The Hong Kong Polytechnic University
 AMA1501 Introduction to Statistics for Business
 Exam 2017/18 Semester 1 Outline Suggested Solution

1. (a)

Class mark (x)	Frequency, f	Cum. Freq
100	4	4
175	7	11
225	15	26
275	24	50
325	17	67
375	11	78
425	6	84

$\sum f=84, \quad \sum f x=23800, \quad \sum f x^{2}=7255000$

Mean $=\frac{23800}{84}=\$ 283 \frac{1}{3}$
Mode $=250+\frac{24-15}{(24-15)+(24-17)} \times(300-250)=\$ 278.125$
Standard deviation $=\sqrt{\frac{84(7255000)-23800^{2}}{84(84-1)}}=\$ 78.5153$
(b) $Q_{1}=200+\frac{21-11}{15} \times(250-200)=\$ 233 \frac{1}{3}$
$Q_{3}=300+\frac{63-50}{17} \times(350-300)=\$ 338 \frac{4}{17}$
Interquartile range $=Q_{3}-Q_{1}=\$ 104 \frac{46}{51}$
(c) $\left(\frac{250-240}{250-200} \times 15+24+17+\frac{380-350}{400-350} \times 11\right) / 84=0.6024$
(d) Let p be the population proportion of customers who spent between $\$ 240$ and $\$ 380$ in the last month. It is assumed that random sample is drawn with replacement, or there is infinite population size. By central limit theorem, $\hat{p} \sim N\left(p, \frac{p q}{n}\right)$ approximately.

A 98% confidence interval for p is

$$
\begin{aligned}
& \frac{50.6}{84} \pm 2.326 \sqrt{\frac{50.6}{84}\left(1-\frac{50.6}{84}\right) / 84} \\
& =(0.4782,0.7266)
\end{aligned}
$$

2. (a) $\binom{2}{1}\binom{4}{2}\binom{6}{3}=240$
(b) C : selected customer purchased clothes
E : selected customer purchased small electricity appliances
$P(C)=0.65, P(E)=0.38, P(E \mid C)=0.42$
i. $P(C \cup E)=P(C)+P(E)-P(C \cap E)$
$=P(C)+P(E)-P(E \mid C) P(C)$
$=0.65+0.38-(0.42)(0.65)=0.757$
ii. $P(C \mid E)=\frac{P(C \cap E)}{P(E)}=\frac{P(E \mid C) P(C)}{P(E)}=\frac{(0.42)(0.65)}{0.38}=0.7184$
$P\left(C^{\prime} \mid E\right)=1-0.7184=0.2816$
iii. $P\left(E^{\prime} \mid C^{\prime}\right)=\frac{P\left(E^{\prime} \cap C^{\prime}\right)}{P\left(C^{\prime}\right)}=\frac{1-P(E \cup C)}{1-P(C)}=\frac{1-0.757}{1-0.65}=0.6943$
(c) D : one defective product out of 20
A, B, C : production line of City A, B and C, respectively, is chosen $P(A)=\frac{3}{12}, \quad P(B)=\frac{4}{12}, \quad P(C)=\frac{5}{12}$
$P(D \mid A)=\binom{20}{1}(0.05)^{1}(0.95)^{19}=0.3774$
$P(D \mid B)=\binom{20}{1}(0.045)^{1}(0.955)^{19}=0.3752$
$P(D \mid C)=\binom{20}{1}(0.04)^{1}(0.96)^{19}=0.3683$
$P(B \mid D)=\frac{P(D \mid B) P(B)}{P(D \mid A) P(A)+P(D \mid B) P(B)+P(D \mid C) P(C)}$
$=0.3354$
3. (a) i. X : percentage of revenue spend on $\mathrm{R} \& D$

$$
\begin{aligned}
& X \sim N\left(60,12^{2}\right) \\
& P(X \geq 45)=P(Z>-1.25)=0.8944 \\
\text { ii. } & P(X<65.4 \%)=P(Z<0.45)=0.6736
\end{aligned}
$$

