1. (a)

Class marks, x	f	$f x$	$f x^{2}$
215	2	430	92450
225	5	1125	253125
235	4	940	220900
245	8	1960	480200
255	10	2550	650250
265	5	1325	351125
275	4	1100	302500
285	2	570	162450
	40	10000	2513000

Mean,

$$
\bar{x}=\frac{\sum f x}{\sum f}=\frac{10000}{40}=\$ 250
$$

Standard deviation,

$$
\begin{aligned}
S & =\sqrt{\frac{n\left(\sum f x^{2}\right)-\left(\sum f x\right)^{2}}{n(n-1)}} \\
& =\sqrt{\frac{40(251300)-(10,000)^{2}}{40(39)}} \\
& =\$ 18.26
\end{aligned}
$$

(b) Median $=250+\frac{20-19}{10} \times 10$

$$
=\$ 251
$$

(c) Mean $=\$ 250 \quad$ Standard deviation $=\$ 18.26$

Median $=\$ 251$
Pearson's $2^{\text {nd }}$ coefficient of skewness
$=\frac{3(\text { mean }- \text { median })}{\text { Std. deviation }}=\frac{3(250-251)}{18.26}=-0.164$
\therefore the distribution is nearly symmetrical.
(d) Percentage of workers whose daily income is at least $\$ 242$ but less than \$280

$$
\begin{aligned}
& =\frac{8 \times \frac{8}{10}+10+5+4}{40} \times 100 \% \\
& =\frac{25.4}{40} \times 100 \%=63.5 \%
\end{aligned}
$$

(e) Coefficient of Variation, $C V=\frac{S}{\bar{x}} \times 100 \%$

$$
\begin{aligned}
C V(Q M B) & =\frac{18.26}{250} \times 100 \%=7.3 \% \\
C V(\text { rival firm }) & =\frac{400}{7000} \times 100 \%=5.7 \%
\end{aligned}
$$

$$
\because C V(Q M B)>C V(\text { rival firm })
$$

Therefore, QMB workers' income is more variable.
2. (a) Frequency Table:

	f	x
-5 - under 0	2	-2.5
0 - under 5	2	2.5
5 - under 10	4	7.5
10 - under 15	8	12.5
15 - under 20	11	17.5
20 - under 25	13	22.5
25 - under 30	6	27.5
30 - under 35	4	32.5
Total	50	

Cumulative Frequency Table:

Under	Cumulative frequency
-5	0
0	2
5	4
10	8
15	16
20	27
25	40
30	46
35	50

$\sum f x=910 \quad \sum f x^{2}=20,212.5$
mean $=\frac{910}{50}=18.20(\$$ million $)$
median $=15+\frac{(50 / 2)-16}{11} \times 5$
$=19.09$ ($\$$ million)
$\begin{aligned} \text { standard deviation } & =\sqrt{\left(\frac{20.212 .5}{49}-\frac{910^{2}}{50 \times 49}\right)} \\ & =8.63(\$ \text { million })\end{aligned}$
(b) Cumulative frequency curve

(c) Profit exceeded by 30% of the companies is equivalent to profit that is less than by 70% of the companies
$=23.1$ ($\$$ million $)$
3. (a) Histogram

(b) $\quad \sum f x=26026, \sum f x^{2}=394058, \sum f=2000$

$$
\begin{aligned}
& \bar{X}=\frac{\sum f x}{\sum f}=\frac{26026}{2000}=13.013 \\
& \text { Mode }=11.5+\frac{403-337}{(403-337)+(403-393)}(3)=11.5+2.6053=14.1053 \\
& \text { Median }=11.5+\frac{1000-774}{403}(3)=11.5+1.6824=13.1824 \\
& Q_{1}=8.5+\frac{500-437}{337}(3)=8.5+.5608=9.0608 \\
& Q_{3}=14.5+\frac{1500-1177}{393}(3)=15.5+2.4656=16.9656 \\
& S=\left[\frac{394058}{1999}-\frac{26026^{2}}{2000(1999)}\right]^{\frac{1}{2}} \\
& =[27.7047]^{\frac{1}{2}}=5.2635 \\
& S K_{1}=\frac{\text { Mean }- \text { Mode }}{S}=\frac{13.013-14.1053}{5.2635}=-0.2075 \\
& \text { or } S K_{2}=\frac{3(\text { Mean }- \text { Median })}{S}=\frac{3(13.013-13.1824)}{5.2635}=-0.0966 \\
& C . V .=\frac{S}{x} \times 100 \%=\frac{5.2635}{13.013} \times 100 \%=40.4480 \\
& \\
& \text { C }
\end{aligned}
$$

