−1∥2 or ∥XTX−Ir∥F in local and global error bounds
for Sn,r+ relative to Rn×r for r ∈ {1, n}. As we will see from (b) of this theorem and
its proof, when r = 1 or r = n, the error bound (1.2) can hold if and only if q ≤ 1,
whereas (1.3) and (1.4) can hold if and only if 1/2 ≤ q ≤ 1.

Theorem 3.5. Let q1 and q2 be positive constants. Suppose that r = 1 or r = n.
(a) The function ρ1(X) := ∥X−∥q1F + ∥σ(X) − 1∥q22 defines a local error bound

for Sn,r+ relative to Rn×r if and only if q1 ≤ 1 and q2 ≤ 1, and it defines a
global error bound if and only if q1 ≤ q2 = 1.

(b) The function ρ2(X) := ∥X−∥q1F + ∥XTX − Ir∥q2F defines a local error bound
for Sn,r+ relative to Rn×r if and only if q1 ≤ 1 and q2 ≤ 1, and it defines a
global error bound if and only if q1 ≤ 1 and 1/2 ≤ q2 ≤ 1.

Proof. We consider only the case with r = n. The other case is similar.
(a) Based on (3.8) and (3.9), it is easy to check that ρ1 defines a local error bound

for Sn,n+ relative to Rn×n if and only if q1 ≤ 1 and q2 ≤ 1. Hence we only need to
consider the global error bound.

Suppose that q1 ≤ q2 = 1. Let us show that

(3.10) dist(X, Sn,n+ ) ≤ 9n (∥X−∥q1F + ∥σ(X)− 1∥2) = 9nρ1(X)

for X ∈ Rn×n. If ∥X−∥F ≤ 1, then (3.10) follows from (3.7). When ∥X−∥F > 1,

dist(X,Sn,n+ ) ≤ dist(X,Sn,n) + 2
√
n ≤ ∥σ(X)− 1∥2 + 2

√
n∥X−∥q1F ,

which validates (3.10) again. Hence ρ1 defines a global error bound for Sn,n+ relative
to Rn×n.

Now suppose that ρ1 defines a global error bound for Sn,n+ relative to Rn×n.
Then it also defines a local error bound, implying q1 ≤ 1 and q2 ≤ 1. Consider a
sequence {Xk} ⊂ Rn×n

+ such that XT
kXk = kIn for each k ≥ 1. Then

dist(Xk, Sn,n+ ) ≥ dist(Xk, Sn,n) = ∥σ(Xk)− 1∥2 = [ρ1(Xk)]
1
q2 → ∞.

By assumption, dist(Xk, Sn,n+ ) ≤ νρ1(Xk) for each k ≥ 1 with a constant ν. Hence we
know q2 ≥ 1. To conclude, we have q1 ≤ q2 = 1. The proof for (a) is complete.

(b) Based on (3.8), (3.9), and the fact that ∥σ(X) − 1∥2 ≤ ∥XTX − In∥F
(Lemma 2.4), it is easy to check that ρ2 defines a local error bound for Sn,n+ rel-
ative to Rn×n if and only if q1 ≤ 1 and q2 ≤ 1. Hence we consider only the global
error bound.
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Suppose that q1 ≤ 1 and 1/2 ≤ q2 ≤ 1. We will show that

(3.11) dist(X,Sn,n+ ) ≤ 9n
(
∥X−∥q1F + ∥XTX − In∥q2F

)
= 9nρ2(X)

for X ∈ Rn×n. If ∥XTX − In∥F ≤ 1, then (3.11) holds because of (3.10) and the fact
that ∥σ(X)− 1∥2 ≤ ∥XTX − In∥F. When ∥XTX − In∥F > 1,

dist(X,Sn,n+ ) ≤ dist(X,Sn,n) + 2
√
n

≤ n
1
4 ∥XTX − In∥

1
2

F + 2
√
n∥XTX − In∥q2F

≤ (n
1
4 + 2

√
n)∥XTX − In∥q2F ,

justifying (3.11) again, where the second inequality applies Lemma 2.4. Hence ρ2
defines a global error bound for Sn,n+ relative to Rn×n.

Now suppose that ρ2 defines a global error bound for Sn,n+ relative to Rn×n.
Then q1 ≤ 1 and q2 ≤ 1, as ρ2 also defines a local error bound. Consider again a
sequence {Xk} ⊂ Rn×n

+ such that XT
kXk = kIn for each k ≥ 1. Then

dist(Xk, Sn,n+ ) ≥ ∥σ(Xk)− 1∥2 = (
√
k − 1)

√
n,

ρ2(Xk) = ∥XT
kXk − In∥q2F = [(k − 1)

√
n]q2 .

By assumption, dist(Xk, Sn,n+ ) ≤ νρ2(Xk) for each k ≥ 1 with a constant ν. Hence we
have q2 ≥ 1/2. The proof for (b) is complete.

3.2 Error bounds with 1 ≤ r ≤ n Now we shift our attention to the general
case with 1 ≤ r ≤ n. Given previous bounds for r ∈ {1, n}, we are particularly
interested in the situation where 1 < r < n.

We will first prove a local error bound for Sn,r+ relative to Rn×r
+ as detailed in

Proposition 3.8. This bound will play a role similar to what observation (3.2) and
Proposition 3.2 do in the cases of r = 1 and r = n, respectively. To simplify its proof,
we start with the following lemma.

Lemma 3.6. For any matrix X ∈ Rn×r
+ , there exists a matrix Y ∈ Rn×r

+ such
that Y TY is diagonal and

(3.12) max
{
∥xj − yj∥2,

∣∣∥yj∥2 − 1
∣∣} ≤ ∥zj∥

1
2
1 for each j ∈ {1, . . . , r},

where xj , yj , and zj denote the jth column of X, Y , and Z = XTX − Ir, respectively.

Proof. Define li (1 ≤ i ≤ n) and Y as in the proof of Proposition 3.2. Since Y TY
is diagonal as mentioned before, it suffices to establish (3.12) for this Y .

Fix an index j ∈ {1, . . . , r}. Recalling that 0 ≤ Xi,j ≤ Xi,li for each i ∈ {1, . . . , n},
we have

∥xj − yj∥22 =

n∑
i=1

X2
i,j1(j ̸= li)

≤
n∑

i=1

Xi,liXi,j1(li ̸= j)

≤
r∑

l=1

(
n∑

i=1

Xi,lXi,j

)
1(l ̸= j).

(3.13)
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Since XTX and Z have the same off-diagonal entries, inequality (3.13) yields

(3.14) ∥xj − yj∥22 ≤
r∑

l=1

|Zl,j |1(l ̸= j) = ∥zj∥1 − |Zj,j |.

It remains to prove
∣∣∥yj∥2 − 1

∣∣2 ≤ ∥zj∥1. To this end, note that

(3.15)
∣∣∥yj∥2 − 1

∣∣2 ≤
∣∣∥yj∥22 − 1

∣∣ ≤ ∣∣∥xj∥22 − 1
∣∣+ ∥xj − yj∥22,

where the first inequality uses the fact that |t− 1|2 ≤ |t2 − 1| for any t ≥ 0, and the
second one is because ∥xj∥22 −∥yj∥22 = ∥xj − yj∥22 due to the special construction (3.4)
of Y . Since ∥xj∥22 − 1 = Zj,j , we can combine (3.14) and (3.15) to obtain∣∣∥yj∥2 − 1

∣∣2 ≤
∣∣∥xj∥22 − 1

∣∣+ (∥zj∥1 − |Zj,j |
)

= ∥zj∥1.

The proof is complete.

Remark 3.7. As mentioned earlier, the matrix Y in the proof of Lemma 3.6 is
the rounding matrix in [12, Procedure 3.1]. Inequality (3.13) is essentially the second
inequality in Case II of the proof for [12, Lemma 3.2]. The columns of X are assumed
to be normalized in [12], but such an assumption has no effect on this inequality.

