Department of Applied Mathematics
 AMA1501 Introduction to Statistics for Business Homework 2015/2016 Semester 2 Suggested outline solution

1(a) Class marks: 125, 375, 625, 875, 1125, 1375, 1750, 2250

$$
\begin{aligned}
& \sum f x=153875 \sum f x^{2}=200546875 \mathrm{n}=140 \\
& \text { Mean }=\bar{x}=\frac{153875}{140}=\$ 1099.11
\end{aligned}
$$

Standard deviation $=s=\sqrt{\frac{200546875-153875^{2} / 140}{139}}=\sqrt{226055.8517}=\$ 475.45$
Median $=1000+\frac{140(0.5)-55}{36}(250)=\$ 1104.17$
1(b) Coefficient of variation of invoice amount of customers using co-branded credit card is $\frac{475.45}{1099.11} \times 100 \%=43.26 \%$.
Coefficient of variation of invoice amount of customers using other credit cards is $\frac{450}{900} \times 100 \%=50 \%$.

1(c) $\$ 0+\$ 50 \times \frac{17+23+36+28}{140}+\$ 100 \times \frac{15+6}{140}=\$ 52.14$
1(d) $\hat{p}=\left(\frac{1000-800}{1000-750} \times 23+36+28+\frac{1600-1500}{2000-1500} \times 15\right) / 140=\frac{85.4}{140}=0.61$
Let X be the number of invoices have invoice amount between $\$ 800$ and $\$ 1600$ out of 6 , $X \sim B(6,0.61)$
$\operatorname{Pr}(X \geq 3)=1-\sum_{x=0}^{2}\binom{6}{x}(0.61)^{x}(1-0.61)^{6-x}=0.8343$

2(a) $\frac{C_{0}^{9} \times C_{8}^{8}+C_{1}^{9} \times C_{7}^{8}+C_{2}^{9} \times C_{6}^{8}}{C_{8}^{17}}=0.04447$
2(b) Let A be the event that strawberry will be contained in the appetizer
D be the event that strawberry will be contained in the dessert
$\mathrm{P}(\mathrm{A})=0.4, \mathrm{P}(\mathrm{D})=0.32, P(A \cup D)=0.6$
2(b)(i) $\quad P(A \cup D)=P(A)+P(D)-P(A \cap D)$
$0.6=0.4+0.32-P(A \cap D)$
$P(A \cap D)=0.12$
2(b)(ii)
$P(\bar{A} \mid D)=1-P(A \mid D)=1-\frac{P(A \cap D)}{P(D)}=1-\frac{0.12}{0.32}=0.625$
2(b)(iii)
$\operatorname{Pr}(D \mid \bar{A})=\frac{\operatorname{Pr}(D \cap \bar{A})}{\operatorname{Pr}(\bar{A})}=\frac{\operatorname{Pr}(D)-\operatorname{Pr}(D \cap A)}{1-\operatorname{Pr}(A)}=\frac{0.32-0.12}{1-0.4}=\frac{1}{3}$

2(b)(iv) Let S be the event that the randomly selected day is Saturday
$\operatorname{Pr}(A \cap D \mid S)=0.42$
$\operatorname{Pr}(S \mid A \cap D)=\frac{\operatorname{Pr}(A \cap D \mid S) \operatorname{Pr}(S)}{\operatorname{Pr}(A \cap D)}=\frac{0.42 \times 1 / 7}{0.12}=\frac{1}{2}$
2(c) Let A be the event that the investment of the company in Country A B be the event that the investment of the company in Country B
C be the event that the investment of the company in Country C
R2 be the event that the monthly return is greater than 2%
$P(A)=0.3, P(B)=0.3, P(C)=0.4$
$P(R 2 \mid A)=0.13, P(R 2 \mid B)=0.09, P(R 2 \mid C)=0.08$
By Baye's theorem, we have

$$
\begin{aligned}
P(C \mid R 2) & =\frac{P(R 2 \mid C) P(C)}{P(R 2 \mid A) P(A)+P(R 2 \mid B) P(B)+P(R 2 \mid C) P(C)} \\
& =\frac{0.08 \times 0.4}{0.13 \times 0.3+0.09 \times 0.3+0.08 \times 0.4}=0.32653
\end{aligned}
$$

