The Hong Kong Polytechnic University AMA1501 Introduction to Statistics for Business
 Exam 2016/17 Semester 1 Outline Suggested Solution

Question 1.
(a) The frequency distribution:

Class mark (x)	Frequency, f	Cum. Freq
300.5	4	4
450.5	9	13
550.5	15	28
650.5	28	56
750.5	56	112
850.5	32	144
950.5	6	150
$\sum f=150, \sum f x=106675, \sum f x^{2}=78691637.5$ Mean $=\frac{106675}{150}=\$ 711.17$.		

Standard deviation $=\sqrt{\frac{150(7869163.5)-106675^{2}}{150(150-1)}}=\$ 137.77$
(b) $D_{9}=800.5+\frac{135-112}{32}(900.5-800.5)=\$ 872.375$
(c) $\frac{1}{150}\left(\frac{700.5-680}{700.5-600.5}(28)+56+32+\frac{920-900.5}{1000.5-900.5}(6)\right)=0.6327$
(d) Let p_{1} and p_{2} be the population proportion of invoices with amount of expenses between $\$ 680$ and $\$ 920$ in the last year and in this year, respectively. It is assumed that random samples are drawn with replacement, or there are infinite populations. By central limit theorem, $\hat{p}_{1}-\hat{p}_{2} \sim N\left(p_{1}-p_{2}, \frac{p_{1} q_{1}}{n_{1}}+\frac{p_{2} q_{2}}{n_{2}}\right)$ approximately.
$H_{0}: p_{1}=p_{2}$
$H_{1}: p_{1}<p_{2}$
$\alpha=0.05$
Critical region: $z<-1.645$
$\hat{p}_{1}=\frac{30}{100}, \hat{p}_{2}=0.6327, \hat{p}=\frac{30+94.91}{100+150}=\frac{124.91}{250}=0.49964$
Under H_{0}, test statistics $z=\frac{0.3-0.6327-0}{\sqrt{0.49964(1-0.46694)\left(\frac{1}{100}+\frac{1}{150}\right)}}=-5.15$
Reject H_{0}. It is concluded that the proportion of invoices with amount of expenses between $\$ 680$ and $\$ 920$ in this year is significantly larger than that of the last year at 5% level of significance.

Question 2.
(a) $\binom{3}{2}\binom{4}{2}\binom{5}{2} 6!=129600$
(b)(i) A: selected student prefers Western European countries
B : selected student prefers North American countries
$P(A)=0.55, P(B)=0.8, P(\bar{A} \cap \bar{B})=0.05$
$P(A \cup B)=1-P(\bar{A} \cap \bar{B})=0.95$
(b)(ii) $P(A \cup B)=P(A)+P(B)-P(A \cap B), P(A \cap B)=0.4, P(A \mid B)=\frac{0.4}{0.8}=0.5$
(b)(iii) $P(B \mid \bar{A})=\frac{P(\bar{A} \cap B)}{P(A)}=\frac{P(B)-P(A \cap B)}{1-P(A)}=\frac{8}{9}$
(c) A: 2 out of 5 participants rate the course as useful $B_{1}, B_{2}, B_{3}, B_{4}$: HR , marketing, $\mathrm{R} \& \mathrm{D}$ and other department, respectively, is chosen
$P\left(B_{1}\right)=0.25=P\left(B_{2}\right)=P\left(B_{3}\right)=P\left(B_{4}\right)$
$P\left(A \mid B_{1}\right)=\binom{5}{2} 0.75^{2}\left(0.25^{3}\right)=P\left(A \mid B_{2}\right)=P\left(A \mid B_{3}\right)=P\left(A \mid B_{4}\right) P\left(B_{3} \mid A\right)=$ $\frac{P\left(B_{3}\right) P\left(A \mid B_{3}\right)}{\sum_{i} P\left(B_{i}\right) P\left(A \mid B_{i}\right)}=0.1731$

