Central Limit Theorem

Theorem. Let X, X,,..., X, denote the items of a random sample from a
distribution that has mean g and positive variance o”. Then the random variable
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and variance 1.
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has a limiting distribution that is normal with mean zero

Proof. In the modification of the proof, we assume the existence of the

moment-generating function M (1) = E (e‘X ) , —h <t<h, of the distribution. However,

this proof is essentially the same one that would be given for this theorem in a more
advanced course by replacing the moment-generating function by the characteristic

function ¢(1)=E (e”X ) .

The function

also exists for —h<t<h. Since m(t) is the moment-generating function for
X-u , it must follow that m(0)=1 , m'(0)=E(X-u)=0 , and

m"(O) = E[(X — ,u)zJ =o’. By Taylor’s formula there exists a number & between 0

and ¢ such that
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Next consider the moment generating function of ¥, M (z; n) , where
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In m(t), replace ¢ by to obtain
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where now & is between 0 and with —hon <t <hon.
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Accordingly,
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Since m"(t)is continuous at =0 and since & — 0as n— oo, we have

gil?}o[m”(§)—02] =0.

The limit proposition (refer to the next page) shows that
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for all real values of ¢ This proves that the random variable Y =

limiting normal distribution with mean zero and variance 1.

We interpret this theorem as saying, with » a large, fixed positive integer, that the
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random variable /—\/’il has an approximate normal distribution with mean zero and
o/n

variance 1 (X has an approximate normal distribution with mean x and variance
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—); and in applications we use the approximate normal p.d.f. as though it were the
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exact p.d.f. of

Limit proposition (stated on the previous page)
We refer to the limit of the form
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where b and ¢ do not depend upon 7 and where limy (n)=o. Then
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