(c) The distribution of customer purchasing behaviour is slightly skewed to the left.
4. Let A be the event of the award for design

Let B be the event of the award for material

$$
\begin{aligned}
\operatorname{Pr}(A) & =0.28, \quad \operatorname{Pr}(B)=0.13, \\
\operatorname{Pr}(A \cup B) & =0.36 \\
\operatorname{Pr}(A \cap B) & =\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \cup B) \\
& =0.28+0.13-0.36 \\
& =0.05
\end{aligned}
$$

5. Let G be the event of good loan

Let B be the event of bad loan
Let L be the event of long-term loan
Let S be the event of short-term loan

$$
\begin{aligned}
& \operatorname{Pr}(G)=0.8, \quad \operatorname{Pr}(B)=0.2 \\
& \operatorname{Pr}(L \mid G)=0.7, \quad \operatorname{Pr}(S \mid G)=0.3 \\
& \operatorname{Pr}(L \mid B)=0.2, \quad \operatorname{Pr}(S \mid B)=0.8 \\
& \operatorname{Pr}(G \mid L)=\frac{\operatorname{Pr}(G) \cdot \operatorname{Pr}(L \mid G)}{\operatorname{Pr}(L)} \\
& \quad=\frac{\operatorname{Pr}(G) \cdot \operatorname{Pr}(L \mid G)}{\operatorname{Pr}(G) \cdot \operatorname{Pr}(L \mid G)+\operatorname{Pr}(B) \cdot \operatorname{Pr}(L \mid B)} \\
& \quad=\frac{0.8 \times 0.7}{0.8 \times 0.7+0.2 \times 0.2} \\
& \quad=\frac{56}{60} \\
& \quad=\frac{14}{15} \\
& \quad=0.933
\end{aligned}
$$

6. There are only 3 cases for at least one of each course,
i.e.
Management
2
1
1
Accountancy
1
2
1
Marketing
1
1
2

Therefore, the required probability

$$
\begin{aligned}
& =\frac{\binom{6}{2}\binom{7}{1}\binom{3}{1}+\binom{6}{1}\binom{7}{2}\binom{3}{1}+\binom{6}{1}\binom{7}{1}\binom{3}{2}}{\binom{16}{4}} \\
& =0.45
\end{aligned}
$$

7. (a) Let X be random variable of the sales volume in units,

$$
\begin{aligned}
& X \sim N\left(10000,2000^{2}\right) \\
& \operatorname{Pr}(7000<X<13000) \\
&= \operatorname{Pr}\left(\frac{7000-10000}{2000}<Z<\frac{13000-10000}{2000}\right) \\
&= \operatorname{Pr}(-1.5<Z<1.5) \\
&= 1-2 \times 0.0668 \\
&= 0.8664
\end{aligned}
$$

(b) Let y be the sales volume for break even,

$$
\begin{aligned}
y(20-16) & =30000 \\
y & =\frac{30000}{4} \\
& =7500
\end{aligned}
$$

$\operatorname{Pr}($ at least break even)
$=\operatorname{Pr}(y \geq 7500)$
$=\operatorname{Pr}\left(Z \geq \frac{7500-10000}{2000}\right)$
$=\operatorname{Pr}(Z \geq-1.25)$
$=1-0.1056$
$=0.8944$
8. $\quad P\{$ defective ball pen is among the 3 chosen for testing $\}$
$=\frac{{ }_{19} C_{2} \times{ }_{1} C_{1}}{{ }_{20} C_{3}}=\frac{171}{1140}=0.15$
9. $\quad P\{1$ defective ball pen is found among the 3 chosen for testing $\}$
$=\frac{15}{20} \times \frac{{ }_{8} C_{2} \cdot{ }_{2} C_{1}}{{ }_{10} C_{3}}+\frac{5}{20} \times \frac{{ }_{9} C_{2} \cdot{ }_{1} C_{1}}{{ }_{10} C_{3}}$
$=\frac{15}{20} \times \frac{56}{120}+\frac{5}{20} \times \frac{36}{120}=0.425$.
10. Let X be the life of the randomly selected motor.