Y : number of companies out of 100 , spend at most 65.4% of revenue on R\&D $Y \sim B(100,0.6736)$
Since $n p>5, n q>5,0.1<p<0.9$, normal approximation to binomial distribution is used,

$$
\begin{aligned}
& \mu=100 \times 0.6736=67.36, \quad \sigma^{2}=100 \times 0.6736 \times(1-0.6736)=21.986304 \\
& Y \sim B(100,0.6736) \approx N(67.36,21.986304) \\
& P(Y \geq 50)=P\left(Z>\frac{49.5-67.36}{\sqrt{21.986304}}\right)=P(Z>-3.81)=0.99993
\end{aligned}
$$

iii. $P\left(\min _{i} X_{i}<42\right)=1-P\left(\min _{i} X_{i} \geq 42\right)=1-P\left(X_{1} \geq 42, \ldots, X_{5} \geq 42\right)$

$$
\begin{aligned}
& =1-\prod_{i=1}^{5} P\left(X_{i} \geq 42\right)=1-[P(X \geq 42)]^{5}=1-[P(Z \geq-1.5)]^{5} \\
& =1-(1-0.0668)^{5}=0.2923
\end{aligned}
$$

(b) X : number of click-throughs received by a website in a 5 -minute period

$$
X \sim P o(8)
$$

i. $P(X \geq 5)=1-\sum_{x=0}^{5} \frac{e^{-8} 8^{x}}{x!}=0.900368$
ii. $P(X>8 \mid X \geq 5)=\frac{P(X>8 \cap X \geq 5)}{P(X \geq 5)}=\frac{P(X>8)}{P(X \geq 5)}$

$$
=\frac{0.407453}{0.900368}=0.45254
$$

4. (a) X_{A} : IQ score of student of school A
X_{B} : IQ score of student of school B
$X_{A} \sim N\left(120,12^{2}\right), \quad X_{B} \sim N\left(132,13^{2}\right)$ and random samples are drawn with replacement or infinite population sizes.
$\bar{X}_{A}-\bar{X}_{B} \sim N\left(120-132, \frac{12^{2}}{10}+\frac{13^{2}}{10}\right)$
$P\left(-10 \leq \bar{X}_{A}-\bar{X}_{B} \leq 10\right) \approx P(0.36 \leq Z \leq 3.93)=0.3594-0.00004=0.35936$
(b) X : pollutant concentration of $\mathrm{NO}_{2}\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)$

Assume that $X \sim N\left(\mu, \sigma^{2}\right)$ and random sample is drawn with replacement or infinite population.
$\sum x 812.8, \quad \sum x^{2}=56055.14, \quad n=12$
$\bar{x}=\frac{812.8}{12}=67.7333, \quad s=\sqrt{\frac{12(56055.14)-812.8^{2}}{12(12-1)}}=9.541711$
A 95% confidence interval for the population mean pollutant concentration of $\mathrm{NO}_{2}\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)$ is
$67.7333 \pm 2.201 \times \frac{9.541711}{\sqrt{12}}=(61.67078,73.79589)$
(c) $1.96 \sqrt{\frac{p q}{n}} \leq 0.08$ and the standard error of \hat{p} is maximized when $p=0.5$. Then
$1.96 \sqrt{\frac{(0.5)(0.5)}{n}} \leq 0.08 \Rightarrow n \geq\left(\frac{1.96}{0.08}\right)^{2} \times 0.5^{2}=150.0625$. Take $n=151$.
(d) Let X_{1}, X_{2} be the job satisfaction index of employee who worked for the company at most 3 years and worked for the company more than 15 years, respectively.

Assume $X_{1} \sim N\left(\mu_{1}, \sigma_{1}^{2}\right), X_{2} \sim N\left(\mu_{2}, \sigma_{2}^{2}\right), \sigma_{1}^{2}=\sigma_{2}^{2}$ and random samples are selected with replacement or infinite population sizes.
$s_{p}^{2}=\frac{(12-1) 8^{2}+(14-1) 7^{2}}{12+14-2}=55.875$
$H_{0}: \mu_{1}=\mu_{2}, \quad H_{1}: \mu_{1}>\mu_{2}, \quad \alpha=0.01$
Critical region: $t>t_{0.01,12+14-2}=2.492$
Under H_{0}, test statistic $t=\frac{82-75}{\sqrt{55.875\left(\frac{1}{12}+\frac{1}{14}\right)}}=2.3804$.
Decision: Do not reject H_{0}.
Conclusion: The mean job satisfaction level of employees who worked for the company at most 3 years is not significant higher than those worked for the company more than 15 years at 1% level of significance.
5. (a) Let D be the difference in assessment scores of social responsibility which is computed by the score after the completion of programme score before joining the programme.

Assume $D \sim N\left(\mu_{D}, \sigma_{D}^{2}\right)$ and random sample is drawn with replacement or infinite population size.