Question 3.
(a)(i) X : score of generic competence test
$X \sim N\left(78,8^{2}\right)$
$P(72<X<92)=P(-0.75<Z<1.75)=1-0.2266-0.0401=0.7333$
(a)(ii) Y : number of candidates having a score between 72 and 92 , out of 10 students. $Y \sim B(10,0.7333)$
$P(Y>3)=1-P(Y=0)-P(Y=1)-P(Y=2)-P(Y=3)=0.9948$
(a)(iii) $P(X>75)=P(Z>-0.375)=0.64615$
Y_{2} : number of candidates out of 200 , will be invited to interview
$Y_{2} \sim N(200,0.64615)$
Since $n p>5, n q>5,0.1<p<0.9$, normal approximation to binomial distribution is used, $\mu=129.23, \sigma^{2}=45.7280355$
$P\left(Y_{2} \geq 150\right)=P\left(Z>\frac{149.5-129.23}{\sqrt{45.7280355}}\right)=P(Z>3)=0.00135$
(b)(i) X : number of vehicles arriving at the maintenance depot in a 30-minute period $X \sim P o(4)$
$P(X>5)=1-\sum \frac{e^{-4} 4^{x}}{x!}=0.2149$
(b)(ii) Expected number of technical staff $=6(0.2149)+4(0.7851)=4.4298$
(a) X : monthly rate of return of a company (\%)
$X \sim N\left(12,5^{2}\right)$ and random sample is drawn with replacement or infinite population.
$P(\bar{X}>10)=P\left(Z>\frac{10-12}{5 / \sqrt{4}}\right)=0.7881$
(b) X : assembly time of a product by trainees (minutes)

Assume that $X \sim N\left(\mu, \sigma^{2}\right)$ and random sample is drawn with replacement or infinite population.
$\sum x=98.7, \sum x^{2}=1225.11, n=8, \bar{x}=12.3375, s=1.0281$
A 95% confidence interval for the population mean assembly time of a product by trainees is $12.337 \pm 2.365\left(\frac{1.0281}{\sqrt{8}}\right)$, that is $11.4779<\mu<13.1971$.
(c) Let p be the population proportion of VIP customers who spent more than $\$ 20000$ during annual mega sales. It is assumed that random sample of size 400 is selected with replaement or infinite population. By central limit theorem, $\hat{p} \sim N(p, p q / n)$ approximately.
$H_{0}: p=0.23, H_{1}: p>0.23, \alpha=0.01, \hat{p}=0.84$
critical region: $z>z_{0.01} \cong 2.33$
Under H_{0}, test statistic $z=\frac{84 / 400-0.23}{\sqrt{0.23(1-0.23) / 400}}=-0.95$
Decision: do not reject H_{0}.
Conclusion: the population proportion of VIP customers who spent more than $\$ 20000$ during annual mega sales is not more than 23% at 1% level of significance.
(d) Let X_{U} and X_{R} be the weekly sales revenue of branch located at urban area and rural area, respectively.
Assume $X_{U} \sim N\left(\mu_{U}, \sigma_{U}^{2}\right), X_{R} \sim N\left(\mu_{R}, \sigma_{R}^{2}\right), \sigma_{U}=\sigma_{R}$ and random samples are selected with replacement or infinite populations.
$S_{P}^{2}=\frac{(10-1) 12000^{2}+(8-1) * 11000^{2}}{10+8-2}=133937500$
$H_{0}: \mu_{U}=\mu_{R}, H_{1}: \mu_{U}>\mu_{R}, \alpha=0.05$
Critical region: $t>t_{0.05 ; 10+8-2}=1.746$
Under $H_{0}, t=\frac{280000-200000}{\sqrt{133937500\left(\frac{1}{10}+\frac{1}{8}\right)}}=14.57$ Decision: reject H_{0}
Conclusion: The mean weekly sales revenue of branches locating at rural area is significantly lower than that of urban area at 5% level of significance.