Then $\quad X \sim N\left(12,3^{2}\right)$,

$$
\begin{aligned}
P(10<X<15) & =P\left(\frac{10-12}{3}<\frac{X-\mu}{\sigma}<\frac{15-12}{3}\right) \\
& =P(-0.67<Z<1) \\
& =1-0.2514-0.1587 \\
& =0.5899
\end{aligned}
$$

11. Let A be the event of the defective part detected by $1^{\text {st }}$ inspector B be the event of the defective part detected by $2^{\text {nd }}$ inspector

$$
\mathrm{P}(\mathrm{~A})=0.85, \mathrm{P}(\mathrm{~B})=0.85, \mathrm{P}(\mathrm{~A} \cap \mathrm{~B})=0.8
$$

(a) $\quad P\left(B \mid A^{\prime}\right)=P\left(B \cap A^{\prime}\right) / P\left(A^{\prime}\right)$

$$
\begin{aligned}
& =\frac{P(B)-P(A \cap B)}{1-P(A)} \\
& =\frac{0.85-0.80}{1-0.85}=0.333
\end{aligned}
$$

(b) $\quad P(A \cup B)=P(A)+P(B)-P(A \cap B)$

$$
\begin{aligned}
& =0.85+0.85-0.80 \\
& =0.90
\end{aligned}
$$

(c) $1-\{P(A \cup B)\}^{3}=1-0.90^{3}$

$$
=0.271
$$

12. Let X be the random variable of the number of customer who turn up in the 55
$X \sim b(55,0.85)$
Mean $=n p=55(0.85)$
$=46.75$

$$
\begin{aligned}
\sigma=\sqrt{n p q} & =\sqrt{55(0.85)(0.15)} \\
& =2.6481
\end{aligned}
$$

Required probability:

$$
\operatorname{Pr}(X \leq 50)
$$

Since $n p=46.75>5, n q=55(1-0.85)=8.25>5$ and $0.1<p<0.9$, normal approximation to binomial distribution can be used.

By Normal approximation, the required probability

$$
\begin{aligned}
\operatorname{Pr}(X<50.5) & =\operatorname{Pr}\left(Z<\frac{50.5-46.75}{2.6481}\right) \\
& =\operatorname{Pr}(Z<1.42) \\
& =1-0.0778 \\
& =0.9222
\end{aligned}
$$

13. Let the mean of the distribution of the number of errors per page be λ and X be the Poisson random variable. Then

$$
\operatorname{Pr}(X=0)=\frac{e^{-\lambda} \lambda^{0}}{0!}=0.14
$$

Hence $\lambda=1.966$ and

$$
\begin{aligned}
\operatorname{Pr}(X=1) & =\frac{e^{-1.966}(1.966)^{1}}{1!} \\
& =0.275
\end{aligned}
$$

The required percentage is 27.5%.
14. (a) Let X be the random variable of the number of error per 2 pages.

$$
\begin{aligned}
& \lambda=4 \text { error per } 2 \text { pages, } X \sim \operatorname{Po}(\lambda) \\
& \begin{aligned}
P(X<3) & =\sum_{x=0}^{2} \frac{e^{-4} 4^{x}}{x!} \\
& =e^{-4}\left\{\frac{4^{0}}{0!}+\frac{4^{1}}{1!}+\frac{4^{2}}{2!}\right\} \\
& =0.2381
\end{aligned}
\end{aligned}
$$

(b) $\quad P(X>5)=1-P(X \leq 5)$

$$
\begin{aligned}
& =1-\sum_{x=0}^{5} \frac{e^{-4} 4^{x}}{x!} \\
& =1-e^{-4}\left\{1+4+8+\frac{4^{3}}{3!}+\frac{4^{4}}{4!}+\frac{4^{5}}{5!}\right\} \\
& =0.2149
\end{aligned}
$$

15. (a) Let H be the event of an employee who was in favour of the modified health care plan

W be the event of an employee who was in favour of the proposal to change the work schedule.

$$
\begin{aligned}
& P(H)=0.42, \quad P(W)=0.22, \quad P(W \mid H)=0.34 \\
& \begin{aligned}
P(H \cap W) & =P(H) P(W \mid H) \\
& =0.42 \times 0.34=0.1428
\end{aligned}
\end{aligned}
$$

(b) $\quad P(H \cup W)=P(H)+P(W)-P(H \cap W)$

$$
=0.42+0.22-0.1428=0.4972
$$

(c) $\quad P(H \mid W)=\frac{P(H \cap W)}{P(W)}=\frac{0.1428}{0.22}=0.6491$
16. (a) Let X be the rate of return (\%)

$$
\begin{aligned}
& X \sim N\left(12.2,7.2^{2}\right) \\
& P(X>20)=P\left(Z>\frac{20-12.2}{7.2}\right) \\
&=P(Z>1.08)=0.1401
\end{aligned}
$$

(b) $P(X<0)=P\left(Z<\frac{0-12.2}{7.2}\right)$

$$
=P(Z<-1.69)=0.0455 .
$$

17. $n_{1}=n_{2}=2.20, \hat{p}_{1}=0.36, \hat{p}_{2}=0.30$

Let P_{1}, P_{2} be the True proportion of response to single-sheet questionnaire and twosheet questionnaire respectively.