Student	1	2	3	4	5	6	7	8
d	14	24	19	26	28	10	19	18

$n=8, \quad \sum d=158, \quad \sum d^{2}=3378$
$\bar{d}=\frac{158}{8}=19.75, \quad s_{d}=\sqrt{\frac{8(3378)-(158)^{2}}{8(8-1)}}=6.0651$
$H_{0}: \mu_{D}=0, \quad H_{1}: \mu_{D}>0, \quad \alpha=0.05$
Critical region: $t>t_{0.05,7}=1.895$
Under H_{0}, test statistic $t=\frac{19.75-0}{6.065123 / \sqrt{8}}=9.21$.
Decision: Reject H_{0}.
Conclusion: The mean assessment score of students has increased after joining the programme at 5% level of significance.
(b) H_{0} : preference of customers on the design of bed linen set remain the same as before
H_{1} : preference of customers on the design of bed linen set have changed
$\alpha=0.01$

Design	Floral pattern	Cartoon figures	Animal pattern	Classic design	Sum
O_{i}	28	20	24	48	120
E_{i}	24	18	18	60	

Critical region: $\chi^{2}>11.345, \quad \nu=4-1-0=3$
Under H_{0}, test statistic $\chi^{2}=\frac{(28-24)^{2}}{24}+\frac{(20-18)^{2}}{18}+\frac{(24-18)^{2}}{18}+\frac{(48-60)^{2}}{60}=5.2889$.
Do not reject H_{0} and conclude that the preference of customers on the design of bed linen set remain the same as before at 5% level of significance.
(c) H_{0} : employee's level of satisfaction on medical benefits and staff banding are independent H_{1} : employee's level of satisfaction on medical benefits and staff banding are not independent
$\alpha=0.05$
Critical region: $\chi^{2}>9.488, \quad \nu=(3-1)(3-1)=4$
Expected frequencies:

Ranking of employee	Views on new promotion policy		
	Neutral	Disagree	
Junior	34.78	37.45	34.78
Middle	53.63	57.75	53.63
Senior	41.60	44.80	41.60

Under H_{0}, test statistic
$\chi^{2}=\sum \sum \frac{(O-E)^{2}}{E}=\frac{(58-34.78)^{2}}{34.78}+\cdots+\frac{(56-41.60)^{2}}{41.60}=37.576$
Reject H_{0} and conclude that the views of employees on the new promotion policy and their ranking are not independent at 1% level of significance.
6. (a) i. $b=\frac{10(668.8)-(23.6)(228)}{10(71.02)-(23.6)^{2}}=8.5304$,
$a=\frac{228}{10}-(8.5304) \times \frac{23.6}{10}=2.6682$
$\hat{y}=2.6682+8.5304 x$
ii. $r=\frac{[10(668.8)-(23.6)(228)]}{\sqrt{\left[10(71.02)-(23.6)^{2}\right]\left[10(6376)-(228)^{2}\right]}}=0.9731$
iii. If the age of machines are increased by 1 year, the mean machine down time per month is expected to increase by 8.5304 hours.
(b) i. Let y and x_{1} be the weekly sales of the cafe and weekly pedestrian flow on the street where the cafe is located
$\hat{y}=1.0834+0.1037 x_{1}-1.2158 x_{2}-0.5308 x_{3}-1.0765 x_{4}$
ii. $H_{0}: \beta_{1}=\beta_{2}=\beta_{3}=\beta_{4}=0$
H_{1} : at least one $\beta_{i} \neq 0$
$\alpha=0.05$
Critical region: $f>F_{0.05 ; 4,24-4-1}=2.90$
Under H_{0}, test statistic $f=222.173$
Decision: Reject H_{0}.
Conclusion: The fitted regression equation of weekly sales of the cafe on the four independent variables is significant at 5% level of significance.
iii. $H_{0}: \beta_{1}=0$
$H_{1}: \beta_{1} \neq 0$
$\alpha=0.01$
From the output, the p-value is $0.0001<0.01$ so H_{0} is rejected. The independent variables 'weekly pedestrian flow on the street where the cafe is located' $\left(x_{1}\right)$ is significant at 1% level of significance.
iv. $\frac{S S R / 4}{(119.1496-S S R) / 19}=222.173$
$S S R=116.6555$
$R^{2}=\frac{116.6555}{119.1496}=0.9791$
97.91% variation in weekly sales of the cafe can be explained by the fitted regression line.