Question 5.
(a) Let D be the difference in estimated duration estimated by manager B and manager A. Assume $D \sim N\left(\mu_{D}, \sigma_{D}^{2}\right)$ and random sample is drawn with replacement or infinite population.

$$
\begin{array}{cccccccc}
\text { Project } & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
d & 2 & -1 & 3 & -1 & 3 & 3 & -1
\end{array}
$$

$n=7, \sum d=8, \sum d^{2}=34, \bar{d}=\frac{8}{7}, s_{d}=\sqrt{\frac{7 * 34-64}{7 * 6}}=2.0354$
$H_{0}: \mu_{D}=0, H_{1}: \mu_{D} \neq 0, \alpha=0.05$
Critical region: $t<-t_{0.025,6}=-2.447, t>t_{0.025,6}=2.447$
Under H_{0}, test statistics $t=\frac{1.1429}{2.0354 / \sqrt{7}}=1.4856$
Decision: Do not reject H_{0}
Conclusion: the mean project duration estimated by the two managers do not have significance difference at 5% level of significance.
(b) H_{0} : number of telephone enquiries received in a 5 -minute period follow the uniform distribution.
H_{1} : number of telephone enquiries received in a 5-minute period do not follow the uniform distribution.
$\alpha=0.05$

x	0	1	2	3	4	5
O_{i}	23	35	62	48	24	8
E_{i}	33.33	33.33	33.33	33.33	33.33	33.33

Critical region: $\chi^{2}>11.07, \nu=6-1=5$
Under H_{0}, test statistics $\chi^{2}=\frac{1}{33.33}\left((23-33.33)^{2}+(35-33.33)^{2}+\cdots+(8-\right.$ $33.33)^{2}$) $=56.26$.
Reject H_{0} and conclude that the number of telephone enquiries received in 5 -minute period does not follow the uniform distribution at 5% level of significance.
(c) H_{0} : employee's level of satisfaction on medical beneficts and staff banding are independent
H_{0} : employee's level of satisfaction on medical beneficts and staff banding are dependent
$\alpha=0.01$
Critical region: $\chi^{2}>13.277, \nu=(3-1)(3-1)=4$
Expected frequencies:

	Unsatisfactory	Neural	Satisfactory
Senior	24	48	48
Middle	28	56	56
Subordinate	18	36	36

Under H_{0}, test statistics $=\sum \sum \frac{(O-E)^{2}}{E}=\frac{(33-24)^{2}}{24}+\cdots+\frac{(39-36)^{2}}{36}=21.37$
Reject H_{0} and conclude that employee's level of satisfaction on medical benefits and staff banding are not independent at 1% level of significance.

Question 6.
(a)(i) $b=\frac{12(6093)-(533)(132)}{12(24529)-533^{2}}=0.2690$
$a=\frac{132}{12}-0.2690\left(\frac{533}{12}\right)=-0.9495$
$\hat{y}=-0.9495+0.2690 x$
(a)(ii) $\hat{y}=-0.9495+0.2690(58)=14.65 \%$
(a)(iii) $1-R^{2}=1-\frac{(12(6093)-(533)(132))^{2}}{\left[12(24529)-(533)^{2}\right]\left[12(1526)-132^{2}\right]}=1-0.8362=0.1638$
16.38% variation in moisture content cannot be explained by the fitted equation.
(b)(i) $\hat{y}=0.002+0.0204 x_{1}-0.0231 x_{2}+0.0765 x_{3}+0.276 x_{4}+0.0018 x_{5}$
(b)(ii) If the percentage of female in labour force is increased by 1 unit, the suicide rate is expected to decrease 0.0231 unit.
(b)(iii) $H_{0}: \beta_{1}=\beta_{2}=\cdots=\beta_{5}=0$
H_{1} : at least one $\beta_{i} \neq 0$
$\alpha=0.05$
Critical region: $f>F_{0.05 ; 5,46-5-1}=2.45$
Under H_{0}, test statistic $f=\frac{0.45 * S S T / 5}{(1-0.45) S S T /(46-5-1)}=6.5455$
Decision: reject H_{0}
Conclusion: the fitted regression equation of suicide rate on the five independent variables is significant at 5% level of significance.
(b)(iv) $H_{0}: \beta_{i}=0, H_{1}: \beta_{i} \neq 0, i=1,2,3,4,5, \alpha=0.1$

From the output, only the first two p-value are less than 0.1 (0.002 for x_{1} and 0.02 for x_{2}) and the remaining three p-value are greater than 0.1 . The independent variables unemployment rate x_{1} and percentage of female in the labour force x_{2} are significant at 10% level of significance.