Then a 95% C.I. for $P_{1}-P_{2}$ is

$$
\begin{aligned}
& \left(\hat{p}_{1}-\hat{p}_{2}\right) \pm 1.96 \sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}} \\
& \Rightarrow(0.36-0.30) \pm 1.96 \sqrt{\frac{0.36(0.64)}{220}+\frac{0.30(0.70)}{220}} \\
& \Rightarrow 0.06 \pm 0.088 \Rightarrow(-0.028,0.148)
\end{aligned}
$$

18. Let P be the population proportion.

$$
n=225, \quad x=67 \quad \hat{p}=\frac{67}{225}=0.298
$$

\therefore A 95\% C.I. estimate for P is

$$
\begin{array}{r}
\hat{p} \pm 1.96 \sqrt{\left(\frac{\hat{p}(1-\hat{p})}{n}\right)} \\
\text { i.e. } \quad 0.298 \pm 1.96 \sqrt{\left(\frac{0.298(0.702)}{225}\right)}
\end{array}
$$

i.e. 0.298 ± 0.060, i.e. $(0.238,0.358)$
19. $H_{0}:$ Printing errors are independent of type size.
H_{1} : Printing errors are dependent on type size.

$$
\alpha=0.05, v=(2-1)(3-1)=2
$$

$\therefore \mathrm{CR}: \chi^{2}>\chi_{0.05}^{2}=5.991$
Computation:

	Type Size			Total
	A	B	C	
Pages with errors	23	17	41	81
	(29.9)	(22.7)	(28.4)	
Pages without errors	241	183	210	634
	(234.1)	(177.3)	(222.6)	
Total	264	200	251	715

Test statistic, $\chi^{2}=\frac{6.9^{2}}{29.9}+\frac{5.7^{2}}{22.7}+\frac{12.6^{2}}{28.4}+\frac{6.9^{2}}{234.1}+\frac{5.7^{2}}{177.3}+\frac{12.6^{2}}{222.6}$

$$
=9.714
$$

Conclusion: Reject H_{0}.
20. (a) Let μ_{1}, μ_{2} be the true mean absenteeism of recent ex-smokers and long-term ex-smokers, respectively.

$$
\begin{array}{lll}
n_{1}=34 & \bar{x}_{1}=2.21 & s_{1}=2.21 \\
n_{2}=68 & \bar{x}_{2}=1.47 & s_{2}=1.69
\end{array}
$$

$H_{0}: \mu_{1}=\mu_{2}$, i.e. $\mu_{1}-\mu_{2}=0$
$H_{1}: \mu_{1} \neq \mu_{2}$
$\alpha=0.05$
$C R: Z>1.96$ and $Z<-1.96$

$$
\text { Test statistic, } \begin{aligned}
z & =\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\left(\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}\right)}} \\
& =\frac{(2.21-1.47)-0}{\sqrt{\left(\frac{2.21^{2}}{34}+\frac{1.69^{2}}{68}\right)}} \\
& =1.717
\end{aligned}
$$

Conclusion: Do not reject H_{0}
(b) Level of significance (α) is the probability of committing type I error in a significance test. In general, α is set equal to 0.05 . However, if the consequence of committing type I error in a significance test is serious in terms of monetary loss, then a low value, for example, 0.01 , should be used instead.
21. (a) $n=545 \quad x=117 \quad \hat{p}=\frac{117}{545}=0.2147$

Let P be the population proportion of accountants finding cash flow the most difficult estimates to derive.
$H_{0}: p=0.25 ; \quad H_{1}: p<0.25$
$\alpha=0.05 ; \quad C R: Z<-1.645$
Test statistic, $\begin{aligned} z=\frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{n}}} & =\frac{0.2147-0.25}{\sqrt{\frac{0.25(0.75)}{545}}} \\ & =-1.903\end{aligned}$
Conclusion: Reject H_{0}.
(b) $c=p-1.645 \sqrt{\frac{0.25(0.75)}{545}}$
$=0.25-0.0305$
$=0.2195$
So probability of rejecting H_{0} when the true $P=0.28$ is

$$
\begin{aligned}
P\{\hat{p}<0.2195\} & =P\left\{Z<\frac{0.2195-0.28}{\sqrt{\frac{0.28(0.72)}{545}}}\right\} \\
& =P\{Z<-3.145\} \\
& =0.00083 .
\end{aligned}
$$