3(a)(i) Let X be the daily sales amount of the shop.
$X \sim N\left(40000,8000^{2}\right)$
$P(24000<X<52000)=P\left(\frac{24000-40000}{8000}<Z<\frac{52000-40000}{8000}\right)$
$=P(-2<Z<1.5)=1-0.0228-0.0668=0.9104$
3(a)(ii) Let m be the daily sales amount exceeded by 5% of daily sales amounts.
$P(X>m)=P\left(Z>\frac{m-40000}{8000}\right)=0.05$
$\frac{m-40000}{8000}=1.645 \quad m=\$ 53160$
3(a)(iii) $\quad P(X>34400)=P\left(Z>\frac{34400-40000}{8000}\right)=P(Z>-0.7)=0.758$
Let Y be the number of days whose daily sales amounts are more than $\$ 34,400$ each out of 100 days.
$Y \sim b(100,0.758)$
$n=100>30 \quad 0.1<p<0.9$
$n p=100(0.758)=75.8>5 \quad n q=100(0.242)=24.2>5$
Normal approximation can be used.
$P(Y \geq 70) \approx P(Y>69.5)=P\left(Z>\frac{69.5-75.8}{\sqrt{100(0.758)(0.242)}}\right)=P(Z>-1.47)=0.9292$

3(b)(i) Let X be the demand of the super-deluxe suites of the hotel per day.

$$
X \sim \mathbf{P o}(3)
$$

$P(X \leq 4)=e^{-3}\left(\frac{3^{0}}{0!}+\frac{3^{1}}{1!}+\frac{3^{2}}{2!}+\frac{3^{3}}{3!}+\frac{3^{4}}{4!}\right)=0.8153$
3(b)(ii)
$P(X \leq 4 \mid X \geq 2)=\frac{P(2 \leq X \leq 4)}{P(X \geq 2)}=\frac{e^{-3}\left(\frac{3^{2}}{2!}+\frac{3^{3}}{3!}+\frac{3^{4}}{4!}\right)}{1-e^{-3}\left(\frac{3^{0}}{0!}+\frac{3^{1}}{1!}\right)}=0.7693$

4(a) Let \bar{X} be the average monthly tuition fee of the 15 kindergarteners.
$\bar{X} \sim N\left(3200, \frac{1000^{2}}{15}\right)$
$\operatorname{Pr}(2500<\bar{X}<3000)=\operatorname{Pr}\left(\frac{2500-3200}{1000 / \sqrt{15}}<Z<\frac{3000-3200}{1000 / \sqrt{15}}\right) \approx \operatorname{Pr}(-2.71<Z<-0.77)$
$=0.2206-0.00336=0.21724$
4(b)(i) $\quad \sum x=32670, \sum x^{2}=107149900, \mathrm{n}=10$
$\bar{x}=32670 / 10=3267, s=\sqrt{\frac{107149900-32670^{2} / 10}{9}}=\sqrt{\frac{417010}{9}}=215.2543715$
A 95\% confidence interval for the mean monthly tuition fee is $3267 \pm 2.262(215.2543 / \sqrt{10})$ i.e. $\$ 3113.0270<\mu<\$ 3420.9730$

4(b)(ii) $1.96 \times \frac{215.2431715}{\sqrt{n}} \leq 50$
$n \geq\left(\frac{1.96 \times 215.2437}{50}\right)=71.19$
4(c) Let p be the proportion of five-year-old children who are learning any musical instruments. A 99% confidence interval for p is

$$
\frac{105}{180} \pm 2.576 \sqrt{\frac{105}{180} \times \frac{75}{180} / 180} \text {, i.e. } 0.4887<p<0.6780
$$

AMA1501\Questions\AMA1501 homework solution 15S2.doc