Proposition 3.8. For any matrix X ∈ Rn×r
+ , if ∥σ(X)− 1∥2 < 1/(3

√
r), then

(3.16) dist(X, Sn,r+ ) ≤ 2

√
7r

3
∥σ(X)− 1∥

1
2
2 .

Proof. Let Y and Z be the matrices specified in Lemma 3.6. Then (3.12) leads to

(3.17) ∥X − Y ∥2F =

r∑
j=1

∥xj − yj∥22 ≤
r∑

j=1

∥zj∥1 = ∥Z∥ℓ1 .

Since Y TY is diagonal, the entries of σ(Y ) are ∥y1∥2, . . . , ∥yr∥2. Thus (3.12) also
provides

(3.18) ∥σ(Y )− 1∥22 =

r∑
j=1

(∥yj∥2 − 1)2 ≤
r∑

j=1

∥zj∥1 = ∥Z∥ℓ1 .

Comparing (3.16) with (3.17)–(3.18), we only need to prove that ∥σ(X)−1∥2 <1/(3
√
r)

ensures

(3.19) ∥Z∥ℓ1 ≤ 7r

3
∥σ(X)− 1∥2

and

(3.20) dist(Y, Sn,r+ ) = ∥σ(Y )− 1∥2.

Since ∥Z∥ℓ1 =
∑n

i=1

∑r
j=1 |Zij | ≤ r∥Z∥F, inequality (3.19) is a direct consequence of

(3.21) ∥Z∥F = ∥XTX − Ir∥F ≤ (∥X∥2 + 1)∥σ(X)− 1∥2 ≤ 7

3
∥σ(X)− 1∥2,
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where the last inequality is because ∥X∥2 ≤ ∥σ(X) − 1∥2 + 1 < 4/3. Meanwhile,
inequality (3.21) also leads to

∥zj∥1 ≤
√
r∥Z∥F ≤ 7

√
r

3
∥σ(X)− 1∥2 < 1 for each j ∈ {1, . . . , r}.

Therefore, inequality (3.12) implies that Y does not contain any zero column. Hence
the diagonal entries of Y TY are all positive, which ensures the nonsingularity of this
matrix since it is diagonal. Thus Lemma 2.5 yields (3.20). The proof is complete.

Now we are ready to establish a local error bound for Sn,r+ relative to Rn×r.

Theorem 3.9. For any matrix X ∈ Rn×r, if ∥X−∥F + ∥σ(X)− 1∥2 < 1/(3
√
r),

then

(3.22) dist(X, Sn,r+ ) ≤ 4
√
r
(
∥X−∥

1
2

F + ∥σ(X)− 1∥
1
2
2

)
.

Proof. According to Lemma 2.2,

∥σ(X+)− 1∥2 ≤ ∥X−∥F + ∥σ(X)− 1∥2.

Thus ∥σ(X+)− 1∥2 < 1/(3
√
r) by assumption, and hence Proposition 3.8 implies

dist(X+, Sn,r+ ) ≤ 2

√
7r

3

(
∥X−∥

1
2

F + ∥σ(X)− 1∥
1
2
2

)
.(3.23)

On the other hand, since ∥X−∥F < 1/(3
√
r), it holds that

(3.24) ∥X −X+∥F = ∥X−∥F ≤ 1√
3r

1
4

∥X−∥
1
2

F ≤
√

r

3
∥X−∥

1
2

F .

Inequality (3.22) follows from (3.23) and (3.24) because 2
√
7/3 + 1/

√
3 < 4.

Theorem 3.9 presents only a local error bound. Indeed, ∥X−∥
1
2

F+∥σ(X)−1∥
1
2
2 does

not define a global error bound for Sn,r+ relative to Rn×r, which will be explained later by
Theorem 3.12. To have a global error bound, we need to replace the term ∥σ(X)−1∥2
with ∥XTX − Ir∥F as in the following theorem.

Theorem 3.10. For any matrix X ∈ Rn×r, we have

(3.25) dist(X, Sn,r+ ) ≤ 5r
3
4

(
∥X−∥

1
2

F + ∥XTX − Ir∥
1
2

F

)
.

Moreover, if ∥X−∥F + ∥XTX − Ir∥F < 1/(3
√
r), then

(3.26) dist(X, Sn,r+ ) ≤ 4
√
r
(
∥X−∥

1
2

F + ∥XTX − Ir∥
1
2

F

)
.

Proof. Recall that ∥σ(X)− 1∥2 ≤ ∥XTX − Ir∥F (Lemma 2.4). Thus (3.26) is a
direct consequence of Theorem 3.9 when ∥X−∥F + ∥XTX − Ir∥F < 1/(3

√
r).

Now we prove (3.25). Let us assume that

∥X−∥F + ∥XTX − Ir∥F ≥ 1

3
√
r
,
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as (3.25) is already justified by (3.26) when this inequality does not hold. Under this
assumption,

(3.27) ∥X−∥
1
2

F + ∥XTX − Ir∥
1
2

F ≥ 1√
3r

1
4

.

Noting that the diameter of Sn,r is 2
√
r, we then have

dist(X, Sn,r+ ) ≤ dist(X, Sn,r) + 2
√
r

≤ r
1
4 ∥XTX − Ir∥

1
2

F + 2
√
3r

3
4

(
∥X−∥

1
2

F + ∥XTX − Ir∥
1
2

F

)
≤ 5r

3
4

(
∥X−∥

1
2

F + ∥XTX − Ir∥
1
2

F

)
,

(3.28)

where the second inequality applies Lemma 2.4 and (3.27).

Recently, Theorem 3.10 has been used in [16, 17] to establish error bounds for
dist(X, Sn,r+ ) for X in the unit ball of spectral norm, i.e., {X ∈ Rn×r : ∥X∥ ≤ 1}.
See (31) in [16].

3.3 Tightness of the error bounds when 1 < r < n The following propo-
sition shows that the bounds presented in Theorems 3.9 and 3.10 are tight up to
multiplicative constants when 1 < r < n, no matter whether X belongs to Sn,r, Rn×r

+ ,
or neither of them. Consequently, the error bounds (1.2)–(1.4) cannot hold with q > 1/2
when 1 < r < n.

Proposition 3.11. Suppose that 1 < r < n.
(a) There exists a sequence {Xk} ⊂ Sn,r \ Rn×r

+ such that (Xk)− → 0 and

(3.29) dist(Xk, Sn,r+ ) ≥ 1√
2
∥(Xk)−∥

1
2

F .

(b) There exists a sequence {Xk} ⊂ Rn×r
+ \ Sn,r such that XT

kXk → Ir and

(3.30) dist(Xk, Sn,r+ ) ≥ 1√
2
∥XT

kXk − Ir∥
1
2

F .

(c) There exists a sequence {Xk} ⊂ Rn×r \ (Rn×r
+ ∪ Sn,r) such that (Xk)− → 0,

XT
kXk → Ir, and

(3.31) dist(Xk, Sn,r+ ) ≥ 1√
2 + 1

(
∥(Xk)−∥

1
2

F + ∥XT
kXk − Ir∥

1
2

F

)
.

Proof. Take a sequence {εk} ⊂ (0, 1/2) that converges to 0. For each k ≥ 1,
let Xk ∈ Rn×r be a matrix such that its first 3 rows are

εk εk

r − 2︷ ︸︸ ︷
0 . . . 0

ak bk 0 . . . 0
ck dk 0 . . . 0


with ak, bk, ck, dk being specified later, its 4th to (r + 1)th rows are the last r − 2
rows of Ir (if r ≥ 3), and its other rows are zero (if any). In addition, let X̄k be a
projection of Xk onto Sn,r+ . Then the first row of X̄k contains at most one nonzero
entry according to Lemma 2.6. Hence

(3.32) dist(Xk, Sn,r+ ) = ∥Xk − X̄k∥F ≥ εk.
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Moreover, it is clear that (Xk)− → 0 and XT
kXk → Ir if

(3.33) ak → 1, bk → 0, ck → 0, and dk → 1.

In the sequel, we will configure ak, bk, ck, and dk subject to (3.33) so that {Xk}
validates (a), (b), and (c) one by one.

