The Hong Kong Polytechnic University AMA1501 Introduction to Statistics for Business Exam 2017/18 Semester 2 Outline Suggested Solution

1. (a) Class marks: 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, 32.5

 $\sum f = 100, \quad \sum fx = 1980, \quad \sum fx^2 = 44275$

Mean $=\frac{1980}{100} = 19.8$ hours

Mode = $15 + \frac{35 - 13}{(35 - 13) + (35 - 19)} \times (20 - 15) = 17.8947$ hours

Standard deviation =
$$\sqrt{\frac{100(44275) - 1980^2}{100(100 - 1)}} = 7.1570$$

(b)
$$P_{85} = 25 + \frac{85 - 75}{16} \times 5 = 28.125$$
 hours
(c) $50(3 + 5 + 13 + 35 + \frac{24 - 20}{25 - 20} \times 19)/100 = 33.1$

(d) Let X be the weekly total amount of time (hours) spent at the centre in the last week. Assumed that random sample is drawn with replacement or infinite populations. By central limit theorem, $\bar{X} \sim N(\mu, \sigma^2/n)$ approximately. Furthermore, $\sigma \approx s$.

A 98% confidence interval for
$$\mu$$
 is
 $19.8 \pm 1.96 \times \frac{7.1570}{\sqrt{100}}$
= (18.397, 21.203)

- 2. (a) $2! \times 5! = 240$
 - (b) A: selected staff is rated 'Very Satisfactory' by his/her supervisor B: selected staff is rated 'Very Satisfactory' by his/her sub-ordinates P(A) = 0.65, P(B) = 0.7, P(B|A) = 0.6i. $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ = P(A) + P(B) - P(B|A)P(A) = 0.65 + 0.7 - (0.6)(0.65) = 0.96ii. $P(B|\bar{A}) = \frac{P(\bar{A} \cap B)}{P(\bar{A})} = \frac{P(B) - P(A \cap B)}{1 - P(A)} = \frac{0.7 - 0.65 \times 0.6}{1 - 0.65} = \frac{31}{35}$
 - (c) i. D: project has generated revenue above 200,000

A, B, C: project relate to research interest of A, B and C, respectively P(A) = 0.3, P(B) = 0.38, P(C) = 0.32 P(D|A) = 0.3P(D|B) = 0.5

$$P(D|C) = 0.4$$

$$P(B|D) = \frac{P(D|B)P(B)}{P(D|A)P(A) + P(D|B)P(B) + P(D|C)P(C)}$$

$$= 0.2206$$

ii. X: number of projects relate to research interest of A out of 5, given that the projects have generated revenue above \$200,000

$$X \sim B(5, 0.2206)$$
$$P(X \ge 3) = \sum_{x=3}^{5} {5 \choose x} (0.2206)^{x} (1 - 0.2206)^{5-x} = 0.00975$$

- 3. (a) i. X: Food delivery time (minutes)
 - $X \sim N(30, 8^2)$ P(24 < X < 34) = P(-0.75 < Z < 0.5) = 1 - 0.2266 - 0.3085 = 0.4649
 - ii. Let a be the required delivery time (minutes) $P(X < a) = P\left(Z < \frac{a - 30}{8}\right) = 0.025 \approx P(Z < -1.96)$ $\frac{a - 30}{8} \approx -1.96$ $a \approx 30 - 1.96 \times 8 = 14.32$
 - iii. $P(X \le 32) = P(Z < 0.25) = 1 0.4013 = 0.5987$

Y: number of delivery jobs out of 200, having delivery time within 32 minutes $Y \sim B(200, 0.5987)$ Since np > 5, nq > 5, 0.1 , normal approximation to binomial distribution $is used, <math>\mu = 200 \times 0.5987 = 119.74$ and $\sigma^2 = 200 \times 0.5987 \times (1 - 0.5987) = 48.051662$ $P(Y \ge 110) \approx P\left(Z > \frac{109.5 - 119.74}{\sqrt{48.051662}}\right) \approx P(Z > -0.035)$ = 1 - (0.488 + 0.484)/2 = 0.514

- iv. $\bar{X} \sim N(30, 8^2/100)$ $P(28 < \bar{X} < 33) = P(-2.5 < Z < 3.75) = 1 - 0.00621 - 0.00009 = 0.9937$
- (b) X: number of patients suffered from the illness again after completed the treatment of a certain psychological illness, among 1000 patients

$$X \sim B(1000, 0.008)$$

As n is large and p is close to 0, Poisson Approximation to binomial is used. $P(X = 5) = \frac{e^{-8}8^5}{5!} = 0.0916$

4. (a) Let \hat{p} be the sample proportion of employees who support the change. Assume that random sample is drawn with replacement or infinite populations and by central limit theorem, $\hat{p} \sim N\left(p, \frac{p(1-p)}{n}\right)$ approximately.

A 95% confidence interval for p is $\frac{185}{250} \pm 1.96 \sqrt{\left(\frac{185}{250}\right) \left(\frac{65}{250}\right) / 250}$, i.e., (0.6856, 0.7944).

