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Theorem. Let 
1 2 nX , X , , X…  denote the items of a random sample from a 

distribution that has mean µ  and positive variance 2σ . Then the random variable 
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and variance 1. 

 

 

Proof. In the modification of the proof, we assume the existence of the 

moment-generating function ( ) ( )tXM t E e= , h t h− < < , of the distribution. However, 

this proof is essentially the same one that would be given for this theorem in a more 

advanced course by replacing the moment-generating function by the characteristic 

function ( ) ( )itXt E eϕ = . 
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also exists for h t h− < < . Since ( )m t  is the moment-generating function for 

X µ− , it must follow that ( )0 1m = , ( ) ( )0 0m E X µ′ = − = , and 

( ) ( )2 2
0m E X µ σ ′′ = − =  . By Taylor’s formula there exists a number ξ  between 0 

and t such that 
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If 
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tσ
 is added and subtracted, then 
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Next consider the moment generating function of Y, ( )M t; n , where 
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In ( )m t , replace t by 
t

nσ
 to obtain 
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where now ξ  is between 0 and 
t

nσ
 with h n t h nσ σ− < < .  

Accordingly, 
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Since ( )m t′′ is continuous at t = 0 and since 0ξ → as n→∞ , we have 
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The limit proposition (refer to the next page) shows that 
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for all real values of t. This proves that the random variable 
X

Y
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µ
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=  has a 

limiting normal distribution with mean zero and variance 1. 

 

We interpret this theorem as saying, with n a large, fixed positive integer, that the 

random variable 
X

n

µ
σ

−
 has an approximate normal distribution with mean zero and 

variance 1 ( X  has an approximate normal distribution with mean µ  and variance 

2

n

σ
); and in applications we use the approximate normal p.d.f. as though it were the 

exact p.d.f. of 
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µ
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−
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Limit proposition (stated on the previous page) 

We refer to the limit of the form 
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where b and c do not depend upon n and where ( )lim
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