(a) Define

ak =
√

1− ε2k, bk = − ε2k
ak

, ck = 0, and dk =
√
1− ε2k − b2k.

Then Xk ∈ Sn,r \ Rn×r
+ . Clearly, ∥(Xk)−∥F = ε2k/ak. Hence (3.29) holds according

to (3.32) and the fact that ak ≥
√
1− ε2k > 1/2 (recall that εk < 1/2).

(b) Define ak = dk = 1 and bk = ck = 0. Then Xk ∈ Rn×r
+ \ Sn,r. By straightfor-

ward calculations,

∥XT
kXk − Ir∥F = 2ε2k.

Thus (3.30) holds according to (3.32).
(c) Define ak= dk= 1, bk =−ε2k, and ck = 0. Then Xk∈ Rn×r \ (Rn×r

+ ∪ Sn,r). In
addition, we can calculate that

∥XT
kXk − Ir∥F =

√
ε4k + (ε2k + ε4k)

2 ≤

√
ε4k +

(
ε2k +

ε2k
4

)2

≤ 2ε2k

and ∥(Xk)−∥F = ε2k. Therefore, (3.31) holds according to (3.32).

Theorem 3.12 extends Theorems 3.9 and 3.10, allowing ∥X−∥F and ∥σ(X)−1∥2 or
∥XTX − Ir∥F to have different exponents in the error bounds. It specifies the precise
range of these exponents in local and global error bounds for Sn,r+ relative to Rn×r

when 1 < r < n. As we will see from (b) of this theorem and its proof, when 1 < r < n,
the error bound (1.2) can hold if and only if q ≤ 1/2, whereas (1.3) and (1.4) can hold
if and only if q = 1/2.

Theorem 3.12. Let q1 and q2 be positive constants. Suppose that 1 < r < n.
(a) The function ρ1(X) := ∥X−∥q1F + ∥σ(X) − 1∥q22 defines a local error bound

for Sn,r+ relative to Rn×r if and only if q1 ≤ 1/2 and q2 ≤ 1/2, but it cannot
define a global error bound no matter what values q1 and q2 take.

(b) The function ρ2(X) := ∥X−∥q1F + ∥XTX − Ir∥q2F defines a local error bound
for Sn,r+ relative to Rn×r if and only if q1 ≤ 1/2 and q2 ≤ 1/2, and it defines
a global error bound if and only if q1 ≤ q2 = 1/2.

Proof. (a) Based on (3.22), it is easy to check that ρ1 defines a local error bound
for Sn,r+ relative to Rn×r if q1 ≤ 1/2 and q2 ≤ 1/2. Conversely, if ρ1 defines a local
error bound for Sn,r+ relative to Rn×r, then q1 ≤ 1/2 and q2 ≤ 1/2 according to (a)
and (b) of Proposition 3.11, respectively.

Now we prove that ρ1 cannot define a global error bound. According to what has
been shown above, we assume that q2 ≤ 1/2, as a global error bound must be a local one.
Consider a sequence {Xk} ⊂ Rn×r

+ with ∥Xk∥F → ∞. Then ρ2(Xk) = ∥σ(Xk)− 1∥q22 ,
and hence

dist(Xk, Sn,r+ )

ρ1(Xk)
≥ ∥σ(Xk)− 1∥2

∥σ(Xk)− 1∥q22
→ ∞.
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Thus ρ1 cannot define a global error bound for Sn,r+ relative to Rn×r.
(b) Similar to (a), we can show that ρ2 defines a local error bound for Sn,r+ relative

to Rn×r if and only if q1 ≤ 1/2 and q2 ≤ 1/2. Hence we only need to consider the
global error bound.

Suppose that q1 ≤ q2 = 1/2. Let us show that

(3.34) dist(X, Sn,r+ ) ≤ 5r
3
4

(
∥X−∥q1F + ∥XTX − Ir∥

1
2

F

)
= 5r

3
4 ρ2(X)

for all X ∈ Rn×r. If ∥X−∥F ≤ 1, then (3.34) follows from (3.25). When ∥X−∥F > 1,

dist(X, Sn,r+ ) ≤ dist(X, Sn,r)+2
√
r ≤ r

1
4 ∥XTX−Ir∥

1
2

F+2
√
r∥X−∥q1F ≤ 5r

3
4 ρ2(X),

where the second inequality applies Lemma 2.4. Hence ρ2 defines a global error bound
for Sn,r+ relative to Rn×r.

Now suppose that ρ2 defines a global error bound for Sn,r+ relative to Rn×r. Then
it defines a local error bound, implying q1 ≤ 1/2 and q2 ≤ 1/2. Similar to the proof
for (b) of Theorem 3.5, by considering a sequence {Xk} ⊂ Rn×r

+ such that XT
kXk = kIr

for each k ≥ 1, we can prove q2 ≥ 1/2. The proof is complete.

Even though the function ρ1 in Theorem 3.12 can only define a local error bound
for Sn,r+ relative to Rn×r, global error bounds can still be established if we add a suitable
power of ∥σ(X)− 1∥2 or ∥XTX − Ir∥F to ρ1. This will be detailed in Remark 3.14
after we prove the following proposition.

Proposition 3.13. Let ϕ1 and ϕ2 be two nonnegative functions on Rn×r. If there
exist positive constants γ1, γ2, c1 and c2 such that

dist(X, Sn,r+ ) ≤ γ1ϕ1(X) when ϕ1(X) ≤ c1,(3.35)

dist(X, Sn,r) ≤ γ2ϕ2(X) when dist(X, Sn,r) ≥ c2.(3.36)

Then dist(X, Sn,r+ ) ≤ max{γ1, γ2, c−1
1 (2

√
r + c2)}[ϕ1(X) + ϕ2(X)] for all X ∈ Rn×r.

Proof. Fix an X ∈ Rn×r. We only consider the situation where ϕ1(X) > c1, due
to (3.35). Note that

(3.37) dist(X, Sn,r+ ) ≤ 2
√
r + dist(X, Sn,r).

If dist(X, Sn,r) < c2, then (3.37) implies that

dist(X, Sn,r+ ) ≤ c−1
1 (2

√
r + c2)ϕ1(X).

If dist(X, Sn,r) ≥ c2, then (3.36) and (3.37) imply that

dist(X, Sn,r+ ) ≤ max{2c−1
1

√
r, γ2}[ϕ1(X) + ϕ2(X)].

The proof is complete.

Remark 3.14. Suppose that 1 < r < n, 0 < q1 ≤ 1/2, and 0 < q2 ≤ 1/2. Accord-
ing to Theorem 3.12, Proposition 3.13, and Lemma 2.4, ρ1(X)+∥σ(X)−1∥q2 with q ≥ 1
defines a global error bound for Sn,r+ relative to Rn×r. So does ρ1(X) + ∥XTX − Ir∥qF
with q ≥ 1/2. However, the powers in ρ1 cannot be greater than 1/2 even with the
additional terms for the global error bounds. The same can be said about ρ2.
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3.4 Linear regularity of Rn×r
+ and Sn,r Before ending this section, we briefly

mention that our analysis enables us to characterize the linear regularity of Rn×r
+

and Sn,r for r ∈ {1, . . . , n}.
A pair of sets A1 and A2 in Rn×r with A1 ∩ A2 ̸= ∅ are said to be boundedly

linearly regular if for any bounded set T ⊂ Rn×r there exists a constant γ such that

(3.38) dist(X, A1 ∩ A2) ≤ γmax {dist(X, A1), dist(X, A2)}

for all X ∈ T , and they are linearly regular if (3.38) holds for all X ∈ Rn×r. Linear
regularity is a fundamental concept in optimization and is closely related to error
bounds. See [21] and [5, Section 8.5] for more details. Note that we can replace the
maximum in (3.38) with a summation without essentially changing the definition
of (boundedly) linear regularity.

Proposition 3.15 clarifies whether Rn×r
+ and Sn,r are linearly regular.