- (b) Assume population distribution of daily sales of two new stores are normally distributed, and random samples are drawn with replacement or there are infinite population sizes. z_{0.025}√(\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{n}) ≤ error

 1.96√(\frac{500^2}{n} + \frac{480^2}{n}) ≤ 100 ⇒ n ≥ ((\frac{1.96 × \sigma 500^2 + 480^2}{100}))^2 = 184.55
- (c) Let X_1, X_2 be the traffic flow (number of vehicles passing through a certain junction) in a 15-minute period in weekdays and weekends, respectively. Assume $X_1 \sim N(\mu_1, \sigma_1^2), X_2 \sim N(\mu_2, \sigma_2^2), \sigma_1^2 = \sigma_2^2$ and random samples are selected with replacement or infinite populations $s_p^2 = \frac{(22-1)6^2 + (20-1)7^2}{22+20-2} = 42.175$ $H_0: \mu_1 = \mu_2, \quad H_1: \mu_1 > \mu_2, \quad \alpha = 0.05$ Critical region: $t > t_{0.05,22+20-2} = 1.684$ Under H_0 , test statistic $t = \frac{40-32}{\sqrt{42.175(\frac{1}{22}+\frac{1}{20})}} = 3.987.$ Decision: Reject H_0 .

Conclusion: The mean number of vehicles passing through the junction in 15-minute periods during weekdays is significant higher than that during weekends at 5% level of significance.

 (a) Let D be the difference in total score, which is computed by the score of caterer A rated by customer – score of caterer B rated by customer.

Assume $D \sim N(\mu_D, \sigma_D^2)$ and random sample is drawn with replacement or infinite population size.

	Customer	1	2	3	4	5	6	7	8	9
	d	8	-2	-3	5	8	4	5	5	4
$n = 9, \sum d = 34$	$, \qquad \sum d^2 =$	248	3							
$\bar{d} = \frac{34}{9} = 3.778, s_d = \sqrt{\frac{9(248) - (34)^2}{9(9-1)}} = 3.8658$ $H_0: \mu_D = 0, H_1: \mu_D > 0, \alpha = 0.025$										
Critical region: $t > t_{0.025,8} = 2.306$ Under H_0 , test statistic $t = \frac{3.778}{3.8658/\sqrt{9}} = 2.9317$. Decision: Reject H_0 .										
-										

Conclusion: The mean score of caterer A is significance higher than caterer B at 2.5% level of significance.

(b) H_0 : number of special edition products in a box follows the Binomial distribution

 $H_1:$ number of special edition products in a box do not follow the Binomial distribution $\alpha = 0.05$

$\hat{p} = \bar{x}/n =$	(253/200)/5	= 0.253					
	x	0	1	2	3	4	5
	O_i	45	84	50	16	4	1
	P(X=x)	0.2326	0.3939	0.2668	0.0904	0.0153	0.0010
	E_i	46.5	78.8	53.4	18.1	3.1	0.2
						21.3	

Critical region: $\chi^2 > 5.991$, $\nu = 4 - 1 - 1 = 2$ Under H_0 , test statistic $\chi^2 = \frac{(45 - 46.5)^2}{46.5} + \frac{(84 - 78.8)^2}{78.8} + \frac{(50 - 53.4)^2}{53.4} + \frac{(21 - 21.3)^2}{21.3} = 0.613.$

Do not reject H_0 and conclude that the number of special edition products in a box follows the Binomial distribution at 5% level of significance.

- (c) H₀: students' preference for the proposed study tour and level of study are independent
 H₁: students' preference for the proposed study tour and level of study are not independent
 - $\alpha=0.025$

Critical region: $\chi^2 > 11.143$, $\nu = (3-1)(3-1) = 4$

Expected frequencies:

	Students' preference						
Level of study	Not preferred	Neutral	Preferred				
Freslunen	14.63	24.75	35.63				
Sophomores	8.97	15.18	21.85				
Seniors	15.41	26.07	37.53				

Under H_0 , test statistic

 $\chi^2 = \sum \sum \frac{(O-E)^2}{E} = \frac{(15-14.63)^2}{14.63} + \dots + \frac{(34-37.53)^2}{37.53} = 3.00$

Do not reject H_0 and conclude that students' preference for the proposed study tour and level of study are independent at 2.5% level of significance. 6. (a) i. $b = \frac{8(253.62) - (75)(27.77)}{8(1051) - (75)^2} = -0.01933,$ $a = \frac{27.77}{8} - (-0.01933) \times \frac{75}{8} = 3.6525$ $\hat{y} = 3.6525 - 0.01933x$ ii. $r = \frac{[8(253.62) - (75)(27.77)]}{\sqrt{[8(1051) - (75)^2][8(96.6477) - (27.77)^2]}} = -0.719$ There is a moderate negative linear association between academic performance of students and time spent on part-time job per week. i. Let y be daily traffic flow on a certain highway and x_1 be rainfall forecast for the (b) day. $\hat{y} = 779 + 0.1039x_1 - 0.00000222x_2 + 98x_3 + 0.00291x_4$ ii. $H_0: \beta_1 = 0$ $H_1: \beta_1 \neq 0$ $\alpha = 0.01$ Critical region: $t < -t_{0.005,65-4-1} = -2.66$ and t > 2.66Under H_0 , test statistic $t = \frac{0.1039}{0.0136} = 7.64$ Decision: Reject H_0 . Conclusion: Rainfall forecast for the day is a significant independent in explaining daily traffic flow at 5% level of significance. iii. $H_0: \beta_1 = \beta_2 = \beta_3 = \beta_4 = 0$ H_1 : at least one $\beta_i \neq 0$ $\alpha = 0.05$

Critical region: $f > F_{0.05;4,60} = 2.53$

Under H_0 , test statistic f = 520

Decision: Reject H_0 .

Conclusion: The regression equation of traffic flow on rainfall forecast for the day together with three more independent variables is significant at 5% level of significance.

iv.
$$\frac{SST \times R^2/4}{SST \times (1-R^2)/60} = 520 \implies R^2 = \frac{520}{535} = 0.972$$

97.2% variation in traffic flow on a certain highway can be explained by the regression equation on rainfall forecast for the day together with three more independent variables.