## The Hong Kong Polytechnic University AMA1501 Introduction to Statistics for Business Exam 2016/17 Semester 1 Outline Suggested Solution

Question 1.
(a) Classmarks: $15,25,32.5,37.5,42.5,47.5,55$
$\sum f=120, \sum f x=4730, \sum f x^{2}=194125$, Mean $=\frac{4730}{120}=39.4167 \%$
Mode $=35+\frac{36-20}{(36-20)+(36-28)}(40-35)=38.3333 \%$
Standard Deviation $=\sqrt{\frac{120(194125)-4730^{2}}{120(119)}}=8.0357 \%$
(b) $\frac{45-42}{45-40}(28)+16+10=42.8$
(c) CV of this survey is $\frac{8.0357}{39.4167} 100 \%=20.3866 \%$

CV of the previous survey is $\frac{15}{35} 100 \%=42.8571 \%$
Since the coefficient of variation of the previous survey is larger than that of this survey, the set of data for the survey conducted 10 yaers ago has a larger variability.
(d) Let $X$ be the percentage of monthly household income used for mortgage payment. Assume that random samples are drawn with replacement or infinite populations. By central limit theorem, $\bar{X} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)$ approximately. Furthermore, $\sigma \cong s$.
$H_{0}: \mu \leq 35$
$H_{1}: \mu>35$
$\alpha=0.025$
Critical region: $z>1.96$
Under $H_{0}$, test statistic $z=\frac{39.4167-35}{8.0357 / \sqrt{ } 120}=6.0209$
Reject $H_{0}$. It is concluded that the mean percentage of monthly household income for mortgage payment of all customers with mortgage loan is significant greater than $35 \%$ at $2.5 \%$ level of significance.

Question 2.
(a) $\binom{4}{2}\binom{5}{2}\binom{3}{2} 6!=129600$
(b)(i) $A$ : selected credit card holder sets automatic payment instructions to settle credit card payments
$B$ : selected credit card holder uses Octopus Automatic Add Value Service $P(A)=0.45, P(B)=0.6, P(A \mid B)=0.55$
$P(A \cup B)=P(A)+P(B)-P(A \cap B)=0.45+0.6-0.6 * 0.55=0.72$
(b)(ii) $P(\bar{B} \mid \bar{A})=\frac{P(\bar{A} \cap \bar{B})}{P(\bar{A})}=\frac{1-P(A \cup B)}{1-P(A)}=\frac{1-0.72}{1-0.45}=\frac{28}{55}$
(c)(i) $A$ : selected price proposal under-estimate the cost
$B_{1}, B_{2}, B_{3}$ : selected price proposal is prepared by Joe, Jenny and Jack, respectively

$$
\begin{aligned}
& P\left(B_{1}\right)=0.2, P\left(B_{2}\right)=0.3, P\left(B_{3}\right)=0.5 \\
& P\left(\bar{A} \mid B_{1}\right)=0.95, P\left(\bar{A} \mid B_{2}\right)=0.98, P\left(\bar{A} \mid B_{3}\right)=0.99 \\
& P\left(B_{2} \mid \bar{A}\right)=\frac{P\left(B_{2}\right) P\left(\bar{A} \mid B_{2}\right)}{\sum_{i=1}^{3} P\left(B_{i}\right) P\left(\bar{A} \mid B_{i}\right)}=\frac{0.3 * 0.98}{0.2 * 0.95+0.3 * 0.98+0.5 * 0.99}=0.3003
\end{aligned}
$$

(c)(ii) $X$ : number of price proposal that are prepared by Jenny out of 20, given that none of them under-estimate the cost
$X \sim B(20,0.3003)$
$P(X=6)=\binom{20}{6}(0.3003)^{6}(1-0.3003)^{14}=0.1916$

Question 3.
(a)(i) $X$ : time spent by students in handling final year projects in hours $X \sim N\left(220,50^{2}\right)$
$P(205<X<245)=P(-0.3<Z<0.5)=1-0.3821-0.3085=0.3094$
(a)(ii) Let $a$ be the required time spent
$P(X>a)=P\left(Z>\frac{a-220}{50}\right)=0.15 \cong P(Z>1.04)$
$\frac{a-220}{50} \cong 1.04, a \cong 220+1.04 * 50=272$ hours.
(a)(iii) $P(X \geq 205)=P(Z>-0.3)=0.6179$
$Y$ : number of students out of 50 , spent more than 205 hours in handling their final year project $Y \sim N(50,0.6179)$
Since $n p>5, n q>5,0.1<p<0.9$, normal approximation to binomial distribution is used, $\mu=50(0.6179)=30.895, \sigma^{2}=50(0.6179)(1-0.6179)=11.8050$ $P(Y \geq 25)=P\left(Z>\frac{24.5-30.895}{\sqrt{11.8050}}\right)=P(Z>-1.86)=0.9686$
(a)(iv) $\bar{X} \sim N\left(220,50^{2} / 16\right)$
$P(\bar{X}<245)=P(Z<2)=0.9772$
(b) $X$ : number of VIP customers arriving at the customer services counter in a randomly selected 15 -minute period
$X \sim \operatorname{Po}\left(12 * \frac{15}{60}=3\right)$
$P(X>4)=1-\sum \frac{e^{-3} 3^{x}}{x!}=0.1847$