Proposition 3.15. The two sets Rn×r
+ and Sn,r are linearly regular if and only

if r = 1 or r = n.

Proof. Recall that dist(X, Rn×r
+ ) = ∥X−∥F and dist(X, Sn,r) = ∥σ(X) − 1∥2

for X ∈ Rn×r. The “if” part of this proposition holds because of the global error
bounds in Theorems 3.1 and 3.3. The “only if” part holds because ∥X−∥F+∥σ(X)−1∥2
does not define a global error bound for Sn,r+ relative to Rn×r when 1 < r < n, as we
can see from (a) of Theorem 3.12.

Proposition 3.15 remains true if we change “linearly regular” to “boundedly
linearly regular”. The “if” part is weakened after this change, and the other part holds
because ∥X−∥F + ∥σ(X) − 1∥2 does not define a local error bound for Sn,r+ relative
to Rn×r when 1 < r < n according to (a) of Theorem 3.12.

4 Error bounds for the sign-constrained Stiefel manifold This section
will establish the error bounds for Sn,rS based on those already proved for Sn,r+ .

4.1 A special case First, we consider the special case with

P = {1, . . . , r1} and N = ∅,

where r1 ∈ {1, . . . , r}. Define r2 = r − r1 henceforth. In this case, Sn,rS reduces to

(4.1) Sn,rr1,+
:=
{
X = (X1, X2) | X1 ∈ Rn×r1

+ , X2 ∈ Rn×r2 , XTX = Ir
}
,

with Sn,rr1,+ being Sn,r+ if r1 = r.
Note that the results established in Sections 2 and 3 are still valid when r is

replaced with r1 or r2. In the sequel, we will apply these results directly without
restating this fact.

Lemma 4.1. Suppose that r1 < r. Consider matrices Y1 ∈ Rn×r1 and Y2 ∈ Rn×r2 .
If Y T

1 Y2 = 0, then there exists a matrix Z that is a projection of Y2 onto Sn,r2 and
satisfies Y T

1 Z = 0.

Proof. Define k = n − rank(Y1). Take a matrix V ∈ Sn,k such that range(V )
is the orthogonal complement of range(Y1) in Rn. Since k ≥ r − r1 = r2, the
matrix V TY2 ∈ Rk×r2 has a polar decomposition UP with U ∈ Sk,r2 and P ∈ Rr2×r2 ,
the latter being positive semidefinite. Define Z = V U ∈ Rn×r2 . Then

ZP = V UP = V V TY2 = Y2,
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where the last equality holds because range(Y2) ⊂ range(V ) according to Y T
1 Y2 = 0,

and V V T is the orthogonal projection onto range(V ). Besides, ZTZ = UTV TV U = Ir2 .
Thus ZP is a polar decomposition of Y2. Hence Z is a projection of Y2 onto Sn,r2 by
Lemma 2.3. Moreover, Y T

1 Z = Y T
1 V U = 0.

Note that Sn,rr1,+ can also be formulated as

Sn,rr1,+ =
{
(X1, X2) | X1 ∈ Sn,r1+ , X2 ∈ Sn,r2 , XT

1 X2 = 0
}
.

This formulation motivates us to develop the following lemma, which provides a global
error bound for Sn,rr1,+ relative to Rn×r.

Lemma 4.2. Suppose that r1 < r. For any matrix X = (X1, X2) with X1 ∈ Rn×r1

and X2 ∈ Rn×r2 , we have

(4.2) dist(X, Sn,rr1,+) ≤ (2∥X2∥2 + 1) dist(X1, Sn,r1+ ) + dist(X2, Sn,r2) + 2∥XT
1 X2∥F.

Proof. Let Y1 be a projection of X1 onto Sn,r1+ and Y2 = (In − Y1Y
T
1 )X2 ∈ Rn×r2 .

Then Y T
1 Y2 = 0. By Lemma 4.1, there exists a matrix Z that is a projection

of Y2 onto Sn,r2 with Y T
1 Z = 0. Define X̄ = (Y1, Z), which lies in Sn,rr1,+. Let us

estimate ∥X − X̄∥F. It is clear that

∥X − X̄∥F ≤ ∥(X1, X2)− (Y1, Y2)∥F + ∥(Y1, Y2)− (Y1, Z)∥F
≤ ∥X1 − Y1∥F + ∥X2 − Y2∥F + ∥Y2 − Z∥F.

Since ∥Y2 − Z∥F = ∥σ(Y2)− 1∥2 (Lemma 2.4) and ∥σ(X2)− σ(Y2)∥2 ≤ ∥X2 − Y2∥F
(Lemma 2.2), it holds that ∥Y2 − Z∥F ≤ ∥σ(X2)− 1∥2 + ∥X2 − Y2∥F. Therefore,

(4.3) ∥X − X̄∥F ≤ ∥X1 − Y1∥F + ∥σ(X2)− 1∥2 + 2∥X2 − Y2∥F.

Meanwhile, recalling that Y2 = (In − Y1Y
T
1 )X2 and Y1 ∈ Sn,r1 , we have

∥X2 − Y2∥F = ∥Y1Y
T
1 X2∥F = ∥Y T

1 X2∥F ≤ ∥(Y1 −X1)
TX2∥F + ∥XT

1 X2∥F.(4.4)

Plugging (4.4) into (4.3) while noting ∥(Y1−X1)
TX2∥F ≤ ∥X1−Y1∥F∥X2∥2, we obtain

∥X − X̄∥F ≤ (2∥X2∥2 + 1)∥X1 − Y1∥F + ∥σ(X2)− 1∥2 + 2∥XT
1 X2∥F.

This implies (4.2), because ∥X1 − Y1∥F = dist(X1, Sn,r1+ ) by the definition of Y1,
and ∥σ(X2)− 1∥2 = dist(X2, Sn,r2) by Lemma 2.4.

In light of Lemma 4.2, we can establish error bounds for Sn,rr1,+ using those for Sn,r+ ,
as will be done in Propositions 4.3 and 4.4. To this end, it is useful to note for any
matrix X = (X1, X2) that

(4.5) ∥XTX − Ir∥F ≥ max
{
∥XT

1 X1 − Ir1∥F, ∥XT
2 X2 − Ir2∥F,

√
2∥XT

1 X2∥F
}
.

Proposition 4.3. For any matrix X ∈ Rn×r with x1 being its first column,
we have

(4.6) dist(X, Sn,r1,+) ≤ 7
√
r
(
∥(x1)−∥2 + ∥XTX − Ir∥F

)
.

Moreover, if ∥XTX − Ir∥F < 1/3, then

(4.7) dist(X, Sn,r1,+) ≤ 7
(
∥(x1)−∥2 + ∥XTX − Ir∥F

)
.
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Proof. If r = 1, then (4.6) and (4.7) hold because of Theorem 3.1. Hence we
suppose that r > 1 in the sequel. We first assume ∥XTX − Ir∥F < 1/3 and estab-
lish (4.7). Let X2 be the matrix containing the last r − 1 columns of X. According to
Theorem 3.1 and Lemma 2.4,

dist(x1, Sn,1+ ) ≤ 2∥(x1)−∥2 +
∣∣xT

1x1 − 1
∣∣,(4.8)

dist(X2, Sn,r−1) ≤ ∥XT
2 X2 − Ir−1∥F.(4.9)

Plugging (4.8) and (4.9) into Lemma 4.2 while noting (4.5), we have

dist(X, Sn,r1,+) ≤ (2∥X2∥2 + 1) · 2∥(x1)−∥2 +
[
(2∥X2∥2 + 1) + 1 +

√
2
]
∥XTX − Ir∥F

≤ 7
(
∥(x1)−∥2 + ∥XTX − Ir∥F

)
,

where the second inequality uses the fact that ∥X2∥22 ≤ ∥XTX − Ir∥2 + 1 ≤ 4/3.
To prove (4.6), we now only need to focus on the case with ∥XTX − Ir∥F ≥ 1/3.

In this case,

dist(X,Sn,r1,+) ≤ dist(X,Sn,r) + 2
√
r ≤ ∥XTX − Ir∥F + 6

√
r∥XTX − Ir∥F,

which implies (4.6). The proof is complete.