22. (a) $n=8 \quad \sum x=192 \quad \sum y=608$

$$
\sum x^{2}=4,902 \quad \sum x y=15,032 \quad \sum y^{2}=47,094
$$

$$
b=\frac{n \sum x y-\left(\sum x\right)\left(\sum y\right)}{n \sum x^{2}-\left(\sum x\right)^{2}}=\frac{8(15,032)-192(608)}{8(4,902)-192^{2}}
$$

$$
=\frac{3,520}{2,352}=1.4966
$$

$$
a=\bar{y}-b \bar{x}=76-1.4966(24)=40.0816
$$

$$
\therefore \hat{y}=40.0816+1.4966 x
$$

(b) $\hat{y}=40.0816+1.4966(30)=84.9796$
(c) $\quad r=\frac{n \sum x y-\left(\sum x\right)\left(\sum y\right)}{\sqrt{\left[n \sum x^{2}-\left(\sum x\right)^{2}\right]\left[n \sum y^{2}-\left(\sum y\right)^{2}\right]}}=\frac{3520}{\sqrt{2352(7088)}}$

$$
=\frac{3520}{4083.0107}=0.8621
$$

This value of r shows a strong positive relationship between hours of study and examination grade.
(d) $r^{2}=(0.8621)^{2}=0.7432$

This means hours of study can explain 74.32% of variation on examination grade in the regression equation.
23. (a)

$$
\begin{gathered}
n=10 \quad \Sigma x=0.56 \quad \Sigma y=96.7 \\
\sum x^{2}=0.0367 \quad \Sigma x y=5.8 \\
b=\frac{n \Sigma x y-(\Sigma x)(\Sigma y)}{n \Sigma x^{2}-(\Sigma x)^{2}} \\
=\frac{(10)(5.8)-(0.56)(96.7)}{(10)(0.0367)-0.56^{2}}=72.060 \\
a=\bar{y}-b \bar{x}=\frac{96.7}{10}-(72.060)\left(\frac{0.56}{10}\right) \\
=5.635 \\
\quad \therefore \hat{y}=5.635+72.060 x
\end{gathered}
$$

(b) The slope of the linear regression line is 72.060 and this implies that the P / E ratio of a company is expected to be increased by 0.72060 for each 0.01 increase in its R/S ratio, i.e. for each 1 cent increase in research \& development expenditure per dollar of sales.
(c) If

$$
x=0.060,
$$

then

$$
\begin{aligned}
\hat{y} & =5.635+(72.060)(0.060) \\
& =9.96
\end{aligned}
$$

Reliability of this estimate is low because n is equal to 10 only and $r=0.57$ (i.e. only 0.32% of the variation in y is explained by the regression line).
24. (a) ltimp $=-0.02686+0.79116 \times$ Foreimp $+0.60484 \times$ Midsole
(b) For a given midsole impact, each increase of one unit in forefoot impact absorbing capability is expected to result in an average increase in the long-term ability to absorb shock by 0.79116 units. For a given forefoot impact absorbing capability, each increase of one unit in midsole impact is expected to result in the average increase in the long-term ability to absorb shock by 0.60484 units.
(c) $R^{2}=\frac{12.6102}{13.38473}=0.9421 . \quad 94.21 \%$ of the variation in the long-term ability to absorb shock can be explained by variation in forefoot absorbing capability and variation in midsole impact.
25. (a) $H_{0}: \beta_{1}=\beta_{2}=\beta_{3}=\beta_{4}=0$
H_{1} : at least one β_{i} is not equal to 0
Under H_{0}, test statistic $\mathrm{f}=39.86$ with p -value $=0.000$
Decision: Reject H_{0}
Conclusion: The multiple regression equation is significant at 5% level of significance.
(b) Permits: for each additional building permit, the drywall demand is expected to increase by 476.31 .
Mortgage rates: for each additional percentage point, the drywall demand is expected to increase by 1699 .
Apartment vacancy rate: for each additional percentage point, the drywall demand is expected to decrease by 1052.8 .
Office vacancy rate: for each additional percentage point, the drywall demand is expected to increase by 130.8 .
(c) To test $H_{0}: \beta_{i}=0$ against $H_{1}: \beta_{i} \neq 0$ for all the independent variables, the test statistic t of permits, mortgage rates, apartment vacancy rate and office vacancy rate are $12.06,1.12,-1.65$ and 0.47 respectively and the p-values of permits, mortgage rates, apartment vacancy rate and office vacancy rate are $0.000,0.276$,
0.116 and 0.645 respectively. Only one of the independent variables - permits has significant effect on the drywall demand at 5% level of significance.