Question 4.
(a)(i) Let $\hat{p}_{A}, \hat{p}_{E}$ be the sample proportion of adults and elderlies, respectively, who prefer a tour visiting Country X would have a duration of at most 7 days. Assume that random samples are drawn with replacement or infinite populations and by central limit theorem, $\hat{p}_{A}-\hat{p}_{E} \sim N\left(p_{A}-p_{E}, \frac{p_{A}\left(1-p_{A}\right)}{n_{A}}+\frac{p_{E}\left(1-p_{E}\right)}{n_{E}}\right)$ approximately.
$\hat{p}_{A}=\frac{120}{200}, \hat{p}_{E}=\frac{50}{150}, \hat{p}=\frac{120+50}{200+150}=\frac{170}{350}$
$H_{0}: p_{A}=p_{E}$
$H_{1}: p_{A}>p_{E}$
$\alpha=0.01$
Critical region: $z>2.33$
Under $H_{0}$, test statistic $z=\frac{120 / 200-50 / 150-0}{\sqrt{\frac{170}{350} 180} 35\left(\frac{1}{200}+\frac{1}{150}\right)}=4.94$
Decision: reject $H_{0}$ Conclusion: there is sufficient evidence indicating that the population proportion of all adults who prefer a tour visiting Country X would have a duration of at most 7 days is higher than that of elderlies at $1 \%$ level of significance.
(a)(ii) Assume a large sample is drawn and random sample is drawn with replacement or infinite population.
$z_{0.025} \sqrt{\frac{p q}{n}} \leq$ error which is maximized when $p=0.5$.
$n \geq\left(\frac{1.96 * 0.5}{0.03}\right)^{2}=1067.111$
(b) Assume the random sample of 36 students is selected with replacement or there is an infinite population, and by central limit theorem the sample mean weekly hours in using the e-learning platform to perform learning related activities $\bar{X} \sim N\left(\mu, \sigma^{2} / 36\right)$. Furthermore, $\sigma \cong s$.
A $95 \%$ confidence interval for $\mu$ is $38 \pm 1.96 \frac{8}{6}$, that is $35.3867<\mu<40.6133$ hours.
(c) Let $X_{M}, X_{J}$ be the evaluation score of staff member of management level and junior level, respectively. Assume $X_{M} \sim N\left(\mu_{M}, \sigma_{M}^{2}\right), X_{J} \sim N\left(\mu_{J}, \sigma_{J}^{2}\right), \sigma_{M}^{2}=\sigma_{J}^{2}$ and random samples are selected with replacement or infinite populations.
$s_{p}^{2}=\frac{11\left(9^{2}\right)+17\left(10^{2}\right)}{12+18-2}=\frac{2591}{28}=92.5357$
$H_{0}: \mu_{M}=\mu_{J}$
$H_{1}: \mu_{M}<\mu_{J}$
$\alpha=0.01$

Critical region: $t<-t_{0.01,12+18-2}=-2.467$
Under $H_{0}$, test statistic $t=\frac{68-74-0}{\sqrt{92.5357\left(\frac{1}{12}+\frac{1}{18}\right)}}=-1.6736$
Decision: do not reject $H_{0}$.
Conclusion: The mean score of staff members of management level is not significant less than that of junior level at $1 \%$ level of significance. Staff members of junior level, on average, do not have a more positive response to the new reward system than staff member of management level.

## Question 5.

(a) Let $D$ be the difference in performance score, which is computed by the score of customer services team - score of sales team. Assume $D \sim N\left(\mu_{D}, \sigma_{D}^{2}\right)$ and random sample is drawn with replacement or infinite population.

$$
\begin{array}{ccccccccc}
\text { Project } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
d & 8 & 4 & -2 & 4 & 7 & 6 & 9 & 3
\end{array}
$$