Proposition 4.4. For any matrix X ∈ Rn×r with X1 being its submatrix con-
taining the first r1 columns, we have

(4.10) dist(X, Sn,rr1,+) ≤ 15r
3
4

(
∥(X1)−∥

1
2

F + ∥XTX − Ir∥
1
2

F

)
.

Moreover, if ∥(X1)−∥F + ∥XTX − Ir∥F < 1/(3
√
r), then

(4.11) dist(X, Sn,rr1,+) ≤ 15
√
r
(
∥(X1)−∥

1
2

F + ∥XTX − Ir∥
1
2

F

)
.

Proof. If r1 = r, then (4.10) and (4.11) hold because of Theorem 3.10. Hence we
suppose that r1 < r in the sequel. We first assume ∥(X1)−∥F+∥XTX−Ir∥F < 1/(3

√
r)

and establish (4.11). Let X2 be the matrix containing the last r2 = r − r1 columns
of X. According to (4.5), our assumption implies

∥(X1)−∥F + ∥XT
1 X1 − Ir1∥F <

1

3
√
r1

, ∥XT
2 X2 − Ir2∥F ≤ 1

3
.

Hence Theorem 3.10 and Lemma 2.4 yield

dist(X1, Sn,r1+ ) ≤ 4
√
r1

(
∥(X1)−∥

1
2

F + ∥XT
1 X1 − Ir1∥

1
2

F

)
,(4.12)

dist(X2, Sn,r2) ≤ ∥XT
2 X2 − Ir2∥F ≤ 1√

3
∥XT

2 X2 − Ir2∥
1
2

F .(4.13)

In addition, inequality (4.5) and our assumption also provide

(4.14) ∥XT
1 X2∥F ≤ 1√

2
∥XTX − Ir∥F ≤ 1√

6
∥XTX − Ir∥

1
2

F .

Plugging (4.12)–(4.14) into Lemma 4.2 while noting (4.5), we obtain

dist(X, Sn,rr1,+) ≤
[
4
√
r1(2∥X2∥2 + 1) +

1√
3
+

2√
6

](
∥(X1)−∥

1
2

F + ∥XTX − Ir∥
1
2

F

)
≤ 15

√
r
(
∥(X1)−∥

1
2

F + ∥XTX − Ir∥
1
2

F

)
,
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where the second inequality uses the fact that ∥X2∥22 ≤ ∥XTX − Ir∥2 + 1 ≤ 4/3.
Now we prove (4.10). By the same technique as the proof of (3.28), we have

dist(X, Sn,rr1,+) ≤ 5r
3
4

(
∥(X1)−∥

1
2

F + ∥XTX − Ir∥
1
2

F

)
when ∥(X1)−∥F + ∥XTX − Ir∥F ≥ 1/(3

√
r). Combining this with (4.11), we conclude

that (4.10) is valid. The proof is complete.

4.2 The general case We now present the error bounds for Sn,rS , detailed in
Theorems 4.5–4.7. Theorems 4.5 and 4.6 can be proved using Proposition 4.3 and
Theorem 3.3, respectively. We omit the proofs because they are essentially the same
as that of Theorem 4.7 below.

Theorem 4.5. Suppose that |P|+ |N | = 1. For any matrix X ∈ Rn×r, we have

dist(X, Sn,rS ) ≤ 7
√
r
(
∥(S ◦X)−∥F + ∥XTX − Ir∥F

)
.

Moreover, if ∥XTX − Ir∥F < 1/3, then

dist(X, Sn,rS ) ≤ 7
(
∥(S ◦X)−∥F + ∥XTX − Ir∥F

)
.

Theorem 4.6. Suppose that |P|+ |N | = n. For any matrix X∈ Rn×n, we have

dist(X, Sn,nS ) ≤ 9n (∥(S ◦X)−∥F + ∥σ(X)− 1∥2) .

Moreover, if ∥(S ◦X)−∥F + ∥σ(X)− 1∥2 < 1/(4
√
n), then

dist(X, Sn,nS ) ≤ 8
√
n (∥(S ◦X)−∥F + ∥σ(X)− 1∥2) .

Theorem 4.7. For any matrix X ∈ Rn×r, we have

(4.15) dist(X, Sn,rS ) ≤ 15r
3
4

(
∥(S ◦X)−∥

1
2

F + ∥XTX − Ir∥
1
2

F

)
.

Moreover, if ∥(S ◦X)−∥F + ∥XTX − Ir∥F < 1/(3
√
r), then

(4.16) dist(X, Sn,rS ) ≤ 15
√
r
(
∥(S ◦X)−∥

1
2

F + ∥XTX − Ir∥
1
2

F

)
.

Proof. LetQ = {1, . . . , r}\(P∪N ). WithMP , MN , andMQ being the submatrices
of Ir containing the columns indexed by P, N , and Q, respectively, we take the
permutation matrix

Π = (MP , MN , MQ) ∈ Rr×r.

In addition, we take the diagonal matrix D ∈ Rr×r with Dj,j = −1 if j ∈ N
and Dj,j = 1 otherwise. Define r1 = |P|+ |N |. If r1 = 0, then (4.15) and (4.16) hold
because of Lemma 2.4. Hence we suppose that r1 ≥ 1 in the sequel.

Consider any matrix X ∈ Rn×r. Let Y = XDΠ, and Ȳ be the projection of Y
onto Sn,rr1,+ defined in (4.1). Set X̄ = ȲΠTD, which lies in Sn,rS . Then

dist(X, Sn,rS ) ≤ ∥X − X̄∥F = ∥YΠTD − ȲΠTD∥F = ∥Y − Ȳ ∥F.

Invoking Proposition 4.4, we have

∥Y − Ȳ ∥F ≤ 15r
3
4

(
∥(Y1)−∥

1
2

F + ∥Y TY − Ir∥
1
2

F

)
,

where Y1 is the submatrix of Y containing the first r1 columns. It is straightforward
to verify that ∥(Y1)−∥F = ∥(S ◦X)−∥F and ∥Y TY − Ir∥F = ∥XTX − Ir∥F. Hence we
obtain (4.15). The bound (4.16) can be established in a similar way.
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5 Exact penalties for optimization on the nonnegative Stiefel manifold
In this section, as an application of the error bounds established in this paper, we
consider exact penalties for optimization problem (1.5). For simplicity, we will focus
on the special case with

Sn,rS = Sn,r+ ,

applying the bounds in Section 3. Essentially the same results can be established in
the general case by exploiting the bounds in Section 4. The exact penalty results
only require (local) Lipschitz continuity of F , and hence can be applied to nonsmooth
optimization, for example, F involving a group sparse regularization term [27].

The exactness of penalty methods for problem (1.5) with Sn,rS = Sn,r+ has been
studied in [12, 24]. In [12], an error bound is established for Sn,r+ relative to the set

{X ∈ Rn×r
+ : (XTX)j,j = 1, j = 1, . . . , r},

and then the bound is used to analyze a penalty method. However, the error bound
in [12] cannot be used to derive the values of ν and q in (1.2)–(1.4). In [24], the authors
consider the penalty problem (1.6) with q = 1, and show this problem has the same
global minimizers as problem (1.5) if each global optimal solution of (1.5) has no zero
rows. Our exact penalty results only need the Lipschitz continuity of the objective
function F in (1.5).

The error bounds (1.2)–(1.4) established in this paper enable us to have the
exactness of the penalized problem

(5.1) min
{
F (X) + µ

(
∥X−∥q1ℓp + ∥XTX − Ir∥q2ℓp

)
: X ∈ S

}
for solving (1.5) with Sn,rS = Sn,r+ only under the (local) Lipschitz continuity of func-
tion F . Here the set S ⊂ Rn×r is a set that contains Sn,r+ , while the parameters µ, p, q1,
and q2 are all positive. If p = 2 and q1 = q2 = q, then the penalized problem (5.1)
reduces to problems (1.6) and (1.7) when S equals Sn,r and Rn×r

+ , respectively.
During the revision of this paper, a very recent work [17] studied another exact

penalty problem for (1.5) with Sn,rS = Sn,r+ based on an error bound for Sn,r+ relative
to the set

(5.2) {X ∈ Rn×r
+ : (XTX)j,j ≤ 1, j = 1, . . . , r}.

Since our error bounds for Sn,r+ are established relative to Rn×r, we allow the feasible set
of our penalty problem to be any set S containing Sn,r+ , whereas the feasible set in [17]
can only be the set (5.2). In addition, with the error bounds established in Section 4,
our results can be readily extended to the case where Sn,rS is a sign-constrained Stiefel
manifold other than Sn,r+ , which is not considered in [17].

Due to the equivalence between norms, it is indeed possible to establish the
exactness of (5.1) when the entry-wise ℓp-norm is changed to other ones. We choose
to use the entry-wise ℓp-norm in (5.1) because it is easy to evaluate.
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5.1 Exactness for Lipschitz continuous objective functions Theorem 5.1
presents the exactness of problem (5.1) regarding global optimizers when the objective
function F : S → R is an L-Lipschitz continuous function, namely

(5.3) |F (X)− F (Y )| ≤ L∥X − Y ∥F

for all X and Y in S, where L ∈ (0,∞) is a Lipschitz constant of F with respect to the
Frobenius norm. Note that the global Lipschitz continuity of the objective function F
is assumed on a set S containing Sn,r+ . For example, if F (X) = trace(XTATAX)
and S = {X ∈ Rn×r : ∥X∥F ≤ γ} with γ >

√
r, the global Lipschitz continuity of F

holds on S with the Lipschitz constant L = 2γ∥A∥22. Indeed, our theory holds even
if F is undefined out of S. The proof of Theorem 5.1 is standard and we include it in
Appendix A for completeness.

Theorem 5.1 (Exact penalty (5.1) with F being Lipschitz continuous). Suppose
that S ⊂ Rn×r is a set containing Sn,r+ , F : S → R is an L-Lipschitz function, and p ≥ 1

is a constant. If 0 < q ≤ 1/2 and µ > 5Lr
3
4 max

{
1, (nr)

p−2
4p

}
, then

Argmin{F (X) : X∈ Sn,r+ } = Argmin
{
F (X) + µ

(
∥X−∥qℓp + ∥XTX−Ir∥

1
2

ℓp

)
: X∈ S

}
.

Theorem 5.2 presents the exactness of problem (5.1) regarding local minimizers
when F is locally Lipschitz continuous on S, meaning that for any X̄ ∈ S there exists
a constant L ∈ (0,∞) such that (5.3) holds for all X and Y in a certain neighborhood
of X̄ in S. We will refer to this L as a Lipschitz constant of F around X̄. The proof
of Theorem 5.2 is also given in Appendix A.

Theorem 5.2 (Exact penalty (5.1) with F being locally Lipschitz continuous).
Let S ⊂ Rn×r be a set containing Sn,r+ , F : S → R be a locally Lipschitz continuous
function, and p ≥ 1 be a constant. Suppose that 0 < q1 ≤ 1/2 and 0 < q2 ≤ 1/2. For
any local minimizer X∗ of F on Sn,r+ , X∗ is also a local minimizer of

(5.4) min
{
F (X) + µ(∥X−∥q1ℓp + ∥XTX − Ir∥q2ℓp) : X ∈ S

}
for all µ > 4L∗√rmax

{
1, (nr)

q1(p−2)
2p , r

q2(p−2)
p

}
, where L∗ is a Lipschitz constant

of F around X∗. Conversely, if X∗ lies in Sn,r+ and there exists a constant µ such
that X∗ is a local minimizer of (5.4), then X∗ is also a local minimizer of F on Sn,r+ .

Suppose that p ≤ 2. It is noteworthy that the thresholds for µ in Theorems 5.1
and 5.2 are independent of n (even the dependence on r is mild). This is favorable in
practice, as r can be much smaller than n in applications. We also note that the second
part of Theorem 5.2 requires X∗ ∈ Sn,r+ . This is indispensable without additional
assumptions on the problem structure (see [5, Remark 9.1.1]).

5.2 The exponents in the penalty term When 1 < r < n, the requirements

on the exponents of ∥X−∥F and ∥XTX − Ir∥F in Theorems 5.1 and 5.2 cannot be
relaxed. This is elaborated in Proposition 5.3, with S = Rn×r being an example.
Similar results can be proved for S = Sn,r and S = Rn×r

+ .

Proposition 5.3. Suppose that 1 < r < n, p ≥ 1, q1 > 0, and q2 > 0. Define
the function ρ(X) = ∥X−∥q1ℓp + ∥XTX − Ir∥q2ℓp for X ∈ Rn×r. There exists a Lipschitz

continuous function F : Rn×r → R such that the following statements hold.
(a) Argmin{F (X) : X ∈ Sn,r+ } = Sn,r+ .
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(b) If q1 > 1/2 or q2 ̸= 1/2, then any X∗ ∈ Sn,r+ is not a global minimizer
of F + µρ on Rn×r for any µ > 0.

(c) If q1 > 1/2 or q2 > 1/2, then there exists an X∗ ∈ Sn,r+ that is not a local
minimizer of F + µρ on Rn×r for any µ > 0.

Proof. Define

F (X) = −dist(X, Sn,r+ ) for X ∈ Rn×r.

Then F is Lipschitz continuous on Rn×r. We will justify (a)–(c) one by one.
(a) This holds because F takes a constant value 0 on Sn,r+ .
(b) Assume for contradiction that there exists an X∗ ∈ Sn,r+ such that X∗ is a

global minimizer of F + µ∗ρ on Rn×r for a certain µ∗ > 0. Then

F (X) + µ∗ρ(X) ≥ F (X∗) + µ∗ρ(X∗) = 0 for all X ∈ Rn×r.

By the definition of F , we then have dist(X, Sn,r+ ) ≤ µ∗ρ(X) for all X ∈ Rn×r.
Hence ρ defines a global error bound for Sn,r+ relative to Rn×r, contradicting (b) of
Theorem 3.12 (note that ∥ · ∥ℓp and ∥ · ∥F are equivalent norms).

(c) According to (b) of Theorem 3.12, the function ρ does not define a local error
bound for Sn,r+ relative to Rn×r. Thus there is a sequence {Xk} ⊂ Rn×r such that

∥(Xk)−∥F + ∥XT
kXk − Ir∥F ≤ k−1,(5.5)

dist(Xk, Sn,r+ ) > kρ(Xk)(5.6)

for each k ≥ 1. According to (5.5), ∥XT
kXk∥F ≤

√
r + k−1. Thus {Xk} has a

subsequence {Xkℓ
} that converges to a certain point X∗. Using (5.5) again, we

have ∥X∗
−∥F + ∥(X∗)TX∗ − Ir∥F = 0, and hence X∗ ∈ Sn,r+ . It remains to show

that X∗ is not a local minimizer of F + µρ for any µ > 0. Assume for contradiction
that X∗ is such a local minimizer for a certain µ∗ > 0. Then for all sufficiently large ℓ,

F (Xkℓ
) + µ∗ρ(Xkℓ

) ≥ F (X∗) + µ∗ρ(X∗) = 0.

By the definition of F , we then have dist(Xkℓ
, Sn,r+ ) ≤ µ∗ρ(Xkℓ

), contradicting (5.6).
The proof is complete.

When r = 1 or r = n, since the exponents of ∥X−∥F and ∥XTX − Ir∥F in the
error bounds can be increased from 1/2 to 1, their exponents in the penalty term
of (5.1) can be taken from a larger range while keeping the exactness of (5.1). This is
briefly summarized in Remark 5.4.