$n=8, \sum d=39, \sum d^{2}=275, \bar{d}=\frac{39}{8}, s_{d}=\sqrt{\frac{8 * 275-39^{2}}{8 * 7}}=3.4821$
$H_{0}: \mu_{D}=0, H_{1}: \mu_{D}>0, \alpha=0.05$
Critical region: $t>t_{0.05,7}=1.895$
Under $H_{0}$, test statistics $t=\frac{4.875}{3.4821 / \sqrt{8}}=3.9599$
Decision: Reject $H_{0}$
Conclusion: the mean score of sales team is significantly lower than that of customer services team at $5 \%$ level of significance.
(b) $H_{0}$ : number of customers arriving at the bank follow the Poisson distribution. $H_{1}$ : number of customers arriving at the bank do not follow the Poisson distribution.

$$
\alpha=0.025, \hat{\lambda}=\bar{x}=316 / 108
$$

| $x$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | $\geq 7$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $O_{i}$ | 5 | 14 | 25 | 28 | 18 | 12 | 6 | 0 |
| $P(X=x)$ | 0.0536 | 0.1569 | 0.2295 | 0.2238 | 0.1637 | 0.0958 | 0.0467 | 0.0299 |
| $E_{i}$ | 5.79 | 16.94 | 24.79 | 24.17 | 17.68 | 10.35 | 5.05 | 3.23 |

Critical region: $\chi^{2}>12.832, \nu=7-1-1=5$
Under $H_{0}$, test statistics $\chi^{2}=\frac{(5-5.79)^{2}}{5.79}+\frac{(14+16.94)^{2}}{16.94}+\cdots+\frac{(6-8.28)^{2}}{8.28}=2.12$
Do not reject $H_{0}$ and conclude that the number of customers arriving at the bank follow the Poisson distribution at $2.5 \%$ level of significance.
(c) $H_{0}$ : students' academic performance and employer's evaluation are independent
$H_{0}$ : students' academic performance and employer's evaluation are not independent
$\alpha=0.01$
Critical region: $\chi^{2}>13.277, \nu=(3-1)(3-1)=4$
Expected frequencies:

|  | Very satisfactory | Satisfactory | Unsatisfactory |
| :--- | :---: | :---: | :---: |
| Excellent | 31.51 | 37.13 | 9.36 |
| Good | 52.12 | 61.40 | 15.48 |
| Fair | 17.37 | 20.47 | 5.16 |

Under $H_{0}$, test statistics $=\sum \sum \frac{(O-E)^{2}}{E}=\frac{(42-31.51)^{2}}{31.51}+\cdots+\frac{(15-5.16)^{2}}{5.16}=44.73$ Reject $H_{0}$ and conclude that students' academic performance and employer's evaluation are not independent at $1 \%$ level of significance.

Question 6.
(a)(i) $b=\frac{9(25558030)-15870(13993)}{9(29170500)-15870^{2}}=0.7449$
$a=\frac{13993}{9}-(0.7449) \frac{15870}{9}=241.3342$
$\hat{y}=241.3342+0.7449 x$
(a)(ii) $\hat{y}=241.3342+0.7449(3500)=2848.36$ kilowatt-hours.

The observed value of $x$ do not cover $x=3500$ and hence the fitted model in (i) may not be applicable to explain the relationship between $x$ and $y$ when the value of $x$ is outside the observable range, that is, extrapolation. On the other hand, the proposed model may not be the same as the true model.
(b)(i) Let $y$ be the household food consumption in a month (\$0000) and $x_{1}, x_{2}$ be monthly household income ( $\$ 0000$ ) and household size, respectively.
$\hat{y}=1.4326+0.00999 x_{1}+0.37929 x_{2}$.
(b)(ii) $H_{0}: \beta_{1}=0$
$H_{1}: \beta_{1} \neq 0$
$\alpha=0.05$
Critical region: $t<-t_{0.025,22}=-2.074$ and $t>2.074$.
Under $H_{0}$, test statistic $t=\frac{0.00999062}{0.00316806}=3.1535$
Decision: $H_{0}$ is rejected
Conclusion: Monthly household income is a significant independent in explaining household food consumption in a month at $5 \%$ level of significance.
(b)(iii) $H_{0}: \beta_{1}=\beta_{2}=0$
$H_{1}$ : at least one $\beta_{i} \neq 0$
$\alpha=0.01$
Critical region: $f>F_{0.01 ; 2,22}=5.72$
Under $H_{0}$, test statistic $f=\frac{(1-0.0984) * S S T / 2}{(0.0984) S S T /(25-2-1)}=100.79$
Decision: reject $H_{0}$
Conclusion: the regression equation of household food consumption in a month on monthly household income (\$0000) and household size is significant at $1 \%$ level of significance.
(b)(iv) If the monthly household income is increased by 1 unit (that is $\$ 10000$ ) while the household size remains unchanged, the household food consumption in a month is expected to increase by 0.00999 unit (that is $\$ 99.9$ ).