Remark 5.4. Suppose that r = 1 or r = n. If F is Lipschitz continuous on S, then
we can establish a result similar to Theorem 5.1 for 0 < q1 ≤ 1 and 1/2 ≤ q2 ≤ 1
based on the error bound (3.11). When F is only locally Lipschitz continuous, similar
to Theorem 5.2, the exactness of problem (5.1) regarding local minimizers can be
established if 0 < q1 ≤ 1 and 0 < q2 ≤ 1. Proposition 5.3 can also be adapted to the
case of r = 1 or r = n. It is also worth noting that Sn,n+ is precisely the set of n× n
permutation matrices, and hence min{F (X) : X ∈ Sn,n+ } represents optimization
problems over permutation matrices.



22 XIAOJUN CHEN, YIFAN HE AND ZAIKUN ZHANG

6 Penalty methods for (1.5) When Sn,rS = Sn,r+ , problem (1.5) reduces to the
nonnegative orthogonal constrained optimization problem

(6.1) min
X∈Sn,r

+

F (X).

Many papers use penalty methods for problem (6.1) with penalty functions ∥ · ∥2F, ∥ · ∥F
or ∥ · ∥ℓ1 of X− or XTX − Ir, e.g., [1, 18, 28, 30]. However, there is not a satisfactory
answer in existing literature whether the penalty problem using ∥ · ∥2F, ∥.∥F or ∥ · ∥ℓ1 is
an exact penalty regarding local and global minimizers of problem (6.1) for a Lipschitz
continuous objective function.

In 2024, the authors of [24] proved that the penalty problem

(6.2) min
X∈Sn,r

F (X) + µ∥X−∥ℓ1

is a global exact penalty for problem (6.1) under the assumption that any global
minimizer has no zero rows and F satisfies a second-order calmness condition in a
neighborhood of any global minimizer of (6.1). Moreover, they aimed to show that
such strong assumption cannot be removed by Example 3.9 in [24], which is as follows

(6.3) min
X∈S3,2+

f(X) := −2X1,1 − 2X2,2 −X3,1 −X3,2.

The authors of [24] claimed X∗ =

[
1 0 0
0 1 0

]T
is a global minimizer of (6.3), but is

not a solution of the penalty problem

min
X∈S3,2

f(X) + µ∥X−∥ℓ1

for any µ > 0. However, X∗ is not a global minimizer of (6.3), since f(X∗) = −4

> −
√
5 − 2 = f(X̂), where X̂ =

[
2/
√
5 0 1/

√
5

0 1 0

]T
. Thus the claim with this

example in [24] is wrong.
In this paper, we give a warning for the penalty problem (6.2) in the case where

the objective function is only Lipschitz continuous. From Proposition 5.3, we know
that there is a Lipschitz continuous function F such that any global (local) minimizer
of (6.1) is not a global (local) minimizer of (6.2) for any µ > 0. On the other hand,
from Theorem 5.1 and Theorem 5.2, we know that

min
X∈Sn,r

F (X) + µ∥X−∥qℓ1

is an exact penalty problem for (6.1) regarding global and local minimizers for µ > 5Lr
3
4

and q ∈ (0, 1/2], where L is a Lipschitz constant of F . Our results provide theoretical
warning and guarantee for penalty methods of nonnegative orthogonal constrained
optimization problem (6.1).

Note that Remark 5.4 can be extended to the case |P|+ |N | = 1 or |P|+ |N | = n.
In particular, the penalty problem

min
X∈Sn,r

F (X) + µ∥(S ◦X)−∥ℓ1
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is an exact penalty problem of (1.5) with Si,1 = 1 and Si,j = 0, for j ≠ 1, i = 1, . . . , n.
Consider the following sparse trace maximization problem [4]

(6.4) min
X∈Sn,r

−tr(XTATAX) + λ∥X∥ℓ1 ,

where A ∈ Rm×n is a given matrix. If ATA is a positive or an irreducible nonnegative
matrix, then by the Perron-Frobenius theorem, the largest eigenvalue of ATA is positive
and the corresponding eigenvector is positive. Hence, for a dense nonnegative data
matrix A, it is interesting to consider

(6.5) min
X∈Sn,r

S

−tr(XTATAX) + λ∥T ◦X∥ℓ1 ,

with Si,1 = 1, Si,j = 0, Ti,1 = 0, Ti,j = 1, for j ≠ 1, i = 1, . . . , n. Since the objective
function of (6.5) is Lipschitz continuous with Lipschitz constant L = 2∥A∥22 + rλ

√
n

over Sn,r, our results show that

(6.6) min
X∈Sn,r

−tr(XTATAX) + λ∥T ◦X∥ℓ1 + µ∥(S ◦X)−∥ℓ1

is an exact penalty problem of (6.5) with µ > 5Lr
3
4 .

In [4], Chen et. al proposed a ManPG (Manifold Proximal Gradient) algorithm to
solve the following nonsmooth optimization problem

min
X∈Sn,r

F (X) := f(X) + h(X),

where f is smooth, ∇f is Lipschitz continuous and h is nonsmooth, convex and
Lipschitz continuous. The objective functions in problem (6.4) and problem (6.6)
satisfy these conditions. Numerical results in [4] show that ManPG outperforms
some existing algorithms for solving problem (6.4). We compare the two models (6.4)
and (6.6) for sparse trace maximization problem by using the code of [4] downloaded
from https://github.com/chenshixiang/ManPG, with the same initial points that are
randomly generated by the code. Other algorithms for solving nonsmooth matrix
optimization over Sn,r can be found in [32] and its references. Moreover, we can also
replace the orthogonal constraint by adding a penalty term ∥XTX − Ir∥ℓ1 to (6.6).

6.1 Synthetic simulations For given m,n, we randomly generated 20 nonneg-
ative matrices and then normalized the columns by Matlab functions as follows

A = rand(m,n), A = normc(A).

For each randomly generated matrix A, we use ManPG to find an approximate
solution X̂ of (6.4) and (6.6), respectively. The reconstructed matrix and its relative
reconstruction error (RRE) and percentage of explained variance (PEV) [31] by using X̂
are defined by

(6.7) Â = AX̂(X̂TX̂)−1X̂T, RRE =
∥A− Â∥F
∥A∥F

, PEV =
tr(ÂTÂ)

tr(ATA)
(×100%).

In Table 2 and Table 3, we report the average values of RRE and PEV of Â by using
the randomly generated 20 nonnegative matrices A for each m and n to compare
models (6.4) and (6.6) with r = 10. All computed solutions X̂ for calculating RRE
and PEV in Table 2 and Table 3, satisfy

∥X̂TX̂ − Ir∥F ≤ 10−14 and ∥X̂TX̂ − Ir∥F + ∥(S ◦ X̂)−∥ℓ1 ≤ 10−14,

for model (6.4) and model (6.6), respectively.
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m = 40, n = 30

λ, µ 0.6, 150 0.6, 170 0.6, 190 0.6, 200 1, 100 1, 110 1, 130

model (6.4) 0.4029 0.4029 0.4029 0.4029 0.4046 0.4046 0.4046
model (6.6) 0.3999 0.3992 0.3988 0.3953 0.4029 0.4008 0.3981

λ = 0.6, µ = 100

m,n 50, 25 50, 50 80, 25 80, 40 80, 80 200, 25 200, 50

model (6.4) 0.3811 0.4427 0.3846 0.4315 0.4652 0.3860 0.4464
model (6.6) 0.3806 0.4409 0.3843 0.4284 0.4636 0.3847 0.4451

Table 2: Comparison on RRE with different (m,n, λ, µ) by randomly generated A

m = 40, n = 30

λ, µ 0.6, 150 0.6, 170 0.6, 190 0.6, 200 1, 100 1, 110 1, 130

model (6.4) 0.8376 0.8376 0.8376 0.8376 0.8363 0.8363 0.8363
model (6.6) 0.8400 0.8406 0.8410 0.8410 0.8376 0.8391 0.8404

λ = 0.6, µ = 100

m,n 50, 25 50, 50 80, 25 80, 40 80, 80 200, 25 200, 50

model (6.4) 0.8547 0.8040 0.8520 0.8138 0.7836 0.8510 0.8007
model (6.6) 0.8551 0.8055 0.8523 0.8164 0.7850 0.8520 0.8019

Table 3: Comparison on PEV with different (m,n, λ, µ) by randomly generated A

6.2 Numerical results using Yale face dataset The Yale Face dataset
contains 165 GIF format gray scale images of 15 individuals with 11 images for each
subject, and one for each different facial expression or configuration. From
http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html, we download the
165× 1024 facial image matrix Face. The (15× (i− 1) + t)th row of Face is the tth
image of the ith person, with i = 1, . . . , 15 and t = 1, . . . , 11. Each row of Face defines
a 32 × 32 nonnegative matrix. We use the first 55 rows of Face, which include 11
images of each of the first five persons, to get 55 32× 32 nonnegative matrices and
then use Matlab function normc to normalize each of these matrices.

For each 32 × 32 matrix A, we use ManPG to find an approximate solution X̂
of (6.4) and (6.6), respectively. We compute the reconstructed matrix Â and its RRE
and PEV by using computed X̂ as (6.7).

From Table 2, Table 3 and Figure 1, we can see that in almost every case, the
reconstructed matrix Â by model (6.6) has lower values RRE and higher values
PEV than that computed by model (6.4). In our numerical experiments, we only
restricted the power of the penalty term to be one, but did not restrict the penalty
parameter µ > 5Lr

3
4 .
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Fig. 1: Row i (i = 1, . . . , 5) shows average values of RRE and PEV of the reconstructed

matrix Â using 11 images for the ith person by models (6.4) with λ = 1 and (6.6)

with λ = 1, µ = 6, respectively, for r = 1, . . . , 32.

7 Conclusions We present the error bounds (1.2)–(1.4) with explicit values
of ν and q in Theorems 3.1, 3.3 and 3.10 for Sn,rS = Sn,r+ . Furthermore, we show that
these error bounds cannot hold with q > 1/2 when 1 < r < n in Proposition 3.11, and
point out that they cannot hold with q > 1 for any r ∈ {1, . . . , n} in Remark 3.4. In
Section 4 we present the error bounds (1.2)–(1.4) with explicit values of ν and q in
Theorems 4.5–4.7 for the sign-constrained Stiefel manifold. The exponent q in the error
bounds is 1/2 for any r ∈ {1, . . . , n} and can take the value 1 for |P|+ |N | ∈ {1, n}.
The new error bounds help us to establish the exactness of penalty problems (1.6)–(1.8)
for problem (1.5). Compared with existing results on error bounds for the set Sn,r+

and penalty methods for minimization with nonnegative orthogonality constraints, our
results have explicit values of the error bound parameters and penalty parameters,
and do not need any condition other than the (local) Lipschitz continuity of the
objective function for the exact penalty. Moreover, exponents in our error bounds are
independent of the dimension of the underlying space.
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Appendix A. Appendix. Proofs of Theorems 5.1 and 5.2.
We first present the following lemma on a simple inequality between the entry-

wise ℓp-norm and the Frobenius norm. Its proof is elementary and hence omitted.

Lemma A.1. For any X ∈ Rn×r and any p ≥ 1,

∥X∥F ≤ max
{
1, (nr)

p−2
2p

}
∥X∥ℓp .

The proofs of Theorems 5.1 and 5.2 are as follows.

Proof of Theorem 5.1. Define h(X) = ∥X−∥qℓp + ∥XTX − Ir∥
1
2

ℓp
for X ∈ S, and

set ν = 5r
3
4 max

{
1, (nr)

p−2
4p

}
. By (3.34) and Lemma A.1, we have

dist(X, Sn,r+ ) ≤ 5r
3
4

(
∥X−∥qF + ∥XTX − Ir∥

1
2

F

)
≤ νh(X) for X ∈ S.

For anyX ∈ S, setting X̄ to a projection ofX onto Sn,r+ , and combining the L-Lipschitz
continuity of F with the above error bound, we have

F (X̄) ≤ F (X) + Ldist(X, Sn,r+ ) ≤ F (X) + µh(X).

This implies that

inf{F (X) : X ∈ Sn,r+ } ≤ inf{F (X) + µh(X) : X ∈ S}.

Meanwhile, inf{F (X) : X ∈ Sn,r+ } ≥ inf{F (X) + µh(X) : X ∈ S} as h is zero
on Sn,r+ ⊂ S. Thus

(A.1) inf{F (X) : X ∈ Sn,r+ } = inf{F (X) + µh(X) : X ∈ S}.

For any X∗ ∈ Argmin{F (X) : X ∈ Sn,r+ }, we have h(X∗) = 0 and

F (X∗) + µh(X∗) = F (X∗) = inf{F (X) : X ∈ Sn,r+ },

which together with (A.1) ensures X∗ ∈ Argmin{F (X) + µh(X) : X ∈ S}.
Now take any X∗ ∈ Argmin{F (X) + µh(X) : X ∈ S}, and let X̄∗ be a projection

of X∗ onto Sn,r+ . Then we have

F (X∗) + µh(X∗) ≤ F (X̄∗) + µh(X̄∗) = F (X̄∗) ≤ F (X∗) + νLh(X∗).

This leads to h(X∗) = 0, as µ > νL and h(X∗) ≥ 0. Hence X∗ lies in Sn,r+ , and

F (X∗) = F (X∗) + µh(X∗) = inf{F (X) + µh(X) : x ∈ S},

which implies that X∗ ∈ Argmin{F (X) : X ∈ Sn,r+ } with the help of (A.1). We
complete the proof.

Proof of Theorem 5.2. Define h(X) = ∥X−∥q1ℓp + ∥XTX − Ir∥q2ℓp for X ∈ S, and

set ν = 4
√
rmax

{
1, (nr)

q1(p−2)
2p , r

q2(p−2)
p

}
. For any X ∈ Sn,r+ and any Y ∈ S such

that ∥Y −X∥F < 1/(6
√
r), we have

∥Y−∥F + ∥σ(Y )− 1∥2 ≤ ∥Y −X∥F + ∥σ(Y )− σ(X)∥2 ≤ 2∥Y −X∥F <
1

3
√
r
,
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where the first inequality is because X− = 0 and σ(X) − 1 = 0, while the second
invokes Lemma 2.2. Hence (3.26) and Lemma A.1 yield

dist(Y, Sn,r+ )

≤ 4
√
r
(
∥Y−∥q1F + ∥Y TY − Ir∥q2F

)
≤ 4

√
r
(
max

{
1, (nr)

q1(p−2)
2p

}
∥Y−∥q1ℓp +max

{
1, (r2)

q2(p−2)
2p

}
∥Y TY − Ir∥q2ℓp

)
≤ νh(Y ).

Given a local minimizer X∗ of F on Sn,r+ , there exists a δ ∈ (0, 1/(3
√
r)) such

that X∗ is a global minimizer of F on Sn,r+ ∩B(X∗, δ) and F is L∗-Lipschitz continuous
in the same set.

It suffices to demonstrate that X∗ is a global minimizer of F+µh on S∩B(X∗, δ/2)
for all µ > νL∗. Take any point Y ∈ S ∩ B(X∗, δ/2), let Ȳ be a projection of Y
onto Sn,r+ , and note that Ȳ lies in B(X∗, δ), which is because

∥Ȳ −X∗∥F ≤ ∥Ȳ − Y ∥F + ∥Y −X∗∥F ≤ ∥X∗ − Y ∥F + ∥Y −X∗∥F < δ.

Then, using the fact that h(X∗) = 0, we have

F (X∗) + µh(X∗) = F (X∗) ≤ F (Ȳ ) ≤ F (Y ) + L∗ dist(Y, Sn,r+ ) ≤ F (Y ) + µh(Y ),

which is what we desire.
If X∗ is a local minimizer of F + µh on S, and X∗ happens to lie in Sn,r+ , then

F (X∗) = F (X∗) + µh(X∗) ≤ F (Y ) + µh(Y ) = F (Y )

for any Y that is close to X∗ and located in Sn,r+ ⊂ S. Hence X∗ is also a local
minimizer of F on Sn,r+ . We complete the proof.
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